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Abstract

The mass of galaxy clusters that has been estimated by using motions of astronomical
objects around the clusters is called the dynamical mass. The dynamical mass approach
provides a complementary method to estimate cluster masses which are dominated by
dark matter and hence difficult to measure. In addition, the comparison of the dynamical
mass with the mass estimated by gravitational lensing provides an important means of
testing General Relativity.

However, previous studies of dynamical masses did not fully take account of the com-
plexity of dynamics around clusters. To estimate the dynamical mass accurately, we have
to understand more about the dynamical state of clusters. Using a large box N -body sim-
ulation, we analyze motions of dark matter halos surrounding galaxy clusters. We find
that the stacked pairwise velocity distribution can be well described by a two component
model, which consists of the infall component and the splashback component. We find
that very little fraction of halos is well relaxed even at z = 0. We also find that the radial
velocity distribution of the infall component deviates from the Gaussian distribution and
is described well by the Johnson SU distribution. In addition, we study the dependence
of the phase space distribution on cluster masses as well as masses of satellite-halos and
sub-halos.
Our model is then used to derive the probability distribution function of the line-of-sight

velocity vlos, which can directly be compared with observations. In doing so, we project
our model of the three-dimensional phase space distribution along the line-of-sight by
taking proper account of the effect of the Hubble flow. We find that we can estimate
cluster masses even at the outer region of the projected phase space rproj > 2 Mpc/h,
which is complementary to the traditional approach to use velocity dispersions measured
at rproj ≲ 1 Mpc/h. Our model allows us to understand how the vlos distribtions at large
radii can constrain cluster masses, which is complicated due to the competing effects of
the infall velocities and the Hubble flow. We conclude that by using SDSS spectroscopic
galaxies we can constrain mean cluster masses with an accuracy of 4% by using the outer
phase space distributions at rproj > 2 Mpc/h. We discuss potential systematic errors
associated with this method.
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Chapter 1

Introduction

In the Λ Cold Dark Matter (ΛCDM) universe, the energy budget of the Universe is
composed of three components. The first component is baryon, which represent ordinary
matter such as stars, galaxies, and intracluster medium. The second component is dark
matter, which interacts mostly via gravitational field. While the true nature of dark
matter is unknown, it is usually assumed to interact with baryon only very weakly, which
makes it very challenging to infer the distribution of dark matter from astronomical obser-
vations. The third component is dark energy. Dark energy is a hypothetical component
with negative pressure, which is introduced as a source of the accelerated expansion of
the Universe. In the standard ΛCDM model, initial density perturbations grow by the
gravitational instability, and form the cosmic structure hierarchical.

We can extract information on the initial density perturbation, the structure forma-
tion history, and cosmological parameters from distributions of cosmic structures such as
galaxy clusters. Galaxy clusters are the biggest self-gravitating system in the Universe,
whose typical size is 1 Mpc, the typical weight is 1014M⊙, and the main component is
dark matter. For instance, we can extract the matter density (Ωm) and the amplitude
of the density perturbation (σ8) from the abundance of galaxy clusters (e.g., Rozo et al.
2010). Fig. 1.1 shows an example of cosmological constraints obtained from the abun-
dance of galaxy clusters. The dominant source of the uncertainty in this analysis is the
uncertainty of estimating cluster masses, which is necessary to compare observations with
theory involving dark matter. To constrain cosmological parameters accurately, we need
to estimate masses of galaxy clusters precisely, which is difficult because masses of clusters
are dominated by dark matter.

There are several methods to estimate masses of galaxy clusters, including gravitational
lensing (Schneider et al. 1992; Umetsu et al. 2011; Oguri et al. 2012; Newman et al. 2013),
the X-ray observation (Sarazin 1988; Vikhlinin et al. 2006), and the Sunyaev-Zel’dovich
effect (Sunyaev & Zeldovich 1972; Arnaud et al. 2010; Planck Collaboration et al. 2014).
In addition, another method to estimate masses of galaxy clusters by using the relative
motion of galaxies surrounding galaxy clusters has also been proposed (Smith 1936; Busha
et al. 2005; Rozo et al. 2015; Farahi et al. 2016). In this thesis, we call the mass estimated
by motions of galaxies around clusters as the dynamical mass. It is of great importance
to compare cluster masses derived by these different methods in order to understand
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2 Introduction

Figure 1.1: The cosmological constraints obtained from the abundance of galaxy clusters.
The maxBCG clusters (Koester et al. 2007), and the mass calibration by stacked weak
lensing (Johnston et al. 2007) are used in this analysis. The plot shows 68% confidence
regions. The solid line shows the result of the fiducial analysis, the dotted line shoes the
analysis with a more conservative error on the mass calibration, and the dashed line shows
the analysis with the perfect purity and completeness. Other cosmological parameters are
fixed at WMAP5 values (Dunkley et al. 2009). Taken from Rozo et al. (2010).

systematic errors inherent to the individual methods. Different methods have different
systematic errors, which can be inferred and hopefully corrected for by cross-checking the
results of the individual methods.
Furthermore, we can also test General Relativity by comparing masses of galaxy clusters

estimated by gravitational lensing effect (hereafter referred to as the lens mass) with dy-
namical masses (Schmidt 2010; Lam et al. 2013). Because the dynamical mass (Mdyn) and
lens mass (Mlens) have different information about metric, we can test General Relativity
by comparing these two masses. Fig. 1.2 is an example of the comparison between Mdyn

and Mlens taken from Schmidt (2010). In that paper, they assume one class of modified
gravity theories, f(R) gravity (Nojiri & Odintsov 2011), which add a new term f(R) to
Lagrangian of the gravitational field (LG) as

LG = R + f(R) , (1.1)

where R is curvature, and f(R) is

f(R) = −2Λ− fR0
R0

2

R2
. (1.2)

Note that Λ is cosmological constant, R0 is the present day background curvature, and
fR0 is a parameter of the model. Then they define gvir,f(R) as the ratio of the dynimcal
and lens masses

gvir,f(R) =

(
Mdyn

Mlens

)5/3

. (1.3)
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Figure 1.2: Comparison between galaxy cluster masses estimated by gravitational lens-
ing (Mlens) and by using relative motions of dark matter halos around clusters (Mdyn)
for one class of modified gravity theories, f(R) gravity. The vertical axis is gvir,f(R) =

(Mdyn/Mlens)
5/3. The horizontal axis is Mlens. Symbols show the mass ratios taken from

N -body simulations, and the corresponding dot-dashed lines show the results of an an-
alytic calculation with approximations. Different symbols corresponds to different |fR0|,
which is a parameter of f(R) gravity. Taken from Schmidt (2010).

The value of this parameter is always unity for General Relativity, but can deviate from
the unity for modified gravity theories. In Fig. 1.2, we show the comparison betweenMlens

and Mdyn in the case of the f(R) gravity. From Fig. 1.2, we can see that the ratio of
Mlens and Mdyn deviates from unity for low-mass halos up to ∼ 30%, which can be tested
with observations. This example highlights the importance of accurate measurements of
Mdyn to test General Relativity.

While there are some previous studies to estimate Mdyn (Smith 1936; Busha et al.
2005; Rozo et al. 2015; Farahi et al. 2016), there is room for improvement in several ways.
For example, to estimate Mdyn accurately, we have to understand the dynamical state
of dark matter halos around galaxy clusters. However, there are no existing theoretical
methods of the Mdyn measurement which fully take account of the complexity of the
dynamical state of dark matter halos. Moreover, in most of previous studies, motions of
galaxies (or dark matter halos) within ∼ 1 Mpc from centers of galaxy clusters are used
to derive Mdyn. In this thesis, we study the phase space distribution of galaxies around
galaxy clusters up to very large distances, several tens of Mpc from cluster centers, by
using an N -body simulation, and propose a new method to measure Mdyn using a staked
phase space diagram. For this purpose, we construct a new model of the phase space
distribution of dark matter halos around clusters. We discuss how Mdyn can be estimated
by the stacked phase space distribution at large distances beyond ∼ 2 Mpc, which is



4 Introduction

highly complementary to traditional methods to estimate Mdyn from motions of galaxies
within ∼ 1 Mpc from cluster centers.
This thesis is organized as follows. In Chapter 2, we review the basic dynamics of dark

matter halos. In Chapter 3, we review previous methods to measure Mdyn. We show our
new model of the phase space distribution of dark matter halos in Chapter 4. In Chapter
5, we discuss how to measure Mdyn by using our model. Finally, we conclude in Chapter
6.



Chapter 2

Basic Dynamics of Dark Matter
Halos

To estimate Mdyn of galaxy clusters, we need to know the phase space distribution
or the dynamical state of dark matter halos. In this Chapter, we review basic thory of
dynamics of dark matter halos.

2.1 Dynamics of Collisionless Particle

Dark matter particles are usually assumed to be collisionless. The dynamics of such
collisionless particles are governed by the collisionless Boltzmann equation (see e.g., Mo
et al. 2010)

df

dt
=

∂f

∂t
+
∑
i

vi
∂f

∂xi

−
∑
i

∂ϕ

∂xi

∂f

∂vi
= 0, (2.1)

where f = f(x,v, t) is the phase space distribution function of the particles, and ϕ =
ϕ(x, t) is the gravitational potential. Note that we assume only single mass (m) particles.
We can derive the continuity equation by integrating eq. (2.1) over the velocity space

∂ρ

∂t
+
∑
i

vi
∂

∂xi

(ρvi) = 0, (2.2)

where ρ is the density described as

ρ(x, t) = m

∫
d3v f(x,v, t), (2.3)

and vi is the i-th component of the mean velocity given as

vi(x, t) =

∫
d3v vif(x,v, t)∫
d3v f(x,v, t)

. (2.4)
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6 Basic Dynamics of Dark Matter Halos

We can also derive equation of motion for collisionless particles by multiplying eq. (2.1)
by vj and integrating eq. (2.1) over the velocity space

∂ρvj
∂t

+
∑
i

∂

∂xi

(ρvivj) + ρ
∂ϕ

∂xj

= 0, (2.5)

where

vivj(x, t) =

∫
d3v vivjf(x,v, t)∫
d3v f(x,v, t)

. (2.6)

Now we define σij as
σij =

√
vivj − vi vj . (2.7)

Using σij, eq. (2.7) is rewritten as

∂vj
∂t

+
∑

vi
∂vj
∂xi

= −1

ρ

∑ ∂

∂xi

(ρσ2
ij)−

∂ϕ

∂xj

. (2.8)

Eq. (2.8) is called the Jeans equation.
We can also derive equation of energy by multiplying eq. (2.5) by xk and integrating

over real space∫
d3x xk

∂(ρvj)

∂t
= −

∑
i

∫
d3x xk

∂

∂xi

(ρvivj)−
∫

d3x ρxk
∂ϕ

∂xj

. (2.9)

The second term of right hand side is rewritten as

−
∑
i

∫
d3x xk

∂

∂xi

(ρvivj) =

∫
d3x (ρvjvk)−

∑
i

∫
dSi xkρvivj, (2.10)

where, dSi corresponds to the surface element oriented toward the direction of xi. The
first term of right hand side means the kinetic energy tensor

Kjk =
1

2

∫
d3x (ρvjvk). (2.11)

The second term of right hand side of eq. (2.10) means the surface pressure

Σjk = −
∑
i

∫
dSi xkρvivj. (2.12)

Using the Chandrasekhar potential energy tensor defined as

Wjk = −
∫

d3x ρxj
∂ϕ

∂xk

, (2.13)

we rewrite eq. (2.9) as ∫
d3x xk

∂(ρvj)

∂t
= 2Kjk +Wjk + Σjk . (2.14)
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The left hand side of eq. (2.14) can be rewritten as∫
d3x xk

∂(ρvj)

∂t
=

1

2

d

dt

∫
d3x ρ(xkvj + xjvk)

= −1

2

d

dt

∫
d3x

∂(ρvi)

∂xi

xjxk

=
1

2

d

dt

∫
d3x

∂ρ

∂t
xjxk

=
1

2

d2Ijk
dt2

,

(2.15)

where Ijk is the inertial moment tensor defined as

Ijk =

∫
d3x ρxjxk . (2.16)

By using eqs. (2.10), (2.11), (2.12), (2.13), (2.15), and (2.16), eq. (2.9) can be rewritten
as

1

2

d2Ijk
dt2

= 2Kjk +Wjk + Σjk . (2.17)

Eq. (2.17) is called the tensor virial theorem. We can derive the scalar virial theorem by
taking trace of eq. (2.17)

1

2

d2I

dt2
= 2K +W + Σ, (2.18)

where

I =

∫
d3x ρ|x|2, (2.19)

K =
1

2

∫
d3x (ρ|v|2), (2.20)

W = −
∫

d3x ρx · ∇ϕ, (2.21)

Σ = Tr(Σjk)

= −
∫

dSi xkρvivk.
(2.22)

For a static system, d2I/dt2 = 0, eq. (2.18) becomes

2K +W + Σ = 0 . (2.23)

When we neglect the surface term Σ, the total energy E (≡ K +W ) can be described as

E = −K =
1

2
W . (2.24)
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This model is used as a basic of dynamics of dark matter particles and halos.
If the system is spherically symmetric, eq. (2.8) can be rewritten in a spherical coordinate

as
∂vr
∂t

+ vr
∂vr
∂r

= −1

ρ

∂

∂r
(ρσ2

rr)−
2βσ2

rr

r
− ∂ϕ

∂r
, (2.25)

where

β = 1−
σ2
θθ + σ2

ϕϕ

2σ2
rr

(2.26)

is called the velocity anisotropy parameter. If the velocity dispersion is isotropic, β reduces
to zero, and if the radial (tangential) component is dominant, β = 1 (β → −∞).
When we assume that the system is static, we can rewrite eq. (2.25) by using eq. (2.26)

as
GM(< r)

r
=

1

2
σ2
rr(r)× (3 + 2β) , (2.27)

where M(< r) is the mass within r. Once we set r to r200, which is the radius within
which the average density is 200 times the critical density of the Universe, M200 ∝ r3200,
and regard β as constant, we can describe σrr(r200) as

σrr(r200) ∝ M
1/3
200 (2.28)

This equation shows the most basic relationship between masses of galaxy clusters and
dynamics within dark matter halos.

2.2 Escape Velocity Profile of a Galaxy Cluster

The caustic model is a model that focuses on dark matter halos of infall sequence to
galaxy clusters, based on s spherical collapse model (Diaferio & Geller 1997). In Stark
et al. (2016), the caustic model is extended to apply it for an expanding Universe. In this
Section, we review an improved caustic method based on Stark et al. (2016).
The caustic method is based on collisionless infall. The escape velocity (vesc) is described

as
v2esc(r) = −2Φ(r), (2.29)

where Φ is the potential. Following Nandra et al. (2012), they construct effective Φ for
an acceleration experienced particle with zero angular momentum by two components as

∇⃗Φ = ∇⃗Ψ+ qH2rr̂ . (2.30)

The first term of right hand side of eq. (2.30) corresponds to the Newtonian gravitational
potential of a galaxy cluster, and the second term corresponds to the effect of expanding
Universe, where, H is Hubble parameter, and q is given by q ≡ −(äa)/ȧ2. Integrating eq.
(2.30), ∫ req

r

dΦ =

∫ req

r

dΨ+ qH2

∫ req

r

r′dr′ . (2.31)
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Note that the integration is performed out to a finite radius, req, which is termed the
”equivalence radius” in Behroozi et al. (2013a). The finite range of the integration is
due to the fact that the escape velocity at infinity is poorly defined. Following Behroozi
et al. (2013a), they define the req to be the point at which the acceleration due to the
gravitational potential and the acceleration of the expanding Universe are equivalent
(∇⃗Φ = 0). Hence, req is defined as

req =

(
GM

−qH2

)1/3

, (2.32)

where M is the mass of the galaxy cluster. They assume that at large r, Ψ is given by
Ψ = −GM/r via the Poisson equation. Then, by integrating eq. (2.31), we have

Φ(r) = Ψ(r)−Ψ(req) +
1

2
qH2(r2 − r2eq) + Φ(req) . (2.33)

At req, vesc must be zero, Φ(req) = 0. Hence, vesc is described as

vesc(r) =
√
−2{Ψ(r)−Ψ(req)} − qH2(r2 − r2eq) . (2.34)

This is the one of the most basic models to describe infalling dark matter halos to a
galaxy cluster. This model, however, cannot predict the phase space distribution of dark
matter halos which we study in Section 4.3.





Chapter 3

Basic Method of Dynamical Mass
Measurement

There have been several studies about dynamical mass measurements of galaxy clusters
based on stacking analysis (Munari et al. 2013; Farahi et al. 2016). An advantage of the
stacking approach is that we can derive an accurate average mass of a sample of galaxy
clusters, which is crucial in the era of wide-field surveys in which a large sample of galaxy
clusters can be constructed. In this Chapter, we review previous studies of dynamical
mass measurements using the stacking approach.

We can obtain information on the gravitational potential of a cluster, which depends
on the mass of the cluster, from motions of galaxies. Therefore, we can measure masses
of galaxy clusters by analyzing motions of galaxies in and around galaxy clusters. On the
other hand, in N -body simulations, galaxy clusters correspond to dark matter halos. In
this thesis, a cluster-scale dark matter halo whose dynamical mass is our main interest is
referred to as a host-halo, whereas a galaxy-scale dark matter halo and subhalo in and
around the cluster-scale dark matter halo are referred to as a satellite-halo and a sub-halo,
respectively. We give more strict definition of the host-halo, satellite-halo, and sub-halo
in Chapter 4.

The outline of the measurement of dynamical masses of stacked galaxy clusters are
as follows. First, we calculate pairwise line-of-sight velocities (vlos) between host-halos
(clusters) and satellite-halos and sub-halos (galaxies). Because galaxy clusters are located
far away from us, we cannot measure motions perpendicular to the celestial sphere. Hence,
all we can observe are line-of-sight velocities. Second, we stack galaxy clusters to construct
the vlos histogram. Because each galaxy cluster has only 50-100 observable satellite-halos
and sub-halos at most, it is impossible to construct an accurate enough vlos histogram
from a single cluster. Hence, we have to stack a lot of clusters for accurate dynamical
mass measurements. Third, we reconstruct masses of galaxy clusters from vlos histograms.
Since the relationships between masses of galaxy clusters and vlos histograms have not yet
been fully understood, we usually estimate dynamical masses of galaxy clusters from vlos
histograms by an empirical way using N -body simulation results. We review each step in
this Chapter.

11



12 Basic Method of Dynamical Mass Measurement

Figure 3.1: Rough illustration of vlos measurement

3.1 Measurement of vlos

In this Section, we review how to measure the line-of-sight velocity (vlos) following to
Farahi et al. (2016). They measure pairwise vlos between host-halos and satellite-halos and
sub-halos by using galaxy redshifts. It is known that almost all galaxy clusters have large
luminous galaxies at their centers. These galaxies are called Brightest Cluster Galaxies
(BCG), whose positions are regarded as the centers of the galaxy clusters and whose
velocities as bulk motion of galaxy clusters. The other galaxies in galaxy clusters are
called satellite galaxies, whose positions and velocities are regarded as those of satellite-
halos and sub-halos. We note that these are approximations and can generate systematic
errors.

Fig. 3.1 shows a schematic picture of the configuration of the vlos measurement. For
each pair of a cluster and a satellite galaxy, they calculate vlos by

vlos = c

(
zsat − zcen
1 + zcen

)
, (3.1)

where zcen is the redshift of the BCG, and zsat is the redshift of the satellite galaxy.
This vlos contains contributions from the Hubble flow and pairwise line-of-sight peculiar
velocity. Specifically, vlos is given by

vlos = H · dlos − (vlos:cen − vlos:sat), (3.2)

where H is the Hubble parameter, dlos is the line-of-sight distance between the BCG and
the satellite galaxy, and, vlos:cen and vlos:sat are the line-of-sight component of the peculiar
velocity of the BCG and satellite galaxy, respectively.
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The measurement error of vlos is

∆vlos =

√(
∆zsat

1

zsat − zcen

)2

+

{
∆zcen

(
1

1 + zcen
+

1

zsat − zcen

)}2

× vlos . (3.3)

Since the typical value of vlos is 500 km/s, we have to measure redshifts as accurate
as 500 km/s/c ∼ 10−3. In observations, the typical error of photometric redshifts is
10−2, whereas that of spectroscopic redshifts is 10−4. For this reason, we need to use
spectroscopic galaxies to measure vlos.

3.2 Stacking Galaxy Clusters

For stacked vlos measurements, it is important to construct a large sample of galaxy
clusters in order to reduce the error in the vlos histogram. In this Section, we review
the main concept of red-sequence cluster finding methods (e.g., Rykoff et al. 2014; Oguri
2014).
It is known that a lot of galaxies in galaxy clusters follow a tight color-magnitude rela-

tionships. These galaxies are called red sequence galaxies. Fig. 3.2 is a color-magnitude
diagram of the galaxy cluster Abell 22. The Figure indicates that many cluster mem-
ber galaxies are populated along a line in the color-magnitude diagram. The tight red-
sequence indicates that many cluster member galaxies were formed at a similar epoch.

This color-magnitude relation shows that a high density region of red and luminous
galaxies must be associated with a galaxy cluster. Hence we can find galaxy clusters by
finding such concentrations of red galaxies, and can also derive photometric redshifts of
clusters from colors of the red-sequence.

In order to infer rough masses of galaxy clusters identified by the red-sequence meth-
ods, it is common to adopt richness, which is essentially the number of cluster member
galaxies. For instance, Rykoff et al. (2014) define richness by the number of red cluster
member galaxies with the projected radius of

Rλ = 1.0 h−1

(
λ

100

)0.2

Mpc, (3.4)

where λ is richness of a galaxy cluster. In Rykoff et al. (2014), λ and Rλ are computed
iteratively, until they converge. We can expect that clusters with large richness are more
massive on average, which is indeed confirmed by e.g., stacked weak lensing observations
(e.g., Murata et al. 2017).
We review more details about CAMIRA (Oguri 2014), one of red-sequence cluster finding
methods, in Appendix A.
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Figure 3.2: Color-magnitude diagram of the galaxy cluster Abell 22. The vertical axis is a
galaxy color i.e., the difference between B-band and R-band magnitudes. The horizontal
axis is the R-band magnitude. Points are galaxies. Points with circles shows color-
magnitude relations of red cluster member galaxies. The solid line shows a fit to the
red-sequence relation. Taken from Stott et al. (2009)

3.3 Reconstruction of Masses of Galaxy Clusters from

vlos Histograms

Now, we can construct the vlos histogram by stacking a lot of galaxy clusters. We discuss
how we obtain masses of galaxy clusters from the vlos histogram. Here, we introduce
previous studies based on Munari et al. (2013) and Rozo et al. (2015).
In those papers, all galaxies within rproj < Rλ are used to construct the vlos histogram,

where rproj is the projected radius, and Rλ is defined in eq. (3.4).
The vlos histogram is fitted to the following function form

f(vlos) =
A0√
2πσ2

G
exp

(
− v2los
2σ2

G

)
+ A1 . (3.5)

The first term corresponds to signals from cluster member galaxies, and the second term
of eq. (3.5) corresponds to contributions from foreground and background galaxies of
galaxy clusters, i.e., field galaxies. Because the distribution of cluster member galaxies
is highly elongated along the line-of-sight in the redshift space, it is difficult to separate
cluster member galaxies from other galaxies on an individual basis, which is why we have
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Figure 3.3: Distribution of vlos. The black points are from mock observations of an N -
body simulation, and the solid line is the best fit of eq. (3.5). Taken from Rozo et al.
(2015)

.

to subtract the contributions from the foreground and background galaxies statistically.
The fitting range may affect results. At first fitting, they set the fitting range to

|vlos| ≤ 3000× (λ/20)0.45 km/s . (3.6)

After deriving σG, they change the fitting range to

|vlos| ≤ 5σG (3.7)

and re-fit the histogram. This process is repeated until it converges. Fig. 3.3 is an
example of the vlos distribution and the fitting result. We can see that their model is
generally good, but not perfect. For example, the model cannot reproduce the sharp peak
around vlos = 0.

Free parameters in eq. (3.5) are A0, A1, and σG, where A0 and A1 are parameters
to determine the ratio of the number of field galaxies to that of cluster member galaxies.
Moreover, σG is the ”velocity dispersion” of galaxy clusters. In Munari et al. (2013),
by using N -body simulation, they show that the cluster mass is inferred from the one-
dimensional velocity dispersion (σ1D) as

σ1D = A2

(
h(z) M200

1015M⊙

)α

, (3.8)
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where, A2 and α are fitting parameters, M200 is the mass within a sphere of radius r200,
and r200 is the radius that the density of a spherical region within r200 being equal to 200
times the critical density of the Universe ρcrit. The parameter h(z) is the dimensionless
Hubble parameter defined as

h(z) ≡ H(z)

100 (km/s/Mpc)
. (3.9)

In the N -body simulation, σ1D is defined as

σ1D =

√√√√ 1

3Nsat

Nsat∑
i

|vcluster − vi,sat|2, (3.10)

where vcluster is the velocity of the center of galaxy cluster, vi,sat is the velocity of the
i-th satellite-halo, and Nsat is the number of satellite halos. While we can infer the mean
cluster mass from the stacked vlos diagram once we regard σ1D and σG as the same, there are
several notable differences between these two parameters. First, σ1D is calculated directly
from the pairwise velocity rather than by fitting eq. (3.5) to the histogram. Second, σ1D

assumes an isotropic pairwise velocity distribution, whereas σG does not rely on such an
assumption. Third, the one-dimensional pairwise velocity derived in Munari et al. (2013)
does not contain the Hubble flow. Forth, in Munari et al. (2013), only sub-halos within
r200 are used to calculate σ1D. These differences must cause the difference between σ1D

and σG, which is neglected here. If satellite-halos and sub-halos are well relaxed and
virialized within the cluster, A2 = 1040 – 1140 km/s, and α = 1/3 are expected (see also
Section 2.1).
In Fig. 3.4, they show the relationships between σ1D and galaxy cluster mass M200. We

can see that there is a difference between the best fit line and the virialized line.
If we regard σ1D as the same parameter as σG, we can estimate masses of galaxy clusters

from vlos histograms by using eqs. (3.5) and (3.8). However, they are in fact different with
each other as we will explicitly show in Appendix B from the analysis of our simulation.
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Figure 3.4: Comparison between cluster masses (M200) and velocity dispersions of dark
matter halos (σ1D) taken from Munari et al. (2013). Filled circles are from mock observa-
tions, whereas the solid line is the best fit line of eq. (3.8),and the dashed line is the line
that corresponds to the ”virialized line”, A2 = 1095 km/s and α = 0.336 for comparison.
The best fit parameters of the solid line are A2 = 1199±5.2 km/s and α = 0.365±0.0017.





Chapter 4

Modeling the Phase Space
Distribution of Dark Matter Halos

To estimate cluster masses from the vlos histogram, we usually assume some model
function of the vlos histogram like eq. (3.5). When we construct some model of vlos
histogram, we usually make simplified assumptions about satellite-halos or sub-halos. For
example, eq. (3.5) assumes that motions of satellite-halos and sub-halos are virialized,
and foreground and background halos distribute uniformly in phase space. However,
motions of massive satellite-halos and sub-halos (Mvir > 1011M⊙) are not virialized even
at present time, where, Mvir is defined in the same way as M200, but using the overdensity
of ∆vir(= 18π2 ∼ 178)× ρcrit.

Fig. 4.1 shows the stacked phase space distribution of dark matter halos in our N -
body simulation at z = 0 (see Section 4.1 for more details). We can clearly see that a
significant fraction of satellite-halos and sub-halos are infalling to galaxy clusters, and a
small fraction of halos are virialized even at z = 0.
As we can see in Fig. 4.1, the phase space distribution of dark matter halos is quite
complicated. There are some studies which propose realistic model of the phase space
distribution of dark matter halos. For example, Scoccimarro (2004) and Lam et al. (2013)
proposed based on the so-called halo model, and Zu & Weinberg (2013) constructed a
model in a phenomenological way. However these models still do not fully reproduce the
complex phase space distribution of dark matter halos seen in N -body simulations even
though it is necessary to fully exploit the vlos histograms for cluster mass measurements.
This is why in this thesis we construct a new model of the phase space distribution of
dark matter halos in a phenomenological way.
The features of our new model are; 1) we adopt a new model function of the phase space

distribution. 2) we divide dark matter halos into two components, the infall component
and the splashback component, and describe the phase space distributions separately.
In this Chapter, we present our model, which is calibrated against N -body simulations.

19
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Figure 4.1: The stacked phase space distribution of dark matter halos in our N -body
simulation at z = 0. Only massive satellite-halos and sub-halos (Mvir > 1011 M⊙) are
used. The mass range of host halos (clusters) is 1014 M⊙ < Mvir < 2 × 1014 M⊙. The
vertical axis is the radial velocity of dark matter halos, which is defined such that positive
vr corresponds to outward motions. The horizontal axis is the radius from the centers of
galaxy clusters. The color scale shows the number density of halos in the phase space,
log f(vr) which is defined as the number density per each galaxy cluster with bin sizes of
40 km/s for vr bin, 0.2 Mpc/h for r bin.
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4.1 Phase Space Distribution of Halos from N-body

Simulation

First, we perform a cosmological N -body simulation. The simulation is performed with
TreePM code Gadget-2 (Springel 2005), which runs from z = 99 to z = 0 in a box of co-
moving 360 Mpc/h on a side with periodic boundary condition. The number of dark mat-
ter particles is 10243, corresponding to the mass of each particle of mp = 3.4× 109M⊙/h.
The gravitational softening length is fixed at comoving 20 kpc/h. The initial condition
is generated by the MUSIC code (Hahn & Abel 2011), which employs second order La-
grangian perturbation theory. The transfer function at z = 99 is generated by the linear
Boltzman code CAMB (Lewis et al. 2000). We adopt ΩM,0 = 0.279, ΩΛ,0 = 0.721, h = 0.7,
ns = 0.972, σ8 = 0.821 following the WMAP 9 year result (Hinshaw et al. 2013). To
identify halos and sub-halos in our simulation, we use 6-dimension friend of friend (FoF)
algorithm implemented in Rockstar (Behroozi et al. 2013b).

We use this simulation to obtain the phase space distribution of dark matter halos
around galaxy clusters. Because we are interested in statistical features of dynamics of
dark matter halos, we stack a lot of simulated galaxy clusters to derive accurate phase
space distributions as shown in Fig, 4.1. In this thesis, we adopt dark matter halos
that are more massive than 5 × 1013 M⊙ as galaxy clusters. We divide these galaxy
clusters into three mass bins, low mass bin (5 × 1013 M⊙ < Mvir < 1014 M⊙), middle
(1014 M⊙ < Mvir < 2× 1014 M⊙), and high (2× 1014 M⊙ < Mvir < 5× 1014 M⊙). In our
simulation, each bin contains 2082 (low), 1238 (middle), and 490 (high) galaxy clusters.
To mimic observations, we remove galaxy clusters if there are any other clusters with
larger masses within 1 Mpc/h from those clusters.

We use halos with masses Mvir > 1011M⊙ as satellite-halos and sub-halos. We de-
fine sub-halos following the definition of the Rockstar algorithm (Behroozi et al. 2013b).
We also define satellite-halos as halos excluding the galaxy cluster of interest. In brief,
sub-halos are defined as substructures of halos. Note that galaxy clusters can become
satellite-halos when we focus on other galaxy clusters. We use only z = 0 snapshot in this
thesis for simplicity. In Fig. 4.2, we show the mass distribution of all dark matter halos
in our simulation. We can see that halo mass distribution of our simulation is smooth.

4.2 Overview of Our Model

We construct a model of the phase space distribution of satellite-halos and sub-halos
surrounding galaxy clusters based on the stacked phase space distribution of the N -body
simulation. Because we stack a lot of galaxy clusters without aligning their orientations,
the spherical asymmetry of the phase space distribution should be damped. Hence, we
assume a spherically symmetric phase space distribution.

We divide velocity into three orthogonal components, the radial velocity (vr) and two
tangential velocities (vt;1, vt;2) as shown in Fig. 4.3. At this point we consider peculiar
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Figure 4.2: Mass distribution of halos in our simulation at z = 0. The n-th Mass bin is
defined as (1/

√
2)Mn < Mvir <

√
2Mn.

velocities only and do not consider the Hubble flow. Since one of the two components of
the tangential velocities do not contribute to vlos, we neglect vt;2 in this thesis, and denote
vt;1 as vt.

Under the assumption of the spherically symmetric phase space distribution, we can
describe the probability distribution function (PDF) of the phase space as

pv = pv(vr, vt, r) . (4.1)

We then assume that the PDF of the phase space distribution can be divided into two
components, the infall component and the splashback component. The infall component
corresponds to dark matter halos that are now falling into galaxy clusters, and the splash-
back component corresponds to halos that are on their first orbit after falling into galaxy
clusters. Such two components model is also proposed in Zu & Weinberg (2013), but
they consider a virial component instead of the splashback component. Then, eq. (4.1)
is described as

pv(vr, vt, r) = (1− α)pinfall(vr, vt, r) + αpSB(vr, vt, r), (4.2)

where α is the fraction of the splashback component at given r. For simplicity, we also
assume that there is no correlation between radial and tangential velocities. Then, we
can describe eq. (4.2) as

pv(vr, vt, r) = (1− α)pvr,infall(vr, r)pvt,infall(vt, r) + αpvr,SB(vr, r)pvt,SB(vt, r) . (4.3)
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Figure 4.3: Our definition of three velocity components.

We check the correlation between radial and tangential velocities in Section 4.6.
In the next Sections, we present models of individual distributions included in eq. (4.3).

In Section 4.3 (Section 4.4), we show the model function of the radial (tangential) velocity
phase space distribution and show the best fit parameters for each radial bin. In Section
4.5, we show the radial dependence of parameters used in our model of the phase space
distribution, and fit the dependence with smooth functions of the radius. In Section 4.6,
we derive the PDF of vlos by projecting the phase space distribution along the line-of-sight
including the effect of the Hubble flow.

4.3 Radial Velocity Distribution

In this Section, we present the function forms of pvr,infall and pvr,SB and determine model
parameters by fitting the model functions to the phase space distributions in the N -body
simulation.

First, we divide the phase space distribution into radial bins and make histograms
of radial peculiar velocities of satellite-halos and sub-halos for each radial bin, for each
cluster mass bin. The width of the radial bin is 0.2 Mpc/h.

As we show in Fig. 4.4, we find that the radial velocity distributions at large radii,
where the distributions are dominated by the infall component, significantly deviate from
the Gaussian distribution. There are non-negligible skewness and kurtosis in the radial
velocity distribution, as was already shown in Scoccimarro (2004). To incorporate the
skewness and kurtosis, we adopt the Johnson’s SU-distribution (Johnson 1949) as the
model function for the radial velocity distribution of the infall component.

pvr,infall(vr, r) =SU(vr; δ, λ, γ, ξ)

=
δ

λ
√
2π
√
{z(vr)}2 + 1

exp

[
−1

2

{
γ + δ sinh−1 z(vr)

}]
,

(4.4)
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Figure 4.4: Stacked radial velocity distribution at 2.6 Mpc/h < r < 2.8 Mpc/h for
the middle galaxy cluster mass bin. Points with error bars are the histogram of radial
velocities from our simulation, the red line is the best fit line of eq. (4.4), and the green
line is the best fit line of the Gaussian distribution for comparison. Error bars show the
Poisson errors. χ2/dof = 0.47 for the SU-distribution, and χ2/dof = 1.37 for the Gaussian
distribution.

where

z(vr) =
vr − ξ

λ
, (4.5)

and vr is the radial peculiar velocity of each dark matter halo. The Johnson’s SU-
distribution has four free parameters, and can reproduce skewness and kurtosis of his-
tograms. Note that these four parameters, δ, λ, γ, and ξ are functions of the radious r.
Fig. 4.4 shows the radial velocity distribution at 2.6 Mpc/h < r < 2.8 Mpc/h for the
middle galaxy cluster mass bin. We can see that the Johnson’s SU-distribution is in better
agreement with the histogram than the Gaussian distribution. Note that at large r, the
splashback component must vanish i.e., α = 0 at large r.

Fig. 4.5 shows the radial velocity distributions at radii larger than 2.8 Mpc/h for the
middle galaxy cluster mass bin. We can see that the Johnson’s SU-distribution is in good
agreement with the histogram even at larger radii.

At small r, there are two peaks in histograms of radial velocities, reflecting the two
distinct components as assumed in our model (see Fig. 4.6). As shown in Section 4.2,
we add the splashback term to eq. (4.4) to reproduce the double peak feature. The
model function we adopt for pvr,SB is the Gaussian distribution. Hence, at small r, pvr is
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(a) 5.0 Mpc/h < r < 5.2 Mpc/h
χ2/dof = 0.56 for SU-distribution, and

χ2/dof = 7.34 for Gaussian distribution.
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(b) 10.0 Mpc/h < r < 10.2 Mpc/h
χ2/dof = 0.61 for SU-distribution, and

χ2/dof = 10.73 for Gaussian distribution.

-500
 0

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

-1500 -500  500  1500

co
un

t

vr  (km/s)

(c) 20.0 Mpc/h < r < 20.2 Mpc/h
χ2/dof = 0.85 for SU-distribution, and

χ2/dof = 20.39 for Gaussian distribution.
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(d) 30.0 Mpc/h < r < 30.2 Mpc/h
χ2/dof = 1.41 for SU-distribution, and

χ2/dof = 28.59 for Gaussian distribution.

Figure 4.5: Same as Fig. 4.4, but for radii larger than 2.8 Mpc/h.

described as

pvr(vr;α, δ, λ, γ, ξ, µr, σr) =(1− α)SU(vr; δ, λ, γ, ξ)

+ αG(vr;µr, σ
2
r),

(4.6)

where G(vr;µr, σ
2
r) is the Gaussian distribution.

G(vr;µr, σ
2
r) =

1√
2πσ2

r

exp

{
−(vr − µr)

2

2σ2
r

}
, (4.7)

Note that µr and σ2
r are functions of r. The physical meaning of the first term of the right

side hand of eq. (4.6) is the infall component of the phase space distribution, whereas the
second term of the right side hand of eq. (4.6) is the splashback component. At large r, α
goes to zero and eq. (4.6) is reduces to eq. (4.4). In Zu & Weinberg (2013), they adopted
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Figure 4.6: The radial velocity distribution at 1.2 Mpc/h < r < 1.4 Mpc/h for the middle
galaxy cluster mass bin. Points with error bars are the histogram of radial velocities from
our simulation, the red line is the best fit line of the first term of the right side hand of
eq. (4.6) i.e. the infall component, the blue line is the best fit line of the second term of
the right side hand of eq. (4.6) i.e. the splashback component, and the green line is the
sum of the red and blue lines. χ2/dof = 0.38

two component model that consists of the infall and virial components. While the mean
velocity of the virial component is always set to zero, the mean velocity of the splashback
component is allowed to deviate from zero and is regarded as a model parameter. This is
one of the main differences between our model and the model proposed in Zu & Weinberg
(2013). As a result, our model in better agreement with the radial velocity distribution of
simulated dark matter halos at r < 1.0 Mpc/h, than the model of Zu & Weinberg (2013)
as shown in Fig. 4.6 and Fig. 4.7.
In Fig. 4.6, we show the radial velocity distribution at 1.2 Mpc/h < r < 1.4 Mpc/h for

the middle galaxy cluster mass bin. We can see that our model function of eq. (4.6) is in
good agreement with the histogram.

Fig. 4.7 shows the radial velocity distribution at small r other than 1.2 Mpc/h < r <
1.4 Mpc/h for the middle galaxy cluster mass bin. We can see that eq. (4.6) is in good
agreement with the histogram even at other r.
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(a) 0 Mpc/h < r < 0.2 Mpc/h
χ2/dof = 0.45

-10
 0

 10
 20
 30
 40
 50
 60

-1500 -500  500  1500

co
un

t

vr  (km/s)

(b) 0.2 Mpc/h < r < 0.4 Mpc/h
χ2/dof = 0.74
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(c) 0.4 Mpc/h < r < 0.6 Mpc/h
χ2/dof = 0.81
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(d) 0.8 Mpc/h < r < 1.0 Mpc/h
χ2/dof = 0.73
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(e) 1.6 Mpc/h < r < 1.8 Mpc/h
χ2/dof = 0.42
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(f) 2.0 Mpc/h < r < 2.2 Mpc/h
χ2/dof = 0.43

Figure 4.7: Same as Fig. 4.6, but for small r other than 1.2 Mpc/h < r < 1.4 Mpc/h.
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Figure 4.8: Same as Fig. 4.6, but for the tangential velocity. We use eq. (4.8) instead of
eq. (4.6). χ2/dof = 0.66

4.4 Tangential Velocity Distribution

Next, we derive the tangential velocity distribution. The model function for pvt,infall and
pvt,SB are assumed to be the Gaussian distribution function. Specifically, pvt is described
as

pvt(vt;α, σ
2
t,infall, σ

2
t,SB) =(1− α)

1√
2πσ2

t,infall

exp

(
− v2t
2σ2

t,infall

)

+ α
1√

2πσ2
t,SB

exp

(
− v2t
2σ2

t,SB

)
.

(4.8)

Since we assume the spherically symmetric phase space distribution, the mean of vt must
be zero. In eq. (4.8) we use α(r) calculated in eq. (4.6). Hence, we have only two
parameters in eq. (4.8).
In Fig. 4.8, we show the tangential velocity distribution at 1.2 Mpc/h < r < 1.4 Mpc/h

for the middle galaxy cluster mass bin. We can see that our model function eq. (4.8) is
in good agreement with the histogram.
Fig. 4.9 shows the tangential velocity distribution at small radii other than 1.2 Mpc/h <
r < 1.4 Mpc/h for the middle galaxy cluster mass bin. We can see that eq. (4.8) is in
good agreement with the histogram even at other small radii.

Fig. 4.10 shows the tangential velocity distribution at larger radii for the middle
galaxy cluster mass bin. Unlike the radial velocity, the Gaussian distribution is in good
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agreement with the histograms at larger radii for the tangential velocities. However at
large radii, we can see that the histograms of tangential velocities from our simulation
show slightly non-zero kurtosis, and cause worse χ2/dof.
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(a) 0 Mpc/h < r < 0.2 Mpc/h
χ2/dof = 0.34
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(b) 0.4 Mpc/h < r < 0.6 Mpc/h
χ2/dof = 0.64
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(c) 0.8 Mpc/h < r < 1.0 Mpc/h
χ2/dof = 0.59
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(d) 1.8 Mpc/h < r < 2.0 Mpc/h
χ2/dof = 0.31

Figure 4.9: Same as Fig. 4.8, but for small r other than 1.2 Mpc/h < r < 1.4 Mpc/h.
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(a) 2.6 Mpc/h < r < 2.8 Mpc/h
χ2/dof = 0.99
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(b) 5.0 Mpc/h < r < 5.2 Mpc/h
χ2/dof = 1.73
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(c) 10.0 Mpc/h < r < 10.2 Mpc/h
χ2/dof = 3.51
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Figure 4.10: Same as Fig. 4.8, but for larger radii than 1.4 Mpc/h.
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Figure 4.11: Radial distribution of α(r) for the middle galaxy cluster mass bin. Points
with error bars are α(r) calculated by fitting eq. (4.6) to radial velocity distributions,
and the solid line is the best fit line of eq. (4.9). The vertical lines show the upper and
lower limits of the fitting range.

4.5 Radial Dependence of Parameters in The Model

In previous Sections, we adopt nine parameters to model the phase space probability
distribution for each radial bin. To construct a full phase space PDF, we have to describe
these parameters as a smooth function of r.
For α(r), we set the model function as

α(r) = Aα,1 [tanh {(r − Aα,3)/Aα,2} − 1] , (4.9)

where Aα,1, Aα,2, and Aα,3 are free parameters. We choose this functional form just
to describe α(r) with a small number of free parameters. Fig. 4.11 shows the radial
distribution of α(r). We can see that eq. (4.9) is in good agreement. We set the fitting
range between vertical lines shown in Fig. 4.11, based on the reason that is given below.
We show the cluster mass dependence of α(r) in Fig. 4.12. We can see that more massive
clusters have larger fraction of the splashback component, and the larger splashback radius
as shown in Mansfield et al. (2017).

For δ(r) and λ(r), we set the model function as

l(r) = Al,1 exp (−rAl,2) + Al,3 + Al,4r. (4.10)

where l runs over δ and λ. Note that Al,1, Al,2, Al,3, and Al,4 are free parameters. Fig.
4.13 shows δ(r) and λ(r). The lower limit of the fitting range is same as the lower limit
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Figure 4.12: Radial distribution of α(r) for each galaxy cluster mass bin. Black symbols
and line correspond to the middle mass bin, red to the high mass bin, and green to the
low mass bin. Points show α(r) calculated by fitting eq. (4.6) to the radial velocity
distribution, and lines are the best fit lines of eq. (4.9).

for α. We can see that eq. (4.10) is in good agreement with δ(r) and λ(r) within the
fitting range.
We show the cluster mass dependence of δ(r) and λ(r) in Fig. 4.14. We can see that
even at r > 20 Mpc/h, δ(r) and λ(r) show the dependence on the cluster mass.
For ξ(r) and γ(r), following Zu & Weinberg (2013), we set the model function as

l(r) = Al,1 − Al,2r
Al,3 + Al,4r, (4.11)

where l runs over ξ and γ. Note that Al,1, Al,2, Al,3, and Al,4 are free parameters. Fig.
4.15 shows ξ(r) and γ(r). The lower limit of the fitting range is same as the lower limit
set α(r). We can see that eq. (4.11) is in good agreement with δ(r) and λ(r) within our
fitting range.
We show the cluster mass dependence of ξ(r) and γ(r) in Fig. 4.16. We can see that
even at r > 20 Mpc/h, ξ(r) and γ(r) depend on the galaxy cluster mass.

For µr, we set model function same as Zu & Weinberg (2013). The function form is

µr(r) = Aµr,1 − Aµr,2r
Aµr,3 . (4.12)

Fig. 4.17 shows µr(r). The fitting range is same as α(r). We can see that eq. (4.12) is in
good agreement with µr(r).
We show the cluster mass dependence of µr(r) in Fig. 4.18. We can see that more
massive clusters have larger µr(r). Moreover, the radius with µr(r) ∼ 0 is very similar
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Figure 4.13: Same as Fig. 4.11, but for δ(r) and λ(r). We use eq. (4.10) instead of eq.
(4.9). The lower limit of the fitting range, which is indicated by the vertical line, is same
as the lower limit for α(r).

to the radius with α(r) ∼ 0. This indicates that the infall component may include dark
matter halos which are on their second orbit to falling into galaxy clusters.
For σr, σt,infall and σt,SB, we set model function same as δ(r) and λ(r). The function form
is

l(r) = Al,1 exp (−rAl,2) + Al,3 + Al,4r, (4.13)

where l runs over σr, σt,infall, and σt,SB. Fig. 4.19 shows σr(r) and σt,SB(r). The fitting
range is same as α(r). We can see that eq. (4.13) is in good agreement with σr(r) and
σt,SB(r) within the fitting range.
We show the cluster mass dependence of σr(r) and σt,SB(r) in Fig. 4.20. We can see
that eq. (4.13) is in good agreement with σr(r) and σt,SB(r) within fitting range for other
cluster mass bins.
Fig. 4.22 shows σt,infall(r). The lower limit of the fitting range is same as the lower limit
set for α(r). We can see that eq. (4.13) is in good agreement with σt,infall(r) within fitting
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Figure 4.14: Same as Fig. 4.12, but for δ(r) and λ(r). We use eq. (4.10) instead of eq.
(4.9).

range.
Then we show the galaxy cluster mass dependence of σt,infall(r) in Fig. 4.22. We can see
that eq. (4.13) is in good agreement with σt,infall(r). More massive clusters have larger
σt,infall(r) even at r > 20 Mpc/h.

We cannot determine parameters of the splashback component in the range that there
is no splashback component, i.e. α ≪ 1. Hence, for α(r), µr(r), σr(r), and σt,SB(r), we
need to set upper limit of the fitting range. We set the upper limit as the radius that
α(r) calculated by fitting eq. (4.6) to radial velocity distributions become smaller than
0.1. We also set the lower limit of the fitting range for computational reasons. Note that
the fitting range is set independently for each cluster mass bin. We show the upper and
lower limits of the fitting range for each cluster mass bin in Table 4.1.

We summarize all the fitting results in Table 4.2. We show residuals of fitting, e.g.,
∆α2/dof , which are typical differences between fitting lines and parameter values. We
can see that all the residuals are sufficiently small compared to typical absolute values of
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Figure 4.15: Same as Fig. 4.13, but for ξ(r) and γ(r). We use eq. (4.11) instead of eq.
(4.10).

parameters.



4.5 Radial Dependence of Parameters in The Model 37

-1000
-800
-600
-400
-200

 0
 200
 400

 0  5  10  15  20  30  40

ξ(
r)

 (k
m

/s
)

r  (Mpc/h)

(a) ξ(r) for 0 Mpc/h < r < 40 Mpc/h

-1000

-800

-600

-400

-200

 0

 0  1  2  3  4  5

ξ(
r)

 (k
m

/s
)

r  (Mpc/h)

(b) ξ(r) for 0 Mpc/h < r < 5 Mpc/h

-4

-2

 0

 2

 0  5  10  15  20  30  40

γ(
r)

r (Mpc/h)

(c) γ(r) for 0 Mpc/h < r < 40 Mpc/h

-4

-2

 0

 2

 0  1  2  3  4  5

γ(
r)

r (Mpc/h)

(d) γ(r) for 0 Mpc/h < r < 5 Mpc/h

Figure 4.16: Same as Fig. 4.14, but for ξ(r) and γ(r). We use eq. (4.11) instead of eq.
(4.10).

Table 4.1: The upper and lower limits of the fitting range for each cluster mass bin.

cluster mass bin lower limit of the fitting range upper limit of the fitting range
low 0.6 Mpc/h 1.6 Mpc/h

middle 0.8 Mpc/h 2.0 Mpc/h
high 1.2 Mpc/h 2.6 Mpc/h
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Figure 4.17: Same as Fig. 4.11, but for µr(r). We use eq. (4.12) instead of eq. (4.9).
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Figure 4.18: Same as Fig. 4.12, but for µr(r). We use eq. (4.12) instead of eq. (4.9).
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Figure 4.19: Same as Fig. 4.11, but for σr(r) and σt,SB(r). We use eq. (4.13) instead of
eq. (4.9).
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Figure 4.20: Same as Fig. 4.12, but for σr(r) and σt,SB(r). We use eq. (4.13) instead of
eq. (4.9).
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Figure 4.21: Same as Fig. 4.13, but for σt,infall(r). We use eq. (4.13) instead of eq. (4.10).



40 Modeling the Phase Space Distribution of Dark Matter Halos

 0

 100

 200

 300

 400

 500

 600

 0  5  10  15  20  30  40

σ
t,i

nf
al

l(r
) (

km
/s

)

r (Mpc/h)

(a) σt,infall(r) ; 0 Mpc/h < r < 40 Mpc/h

 0

 100

 200

 300

 400

 500

 600

 0  1  2  3  4  5

σ
t,i

nf
al

l(r
) (

km
/s

)

r (Mpc/h)

(b) σt,infall(r) ; 0 Mpc/h < r < 5 Mpc/h

Figure 4.22: Same as Fig. 4.12, but for σt,infall(r). We use eq. (4.13) instead of eq. (4.9).
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Table 4.2: Fitting results. See also eqs. (4.9), (4.10), (4.11), (4.12), and (4.13).

cluster mass bin Aα,1 Aα,2 Aα,3 ∆α2/dof
low −0.2747 0.4920 1.1856 8.05× 10−4

middle −0.2503 0.4863 1.5298 7.37× 10−4

high −0.3036 0.8484 1.6639 58.95× 10−4

cluster mass bin Aδ,1 Aδ,2 Aδ,3 Aδ,4 ∆δ2/dof
low 757.5 8.072 0.9689 0.03891 59.74× 10−4

middle 103.1 4.608 1.2004 0.04353 64.82× 10−4

high 19.4 2.161 1.0473 0.02709 44.05× 10−4

cluster mass bin Aλ,1 Aλ,2 Aλ,3 Aλ,4 ∆λ2/dof
low 158008.0 7.891 160.0 18.49 523.3

middle 9565.6 3.416 201.0 20.08 464.6
high 9280.6 2.190 235.0 13.69 648.1

cluster mass bin Aξ,1 Aξ,2 Aξ,3 Aξ,4 ∆ξ2/dof
low 55.67 581.4 −0.7666 5.097 288.3

middle −55.79 819.8 −1.0118 11.192 506.7
high 43.85 1111.6 −0.6183 6.029 350.0

cluster mass bin Aγ,1 Aγ,2 Aγ,3 Aγ,4 ∆γ2/dof
low 0.6200 1.1753 −1.6962 0.004419 33.60−4

middle 0.5551 2.0867 −1.9243 0.017562 51.34−4

high 0.3661 1.8175 −1.9456 0.009608 48.71−4

cluster mass bin Aµr,1 Aµr,2 Aµr,3 ∆µ2
r/dof

low 676808.0 676715.7 0.000366 866.1
middle 364923.6 364727.6 0.000763 322.3
high 245456.1 245075.1 0.001644 3557.7

cluster mass bin Aσr,1 Aσr,2 Aσr,3 Aσr,4 ∆σ2
r/dof

low 2.7318 −1.7731 287.6 −86.799 6.551
middle 0.0013 −5.6642 382.9 −101.019 70.880
high 1980.8374 2.8624 345.7 −13.060 38.812

cluster mass bin Aσt,infall,1 Aσt,infall,2 Aσt,infall,3 Aσt,infall,4 ∆σ2
t,infall/dof

low 981.2 3.521 250.7 2.201 13.59
middle 442.7 1.269 253.8 1.86 8.00
high 359.8 0.648 306.0 1.04 16.6

cluster mass bin Aσt,SB,1 Aσt,SB,2 Aσt,SB,3 Aσt,SB,4 ∆σ2
t,SB/dof

low 4629.2 −0.4596 −3877.0 −3129.6 885.8
middle 3386.1 −0.3092 2683.1 −1556.9 453.4
high 1.6498 −2.3867 895.5 −347.7 1114.7
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4.6 Reconstruct vlos Histogram

By adopting best-fit parameters listed in Table 4.2 for eqs. (4.9), (4.10), (4.11), (4.12),
and (4.13), we obtain smooth functions of eqs. (4.6) and (4.8), i.e., we have pvr(vr, r) and
pvt(vt, r) for each cluster mass bin. The histogram of vlos can be derived by projecting the
three-dimensional phase space distribution along the line-of-sight

pvlos(vlos, rproj) =

1

N(rproj)

∫ ∞

−∞
dvr

∫ ∞

−∞
dvt

∫ ∞

−∞
ddlosn(r)pv(vr, vt, r)δD(vlos − v′los),

(4.14)

where,rproj is the projected distance from the cluster center, and dlos is the line-of-sight
distance from the cluster center, n(r) is the number density of satellite-halos and sub-
halos, δD(x) is the Dirac’s delta distribution, and pv(vr, vt, r) is phase space PDF (eq.
4.3). Note that r is defined as

r ≡
√
d2los + r2proj , (4.15)

and N is a normalization factor defined as

N(rproj) ≡∫ vlos,Upper

vlos,Lower

dvlos

∫ ∞

−∞
dvr

∫ ∞

−∞
dvt

∫ ∞

−∞
ddlos

∫ ∞

−∞
dvlosn(r)pv(vr, vt, r)δD(vlos − v′los) ,

(4.16)

where vlos,Upper and vlos,Lower are upper and lower limits of vlos we calculate, respectively.
Because of practical reasons, we set vlos,Upper = 2000 km/s and vlos,Lower = −2000 km/s
in this thesis. Note that we can also apply this cut to observational data, because vlos
is a direct observable. Hence, this cut does not affect comparisons of our model with
observations. Also, v′los is defined as

v′los ≡ cos θ · vr + sin θ · vt +H · dlos, (4.17)

where H is the Hubble parameter, and θ corresponds to the angle between the line from
the cluster center and the line-of-sight (see also Fig. 4.23). At z = 0, H ≡ H0 =
100h km/s/Mpc.

In what follows, we set the integration range of vr and vt as −2000 km/s < vr, vt <
2000 km/s, because we find that there is almost no probability out of this range in
the phase space distribution at any radii. We also set the integration range of dlos as
−40 Mpc/h < dlos < 40 Mpc/h, because When we are interested in −2000 km/s < vlos <
2000 km/s, and we take the integration range of vr and vt and the Hubble flow at z = 0
into account, −40 Mpc/h < dlos < 40 Mpc/h is sufficiently large.
In principle we can derive n(r) from observations, although in comparison with the N -
body simulation results we use n(r) directly measured in the N -body simulation. Hence,
all we have to determine is pv(vr, vt, r). Assuming that vr and vt are not correlated as we
see in Section 4.2, pv(vr, vt, r) is described as

pv(vr, vt, r) =

(1− α)SU(vr; δ, λ, γ, ξ)G(vt; 0, σ
2
t,infall)

+ αG(vr;µr, σ
2
r)G(vt; 0, σ

2
t,SB) .

(4.18)
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Figure 4.23: Schematic illustration of the integration parameters in eq. (4.17)

The first term of the right hand side of eq. (4.18) corresponds to the infall component,
and the second term corresponds to the splashback component.
When we obtain phase space PDF, pv(vr, vt, r), we have assumed that vr and vt do not

correlate and are independent with each other.
To explore the validity of this assumption, we check the correlation between vr and vt

in pv(vr, vt, r) by using
√
v2r + v2t . We calculate

√
v2r + v2t distribution from eq. (4.18) as

p

(√
v2r + v2t , r

)
=

1

N(r)

∫ 2000 km/s

−2000 km/s

dv′r

∫ 2000 km/s

−2000 km/s

dv′tn(r)pv(v
′
r, v

′
t; r)δD

(√
v2r + v2t −

√
v′2r + v′2t

)
,

(4.19)

where N(r) is a normalization factor. We call the PDF obtained in this way as ”PDF from
Theory” below. For comparison, we prepare the histogram obtained directly from the N -
body simulation. We call the PDF obtained in this way as ”PDF from Mock” below. If
there is some correlation between vr and vt, these two PDFs do not match. In Figs. 4.24

and 4.25, we compare the PDF of (v2r + v2t )
1/2

from theory and PDF of (v2r + v2t )
1/2

from
mock for the middle galaxy cluster mass bin for each radial bins. In Figs. 4.26 and 4.27,
we also compare these two PDFs for other cluster mass bins. Although χ2/dof is not
good for large radial bins, ∆p2

(v2r+v2t )
1/2/dof are still reasonably small.

We now check vlos PDFs. We can calculate the PDF of vlos from theory using eq.
(4.14). We compare it with the PDF of vlos from mock for each cluster mass bins and rproj
bin in Figs. 4.28, 4.29, 4.30, and 4.31. We obtain relatively good χ2/dof and ∆p2vlos/dof,
despite the fact that there are relatively large deviations in p

(v2r+v2t )
1/2 .
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Figure 4.24: Comparison between the PDF of (v2r + v2t )
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obtained from our theory and

the PDF of (v2r + v2t )
1/2

from mock observation of our simulation for the middle galaxy

cluster mass bin at 1 Mpc/h < r < 2 Mpc/h. The solid line is the PDF of (v2r + v2t )
1/2

from

theory, and points with error bars are the PDF of (v2r + v2t )
1/2

from Mock. χ2/dof = 2.20,
and ∆p2

(v2r+v2t )
1/2/dof = 1.31× 10−6.
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Figure 4.25: Same as Fig. 4.24, but for larger radii than 2 Mpc/h.
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Figure 4.26: Same as Fig. 4.24, but for the high cluster mass bin and radii other than
1 Mpc/h < r < 2 Mpc/h.
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Figure 4.27: Same as Fig. 4.24, but for the low cluster mass bin and radii other than
1 Mpc/h < r < 2 Mpc/h.
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Figure 4.28: Comparison between PDF of vlos from our theory and PDF of vlos from mock
observation of our simulation for the middle galaxy cluster mass bin at 2 Mpc/h < rproj <
3 Mpc/h. Red line is PDF of fvlos from theory, and black points is PDF of vlos from Mock.
χ2/dof = 2.36, and ∆p2vlos/dof = 0.22× 10−6
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Figure 4.29: Same as Fig. 4.28, but for projection radii larger than 2 Mpc/h.



50 Modeling the Phase Space Distribution of Dark Matter Halos

 0

 0.005

 0.01

 0.015

 0.02

-1500 -500  500  1500

p v
lo

s

vlos (km/s)

(a) 2 Mpc/h < rproj < 3 Mpc/h
χ2/dof = 1.19, and
∆p2vlos/dof = 0.21× 10−6

 0

 0.005

 0.01

 0.015

-1500 -500  500  1500

p v
lo

s

vlos (km/s)

(b) 4 Mpc/h < rproj < 5 Mpc/h
χ2/dof = 1.69, and
∆p2vlos/dof = 0.20× 10−6

 0

 0.002

 0.004

 0.006

 0.008

 0.01

-1500 -500  500  1500

p v
lo

s

vlos (km/s)

(c) 8 Mpc/h < rproj < 9 Mpc/h
χ2/dof = 1.48, and
∆p2vlos/dof = 0.12× 10−6

 0

 0.002

 0.004

 0.006

 0.008

-1500 -500  500  1500

p v
lo

s

vlos (km/s)

(d) 11 Mpc/h < rproj < 12 Mpc/h
χ2/dof = 1.12, and
∆p2vlos/dof = 6.80× 10−8

Figure 4.30: Same as Fig. 4.28, but for the high cluster mass bin. We also show for
projection radii other than 2 Mpc/h < rproj < 3 Mpc/h.
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Figure 4.31: Same as Fig. 4.28, but for the low cluster mass bin. We also show for
projection radii other than 2 Mpc/h < rproj < 3 Mpc/h.
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Table 4.3: The upper and lower limits of the fitting range for each satellite-halo and
sub-halo selection. See text.

data name lower limit of the fitting range upper limit of the fitting range
data-2 0.8 Mpc/h 2.0 Mpc/h
data-4 0.8 Mpc/h 1.8 Mpc/h
data-8 0.8 Mpc/h 1.8 Mpc/h
data-sat 0.8 Mpc/h 2.0 Mpc/h

4.7 Dependence of the Phase Space Distribution on

Satellite-Halo Masses

In previous Sections, we fix the lower limit of satellite-halo and sub-halo masses as
1011 M⊙. However if this lower limit changes, the phase space distribution may also
change. In this Section, we explore the satellite-halo and sub-halo mass dependence of
the phase space distribution for the middle galaxy cluster mass bin.

To do so, we set three different lower limits of satellite-halo and sub-halo masses,
2× 1011 M⊙ (called ”data-2”), 4× 1011 M⊙ (”data-4”), and 8× 1011 M⊙ (”data-8”). We
also consider the case that we only use satellite-halos with masses larger than 1011 M⊙
(”data-sat”). We analyze these datasets in the same way as we did in previous Sections.
In Tables 4.3 and 4.4, we show the results of our analysis of the phase space distributions
from these datasets. In Table 4.4, we show residuals of fitting, e.g., ∆α2/dof . These are
typical differences between fitting lines and parameter values. We can see that all the
residuals are sufficiently small compared to typical absolute values of parameters.
In Figs. 4.32, 4.33, 4.34, 4.35, 4.36, and 4.37, we show the comparison of parameters of
the phase space distribution for each satellite-halo and sub-halo selection for the middle
galaxy cluster mass bin. We also plot parameters for the fiducial case that we set the lower
limit of satellite-halo and sub-halo masses as 1× 1011 M⊙ (”data-1”) for comparison. We
analyze the data in the same way as we did in previous sections. Note that data-sat have
no satellite-halos within 1.0 Mpc/h, because all the halos within that radius are sub-halos
rather than satellite-halos.
From Fig. 4.32, we can see that more massive satellite-halos and sub-halos have smaller

fractions of the splashback component, and the smaller splashback radii.
From Figs. 4.33, 4.34, and 4.37, we can see that for δ, λ, ξ, γ, and σt,infall, parameters

are very similar between data-1 and data-sat, and very similar between data2, data4, and
data8.

We also check the correlation between vr and vt in these datasets. We check it in
the same way as we did in Section 4.6. In Figs. 4.38, 4.39, 4.40, and 4.41, we compare

the PDFs of (v2r + v2t )
1/2

from theory and the PDFs of (v2r + v2t )
1/2

from mock for each
datasets at each radial bin. We can see similar trends with data-1 we saw in Section 4.6.

We show vlos PDFs for these datasets as in Section 4.6. In Figs. 4.42, 4.43, 4.44,
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Table 4.4: Fitting results. See also eqs. (4.9), (4.10), (4.11), (4.12), and (4.13).

Data name Aα,1 Aα,2 Aα,3 ∆α2/dof
data-2 −0.2347 0.4449 1.4983 3.73× 10−4

data-4 −0.2565 0.5147 1.3944 15.02× 10−4

data-8 −0.2698 0.4618 1.2869 13.60× 10−4

data-sat −0.2458 0.4769 1.5041 4.56× 10−4

Data name Aδ,1 Aδ,2 Aδ,3 Aδ,4 ∆δ2/dof
data-2 106.0 5.195 1.0360 0.03793 51.25× 10−4

data-4 181.0 5.870 1.0399 0.03743 79.43× 10−4

data-8 88.9 5.932 1.0351 0.03713 97.65× 10−4

data-sat 3.5 1.697 1.1836 0.04415 60.31× 10−4

Data name Aλ,1 Aλ,2 Aλ,3 Aλ,4 ∆λ2/dof
data-2 19691.2 4.545 196.5 17.82 431.3
data-4 22508.3 4.910 200.7 17.65 736.6
data-8 10064.2 4.801 204.0 17.45 937.1
data-sat 803.39 1.430 196.1 20.26 427.7

Data name Aξ,1 Aξ,2 Aξ,3 Aξ,4 ∆ξ2/dof
data-2 −30.40 706.2 −0.7916 8.225 282.0
data-4 −44.33 683.0 −0.8088 8.373 461.8
data-8 −35.30 692.9 −0.7816 7.993 601.9
data-sat 56.41 805.8 −0.6619 9.439 355.3

Data name Aγ,1 Aγ,2 Aγ,3 Aγ,4 ∆γ2/dof
data-2 0.4517 1.275 −1.817 0.011686 28.06× 10−4

data-4 0.3998 1.182 −2.504 0.007569 50.07× 10−4

data-8 0.4188 1.075 −1.931 0.011826 63.64× 10−4

data-sat 0.6579 1, 726 −1.293 0.017562 39.56× 10−4

Data name Aµr,1 Aµr,2 Aµr,3 ∆µ2
r/dof

data-2 218047.0 217860.9 0.001661 257.0
data-4 408.8 242.4 0.060163 417.3
data-8 174310.2 174189.5 0.001430 975.1
data-sat 428.4 268.4 0.633703 205.8

Data name Aσr,1 Aσr,2 Aσr,3 Aσr,4 ∆σ2
r/dof

data-2 0.0013 −5.6284 371.3 -84.689 110.045
data-4 545.8734 0.00000357 −184.0 -79.162 220.332
data-8 532.6487 0.0001584 −197.3 -39.8098 268.192
data-sat 5663.6579 0.1314 −5299.6 595.880 115.898

Data name Aσt,infall,1 Aσt,infall,2 Aσt,infall,3 Aσt,infall,4 ∆σ2
t,infall/dof

data-2 252.5 0.767 269.8 1.71 9.67
data-4 184.3 0.853 268.8 1.78 19.84
data-8 108.3 0.708 265.0 1.92 34.62
data-sat 283.1 1.031 250.0 1.86 145.3

Data name Aσt;SB,1 Aσt;SB,2 Aσt;SB,3 Aσt;SB,4 ∆σ2
t;SB/dof

data-2 0.0 −16.43 598.7 22.1 227.0
data-4 0.0 −14.59 329.1 8.56 12.5
data-8 3× 10−6 444.4 1.6639 4.48 286.9
data-sat 9.9 −2.06 476.3 −20.53 54.8
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Figure 4.32: Radial distribution of α(r) for each satellite-halos or sub-halos selection. Red
corresponds to data-2, green to data-4, green to data-8, and magenta to data-sat. We
also plot α(r) for data-1 in black for comparison. Points are α(r) calculated by fitting eq.
(4.6) to radial velocity distribution, and lines are the best fit line eq. (4.9).

and 4.45, we show the comparison of the PDF of vlos from Mock and the PDF of vlos from
Theory. We discuss the dependence of satellite-halo and sub-halo masses for the PDF of
vlos in Section 5.1.
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Figure 4.33: Same as Fig. 4.32, but for δ(r) and λ(r). We use eq. (4.10) instead of eq.
(4.9).
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Figure 4.34: Same as Fig. 4.32, but for ξ(r) and γ(r). We use eq. (4.11) instead of eq.
(4.9).
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Figure 4.35: Same as Fig. 4.32, but for µr(r). We use eq. (4.12) instead of eq. (4.9).
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Figure 4.36: Same as Fig. 4.32, but for σr(r) and σt,SB(r). We use eq. (4.13) instead of
eq. (4.9).
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Figure 4.37: Same as Fig. 4.32, but for σt,infall(r). We use eq. (4.13) instead of eq. (4.9).
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Figure 4.38: Comparison between PDF of (v2r + v2t )
1/2

from theory and PDF of (v2r + v2t )
1/2

from mock for data-2. Red line is PDF of (v2r + v2t )
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from theory, and black points is

PDF of (v2r + v2t )
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from Mock.
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Figure 4.39: Same as Fig. 4.38, but for data-4.
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Figure 4.40: Same as Fig. 4.38, but for data-8.
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Figure 4.41: Same as Fig. 4.38, but for data-sat.
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Figure 4.42: Comparison between PDF of vlos from theory and PDF of vlos from mock for
data-2. Red line is PDF of vlos from theory, and black points is PDF of vlos from Mock.
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(a) 2 Mpc/h < rproj < 3 Mpc/h
χ2/dof = 1.24, and
∆p2vlos/dof = 0.31× 10−6
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(b) 4 Mpc/h < rproj < 5 Mpc/h
χ2/dof = 1.10, and
∆p2vlos/dof = 0.18× 10−6
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(c) 8 Mpc/h < rproj < 9 Mpc/h
χ2/dof = 1.03, and
∆p2vlos/dof = 0.11× 10−6
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(d) 11 Mpc/h < rproj < 12 Mpc/h
χ2/dof = 1.00, and
∆p2vlos/dof = 8.15× 10−8

Figure 4.43: Same as Fig. 4.42, but for data-4.



4.7 Dependence of the Phase Space Distribution on Satellite-Halo
Masses 65

 0

 0.005

 0.01

 0.015

 0.02

-1500 -500  500  1500

p v
lo

s

vlos (km/s)

(a) 2 Mpc/h < rproj < 3 Mpc/h
χ2/dof = 0.85, and
∆p2vlos/dof = 0.48× 10−6
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(b) 4 Mpc/h < rproj < 5 Mpc/h
χ2/dof = 0.80, and
∆p2vlos/dof = 0.30× 10−6
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(c) 8 Mpc/h < rproj < 9 Mpc/h
χ2/dof = 1.01, and
∆p2vlos/dof = 0.22× 10−6
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(d) 11 Mpc/h < rproj < 12 Mpc/h
χ2/dof = 1.10, and
∆p2vlos/dof = 0.19× 10−6

Figure 4.44: Same as Fig. 4.42, but for data-8.
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(a) 2 Mpc/h < rproj < 3 Mpc/h
χ2/dof = 1.64, and
∆p2vlos/dof = 0.16× 10−6
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(b) 4 Mpc/h < rproj < 5 Mpc/h
χ2/dof = 1.58, and
∆p2vlos/dof = 0.10× 10−6
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(c) 8 Mpc/h < rproj < 9 Mpc/h
χ2/dof = 1.42, and
∆p2vlos/dof = 5.77× 10−8
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(d) 11 Mpc/h < rproj < 12 Mpc/h
χ2/dof = 1.37, and
∆p2vlos/dof = 4.16× 10−8

Figure 4.45: Same as Fig. 4.42, but for data-sat.



Chapter 5

Measurement of Dynamical Masses
from vlos Distribution Functions

In Chapter 4, we constructed a model of the phase space distribution of dark matter
halos to compute the PDF of the line-of-sight velocity vlos. In this Chapter, we discuss how
to measure the dynamical mass by using the PDF of vlos. We also discuss the accuracy
of our model constructed in Chapter 4.

5.1 Dependence of the PDF of vlos on Cluster Masses

In this Section, we check the host-halo mass dependence of the PDF of vlos. In Figs.
5.1 and 5.2 we show pvlos for different cluster masses. To quantify the difference between
two different PDFs of vlos, we use

∆p2vlos;1;2 ≡{pvlos,1(vlos)− pvlos,2(vlos)}2

=
1

nbin

nbin∑
i

{pvlos,1(vlos,i)− pvlos,2(vlos,i)}2,
(5.1)

as a metric of difference.
We can see a significant difference of vlos histograms between the middle and high galaxy

cluster mass bins, whereas the difference is smaller between the middle and low cluster
mass bins. We discuss the origin of this mass dependence in Section 5.2.

In Fig. 5.3, we show the dispersion and kurtosis of pvlos for each projected radial bin,
for each cluster mass bin. The kurtosis is defined as

Kurtlos =

∫ 2000 km/s

−2000 km/s
dvlosp

4
vlos

(vlos)

σ4
los

− 3, (5.2)

where σlos is a dispersion, defined as

σlos =

√∫ 2000 km/s

−2000 km/s

dvlosp2vlos(vlos). (5.3)

67
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Figure 5.1: The PDF of vlos for each cluster mass bin at 2 Mpc/h < rproj < 3 Mpc/h
obtained from our theory. The black line corresponds to the middle galaxy cluster mass
bin, red to the high mass bin, and green to the low mass bin. ∆p2vlos;middle;high = 0.30×10−6,
∆p2vlos;low;high = 0.22× 10−6, and ∆p2vlos;low;middle = 1.14× 10−8.

The difference between pvlos for the middle cluster mass bin and the high is shown in the
dispersion and the kurtosis.
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(a) 3 Mpc/h < rproj < 4 Mpc/h
∆p2vlos;middle;high = 0.13× 10−6,

∆p2vlos;low;high = 0.11× 10−6,

∆p2vlos;low;middle = 2.44× 10−8.
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(b) 5 Mpc/h < rproj < 6 Mpc/h
∆p2vlos;middle;high = 0.11× 10−6,

∆p2vlos;low;high = 0.14× 10−6,

∆p2vlos;low;middle = 0.62× 10−8.
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(c) 8 Mpc/h < rproj < 9 Mpc/h
∆p2vlos;middle;high = 5.40× 10−8,

∆p2vlos;low;high = 5.39× 10−8,

∆p2vlos;low;middle = 1.76× 10−10.
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(d) 11 Mpc/h < rproj < 12 Mpc/h
∆p2vlos;middle;high = 2.44× 10−8,

∆p2vlos;low;high = 2.35× 10−8,

∆p2vlos;low;middle = 0.50× 10−10.

Figure 5.2: Same as Fig. 5.1, but for larger projection radii than 3 Mpc/h.
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Figure 5.3: The dispersion (σlos) and the kurtosis (Kurt) as a function of rproj, for each
cluster mass bin calculated from our model. The black line corresponds to the middle
galaxy cluster mass bin, red to high, and green to low.
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Figure 5.4: Radial distribution of the average of radial velocities of dark matter halos,
⟨vr(r)⟩, and the dispersion of tangential velocities, σt(r), for the middle and high cluster
mass bins calculated from our theory. The black line corresponds to the middle galaxy
cluster mass bin, and red to high.

5.2 Origin of Dynamical Mass Dependence of the

PDF of vlos

In this Section, we explore the relationship between the cluster mass dependence of the
PDF of vlos and the phase space distribution of dark matter halos. As seen in Sections
4.6 and 5.1, our model of the phase space distribution around low mass galaxy clusters
may not be accurate enough to allow robust cluster mass measurements. Hence, we focus
on the high and middle cluster mass bins.

The most important parameters of the phase space distribution function to the vlos
PDF is the average of vr, ⟨vr⟩, and the standard deviation of vt, σt. By using α, δ, λ, γ, ξ,
and µr, the average of vr is described as

⟨vr⟩ = (1− α)
[
ξ − λ{exp (δ−2)}1/2 sinh γ/δ

]
+ αµr, (5.4)

and by using α, σt,infall, and σt,SB, σt is described as

σt =
√

(1− α)σ2
t,infall + ασ2

t,SB. (5.5)

In Fig. 5.4, we show ⟨vr⟩ and σt for each cluster mass bin. We can see that more massive
halos have lower ⟨vr⟩ and higher σt.
Next, we discuss how these differences of ⟨vr(r)⟩ and σt affect the PDF of vlos. Following

eq. (4.14), we define pvlos(vlos, rproj, dlos,min, dlos,max) as

pvlos(vlos, rproj, dlos,min, dlos,max) =

2

N(rproj)

∫ 2000 km/s

−2000 km/s

dvr

∫ 2000 km/s

−2000 km/s

dvt

∫ dlos,max

dlos,min

ddlosn(r)pv(vr, vt, r)δD(vlos − v′los) .
(5.6)
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Table 5.1: Sets of parameters shown in Fig. 5.5

color range of rproj dlos,min dlos,max

red 2.0 Mpc/h – 3.0 Mpc/h 0 Mpc/h 5.0 Mpc/h
green 2.0 Mpc/h – 3.0 Mpc/h 5.0 Mpc/h 10.0 Mpc/h
blue 2.0 Mpc/h – 3.0 Mpc/h 10.0 Mpc/h 20.0 Mpc/h

magenta 2.0 Mpc/h – 3.0 Mpc/h 20.0 Mpc/h 40.0 Mpc/h
black 2.0 Mpc/h – 3.0 Mpc/h 0 Mpc/h 40.0 Mpc/h
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Figure 5.5: Comparison of pvlos(vlos, rproj, dlos,min, dlos,max) for five sets of parameters for
the middle galaxy cluster mass bin. We show sets of parameters in Table 5.1.

In Fig. 5.5, we show pvlos(vlos, rproj, dlos,min, dlos,max) for five sets of parameters for the mid-
dle galaxy cluster mass bin. We show set of parameters in Table 5.1.

We can see that high dlos segments contribute to the tail of the vlos PDF, and low dlos
segments contribute to the peak. These are explained as follow. At high dlos segments,
the Hubble flow significantly increase vlos, whereas at low dlos segments, the contribution
of the Hubble flow is small so that we observe peculiar velocities directly. We then check
the dependence of each part of pvlos(vlos, rproj, dlos,min, dlos,max) on cluster masses.
First, we focus on a dlos segment with dlos ≪ rproj. In the left panel of Fig. 5.6, we com-

pare pvlos(vlos, rproj, dlos,min, dlos,max) for the middle galaxy cluster mass bin at 2.0 Mpc/h <
rproj < 3.0 Mpc/h, (dlos,min, dlos,max) = (0 Mpc/h, 1.0 Mpc/h) and 2.0 Mpc/h < rproj <
3.0 Mpc/h, (dlos,min, dlos,max) = (0 Mpc/h, 40.0 Mpc/h). We confirm that at low dlos,
pvlos(vlos, rproj, dlos,min, dlos,max) contributes to the peak.
In the right panel of Fig. 5.6, we compare pvlos(vlos, rproj, dlos,min, dlos,max) for the middle

and high cluster mass bins at 2.0 Mpc/h < rproj < 3.0 Mpc/h and (dlos,min, dlos,max) =
(0 Mpc/h, 1.0 Mpc/h). We can see that pvlos(vlos, rprojdlos,min, dlos,max) for the high galaxy
cluster mass bin has a larger width than the middle one, because of larger σt(r) for the
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Figure 5.6: Left panel: Comparison between pvlos(vlos, rproj, dlos,min, dlos,max) for
2.0 Mpc/h < rproj < 3.0 Mpc/h, (dlos,min, dlos,max) = (0 Mpc/h, 1.0 Mpc/h) (red line)
and 2.0 Mpc/h < rproj < 3.0 Mpc/h, (dlos,min, dlos,max) = (0 Mpc/h, 40.0 Mpc/h)
(black line) for the middle galaxy cluster mass bin. Right panel: Comparison between
pvlos(vlos, rproj, dlos,min, dlos,max) for the middle galaxy cluster mass bin (black line) and
the high one (red line) at 2.0 Mpc/h < rproj < 3.0 Mpc/h and (dlos,min, dlos,max) =
(0 Mpc/h, 1.0 Mpc/h).

high mass bin as wee saw in Fig. 5.4. Note that at dlos ≪ rproj segments, vr does not
contribute to the PDF of vlos as we saw in Section 4.6.

Next we focus on a dlos segment with dlos > rproj. In the left panel of Fig. 5.7,
we show a plot similar to the left panel of Fig. 5.6, but we change (dlos,min, dlos,max)
from (0 Mpc/h, 1.0 Mpc/h) to (5.0 Mpc/h, 10.0 Mpc/h). This segment contributes to
the edge of the peak of vlos PDF. In the right panel of Fig. 5.7, we a plot similar to
the right panel of Fig. 5.6, but changed (dlos,min, dlos,max) from (0 Mpc/h, 1.0 Mpc/h)
to (5.0 Mpc/h, 10.0 Mpc/h). In this segment, vr, vt, and the Hubble flow contributes
to vlos. While the Hubble flow is dominated, vr also makes non-negligible contribu-
tion to the PDF. Since higher mass clusters have lower vr (see Fig. 5.4), they shift
pvlos(vlos, rproj, dlos,min, dlos,max) to the lower mean vlos more significantly, which also results
in the wider width of the PDF.

Finally, we focus on a dlos segment with very large dlos. In the left panel of Fig.
5.8, we show a plot similar to the left panel of Fig. 5.6, but we change (dlos,min, dlos,max)
from (0 Mpc/h, 1.0 Mpc/h) to (10.0 Mpc/h, 20.0 Mpc/h). This segment contributes to
the tail of the vlos PDF. In the right panel of Fig. 5.8, we show a plot similar to the
right panel of Fig. 5.6, but we change (dlos,min, dlos,max) from (0 Mpc/h, 1.0 Mpc/h) to
(10.0 Mpc/h, 20.0 Mpc/h). In this segment, vlos are determined mostly by the Hub-
ble flow and vr. Note that the high galaxy cluster mass bin contains more halos with
vlos < 2000 km/s than the middle one, because high mass clusters have higher vr on
average, which pulls more halos from vlos > 2000 km/s to vlos < 2000 km/s. In addition,
the high mass cluster bin have more halos at small r than the middle one. Hence, the
relative amplitude of the segment at large dlos is smaller for the higher cluster mass bin.
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Figure 5.7: Left panel: Comparison between pvlos(vlos, rproj, dlos,min, dlos,max) for
2.0 Mpc/h < rproj < 3.0 Mpc/h, (dlos,min, dlos,max) = (5.0 Mpc/h, 10.0 Mpc/h) (red
line) and 2.0 Mpc/h < rproj < 3.0 Mpc/h, (dlos,min, dlos,max) = (0 Mpc/h, 40.0 Mpc/h)
(black line) for the middle galaxy cluster mass bin. Right panel: Comparison between
pvlos(vlos, rproj, dlos,min, dlos,max) for the middle galaxy cluster mass bin (black line) and
the high one (red line) at 2.0 Mpc/h < rproj < 3.0 Mpc/h and (dlos,min, dlos,max) =
(5.0 Mpc/h, 10.0 Mpc/h).
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Figure 5.8: Left panel: Comparison between pvlos(vlos, rproj, dlos,min, dlos,max) for
2.0 Mpc/h < rproj < 3.0 Mpc/h, (dlos,min, dlos,max) = (10.0 Mpc/h, 20.0 Mpc/h) (red
line) and 2.0 Mpc/h < rproj < 3.0 Mpc/h, (dlos,min, dlos,max) = (0 Mpc/h, 40.0 Mpc/h)
(black line) for the middle galaxy cluster mass bin. Right panel: Comparison between
pvlos(vlos, rproj, dlos,min, dlos,max) for the middle galaxy cluster mass bin (black line) and
the high one (red line) at 2.0 Mpc/h < rproj < 3.0 Mpc/h and (dlos,min, dlos,max) =
(10.0 Mpc/h, 20.0 Mpc/h).
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5.3 Accuracy of Mass Estimation

Using our model PDF of vlos, we can estimate the accuracy of cluster mass estimations
from observations of the stacked phase space distribution. Here we assume only the
Poisson errors as measurement errors. When we have Ngal spectroscopic galaxies in a
segment, the accuracy of detecting the difference between the PDFs of vlos,1 and vlos,2 is

(∆χ2)1/2 =

[
Ngal ×

nbin∑
i

{pvlos,1(vlos,i)− pvlos,2(vlos,i)}2

{pvlos,1(vlos,i)}

]1/2
. (5.7)

Note that nbin is the number of vlos bins. We approximate 1σ error of the Poisson error
for N to

√
N .

When we estimate cluster masses by using the PDF of vlos,1, we have some independent
data, e.g., the PDF for 2.0 Mpc/h < rproj < 3.0 Mpc/h and the PDF for 3.0 Mpc/h <
rproj < 4.0 Mpc/h. We calculate the accuracy of detecting cluster masses by combining
the PDFs at different projected radii as

(∆χ2)1/2 =

[∑
l

Ngal,l ×
nbin∑
i

{pvlos,1,l(vlos,i)− pvlos,2,l(vlos,i)}2

{pvlos,1,l(vlos,i)}

]1/2
. (5.8)

We estimate the minimum number of galaxies to detect the difference between the high
and middle cluster mass bins at 1σ. We combine the vlos PDFs in the range 2.0 Mpc/h <
rproj < 12.0 Mpc/h here. By using our model PDF of vlos and eq. (5.8), we obtain the
minimum number of galaxies as

Ngal =

[∑
l

pgal,l ×
nbin∑
i

{pvlos,1,l(vlos,i)− pvlos,2,l(vlos,i)}2

{pvlos,1,l(vlos,i)}

]−1

∼ 350, (5.9)

where, pgal,l is the fractional number of dark matter halos in the l-th segment, which
satisfy ∑

l

pgal,l = 1 . (5.10)

We obtain pgal,l from our simulation.
The number of spectroscopic galaxy at 2.0 Mpc/h < rproj < 12.0 Mpc/h for 20 < N < 60

and 0.1 < z < 0.4 galaxy clusters observed in SDSS/BOSS (Dawson et al. 2013) is about
150,000. Note that we use richness N estimated by CAMIRA (Oguri 2014). We can
determine the mean mass of galaxy clusters observed in SDSS/BOSS by using the PDF
of vlos at 2.0 Mpc/h < rproj < 12.0 Mpc/h with an accuracy of(

Mhigh

Mmiddle

) 350
150000

∼ 1.04 → 4%, (5.11)

at 1σ, where Mhigh and Mmiddle are the mean cluster mass of the high and middle cluster
mass bin.
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5.4 Systematic Errors

In this Section, we discuss the systematic errors of the dynamical mass of clusters
measured by using our model. Here, we estimate the effect of two systematics errors. One
is the satellite-halo and sub-halo mass dependence, and the other is an inaccuracy of our
model of the phase space distribution. We also discuss about other source of systematic
errors in this Section.

5.4.1 Dependence of the PDF of vlos on Satellite-Halo and Sub-
Halo Masses

In observations, to measure the vlos PDF we use redshifts of galaxies whose corresponding
halo masses may not be obtained accurately. Hence, the dependence of the PDF of vlos
on satellite-halo and sub-halo masses can be regarded as a systematic error of the PDF of
vlos. To estimate the rough amplitude of the error, we have to estimate the satellite-halo
and sub-halo mass dependence of the PDF of vlos.

In Figs. 5.9 and 5.10, we show the PDF of vlos from theory for each dataset defined
in Section 4.7. By comparing these Figures with Figs. 5.1 and 5.2, we can see that the
dependence of the PDF of vlos on satellite-halo and sub-halo masses is not very large,
particularly when we focus on galaxy clusters more massive than 1011 M⊙. We can also
see that ∆p2vlos shown in Figs. 5.9 and 5.10 are less than one fifth of those shown in Figs.
5.1 and 5.2.
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Figure 5.9: PDFs of vlos for different satellite-halo and sub-halo masses at 2 Mpc/h <
rproj < 3 Mpc/h obtained from our theory. The black line corresponds to data-1,
red corresponds to data-2, green to data-4, green to data-8, and magenta to data-sat.
∆p2vlos;data-1;data-2 = 7.30×10−8, ∆p2vlos;data-1;data-4 = 3.35×10−8, ∆p2vlos;data-1;data-8 = 3.20×10−8,

and ∆p2vlos;data-1;data-sat = 0.81× 10−8.
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(a) 3 Mpc/h < rproj < 4 Mpc/h
∆p2vlos;data-1;data-2 = 2.91× 10−8,

∆p2vlos;data-1;data-4 = 1.56× 10−8,

∆p2vlos;data-1;data-8 = 3.45× 10−8,

∆p2vlos;data-1;data-sat = 0.64× 10−8.
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(b) 4 Mpc/h < rproj < 5 Mpc/h
∆p2vlos;data-1;data-2 = 0.84× 10−8,

∆p2vlos;data-1;data-4 = 1.03× 10−8,

∆p2vlos;data-1;data-8 = 3.26× 10−8,

∆p2vlos;data-1;data-sat = 0.41× 10−8.
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(c) 8 Mpc/h < rproj < 9 Mpc/h
∆p2vlos;data-1;data-2 = 0.16× 10−8,

∆p2vlos;data-1;data-4 = 0.50× 10−8,

∆p2vlos;data-1;data-8 = 2.09× 10−8,

∆p2vlos;data-1;data-sat = 0.14× 10−8.
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(d) 11 Mpc/h < rproj < 12 Mpc/h
∆p2vlos;data-1;data-2 = 0.14× 10−8,

∆p2vlos;data-1;data-4 = 0.19× 10−8,

∆p2vlos;data-1;data-8 = 0.63× 10−8,

∆p2vlos;data-1;data-sat = 4.91× 10−10.

Figure 5.10: Same as Fig. 5.9, but for larger projection radii than 3 Mpc/h.
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5.4.2 Inaccuracy of Our Model

Our model PDF of vlos is not perfect as seen in Section 4.6. When we compare the PDF
from theory to that from mock in Section 4.6, there are two types of residuals between
these two PDFs. One is a statical error, and the other is an imperfection of our model.
Now, χ2 for the PDF of vlos is described as

χ2
los =

dof∑
i

{pvlos(vlos,i)− yi}2

σ2
i

, (5.12)

and residual (∆p2) is described as

∆p2los =
dof∑
i

{plos(vlos,i)− yi}2, . (5.13)

where dof is the number of datapoint we have from mock observations, and σi is a nor-
malized Poisson error of i-th datapoint. We can rewrite eq. (5.12) as

χ2
los =

dof∑
i

[
{pvlos;ture(vlos,i)− yi}+ {pvlos(vlos,i)− pvlos;ture(vlos,i)}

]2
σ2
i

=
dof∑
i

{pvlos;ture(vlos,i)− yi}2

σ2
i

+
dof∑
i

{pvlos(vlos,i)− pvlos;ture(vlos,i)}2

σ2
i

+
dof∑
i

2
{pvlos;ture(vlos,i)− yi} × {pvlos(vlos,i)− pvlos;ture(vlos,i)}

σ2
i

,

(5.14)

where pvlos;ture is the true PDF of vlos. The first term of the second low of eq. (5.14)
corresponds to the Poisson error, the second term of the second low corresponds to the
difference between the vlos PDF from our model and the true PDF, and the third term is
the cross term. Because the Poisson error does not correlate with pvlos(vlos,i)−pvlos;ture(vlos,i),
the cross term reduces to zero when we have sufficiently narrow vlos bins. Our dof of the
vlos PDF from the mock is 200, so we neglect the cross term. Comparing the true PDF
to the PDF from the mock, χ2 must obey the χ2 distribution. When dof is enough large,
χ2 distribution asymptotes to Gaussian distribution with its average equal to dof and the
standard deviation equal to

√
2× dof. Hence, we can rewrite eq. (5.14) as

χ2
los − dof ∼

dof∑
i

{pvlos(vlos,i)− pvlos;ture(vlos,i)}2

σ2
i

. (5.15)

By using eq. (5.15), we can estimate {pvlos(vlos) − pvlos;ture(vlos)}2 roughly from χ2
los and

the typical amplitude of error bars.
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Table 5.2: Summary of the new galaxy cluster mass bins. We adopt Mvir as the cluster
masses.

Cluster mass bin name Lower limit Higher limit Mean value
N1 3.06× 1014 M⊙ - 5.12× 1014 M⊙
N2 2.05× 1014 M⊙ 3.06× 1014 M⊙ 2.47× 1014 M⊙
N3 1.63× 1014 M⊙ 2.05× 1014 M⊙ 1.82× 1014 M⊙
N4 1.36× 1014 M⊙ 1.63× 1014 M⊙ 1.49× 1014 M⊙
N5 1.19× 1014 M⊙ 1.36× 1014 M⊙ 1.27× 1014 M⊙
N6 1.06× 1014 M⊙ 1.19× 1014 M⊙ 1.12× 1014 M⊙
N7 9.48× 1013 M⊙ 1.06× 1014 M⊙ 1.00× 1014 M⊙

We conclude that {pvlos(vlos) − pvlos;ture(vlos)}2 less than one third of ∆p2vlos shown with
Fig. 5.1 and 5.2.
To estimate the inaccuracy of our model more quantitatively, we calculate χ2

los for our
theoretical model PDF but shifting cluster mass bins of Mock PDFs. We set new galaxy
cluster mass bins so that each cluster mass bin contains 300 galaxy clusters. In Table
5.2, we show the summary of our new galaxy cluster mass bins. Note that we adopt
1.0×1011 M⊙ as the lower limit of satellite-halos and sub-halos mass for these new galaxy
cluster mass bins.

We can estimate the systematic errors of cluster masses estimated from the stacked
vlos PDF by calculating χ2

los with pvlos constructed in Chapter 4 for the middle and high
galaxy cluster mass bins and histograms obtained directly from our N -body simulation
for the new galaxy cluster mass bins. If our theoretical model is perfect, the χ2

los takes
the minimum value with the cluster mass bin whose cluster masses are same as cluster
masses used to construct pvlos .
In Fig. 5.11, we show χ2

los defined in eq. (5.12). We use pvlos constructed in Chapter 4
for the middle and high galaxy cluster mass bins and histograms obtained directly from
our N -body simulation for the new galaxy cluster mass bins listed in Table 5.2, which are
different from the three cluster mass bins that are used for our main analysis in previous
sections. First, Fig. 5.11 indicates that χ2

los indeed takes the minimum value at least
for the middle cluster mass bin, which indicates that our new methodology to constrain
cluster masses using the stacked vlos PDF works. For the high cluster mass bin, the
χ2
los minimum is not clearly seen because of the limited cluster mass range originating

from the limited simulation box size. Next, the cluster mass that corresponds to χ2
los;min

deviates from the input mean mass of clusters used to construct the theoretical model
PDF. Therefore this test indicates that the systematic errors on estimating cluster masses
do exist and are not negligible. The systematic error is smaller than the mass difference
of cluster masses between the middle and high mass bins for our original analysis, which
is consistent with our simple analytic estimate presented above.

Together with the dependence of satellite-halo and sub-halo masses, we find that these
systematic errors are smaller than the difference of the PDFs between the middle and
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Figure 5.11: Comparison of χ2
los for each galaxy cluster mass bins. The vertical axis is

χ2
los summed up for 2 Mpc/h < rproj < 12 Mpc/h. The horizontal axis is the mean value

of cluster masses within each cluster mass bin. The black line is χ2
los calculated by using

pvlos for the middle galaxy cluster mass bin, and the red line is by using the high one.
The vertical lines show the mean values of the middle (black) and the high (red) galaxy
cluster mass bins.

high cluster mass bins as we saw in Fig. 5.11, but can make significant contributions
to the analysis of observations that we discussed in Section 5.4.1. In principle, we can
disentangle these systematic errors from the cluster mass estimate by taking advantage
of the difference of these effects on the shape of the vlos PDF. Our analysis presented
here indicates that these potential sources of the systematic error should be addressed
carefully, which we leave for future work.
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5.4.3 Measurement Errors of Galaxy Redshifts

In observation, we cannot measure the exact pairwise line-of-sight velocities, because
of measurement errors of galaxy redshifts (see also Section 3.1). The measurement errors
of galaxy redshifts distort the PDF of the line-of-sight velocity as

pvlos:obs(vlos) =

∫ ∞

−∞
dv′lospvlos:true(v

′
los)E(vlos − v′los), (5.16)

where pvlos:obs and pvlos:true are the observed and the true PDFs of the line-of-sight velocity.
Note that E represents the effect of measurement errors of spectroscopic galaxy redshifts.
In the case that measurement errors of spectroscopic galaxy redshifts follow the Gaussian
distribution, we can describe E as

E(x) =
1

σz

√
2π

exp
−x2

2σ2
z

, (5.17)

where σz is the root-mean-square of measurement errors of line-of-sight velocitiess.
Since we focus on −2000 km/s < vlos < 2000 km/s, we can regard |zsat−zcen| ≪ 1+zcen.

Hence, eq. (3.3) is rewritten as

∆vlos ∼
c

1 + zcen

√
∆z2sat +∆z2cen. (5.18)

As the typical measurement error of spectroscopic galaxy redshifts is 10−4, we see σz ∼
40 km/s. As long as measurement errors of spectroscopic galaxies are well understood,
we can include the effect of measurement errors like this to make fair comparisons with
observed vlos PDFs.

5.4.4 Miscentering

In observation, we use BCGs defined by cluster finding methods as centers of clusters,
whereas in simulations, we determine the most bounded dark matter particles as centers of
clusters according to Rockstar (Behroozi et al. 2013b). These BCGs may not correspond
to the centers defined in our simulation. This miscentering causes systematic errors.

In Rykoff et al. (2016), they compare the sky positions of the BCGs of the clusters
observed by SDSS (York et al. 2000) defined in their cluster finding method (Rykoff et al.
2014) with the sky positions of the X-ray peak of the clusters observed by Chandra and
XMM X-ray observations. In Rykoff et al. (2016), they also compare the sky positions
of the BCGs with the sky position of the peak of SZ signals observed from the South Pole
Telescope SZ cluster survey (Bleem et al. 2015). While we want to estimate distances
between centers of clusters defined by Rockstar and BCGs defined by their cluster finding
method, it is difficult to find centers of clusters defined by Rockstar in observations.
Hence, they use peaks of X-ray and SZ signals as proxy to true cluster centers to estimate
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the frequency of miscentering by their cluster finding method.
In Rykoff et al. (2016), they model the PDF of the miscentering effect as

p(x) =
ρ0

σ0

√
2π

exp
−x2

2σ2
0

+
(1− ρ0)x

σ2
1

exp
−x2

2σ2
1

, (5.19)

where ρ0, σ0, and σ1 are free parameters, x = r/Rλ, r is the projected radius of the
BCGs from peaks of X-ray and SZ signals, and Rλ is the projected radius of the galaxy
clusters with richness λ, defined in eq. (3.4). The first term of right hand side corre-
sponds to the BCGs-X-ray (SZ) center offset, and the second term represents systematics
failures in identifying the correct BCGs with their cluster finding method. They obtained
ρ0 = 0.78+0.11

−0.11 and σ1 = 0.31+0.09
−0.05 by comparing the offset distribution derived from the

observations mentioned above with eq. (5.20). They marginalize over the parameter σ0

since it is not relevant to the overall fraction of misidentified BCGs.
The miscentering affects the PDF of the line-of-sight velocity in two aspects. First,

we mis-measure redshifts of BCGs. This causes systematic errors to vlos. Second, we
mis-measure the projected radii to member galaxies. The first aspect distorts the PDF of
the line-of-sight velocity in the similar way as in eq. (5.16), i.e.,

E(x) =
1− ρ0

σBCG

√
2π

exp
−x2

2σ2
BCG

+ ρ0δ(x), (5.20)

where σBCG is the typical line-of-sight velocity between correct BCGs and galaxies misiden-
tified as BCGs. Estimating values of σBCG and discussions of the second aspect are left
for future work.





Chapter 6

Summary and Future Prospects

In this thesis, we study the phase space distribution of dark matter halos around galaxy
clusters using an N -body simulation. We find that motions of most dark matter halos are
not virialized even at z = 0, although previous studies to measure dynamical masses of
galaxy clusters relied on the virial theorem. We construct a new model of the phase space
distribution of dark matter halos, adopting a two component model for the phase space
distribution. One component is the infall component, and the other is the splashback
component. This two component model is in good agreement with the stacked phase
space distribution of dark matter halos for a wide range of radii. This model reproduces
the double peak histogram of the radial velocity distribution accurately. We find that
the radial velocity distribution deviates from the Gaussian distribution even at large
radii, which we model the Johnson’s SU distribution to reflect the skewness and kurtosis.
After fitting the model function of the phase space distribution with stacked phase space
distribution obtained from the N -body simulation, we derived the dependence of these
parameters on the radius r. We find that the phase space distribution shows dependence
on galaxy cluster masses even at r > 20 Mpc/h. This suggests that we can extract galaxy
cluster masses from the dynamics of dark matter halos at large r. We also study the
satellite-halo and sub-halo mass dependence of the phase space distribution to find that
the phase space distribution is affected by satellite-halo and sub-halo selections, albeit
weakly.

We then predict the PDF of vlos from our model of the phase space distribution by
projecting our model phase space distribution along the line-of-sight with the effect of the
Hubble flow, and find that our model is in good agreement with the PDF of vlos directly
obtained from the mock observation from our simulation. We show that we can indeed
estimate galaxy cluster masses by using motions of galaxies at large radii, rproj > 2 Mpc/h.
We discuss the origin of the galaxy cluster mass dependence on the PDF of vlos, which is
complicated due to competing effects of the infall velocity and the Hubble flow.

Finally, we discuss the accuracy of galaxy cluster masses by using the PDF of vlos at
2 Mpc/h < rproj < 12 Mpc/h. We conclude that, by using SDSS spectroscopic galaxies,
we can detect about 4% difference of average cluster masses at 1σ. We also discuss
potential systematic errors of galaxy cluster mass estimations, such as the satellite-halo
and sub-halo mass dependence of the PDF and the inaccuracy of our model. We find that
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these effects can make significant contributions to the error budget of the mass estimation
when a large number of spectroscopic galaxies are used.

Our next step is to improve our model of the phase space distribution. Moreover, we
will apply our method of dynamical mass measurements to observations such as SDSS
and Subaru Hyper Suprime-Cam survey, which should provide useful and complementary
information on large samples of clusters in these surveys.
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Appendix A

Review of a Cluster Finding Method

In this Appendix, we review the cluster finding method CAMIRA (Oguri 2014) as an
example of red-sequence cluster finding methods.

A.1 Calculating Probability of Red Sequence Galaxy

In CAMIRA, they use a stellar population synthesis (SPS) model of Bruzual & Charlot
(2003) to model the red-sequence and its dispersion. In Bruzual & Charlot (2003), they
derived colors and magnitudes of galaxies as a function of age, metallicity (ZSPS), stellar
mass (M∗), and dust extinction. In CAMIRA, they adopt an approximations that all
galaxies are formed at redshift zf = 3 and no dust extinction.

Given the fixed formation redshift, the red-sequence by the relationship between ZSPS

and M∗ as
ZSPS = Z11 + aZ [log(M∗/10

11M⊙)], (A.1)

where Z11 is the normalization of metallicity, and aZ = 0.15.
The SPS model fitting is based on χ2 defined by

χ2 =

Nfil∑
i

(mi;obs −mi;SPS − δmi:resi)
2

σ2
mi;obs

+ σ2
mi;resi

+
logZ11 − logZ11

σ2
logZ

, (A.2)

where Nfil is the number of photometric band filters of the galaxy catalog, mi;obs and
σmi;obs

are observed magnitude and its error in the i-th band, and σmi;resi
corresponds to

the scatter of the spectra energy distribution of red-sequence galaxies. Also, mi;SPS is the
SPS model predicted magnitude in the i-th band as a function of the galaxy redshift z,
M∗ and ZSPS, and logZ11 = −2 and σlogZ = 0.14.

They include the correction term δmi:resi, which is the difference between the spectral
energy distribution predicted by the SPS model and the observed one. More specifically,
δmi:resi is estimated by comparing spectral energy distributions of spectroscopic galaxies
and SPS model predictions, which is modeled as

δmresi;fit(λ, zj) =

nf∑
i

ai(zj)(λ− λ0)
i, (A.3)
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where λ0 is 5000Å, λ is the rest-frame wavelength, and ai(zj) are fitting parameters.
The process for calculating δmi:resi (or ai(zj)) and σmi;resi

is as follow. First, they minimize
χ2 for each spectroscopic galaxy by varying M∗ and Z11 with δmi:resi = 0 and σmi;resi

= 0.
Next, they remove logZ11 > −1.65 and logZ11 < −2.35 as outliers. Then, they fit ai(zj)
using galaxies with χ2 < 4 and estimate the scatter of (mi;obs −mi;SPS − δmi:resi), which

correspond to
√

σ2
mi;obs

+ σ2
mi;resi

, using galaxies with χ2 < 20 and fixing σmi;resi
.

The degree of freedom of χ2 calculated in eq. (A.2) for each galaxy is Nfil − 1 (≡ ν).
Hence, the distribution of χ2 should obey the χ2 distribution with ν degrees of freedom

dpν
dχ2

=
1

2ν/2Γ(ν/2)
eχ

2/2(χ2)ν/2−1. (A.4)

Then, they define a ”number parameter” as

nν(χ
2) =

23ν/4

νν/2U(ν/4, 1/2, ν2/8)
e−(χ2)2/2, (A.5)

where U(a, b, c) is the confluent hypergeometric function of second kind. Note that the
number parameter is normalized so as to satisfy∫ ∞

0

dχ2nν
dpν
dχ2

= 1. (A.6)

A.2 Calculating the Number of Member Galaxies

They count the number of red-sequence galaxies in a specific stellar mass range and
within some aperture to define richness. The stellar mass filter is

FM(M∗,in) = exp

[
−
(
M∗,in

Mh

)4

−
(

Ml

M∗,in

)4
]

(A.7)

where Mh = 1013M⊙ and Ml = 1010.2M⊙ are adopted here. The spatial filter is

FR(R) =
Γ[n/2, (R/R0)

2]− (R/R0)
ne−(R/R0)2

Γ(n/2, 0)
, (A.8)

where n = 4 and R0 = 0.8h−1 are adopted here.
By using eqs. (A.5), (A.7), and (A.8), the number of red-sequence galaxies at (θ, z)

can be described as

Nmem(θ, z) =
∑
i

nν(χ
2
i ;θi; z)FM(M∗,i)FR(DA|θi − θ|), (A.9)

where DA is the angular diameter distance at redshift z. From eq. (A.9), they search
peaks of the Nmem map from the celestial sphere (θp).
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A.3 Refining Cluster Candidates

They determine the likelihood of the cluster redshift for each identified peak as

lnLz = −1

2

∑
i

wiχ
2
i (θi, z)Θ[FR(DA|θi − θp|)], (A.10)

where Θ is the Heaviside step function. The weight wi is introduced to use only high
significance cluster member galaxies for estimating the cluster redshift. It is defined as

wi =
1

1 + exp {(nth − nmem,i)/σn}
, (A.11)

where
nmem,i = nν(χ

2
i ;θi, z)FM(M∗;i)FR(DA|θi − θp|) , (A.12)

and nth is defined as ∑
nmem,i>nth

nmem,i = fnNmem(θp, z), (A.13)

where fn = 0.5 and σn = 0.05 are adopted here. The cluster redshift zcl is the redshift
that minimizes the likelihood defined by eq. (A.10).
They determine the likelihood of each galaxy being the BCG of the cluster as

lnLBCG = − [log (M∗,i/M∗,BCG)]
2

2σ2
logM

+ lnnν(χ
2)− (DA|θi − θp|)2

σ2
R

, (A.14)

where, M∗,BCG = 1012.3M⊙, σlogM=0.3, and σR = 0.3h−1 are adopted here. All variables
are calculated at z = zcl determined in eq. (A.10). Eq. (A.14) means that a galaxy
with larger stellar masses, with the red-sequence color, and located near the peak of the
richness map is more likely to be the BCG.

After they obtain the location of the most likely BCG, θBCG, they recalculate zcl by
using eq. (A.10) with θp → θBCG. Then, they calculate eq. (A.14) with updated zcl. This
process is repeated until it converge.

Finally, they estimate Nmem(θBCG, zcl) of the galaxy cluster using eq. (A.9) to define
richness of the galaxy cluster.





Appendix B

Comparison Between Velocity
Dispersions and Cluster Masses

In this Appendix, we show the comparison between σG and cluster masses obtained
from our simulation. The difference between Fig. 3.4 in Section 3.3 and Fig. B.1 is as
follows. First, we use σG instead of σ1D. We calculate σG by fitting eq. (3.5) to the vlos
histogram. Second, we set the fitting range to −2000 km/s < vlos < 2000 km/s.
In Fig. B.1, we show the comparison between σG and cluster masses. We can see that

the relation between σG and cluster masses is significantly different from ”virialized line”,
i.e., the expected relation for virialized halos, motions of dark matter halos around galaxy
clusters are not yet fully virialized as we show in Chapter 4. Hence, we cannot obtain
accurate cluster masses based on the method presented in Section 3.3.
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Figure B.1: The relation between cluster massMvir and velocity dispersions of dark matter
halos. Filled circles are σG obtained from our simulation, the red line is the best fit line of
eq. (3.8), and the green line is ”virialized line” which is same as the one shown in Fig. 3.4.
The best fit parameters for the red line are A2 = 1288± 20 km/s and α = 0.410± 0.006.
The parameters for the green line are A2 = 1095 km/s and α = 0.336.

.
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