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Abstract

Since the first discovery of an exoplanet, a planet orbiting around a star other than the
Sun, in 1995, a large number of exoplanets were detected with the dramatic development
of the observational instruments. As of January 2015, the number of confirmed exoplanets
is close to 2000, which have revealed the diversity of the architecture of the exoplanetary
systems beyond our conventional perspective on the planetary systems. Some of them
were found to harbour a gas giant planet at the vicinity of the central star (close-in
planet), which configuration is totally different from that of the solar system. For the
better understanding on the planet formation scenario, therefore, the characterization of
these exoplanets is an important issue.

Transit is one of the most powerful methods to detect the exoplanets where the exo-
planetary occultation in front of the stellar disk is detected as the reduction of the stellar
flux. The extent of such reduction directly reflects the size ratio of the planet to the star,
thus one can characterize the radius of the transiting planet.

PTFO 8-8695 is a transiting planetary system consisting of a pre-main-sequence star
and a close-in planet. It shows unexpected shapes and variability of the transit light curves
in 2009 and 2010 observations. One of the remarkable features of PTFO 8-8695 is that
the rapid rotation of the central star causes it to be rotationally deformed, resulting in
the dimmer equatorial region compared to the brighter polar regions (gravity darkening).
Another feature is that the strong torque between the star and planet triggers the spin-
orbit nodal precession, where the stellar spin and planetary orbital axes mutually precess
around the total angular momentum vector. The observed features of the transit light
curves in PTFO 8-8695 system can be attributed to these features; nodal precession
accompanied by the gravity darkening. Since the stellar spin and planetary orbit change
their directions in the sky plane with time, planet gets into the stellar disk with non-
uniform brightness from various directions with time, leading to the unusual shapes and
variability of the transit light curves.

The previous work on the characterization of this system estimated not only the plan-
etary radius but also the planetary mass through the sensitivity of the precession state on
the planetary mass. In that work, they assumed that the stellar spin period is synchro-
nized to the planetary orbital period, which is unlikely to be achieved in PTFO 8-8695
system. This is why we re-analyzed this system without the spin-orbit synchronous con-
dition. Indeed we found that a variety of the parameter sets are possible as the solutions
to the current data. In order to distinguish them, we present the future prediction of
the transit light curves for several solution candidates. We are now collaborating with
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the researches in Kyoto Sangyo University (KSU), and they are performing an additional
observation of PTFO 8-8695 from 2014 November and 2015 January during which the dif-
ference of the predicted light curves for possible solutions are large enough to be detectable
with the Araki-telescope in KSU.

In addition to above achievement, we also formulated the general equations for the
dynamical evolution of the system. Our equations can take into account the planetary
spin effect and pursue the secular tidal evolution of the system, both of which the simpler
equations in the previous work cannot cover. We showed that the effect of the planetary
spin potentially alters the precession architecture of the system with this model. Serious
investigation of this effect may make it possible to detect the planetary spin from the
future observations. Moreover, we suggested that tidal evolution by assuming the standard
stellar properties is inconsistent with the current configuration of PTFO 8-8695 system.
This inconsistency between the theoretical prediction and observational picture provides
the clue to assess the internal profiles of the pre-main-sequence stars.
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Chapter 1

Introduction

The last twenty years since the first detection of an extrasolar planet (hereafter, exoplanet)
by Mayor & Queloz (1995) were the particularly dramatic age among the long history
of the astronomy lasting from the prehistoric ages of human beings. This is because the
architectures of exoplanetary systems revealed by their and following works are found to be
totally different from the configuration of our solar system. Since until that discovery the
planet formation theory is established for the purpose of explaining the formation of our
solar system alone, the unexpected properties of observed exoplanets completely altered
our perspective on the planetary system. Based on the recent observations suggesting
that our solar system might not show the common architecture of the planetary systems,
the conventional theory of planet formation (known as the Hayashi model; see Appendix
A) now needs to be improved so as to explain the observed diversity of exoplanets.

The specific features of the observed exoplanets are briefly introduced as follows. For
example, the first detected exoplanet, 51 Pegasi b, orbits around the G dwarf similar to
the Sun but has substantially large mass (>0.472MJupiter) for its extreme short orbital
semi-major axis (smaller than that of Mercury). This kind of planets with Jupiter-like
mass at the vicinity of the central star is now called “hot Jupiter”. As more exoplanets
were detected, other features of the planetary systems has become apparent (see Howard
2013 for introduction of the observed properties of exoplanets). Specifically, non-negligible
portion of them are found to be hot Jupiters (top-left region in the left panel in Figure
1.1), hot Neptunes or super Earths (bottom-left region in the left panel in Figure 1.1),
all of which are with significantly small semi-major axes (< ∼0.1AU). In addition, it is
surprising that some exoplanets have the substantially eccentric orbits whose eccentricities
are over 0.5 (Marcy & Butler 1996, Cochran et al. 1997) or even approaching unity (right
panel in Figure 1.1). Furthermore, it is also worth emphasising that some exoplanets
show highly inclined orbits with respect to the equatorial planes of their central stars,
some of which have even retrograde orbits (Anderson et al. 2010, Winn et al. 2009 and
Narita et al. 2009). Such unusual properties are beyond the scope of the conventional
planet formation theory which predicts the circular and coplanar planetary systems with
gas giants located at the outer orbits as that of Jupiter. In response to these unexpected
discoveries, the statistical discussion and characterization of a variety of exoplanets are
now required for the improvement of the conventional theory of the planet formation.
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2 Introduction

Figure 1.1: Mass (left) or orbital eccentricity (right) vs semi-major axis of exoplan-
ets. Both figures taken from Exoplanet Orbit Database - Exoplanet Data Explorer
http://exoplanets.org/.

Since the first detection, more and more exoplanets has been discovered, approaching
2000 in number for confirmed planets alone and 5000 for planet candidates (Figure 1.2).
Among the various methods for the planet detection, the transit method is successful
in discovering larger number of exoplanets than any other methods (Figure 1.2). This
method makes use of the reduction of the flux from the star induced by the exoplanetary
eclipse (see Appendix C for details), and directly provides the information on the size of
transiting planets. Although there is a limitation that the planetary eclipse takes place
only when the planetary system is seen from edge-on, the transit method is one of the
most powerful ways for the detection of exoplanets. The spectroscopic radial velocity
(RV) method is another powerful method for the planet detection. This method detects
the reflex motion of the central star induced by the orbital motion of the exoplanet as the
periodic Doppler shift of the stellar spectra. The amplitude of the Doppler shift depends
on the planetary mass, which makes it possible to estimate the planetary mass through
the analysis of the spectroscopic data.

In this thesis, we attempted the characterization of the planetary system PTFO 8-
8695 through the analysis its transit light curves. The photometric transit observation for
this system was performed in Palomar Observatory in 2009 and 2010 (van Eyken et al.
2012). By analyzing the observed transit light curves, Barnes et al. (2013) (hereafter,
B13) estimated the system parameters such as the planetary mass, planetary radius and
spin-orbit angle (the angle between the stellar spin axis and planetary orbital axis, and
denoted as ϕ; see Appendix A for details). Again transit light curves does not provide the
information on the planetary mass. Thereby, it is in general necessary for the estimation
of the planetary mass to make use of the spectroscopic RV data. In the case of PTFO
8-8695, however, the variability of the transit light curve induced by the precession of the
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Figure 1.2: Number of exoplanets discovered each year. Different colors show
the different detection methods. Figure taken from NASA Exoplanet Archive
http://exoplanetarchive.ipac.caltech.edu/index.html.

stellar spin axis and planetary orbital axis makes it possible to estimate the planetary
mass with the data of transit observation alone. This work is basically the reproduction
of the achievements by B13. However, we re-analyzed PTFO 8-8695 system without the
unphysical assumption employed in B13 and presents the future prediction of the transit
light curves for the preparations of the future observations, both of which are the original
points of this work. Since it is still possible that an exoplanet in PTFO 8-8695 system is
false positive, to say further, the future observations guided by our prediction of the light
curves do serve as the key to make a decisive judgement to this exoplanetary candidate.
All observational data used in this thesis was provided by courtesy of Prof. Julian van
Eyken, the main author of van Eyken et al. (2012).

The structure of this thesis is as follows. In chapter 2, we describe the planetary
system PTFO 8-8695 consisting of T-Tauri star and one close-in planet by referring to
the works devoted to the discovery (van Eyken et al. 2012) and analysis (Barnes et al.
2013, hereafter, B13) of this exoplanet. The mathematical formulation of the nodal
precession of the system follows the way described in chapter 3. And then, the light curve
modelling procedure with the formulae in chapter 3 is introduced in chapter 4. Based on
the theoretical models in chapters 3 and 4, all results given by this work are summarized
in chapter 5, supplemented with the future prediction of the transit light curves in order
to see the accessibility of the future observations. Finally, chapter 6 summarizes the
achievements in this work, and presents the future prospects for which this work can
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serve as the groundwork.



Chapter 2

Background and Motivations

This chapter is the review part of an exoplanetary system PTFO 8-8695. We describe
the achievements of the previous works on this system basically following van Eyken
et al. (2012) (discovery of this exoplanetary candidate) and B13 (characterization of this
exoplanetary system).

2.1 Overview of a planetary system PTFO 8-8695

PTFO 8-8695 is a pre-main-sequence star (weak-line T-Tauri star) at the Orion OB1a
star forming region reported by Briceño et al. (2005). PTFO 8-8695 stellar properties
are summarised in Table 2.1 (see van Eyken et al. 2012 for details). The stellar mass of
0.44M⊙ and stellar age of 2.63 Myr are derived with the stellar model by Baraffe et al.
(1998), while 0.34M⊙ and 2.68 Myr are with the model by Siess et al. (2000).

Table 2.1: PTFO 8-8695 stellar properties

Property Value

Alternative designations

CVSO30
2MASS J05250755+0134243
PTF1 J052507.55+013424.3

RA 05h.25m.07s.55
Dec +01◦.34’.24.3”
V 16.26 mag
Teff 3470 K
R⋆ 1.39 R⊙
M⋆ 0.44M⊙/0.34M⊙
Prot <0.671 days
Age 2.63 Myr/ 2.68 Myr

From the subsequent photometric transit observation and spectroscopic radial velocity
measurement after the first detection, PTFO 8-8695 is now supposed to harbour one close-
in planet (PTFO 8-8695 b) with planetary massMp < 5.5MJupiter (van Eyken et al. 2012).
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6 Background and Motivations

Planet detection around the pre-main-sequence stars is quite difficult partly because the
observable targets around such young stars are fairly rare, and partly because the central
star’s drastic stellar activity inevitably leads to the large noises in the photometry. Thus
the data analysis and estimation of the properties of the system are very difficult. In
spite of such a difficulty, van Eyken et al. (2012) succeeded in discovering PTFO 8-8695
b as the first transiting exoplanet candidate orbiting around a pre-main-sequence star.
Although the interpretation of photometric and spectroscopic observational data in terms
of transiting exoplanet remains to be confirmed, this exoplanet candidate PTFO 8-8695
b is now gathering much attention for the characterization (Ciardi et al. 2014). Although
it is still possible that the exoplanet PTFO 8-8695 b is actually false positive, this work
is expected to do serve as the groundwork for the future confirmation and investigation
of this prospective exoplanet.

The transits of PTFO 8-8695 were observed in Palomar Observatory from 2009 De-
cember 1 - 2010 January 15 (hereafter, 2009 observation), and 2010 December 8 - 17 (in
the same way, 2010 observation) as part of the Palomar Transient Factory (PTF) that
ran from 2009 - 2012. This PTF project is a fully-automated, wide-field survey for a sys-
tematic exploration of the optical transient sky. The former observation gives 11 reliable
transit light curves, and the latter provides 6 reliable ones with transit period of 0.448413
days (see Figures 2.1 and 2.2, and van Eyken et al. 2012). The top panel of Figure 2.3
depicts the phase-folded (piled up for each transit event) transit light curves for 2009
observation, while the bottom panel of Figure 2.3 is for 2010 observation. It should be
noted here that these phase-folded light curves are totally different with each other in
their shapes, and such a variability is not common in the ordinary transits. In addition to
the variability of light curve, each shape of 2009/2010 light curve also seems strange and
unexpected. 2009 light curve shows the convex-like, double-horned structure, and 2010
light curve is highly left-right asymmetric (transit ingress is longer than egress.). Both
light curves are very different from the conventional ones (see Appendix C).

Furthermore, their transit depth also imposes an additional puzzle to be reconciled. In
general, stellar flux is the brightest at the center of the stellar disk and becomes dimmer
towards the stellar limb. This tendency is known as the limb darkening effect, whose details
are explained as follows based on Gray (2008). In principle, the temperature is higher in
the stellar inner core and becomes lower as it approaches the stellar outer envelope. As
for the Sun, the inner core is thought to be over 107 K but surface temperature is around
6000 K. And higher temperature produces larger flux. Based on the fact that stars are so
optically thick that emitted light cannot penetrate them but will be immediately absorbed
by the surrounding stellar materials, the light we actually observe should be emitted from
the stellar photosphere whose optical depth measured from the stellar surface corresponds
to the unity (τ ∼ 1). The τ ∼ 1 line lies closer to the stellar inner core at the center of the
stellar disk than the limb of the stellar disk, then it turns out that the light we observe from
the central region of the stellar disk is emitted from deeper stellar photosphere compared
to the light from the limb of the stellar disk. This fact results in the non-uniformity of
the stellar flux throughout the stellar disk with the central region brighter than the stellar
limb (Figure 2.4). When a transiting planet passes the edge of the stellar disk, the total
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Figure 2.1: Normalized photometric light curve for 2009 December 4 - 2010 January 15.
These observational data are identical with those used by B13. Light gray regions indicate
the transit windows from ingress to egress with fixed transit period P = 0.448413 days
and epoch of transit center T0 = 2455543.9402 (HJD) following van Eyken et al. (2012).
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Figure 2.2: Same as Figure 2.1, but for 2010 December 9 - 2010 December 15 observations.

transit duration (from ingress to egress) becomes shorter than the duration when the
planetary transit path resides near the stellar disk center. Combination of this tendency
with the temperature distribution of the stellar disk gives a simple insight on the transit
light curve shape that transit light curve shorter in duration tends to shallower in depth
due to the limb darkening effect. However, 2009 light curve is longer in duration and
shallower in depth, and 2010 light curve is shorter in duration and deeper in depth, both
of which are inconsistent with the simple prediction of the limb darkening.

Up to this point, the problems on the transit light curve of PTFO 8-8695 are sum-
marised into two; the significant difference between 2009/2010 light curves and unusual
shape of the each transit light curve.

2.2 Gravity darkening effect and the nodal preces-

sion

The above two problems can be simultaneously solved by taking into account the stellar
rapid rotation and short transit period (B13).

As shown in Table 2.1, spectroscopic radial velocity measurement suggested the upper
limit on the stellar rotation period (equivalently, lower limit on the stellar spin frequency)
as Prot < 0.671 days. Standard stellar evolution theory predicts that stars gradually lose
their rotational angular momentum due to the magnetic braking during their evolution.
Thus the pre-main-sequence stars are expected to rotate faster than main sequence stars.
PTFO 8-8695 is the typical (or, even extreme) example of the rapid rotator, and its
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Figure 2.3: Phase-folded transit light curve of PTFO 8-8695 for 2009 (top) and 2010
(bottom) observation. The observed data is denoted as black points, and best-fit is as
blue lines. The residuals from the fit are supplemented for each panel at the bottom.
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to observer
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Figure 2.4: Schematic illustration of the limb darkening. The dashed curve indicates the
surface of unit optical depth from the top of the photosphere. Unit optical depth into the
photosphere corresponds to the different heights in the photosphere depending on θ, the
angle between line of sight and stellar surface normal. Figure modified from Gray (2008).

equator is expected to significantly expand compared to the polar radius due to its strong
centrifugal force. The stellar oblateness f , which denotes the extent of the deformation
from the spherical shape, is defined as

f =
R⋆,eq −R⋆,pol

R⋆,eq

, (2.1)

where R⋆,eq and R⋆,pol are the stellar equatorial and polar radii, respectively.
This expanded stellar structure triggers an additional physical phenomenon, called

gravity darkening (von Zeipel 1924). The expanded equatorial region result in the re-
duction of the pressure in that region compared to the polar region. Thus the surface
temperature becomes lower at equator than at polar regions. Lower temperature corre-
sponds to smaller stellar flux as mentioned above, then which induces additional surface
temperature dependence on the latitude of the stellar surface with the equatorial region
dimmer than the polar region. This gravity darkening is recently often used to mea-
sure the angular properties of the system including the spin-orbit angle ϕ (Barnes 2013).
Specifically, Barnes et al. (2011) and Szabó et al. (2012) characterized a planetary system
KOI-13 that consists of rapidly rotating host star and exoplanet with gravity darkening
model. Or, Zhou & Huang (2013) and Ahlers et al. (2014) applied gravity darkening
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model to an eclipsing binary system with rapidly rotating A-dwarf and M-dwarf, KOI-
368, and determined the spin-orbit angle ϕ. This gravitational darkening effect plays an
important role also in estimating the physical properties of PTFO 8-8695 system.

Another important process to explain PTFO 8-8695’s unusual transit light curves is the
nodal precession of stellar spin axis and planetary orbital axis. As mentioned, the stellar
rapid rotation (Prot < 0.671 days) makes its shape significantly deviate from a sphere.
Furthermore, transit period (identical with planetary orbital period) of 0.448413 days is
so short that Kepler’s third law indicates that planetary semi-major axis is smaller than
2 stellar radii, just on the verge of stellar Roche radius within which the planet would
be tidally destroyed. When both central star and the orbiting planet can be assumed
as point-masses, their gravitational interaction is described as the Keplerian force that
obeys the simple inverse-square law. In the case of PTFO 8-8695, however, the central
star is not spherical but has a rotational bulge and the planet around it has an extremely
small orbit. Therefore both central star and planet are expected to suffer from not only
the simple Keplerian force but also the mutual strong torque (non-Keplerian force acting
on the stellar rotational bulge). Thereby this torque let both stellar rotational angular
momentum vector (namely, stellar spin axis) and planetary orbital angular momentum
vector (namely, planetary orbital axis) change their directions with time. Thus these
vectors precess around the time-invariant total angular momentum vector with one vector
being located always in the opposite side of the other (nodal precession, see Figure 2.5). It

stellar

spin axisplanetary

orbital axis

total angular momentum

(precession axis)

impact parameter

b<1

impact parameter

b>1

Figure 2.5: Schematic illustration of the nodal precession in PTFO 8-8695 system. Both
stellar spin axis (red) and planetary orbital axis (blue) precess around their time-invariant
total angular momentum vector (dashed vector).

is possible that the system gets into the phase during which the transits never take place
since the transit impact parameter (see Appendix C) exceeds unity (b > 1, right panel
in Figure 2.5). Note that the nodal precession itself is common in our solar system, for
example the relation between Saturnian spin axis and its satellite’s orbital axis. In most



12 Background and Motivations

of those situations, however, one vector overwhelms the other in magnitude, resulting
in the situation where the smaller one effectively precesses around the larger one such
as the precession of the orbital axis of Saturnian satellite around its host planet. In the
case of PTFO 8-8695, however, the stellar spin and planetary orbital angular momenta are
comparable in magnitude. Thus they exhibit mutual precession around the time-invariant
total angular momentum. When the nodal precession occurs, the central star changes its
direction in the sky plane and accordingly the planetary orbit in the sky plane also varies
with time. This explains the time variability of the transit light curves whose details are
discussed in the next section.

In fact, the behavior of the precession is quite sensitive to the angle between the
stellar spin axis and the planetary orbital axis (spin-orbit angle ϕ; see Appendix A for
the introduction of ϕ and to what areas the statistics on ϕ can contribute). Thereby
that dependence makes it possible to constrain the stellar spin direction and planetary
orbital direction through the analysis of the precession. To say further, the detection
ability of spin-orbit angle ϕ by this model rises as the central star rotates rapidly. This is
because larger extent of rotational deformation induced by more rapid rotation accelerates
the nodal precession (see chapter 3 for the analytic expressions), which appears as more
dramatic time-variability of the transit light curves. Here the Rossiter-McLaughlin effect
(hereafter, the RM effect), the most popular method for the constraints on the projected
spin-orbit angle λ, decreases its detection ability of λ when the central star is the rapid
rotator (see Appendix A). Therefore the nodal precession accompanied by the gravity
darkening effect compensates for the rapid rotators which the RM effect is hard to be
applied to in context of the measurement of the spin-orbit angle ϕ of the extrasolar
planetary systems of interest. Namely, the RM effect is useful for the systems with non-
rapid rotators (generally, matured stars), while gravity darkening effect is for those with
rapid rotators (generally, younger stars). It is worthwhile to measure ϕ for younger stars
since it is more likely that the stellar spin and planetary orbit in those systems hold
the primordial memories on ϕ. This is because the stellar spin and/or planetary orbit
are expected to be less affected by the tidal interaction (see chapter 5 and Appendix A)
which could alter ϕ with time since the age of the system itself is anyhow younger than
those of main sequence stars.

2.3 Strategy in Barnes et al. (2013)

B13 first analyzed the 2009 and 2010 transit light curves individually with the gravity
darkening model, and estimated the satisfactory system parameters with errors. After
that, they performed 2009-2010 simultaneous fitting for the purpose of determining the
system parameters in more self-consistent fashion.

2.3.1 Individual fittings

Based on the gravity darkening effect and the nodal precession, B13 determined the 6
system parameters (stellar radius R⋆, planetary radius Rp, time of inferior conjunction
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t0, orbital inclination i, projected spin-orbit angle λ and stellar obliquity ψ) so as to
reproduce the shape of the phase-folded transit light curve. t0 is measured in seconds
past 2009 January at midnight UTC. Note that the derivation of the best-fit parameters
here does not require the stellar and planetary masses (M⋆ and Mp). Another important
point in their work is that they employed the spin-orbit synchronous condition under
which the stellar rotational period is considered to be coincidental with the planetary
orbital period. Namely, the stellar spin period is not a fitting but fixed parameter. The
reason and validity of this assumption are discussed in the next section below. First this
fitting was done against 2009/2010 observational data individually. Their results of the
angular parameters from 2009 and 2010 individual fitting could be different with each
other because nodal precession changes the angular configuration of the system in the sky
plane with time. The mathematical treatment of the gravity gardening effect is described
in Barnes (2009) and Barnes et al. (2011). We note that in general two angular parameters
(polar and azimuthal angles) are required to represent the direction of the vector in the
three dimensional coordinates. Since we have the one degree of freedom corresponding
to the rotation of the sky plane with respect to the line of sight, the number of angular
parameters necessary to denote the directions of both stellar spin and planetary orbit
becomes three (orbital inclination i, projected spin-orbit angle λ and stellar obliquity ψ),
not four. One is to denote the stellar spin direction, and the other two are to denote
the planetary orbital axis with respect to the stellar spin axis. In addition, it is worth
emphasizing that each angular parameter in B13 is different from that conventionally used,
and their correspondence is summarized in Table 2.1. Their geometric configurations and
correspondence are explained in Figures 2.6 and 2.7.

Table 2.1: Relation between parameters in B13 and conventional ones

term in B13 conventional term relation

orbital inclination i orbital inclination iorb iorb = π - i
projected spin-orbit angle λ longitude of the ascending node Ω Ω = π - λ

stellar obliquity ψ stellar inclination i⋆ i⋆ = ψ + π/2

Angular parameters are defined as follows. The planetary orbital inclination, i, is
measured toward the observer from the line of sight that penetrates the sky plane from
the observer’s side to the opposite side, while iorb(= π − i) is measured from the line
of sight pointing the observer (Figure 2.6). The projected spin-orbit angle, λ, is the
angle between y-axis (parallel to the stellar spin axis projected onto the sky plane) and
the planetary orbital axis projected onto the sky plane measured clockwise. The angle
between x-axis and the direction pointing the ascending node is denoted by Ω(= π − λ)
(Figure 2.7). Finally, ψ is measured as the angle with which the north stellar pole is tilted
away from the sky plane, and i⋆(= ψ + π/2) is measured in the same way as iorb (Figure
2.6). With the help of the three angular parameters, the directions of angular momentum
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Figure 2.6: Schematic illustration of the geometric configurations of star-planet system.
The coordinates are set with the origin centered on the star with x−y plane corresponding
the sky plane and positive z-direction pointing toward the observer. Positive y-direction
are determined so that stellar spin axis projected onto the sky plane coincides with it
forming a right-handed triad with x and z-axes. Figure modified from Benomar et al.
(2014).

vectors (S0 and L) are written as

Ŝ0 =

 0
cosψ
− sinψ

 =

 0
sin i⋆
cos i⋆

 , (2.2)

L̂ =

 sin i sinλ
sin i cosλ
− cos i

 =

 sin iorb sinΩ
− sin iorb cosΩ

cos iorb

 , (2.3)

which are related to the spin-orbit angle ϕ as

cosϕ = Ŝ0·L̂
= cosψ sin i cosλ+ sinψ cos i = − sin i⋆ sin iorb cosΩ + cos i⋆ cos iorb. (2.4)

The results of the individual fits by B13 are summarized in Table 2.2. The difference
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Figure 2.7: Schematic illustration for the projected spin-orbit angle (λ) and longitude of
the ascending node (Ω). The angle of planetary orbital axis projected onto the sky plane,
λ, is defined to be measured clockwise from the positive y-axis. We define Ω as the angle
of the direction pointing the ascending node measured counter-clockwise from the positive
x-axis, i.e., λ+ Ω = π.

Table 2.2: Individual fits by B13

parameter 2009 2010

R⋆(R⊙) 1.19±0.07 1.39±0.11
Rp(RJ) 2.00±0.17 1.80±0.20
t0(s) 30861700±200 60848300±290
i(◦) 64±3 58±5
λ(◦) 90±22 136±33
ψ(◦) 2±19 31±25

ϕ(◦) 89.1 104.5

χ2
r 2.11 1.54

of angular parameters between 2009 and 2010 could be attributed to the nodal precession.
We present a detailed formulation of the nodal precession in the following chapter, but
briefly review here the angular architecture of the system and resulting transit light curves
in 2009 and 2010 observations. In 2009, the stellar spin axis is almost on the sky plane
(ψ = 2◦) so that we observed the star from edge-on. Then the planetary orbit is almost
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polar (λ = 90◦), letting the planet passing first polar region, next equator region and
finally polar region, respectively (left panel of Figure 2.8). Consequently, planet moves
from the brighter to dimmer and then brighter regions with time, resulting in the convex-
like structure in the 2009 transit light curve as shown in Figure 2.3. In 2010 on the other
hand, the stellar spin axis is significantly tilted away from the sky plane (ψ = 31◦). So
the star exposes its the equator and south pole but does not show north pole in the sky
plane. The planet takes almost diagonal path in the sky plane (λ = 136◦), letting the
planet enter the stellar disk at the equator region and leaves at the polar region (right
panel of Figure 2.8). Again the stellar disk is significantly oblate due to the rapid rotation
with larger equatorial radius than polar radius. Thereby, the star experiences longer time
occultation due to the planet in the equator region compared to the shorter occultation
in the polar region. Thus the observed transit light curve becomes highly asymmetric
(longer transit ingress and shorter transit egress) as shown in Figure 2.3.

2009 2010
Figure 2.8: Transit geometry of PTFO 8-8695 for the best-fit parameter sets in 2009 (left)
and 2010 (light). In each image the planetary transit path is shown as the black curve
with a series of blue circles indicating the planetary disk. Note here that the transit path
is not straight line but significantly curved since the planetary semi-major axis is so small
that it is less that 2 stellar radii.

Among the three angular parameters, orbital inclination i is well constrained because
a slight change in i sensitively affects the transit duration. For λ and ψ, however, their
1σ constraints are not as strong as the one for i because their variance shows up only as a
small modification of the shapes of transit light curves through gravity darkening effect.

Before proceeding to the next section, we should note the presence of four-fold de-
generacy for the three angular parameters (see Barnes et al. 2011 for details), and this
degeneracy should be taken into account in the following joint fitting. Specifically, the
four different sets of angular parameters give the identical transit light curves for given
angular parameters (iorb, Ω, i⋆):

1. (iorb,Ω, i⋆)

2. (π − iorb, π − Ω, i⋆)



2.3 Strategy in Barnes et al. (2013) 17

3. (π − iorb,−Ω, π − i⋆)

4. (iorb,Ω− π, π − i⋆)

Or equivalently, they are rewritten in terms of (i, λ, ψ):

1. (π − i, π − λ, ψ)

2. (i, λ, ψ)

3. (i, λ− π,−ψ)

4. (π − i,−λ,−ψ)

Because of the above degeneracy, for example, the 2010 individual fits of B13 provide
other three alternative sets of angular parameters for the solution as shown in Table
2.3 and Figure 2.9. We note that the first case and the third case express the identical

Table 2.3: Four-fold degeneracy in the angular parameters of the system with 2010 indi-
vidual fits in B13

i(◦) λ(◦) ψ(◦) ϕ(◦)

1 (top-left panel in Figure 2.9) 58 136 31 104.5 (retrograde)
2 (top-right panel in Figure 2.9) 122 44 31 75.5 (prograde)

3 (bottom-left panel in Figure 2.9) 122 224 -31 104.5 (retrograde)
4 (bottom-right panel in Figure 2.9) 58 316 -31 75.5 (prograde)

system configuration, the same transit just seen by the opposite side with each other.
This relation is also true to the second case and the fourth case. The first case and second
case, on the contrary, give different angular configuration letting the spin-orbit angle ϕ
form the supplementary angle with each other (ϕcase2 = π− ϕcase1). Again this is also the
case for the third case and fourth case.

2.3.2 Extrapolation of the individual fittings

The nodal precession should be responsible for the difference of the system configuration
in 2009 and 2010. Namely, the torque between the star and the planet should change their
angular parameters in 2009 to those in 2010 in one year interval. Based on this hypothesis,
B13 formulated the analytic equations that represent the nodal precession (see chapter 3
for details). Then they extrapolated 2009/2010 best-fit parameters forward/backward to
2010/2009 observation epoch in order to check to what extent the precession hypothesis
can simultaneously explain the observed light curves. The magnitudes of the stellar spin
and planetary orbital angular momenta (|S⋆| and |L|, respectively) are expressed as

|S⋆| = C̃⋆M⋆R
2
⋆,eqω⋆, (2.5)

|L| = β
√
µa(1− e2), (2.6)
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Figure 2.9: Four allowed geometries for the PTFO 8-8695 2010 transit event.

where C̃⋆ is the moment of inertia coefficient for the star, β = M⋆Mp

M⋆+Mp
is the reduced

mass and µ = G(M⋆ +Mp) is the total mass of the star-planet system multiplied by the
gravitational constant G. We note that the precession formulae include the additional
information on the mass (stellar mass M⋆ and planetary mass Mp) since the magnitudes
of stellar spin and planetary orbital angular momenta directly depend on these masses.
B13 assumed M⋆ = 0.44M⊙ and Mp = 1.0MJ in the extrapolation, but these values are
just for simplicity then there is no need that the extrapolation is successful.

Results of both forward (from 2009 to 2010) and backward (from 2010 to 2009) ex-
trapolations are illustrated in Figures 2.10 and 2.12, respectively. As expected above, the
forward-extrapolated light curve from 2009 to 2010 turns out to completely fail to repro-
duce the 2010 transit light curve (Figure 2.10). In Figure 2.12, similarly, this failure is also
true for the backward-extrapolated 2010 light curve. These results show the necessity to
treat the masses as fitting parameters. Both figures are supplemented with the additional
panels (Figures 2.11 and 2.13) that show the predicted evolutions of transit light curves
during the interval between 2009 and 2010. The time span of the horizontal axis is so
long that each transit light curve looks like a needle. Thereby these figures essentially
illustrate the time evolution of the transit depth alone. The difference in the variability
of transit depth between Figures 2.11 and 2.13 are discussed in the next chapter.
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Figure 2.10: 2009 best-fit light curve by 2009 individual fit (left) and its forward-
extrapolated light curve from 2009 to 2010 via the nodal precession forM⋆ = 0.44M⊙ and
Mp = 1.0MJ (right).

0.96

0.97

0.98

0.99

1.00

350 400 450 500 550 600 650 700

2
0

0
9

-F
it

 M
o

d
el

-P
re

d
ic

te
d

 F
lu

x

Time from 2009 January 1 (days)

2009 fit extrapolated forward

Figure 2.11: Forward-extrapolation from 2009 to 2010 with the results of 2009 individual
fit in Table 2.2. The epochs of 2009 and 2010 observations correspond to the colored
vertical lines, red and blue, respectively.

2.3.3 Joint fittings

In response to above results, B13 explored the best-fit parameters with which both 2009
and 2010 light curves can be reproduced simultaneously in the self-consistent way, letting
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Figure 2.12: 2010 best-fit light curve by 2010 individual fit (right) and its backward-
extrapolated light curve from 2010 to 2009 via the nodal precession forM⋆ = 0.44M⊙ and
Mp = 1.0MJ (left).
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Figure 2.13: Backward-extrapolation from 2010 to 2009 with the results of 2010 individual
fit in Table 2.2. The epochs of 2009 and 2010 observations correspond to the colored
vertical lines, red and blue, respectively.
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planetary mass Mp be the additional fitting parameter responsible for the magnitude of
planetary orbital angular momentum. In this joint fitting the stellar mass was fixed to
M⋆ = 0.34M⊙ or M⋆ = 0.44M⊙, whose values are estimated in van Eyken et al. (2012)
with different stellar models (Baraffe et al. 1998 and Siess et al. 2000). The reason why
the stellar mass is not a fitting but a fixed parameter is as follows. In fact, the precession
state and transit light curve depend not on the stellar mass (M⋆) and stellar radius (R⋆)
separately, but only on the stellar mean density ρ⋆ = M⋆/

4
3
πR3

⋆ (see Appendix C.2.3).
Since such a degeneracy makes it impossible to evaluate M⋆ and R⋆ separately, they fixed
M⋆ and vary only R⋆. Parameter ranges swept are 0.8R⊙ < R⋆ < 1.6R⊙, 0 < Mp < 100MJ

and within the bounds of 2010 individual fit for angular parameters (i, λ, ψ).

Here we should recall that the system admits the four-fold degeneracy with respect
to the three angular parameters, making the two out of them having the different spin-
orbit angle (ϕ2) from that of the remaining two (ϕ1). Since they are in the relation of
ϕ2 = π − ϕ1, one of them is always prograde solution and the other is correspondingly
retrograde. The value of ϕ is time-invariant (see chapter 3), therefore the 2010 prograde
solution should correspond to the 2009 prograde solution. This is also the case for the
retrograde solutions. Here the precession period is quite sensitive to ϕ (see chapter 3
for details), which enables us to disentangle the degeneracy of the system configuration
(prograde or retrograde) by conducting the 2009-2010 joint fitting through the calculation
of the nodal precession. Therefore, there exist two patterns for the angular ranges to be
surveyed, one is prograde and the other is retrograde.

B13 reported that they failed to identify the retrograde solution and gave only prograde
solution summarized below, for two stellar mass cases. In Table 2.4, Porb is the planetary
orbital period, t0 is the epoch of inferior conjunction measured from 2009 January 1st 0:00
UTC, ϕ⋆ is the angle between the stellar spin axis and total angular momentum vector
(see Figure 2.5), ϕp is the angle between the planetary orbital axis and total angular
momentum vector (again see Figure 2.5), PΩ̇ is the precession period and f is the stellar
oblateness defined in equation (2.1). Fitting parameters are R⋆, Rp, Porb, t0, i, λ, ψ, Mp,
while other parameters in Table 2.4 are derived ones from the fitted parameters. B13
succeeded in not only estimating the planetary mass in addition to the parameters in the
individual fits, but also constraining the three angular parameters much tighter down to
the first decimal place. This is because there exists the long base-line in the joint fittings
up to one year compared to the simple individual fittings. Since the backward calculation
of the precession from 2010 to 2009 should be responsible to reproduce the 2009 individual
fitting results, only smaller region within the wider bounds of the 2010 individual fitting
is approved for the joint solutions.

Figures 2.14 and 2.16 show the theoretical calculation of the transit light curves with
M⋆ =0.34 and 0.44M⊙ respectively. The best-fits in the individual and joint fitting are de-
noted as red and blue curves respectively showing good agreement with each other. From
figures, it can be confirmed that these best-fit parameters can self-consistently reproduce
the 2009 observation and 2010 observation simultaneously. Each figure is supplemented
with the figure illustrating the long term variation of the transit light curve between 2009
and 2010 observation (Figures 2.15 and 2.17). Specifically, each black solid line corre-
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Table 2.4: Best-fit parameters from the joint analysis of the 2009 and 2010 light curves
in B13

parameter M⋆ = 0.34M⊙ M⋆ = 0.44M⊙

R⋆(R⊙) 1.04±0.11 1.03±0.01
Rp(RJ) 1.64±0.07 1.68±0.07
Porb(days) 0.448410±0.000004 0.448413±0.000001
t0(s) 60848500±100 60848363±38
i(◦) 114.8±1.6 110.7±1.3
λ(◦) 43.9±5.2 54.5±0.5
ψ(◦) 29.4±0.3 30.3±1.3

Mp(MJ) 3.0±0.2 3.6±0.3

ϕ(◦) 69±3 73.1±0.6
ϕ⋆(

◦) 18 20.2
ϕp(

◦) 51 52.9
PΩ̇(days) 292.6 581.2

f 0.109 0.083

χ2
r 2.17 2.19

sponds to the one transit light curve and from left to right this panel briefly depicts the
transit depth variance with time. Note that in both figures transit light curves are pre-
dicted to disappear for several months during which the planet never crosses the stellar
disk in the sky plane, which plays an important role in the future observation discussed
in chapter 5.

We put emphasis here that the precession in 0.34M⊙ case is much faster than that in
0.44M⊙ case, as Figures 2.15 and 2.17 indicate. Moreover, the former precession is about
twice faster than the latter (precession period is 292.6 and 581.2 days, respectively). Here
assuming that the precession frequency in 0.44M⊙ case is denoted as Ω̇, then the equiv-
alent in 0.34M⊙ case becomes around 2Ω̇. This might suggest that other solutions with
precession frequency 3Ω̇, 4Ω̇, 5Ω̇... could be also possible as solutions that satisfacto-
rily reproduce both 2009 and 2010 observational data, as long as they can connect 2009
and 2010 observations in a self-consistent way through the precession. The only two-
time transit observations are not enough to disentangle this degeneracy, thus the future
observations are now necessary.

2.4 Validity of the spin-orbit synchronous condition

in Barnes et al. (2013)

As shown in the first section of this chapter, the planetary orbital period is well constrained
to be around 0.448413 days (van Eyken et al. 2012). On the other hand, the stellar
rotational period is only weakly constrained (Prot < 0.671 days). In order for the star
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Figure 2.14: The best-fit 2009 (left) and 2010 (right) light curves from the 2009-2010 joint
analysis for M⋆ = 0.34M⊙ (blue lines). The best-fit from 2009 and 2010 individual fits
are denoted as the red lines for comparison. Residuals for each plot are supplemented at
the bottom panels.
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Figure 2.15: The predicted time evolution of the transit light curve from 2009 to 2010
with best-joint-fit parameters forM⋆ = 0.34M⊙. The epochs of 2009 and 2010 observation
correspond to the colored vertical lines, red and blue, respectively.
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Figure 2.16: Same as Figure 2.14, but for M⋆ = 0.44M⊙.
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Figure 2.17: Same as Figure 2.15, but for M⋆ = 0.44M⊙.

to be gravitationally bounded, Prot should be longer than ∼0.2 days. Instead of treating
Prot as a fitting parameter, B13 assumed that PTFO 8-8695 system is under the spin-
orbit synchronized state, which implies that stellar rotational period is identical to the
planetary orbital period.

The reason why they adopted the synchronous condition is attributed to the fact that
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van Eyken et al. (2012) found Prot∼0.4481 days by analysing the original “un-whitened”
light curve with the Lomb-Scargle periodogram. The Lomb-Scargle periodogram is de-
signed for finding periodic features in the light curves, which is thought to be capable of
picking up the stellar rotational signal and determining its period uniquely. High level of
stellar noise and effect of changing spot features unfortunately inhibit them from deriving
the definitive value of stellar rotation period, leaving two fundamental peaks which are
considered to be the candidates for the actual rotation period (0.4481±0.0022 days and
0.9985±0.0061 days). The latter one is beyond the upper limit of the rotational period
(0.671 days) and could be attributed to an artefact resulting from observing cadence since
its value is close to 1.0 days. For that reason, the 0.4481 day signal appears to be the only
likely stellar rotational period indicating that the star is co-rotating or near co-rotating
with the companion orbit.

The most probable mechanism for such a spin-orbit synchronization is the tidal effect
between the central star and orbiting planet. As explained in chapter 1, tidal effect makes
(i) planetary semi-major axis damp, (ii) orbital eccentricity damp, (iii) stellar/planetary
rotational frequency and orbital frequency synchronized and (iv) stellar equatorial plane
and planetary orbital plane coplanar. It is important when examining the validity of the
spin-orbit synchronous condition that effective time scales for those mechanisms (defined
as ta, te, tω and tϕ, respectively) are different.

The equilibrium tide model is a conventional tidal model and widely accepted (Eggle-
ton et al. 1998, Correia et al. 2011). It predicts that the eccentricity damping occurs
the most rapidly whereas other three mechanisms take place on the comparable time
scales longer than that for eccentricity damping (te < ta∼tω∼tϕ). However, this predic-
tion is obviously inconsistent with the recent observations reporting the large number
of planetary systems where close-in planets have significantly misaligned orbit without
suffering from orbital decay that leads to the infall of the planet into the star (Figure
A.3 in Appendix A). This discrepancy between theoretical prediction and observational
data could be reconciled by considering the stellar inertial waves in the convective layers
that will be excited by one component of the tidal potential (Lai 2012, Rogers & Lin
2013 and Xue et al. 2014). This additional mechanism can reinforce the efficiency of the
spin-orbit alignment and synchronization without affecting the time scale of the orbital
decay (te < tω∼tϕ < ta). Thus this mechanism supports the observational picture where
large number of close-in exoplanets keep their misaligned orbits at the vicinity of their
central stars. The important suggestion from this model is that it makes no difference for
the time scale of spin-orbit alignment and synchronization (tω∼tϕ). Thus this indicates
that aligned planets are to be spin-orbit synchronized. Therefore, tidal model does not
favor the spin-orbit synchronized assumption on PTFO 8-8695 system in B13 where the
planetary orbit retains significantly (or, even highly) misaligned (ϕ∼70◦) in spite of their
spin-orbit synchronised state. B13 also pointed out the possibility that truly synchronous
rotation might be difficult to be achieved under the condition of ϕ∼70◦. In addition, they
left the interpretation in van Eyken et al. (2012) that a strong peak in the photometrical
periodogram corresponds to the stellar rotational period open to question. However, re-
analysis to this PTFO 8-8695 system without spin-orbit synchronous condition has never
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been performed until today. Because the synchronous condition is unlikely to hold in
reality, we drop it and repeat the fit of the 2009 and 2010 transit light curves of PTFO
8-8695.

In the following data analysis, planetary orbital eccentricity e is always assumed to be
zero following B13. This assumption is supported by the tidal theory that predicts that
a close-in planet acquires the circular orbit on faster time scale than those for any other
dynamical rotational and/or orbital evolutions. The formulae in the following chapters
include eccentricity e explicitly, but it is just for the the application of the precession
model to other planetary systems which have the planets with eccentric orbits.



Chapter 3

Basic Equations for the Star-Planet
Nodal Precession

3.1 Lagrange’s planetary equations for the analytic

formulae of the nodal precession

The nodal precession of the system is described by equation of motion (EOM) of the
system which consists of the central star and orbiting planet with finite size (not point-
mass). The EOM consists of four differential equations for (i) planetary position vector
r (equation D.50), (ii) planetary momentum vector p (equation D.51), (iii) stellar spin
angular momentum vector S⋆ (equation D.52) and (iv) planetary spin angular momentum
vector Sp (equation D.52). Along with the relation of L = r×p, we can pursue the time
evolution of angular momentum vectors (S⋆ and L). The derivation and explicit form of
EOM are all summarized in detail in Appendix D following Boué & Laskar (2006, 2009).

The calculation of the time evolution of S⋆ and L accompanies the numerical integra-
tion of the differential vector equations. Although this is the most straightforward way
to describe the behavior of the system, the following two assumptions make it possible
to write down the analytic solutions for the nodal precession, which greatly reduces the
computational cost.

1. Ignorance of the planetary spin angular momentum, which is smaller in magnitude
than other two angular momentum vectors (stellar spin and planetary orbit) by
several orders of magnitude. This procedure corresponds to the consideration of the
planet as the point-mass.

2. Assumption that the stellar spin axis does not move with time.

While the second assumption is not always correct, one can generalize the result as we will
show in section 3.3. So in this section, we assume just for simplicity that the stellar spin
in practice does not move and only planetary orbital axis precess around the stellar spin
axis. This kind of precession is the case for the system where the spin angular momentum
of the central object is much greater in magnitude than the orbital angular momentum of

27
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the surrounding body. Thus the spin of the central object almost stays constant and the
orbital axis precesses around it. Such kind of the precession is known to occur within the
solar system and its formulation are well established (for example, Murray & Dermott
1999). Popular examples include the precession of the Saturnian satellites around the
Saturn (oblateness ∼ 0.1), and the precession of the International Space Station (ISS)
around the Earth (oblateness ∼ 0.003).

The analytic formulation for such constant spin vector cases is well developed in the
context of Lagrange’s planetary equations (Murray & Dermott 1999):

da

dt
=

2

na

∂R

∂σ
de

dt
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η2

na2e

∂R

∂σ
− η

na2e
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(3.1)

where

η =
√
1− e2. (3.2)

Here a, e, i, σ, ω and Ω is the orbital semi-major axis (the size of the orbit), orbital
eccentricity (the shape of the orbit), orbital inclination (the direction of the orbit), initial
mean anomaly (the planetary orbital phase at the fixed time), argument of periapse (the
direction of the orbit) and longitude of the ascending node (the direction of the orbit). a
and e are easy to understand with Figure 3.1 and i, ω and Ω are demonstrated in Figure
3.2. In Lagrange’s planetary equations, planetary position is specified in terms of six
orbital parameters. Careful investigation of the planetary equations reveals that all terms
in the right hand sides take the form of R (called perturbation function) differentiated
with respect to orbital parameters. Therefore, if R in the right hand side is constant
(moreover, if R = 0), all right hand side terms become zero, which means that all orbital
parameters are time-invariant. This situation corresponds to the Keplerian motion in
the Newtonian equation for the central star and the planet as point-masses. In general,
however, R is a function of orbital parameters and orbital parameters necessarily evolve
with time according to the planetary equations.

In the present case, R is given as a departure from the Newtonian potential due to
the rotationally-induced bulge of the central star. Up to the fourth order of R⋆,eq/r, one
can expand R (see Appendix D for details) as

R = −GM⋆

r

[
J2

(
R⋆,eq

r

)2

P2(r̂·Ŝ⋆) + J4

(
R⋆,eq

r

)4

P4(r̂·Ŝ⋆)

]
. (3.3)
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Figure 3.1: The geometry of the ellipse of semi-major axis a and eccentricity e. Figure
taken from Murray & Correia (2011).

to observer

Figure 3.2: Three dimensional orbit of the planet. The star is located at the origin. The
positive Z-direction is taken to point the observer and the X − Y plane is chosen as the
sky plane. Figure modified from Murray & Correia (2011).

Here P2 and P4 are the second and fourth order Legendre polynomials, respectively (Table
D.1), and Jn is the n-th order gravitational coefficient of the central star (equation D.39).
The planetary position r is given as

r =
a(1− e2)

1 + e cos (f + ω)
(3.4)

with the help of orbital parameters and true anomaly f (see Appendix B). The argument
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r̂·Ŝ⋆ is written as

r̂·Ŝ⋆ = sin i sin (f + ω) (3.5)

in the coordinates of Figure 3.2, where we choose the stellar spin vector (Ŝ⋆) as the
positive z-direction. It is possible to use stellar polar radius (R⋆,pol) or stellar effective
radius (R⋆,eff ; see chapter 5 for definition) instead of stellar equatorial radius (R⋆,eq) in
equation (3.3). Since the difference in the resulting values of R is at best the order of f 2

(see next section) and usually negligible, however, B13 dropped O(f 2) and higher order
terms, and we follow them in this work. Therefore the consequent architecture of the
precession with R⋆,eq in equation (3.3) is considered to be identical to those by R⋆,pol

or R⋆,eff in equation (3.3) within the precision of the order of f . When considering the
secular evolution of the system, it is convenient to use the orbital average of R instead of
the form above:
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sin2 i. (3.6)

For the analytic expression of the precession in section 3.3, one needs the time derivative
of the longitude of the ascending node (Ω̇ in equation 3.1) which is specified as

Ω̇ = − n√
1− e2
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4
J4

(
R⋆,eq

a

)4
]
. (3.7)

This physical quantity corresponds to the precession frequency with which the planetary
orbital axis precesses around the stellar spin axis. Namely, it is the frequency with which
the precessing axis is to sweep the cone around the precession central axis.

3.2 Analytic expressions for the gravitational coeffi-

cients with core-mantle model

Equation (3.7) requires explicit forms for J2 and J4, which are generally given as equation
(D.39). Hereafter, we neglect J2

2 and J4 terms following B13. J2 is given in terms of
moments of inertia along with stellar principal axes, A⋆ for the polar direction and C⋆ for
equatorial direction (C⋆ > A⋆), as

J2 =
C⋆ − A⋆

M⋆R2
⋆,eq

. (3.8)



3.2 Analytic expressions for the gravitational coefficients with core-mantle
model 31

Here, the second Love number k2 (Love 1909) is defined so that J2 is written in terms of
k2 as

J2 = k2
ω2
⋆R

3
⋆,eq

3GM⋆

, (3.9)

which gives

k2 =
3G(C⋆ − A⋆)

ω2
⋆R

5
⋆,eq

. (3.10)

To evaluate them we have to know the internal mass profile of the central star (particularly,
whether the central core exists or not), but the internal structure of the pre-main-sequence
star such as PTFO 8-8695 is not well known today.

An alternative expression for J2 is available by assuming that the star has the internal
core and surrounding convective envelope. By considering the extents of deformation of
the core and envelope, and taking into account their mutual frictional force, an analytic
form of J2 is obtained in terms of oblateness f , momentum of inertia coefficient C̃⋆ and
the radius ratio of the core to that of the envelope (Rcore/Renv) as

J2
f

=
2

3
+
C̃⋆ − 2

5
(Rcore/Renv)

2

1− (Rcore/Renv)2

+
8− 20(Rcore/Renv)

2 + 10C̃⋆[5(Rcore/Renv)
3 − 2]

12[(Rcore/Renv)5 − 1] + 15C̃⋆[2− 5(Rcore/Renv)3 + 3(Rcore/Renv)5]
, (3.11)

which is known as the Darwin-Radau relation (Dermott 1979a,b).
The standard stellar evolution theory suggests that the T-Tauri star is at the stage

before the development of the internal radiative core and then the PTFO 8-8695 is ex-
pected to be fully convective. If Rcore/Renv is negligibly small (core-less assumption), the
Darwin-Radau relation simply reduces to

J2 = C̃⋆f. (3.12)

In our analysis we employ moment of inertia coefficient of C̃⋆ = 0.059 which is the value
estimated for the Sun following B13. However, the validity of employing this value is
arguable because PTFO 8-8695 is a pre-main-sequence star whose internal structure is
predicted to highly differ from that of the main-sequence star. Since the moment of inertia
coefficient C̃⋆ linearly affects the precession frequency (equation 3.15), it is possible for
inaccurately-estimated C̃⋆ to wholly alter the architecture of the precession and prevent
us from characterizing PTFO 8-8695 system correctly.

In order to derive an analytic form of the oblateness f , we assume that the shape of
the stellar surface is given by the equipotential surface. In this case, f is given in terms
of the stellar mass M⋆, stellar equatorial radius R⋆,eq and angular frequency of the stellar
rotation ω⋆ = 2π/Prot. From the condition that the effective potential at the equator and
that at the pole should be identical:

−GM⋆

R⋆,pol

= −GM⋆

R⋆,eq

− 1

2
ω2
⋆R

2
⋆,eq, (3.13)
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the oblateness f is estimated as

f =
R⋆,eq −R⋆,pol

R⋆,eq

=
ω2
⋆R

2
⋆,eqR⋆,pol

2GM⋆

→
f2→0

ω2
⋆R

3
⋆,eq

2GM⋆

. (3.14)

Both equations (3.9) and (3.12) are derived analytically but from different points of
view. The former assumes that the rotating body is a perfect fluid body, while the latter
assumes that the rotating body is fully convective and does not have a radiative core.
With the conventional values of k2 = 0.028 and C̃⋆ = 0.059 for the main-sequence stars,
equations (3.9) and (3.12) indicate that the latter one is there times larger than the
former one, which imposes an additional puzzle. This inconsistency is quite influential
in analyzing the data because J2 value linearly affects the precession frequency (equation
3.15). Due to the scarcity of the data and knowledge on the stellar internal profiles,
however, we do not try to reconcile that inconsistency in this work but simply employ
equation (3.12) instead of equation (3.9) following B13.

3.3 From single precession to mutual precession

The discussion above is focused on the precession of the planetary orbit around the
fixed stellar spin axis. In the case of PTFO 8-8695, however, this fixed star assump-
tion is far from appropriate since in that system the stellar rotational angular momentum
(|S⋆| = C̃⋆M⋆R

2
⋆,eqω⋆) and planetary orbital angular momentum (|L| = β

√
µa(1− e2))

are comparable in magnitude within a factor of three. Thus both stellar spin axis and plan-
etary orbital axis mutually precess around the total angular momentum vector (S⋆ +L).
In this section we present the procedure necessary in order to apply the precession model
derived above to this mutual precession state.

The qualitative explanation for the analytic form of the mutual precession frequency
is as follows. The test calculations of the precession by equation (3.15) and by numerical
integrations of EOM (see Appendix D) provide the identical time evolution of the spin
and orbital axes, which validates the equation (3.15) quantitatively. To specify the mu-
tual precession, we introduce not only the spin-orbit angle ϕ but also ϕ⋆ and ϕp as angles
between the stellar spin axis and planetary orbital axis measured from the total angular
momentum vector, respectively (of course, they satisfy ϕ = ϕ⋆+ϕp). Since the Lagrange’s
planetary equations neither accelerate nor decelerate the stellar spin and planetary or-
bital motion, ϕ, ϕ⋆ and ϕp are all time-invariant otherwise the total angular momentum
conservation law breaks.

When |S⋆|≫|L|, the precessingL traces a circle with a total circumference of 2π|L| sinϕ.
When |S⋆|∼|L|, however, |L| traverse a distance of 2π|L| sinϕp. Thus the precession fre-
quency changes by a factor of sinϕ

sinϕp
. By renaming the precession frequency derived above

as Ω̇p, therefore, the frequency of the mutual precession Ω̇ is written as

Ω̇ = Ω̇p
sinϕ

sinϕp

= − n√
1− e2

cosϕ

[
3

2
J2

(
R⋆,eq

a

)2
]

sinϕ

sinϕp

. (3.15)
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If ϕ <90◦, the factor sinϕ
sinϕp

increases the frequency of the precession. In the case of

retrograde orbit (90◦ < ϕ <180◦), on the other hand, it is possible to have sinϕp > sinϕ,
which decreases the mutual precession frequency.

One can analytic estimate a precession period (PΩ̇) from equation (3.15):

PΩ̇ =

∣∣∣∣2πΩ̇
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∝M5/3
⋆ R−5

⋆,eqω
−2
⋆ n−7/3 sinϕp(sin 2ϕ)

−1. (3.17)

This formula enables us to give a simple estimation for the dependence of the precession
period on the system parameters. For example, precession period is inversely proportional
to the gravitational coefficient J2, which indicates that larger extent of the rotational
deformation triggers the faster precession. The dependence of (a/R⋆,eq)

2 implies that a
more distant planet leads to slower precession because the mutual torque between star
and planet becomes weaker as the planet is located in a distant orbit. In addition, the
dependence on the spin-orbit angle ϕ (PΩ̇ ∝ (sin 2ϕ)−1) provides fairly interesting results.
When anything else being the same, the precession becomes fastest for ϕ = 45◦. Moreover,
the precession is found to take infinite period when ϕ = 90◦, which points out that the
precession never takes place in such a polar orbit. In the case of polar orbit, therefore,
the mutual torque between the star and planet is unable to alter the directions of stellar
spin axis and planetary orbital axis. This is why the precession with angular parameters
from the 2009 individual fitting by B13 was extremely slow since it has ϕ = 89◦.1 (Figures
2.11 and 2.13 for comparison).

3.4 Relation of the angular momentum vectors in the

invariant frame and the sky frame

With the analytic formulae for precession frequency in equation (3.15), we write down
the full-analytic form of the nodal precession, both in the invariant frame and in the sky
frame.

First, we adopt the invariant frame (Figure 3.3) with total angular momentum vector
along with the positive direction of y-axis and estimate the analytic form of S⋆ and L:

Ŝ⋆ =

 sinϕ⋆ sin (Ω̇t+ α)
cosϕ⋆

sinϕ⋆ cos (Ω̇t+ α)

 , L̂ =

 sinϕp sin (Ω̇t+ α+ π)
cosϕp

sinϕp cos (Ω̇t+ α+ π)

 , (3.18)

where α is the initial azimuthal phase to be determined later. Note that Ŝ⋆ always resides
at the opposite side of L̂ with respect to the total angular momentum vector.

The calculation of the stellar flux in chapter 4 is easier in the sky frame. The sky
frame here is defined as the time-invariant frame where the observer resides the positive
z-direction and the stellar spin axis projected onto the sky plane (x-y plane) is along with
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Figure 3.3: The geometrical configuration of stellar spin axis S⋆ and planetary orbital
axis L in the invariant frame with total angular momentum vector Ltotal along with the
positive y-axis. Both precessing axes are specified with ϕ⋆, ϕp and α.

the positive y-direction at initial time (Ŝ⋆,x = 0 at initial time). Since the total angular
momentum vector is time-invariant in this frame, the stellar spin axis deviates from the
y-axis as time proceeds (Figure 3.4). We begin with the derivation of the analytic form of
total angular momentum vector in the sky frame. With the aid of three orbital parameters
(iorb, Ω, i⋆) introduced in chapter 2, Ltotal is given in the sky frame as

Ltotal = S⋆ +L

= |S⋆|

 0
sin i⋆
cos i⋆

+ |L|

 sin iorb sinΩ
− sin iorb cosΩ

cos iorb


≡ |Ltotal|

 sin β sin γ
cos β

sin β cos γ

 , (3.19)

where β and γ are the polar and azimuthal angle measured in the sky frame, respectively
(Figure 3.4), and are time-invariant because total angular momentum vector is time-
invariant. Therefore they are written in terms of (iorb, Ω, i⋆) as
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Figure 3.4: The geometrical configuration of stellar spin axis S⋆ and planetary orbital axis
L in the sky frame with positive z-direction pointing toward the observer. The precessing
axis (Ltotal) is specified with β and γ.

β = cos−1 (L̂total,y) = cos−1

(
|S⋆| sin i⋆ − |L| sin iorb cosΩ

|Ltotal|

)
(3.20)

γ = tan−1

(
L̂total,x

L̂total,z

)
= tan−1

(
|L| sin iorb sinΩ

|S⋆| cos i⋆ + |L| cos i⋆

)
. (3.21)

The rotation of the system about x-axis in the invariant frame by β, followed by the
rotation about y-axis by γ can convert the analytic expression (3.18) into those represented
in the sky frame as(

S⋆

L

)
sky frame

= Ry(γ)Rx(β)

(
S⋆

L

)
invariant frame

, (3.22)

where Rx and Ry are rotation matrices about x and y-axis, respectively; see equations
(B.42) and (B.43).

It remains to determine the initial azimuthal phase α in equation (3.18). Since the
expression in the invariant frame and that in the sky frame should have a one-to-one
correspondence, α can be uniquely specified once iorb, Ω and i⋆ are given at the particular
epoch t = t0. Therefore, we should take α which satisfies(

S⋆

L

)
invariant frame at t=t0

= R−1
x (β)R−1

y (γ)

(
S⋆

L

)
sky frame at t=t0

. (3.23)
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With α determined by equation (3.23), equation (3.22) provides the directions of S⋆ and
L at any given time t.

Finally, we need to convert the analytically-formulated angular momentum vectors in
the sky plane (equation 3.22) into the angular parameters (i, λ, ψ) which are required
for light curve model (see chapter 4 and 5) at any given epoch of the precession. From
equations (2.2) and (2.3), i and ψ are evaluated as

ψ = sin−1 (−Ŝ⋆,z)

i = cos−1 (−L̂z).
(3.24)

Note that the angle measured from the spin axis, λ, is not given by λ = tan−1 (L̂x/L̂y)
because the precession let S⋆ deviate from y-axis in the sky plane with time. Instead,
λ is evaluated as the angle between the stellar spin axis and the planetary orbital axis
projected onto the sky plane (Ŝ⋆,sp and L̂sp), as

λ = cos−1(Ŝ⋆,sp·L̂sp). (3.25)

In conclusion, we obtain (i, λ, ψ) at any given time t as follows.

1. Calculate the stellar spin axis and planetary orbital axis in the invariant frame at
the given time t following equation (3.18).

2. Convert them into the sky frame with equation (3.22).

3. Evaluate the angular parameters (i, λ, ψ) following equations (3.24) and (3.25).



Chapter 4

Light Curve modelling

4.1 General formula for the normalized flux

In this chapter, we explain the method to illustrate the transit light curve of the rota-
tionally deformed and gravity darkened star, basically following Barnes (2009) with the
help of Mandel & Agol (2002). The formulation and coding of the following models in
this chapter were completed by Kento Masuda, who is one of the collaborators of this
work. The rapid stellar rotation distorts the stellar disk in the sky plane from a circle,
and the gravity darkening effect causes its surface temperature to exhibit the additional
dependence on the stellar latitude. As for the orbiting planet, we here neglect its oblate-
ness induced by the planetary rotation, which means that the planet is assumed to be
spherical body and complete circle in the sky plane. The stellar flux F (t) is described as
the polar and azimuthal integrations of the stellar intensity Iλ(r, θ) over the whole stellar
disk as,

F (t) =
F0 − Fblocked(t)

F0

F0 =

∫
stellar disk

Iλ(x, y)dxdy =

∫
( x
R⋆,eq

)2+( y
R⋆,pol

)2=1

Iλ(r , θ)rdrdθ

Fblocked(t) =

∫
stellar disk

Γ (x , y , t)Iλ(x , y)dxdy =

∫
( x
R⋆,eq

)2+( y
R⋆,pol

)2=1

Γ (r , θ, t)Iλ(r , θ)rdrdθ,

(4.1)

where F0 is the out-of-transit stellar flux and Fblocked(t) is the stellar flux from the portion
of the stellar disk where transiting planet occults (Figure 4.1). Here R⋆,eq is the stellar
equatorial radius, r is the radius measured from the center of the stellar disk and θ is
measured counterclockwise from the x-axis in the sky plane. y-axis is defined so that the
stellar spin axis projected onto the sky plane is to coincide with the positive y-axis and
x-axis is given by the rotation of y-axis about the line of sight by 90◦. Iλ(r, θ) is the stellar
intensity at the wavelength of λ at the point (r, θ) and Γ(r, θ, t) = 1 when the planet is
positioned at (r, θ) at time t, otherwise Γ(r, θ, t) = 0. Then time-variable stellar flux F (t)
is given by the subtraction of the Fblocked from F0, followed by the normalization with F0.
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R eq

projected spin axis

F0

F        (t)blocked

x

y

★,

Figure 4.1: Schematic illustration of F0 and Fblocked(t). The stellar disk is denoted as
the red region, and the planetary disk is blue. y-axis is chosen to be parallel with the
projected stellar spin axis. θ is measured counter-clockwise from the positive x-direction.

4.2 Effective oblateness feff

In fact, the radial and angular integrations in equations (4.1) require the effecttive oblate-
ness (feff), the oblateness of the stellar disk in the sky plane, rather than the true oblate-
ness f . And the effective oblateness feff depends on the direction of the stellar spin axis.
Thus assuming the rotationally deformed star as a MacLaurin spheroid whose elongated
two principal axes (equatorial radius) are longer then the remaining one (polar radius),
the effective oblateness feff is given in terms of stellar obliquity ψ as

feff = 1−
√
(1− f)2 cos2 ψ + sin2 ψ. (4.2)

For example, when seen by edge-on (ψ = 0◦), effective oblateness feff coincides with true
oblateness f . When seen by pole-on (ψ = ±90◦), however, the star looks like a circle form
in the sky plane (feff = 0) even if it is rotationally deformed.

The derivation of equation (4.2) is not simple. For the given x and y values in the stellar
disk in the sky plane, z coordinate, the departure from the sky plane is to be uniquely
estimated. This is because there is the geometrical constraint that z value should confirm
the surface of the oblate star with given x, y, R⋆,eq (stellar equatorial radius) and f . In
the case of the spherical star, this relation is x2+y2+z2 = R2. Here it is useful to prepare
the new Cartesian coordinates (x0, y0, z0 system) which have the same origin with x, y, z
system, at the center of the star (see Figure 4.2). This new coordinates are designed from
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y y
0

d < 0

d < 0

R☆,eq

projected spin axis

x

y
d < 0

Figure 4.2: Schematic illustration of (x0, y0, z0) coordinates and the meaning of the dis-
criminant d in y− z plane (left) and in x− y plane (right). y0-axis is chosen to be aligned
with the stellar spin axis. When d > 0, the line of sight has two intersections with the
star (light blue region) while only one intersection for d = 0 (blue lines). When d < 0,
the line of sight never crosses with the star (light gray region).

the rotation of x, y, z coordinates about x-axis by the angle ψ so that y0-axis coincides
with the stellar rotational axis, which gives

x0 = x

y0 = y cosψ − z sinψ

z0 = y sinψ + z cosψ

(4.3)

and

x20 +
y20

(1− f)2
+ z20 = R2

⋆,eq. (4.4)

The combining of equations (4.3) and (4.4) gives the analytic expression:

z± =
2y(1− (1− f)2) sinψ cosψ ±

√
d

2((1− f)2 cos2 ψ + sin2 ψ)
, (4.5)

where the “discriminant” d is specified as

d ≡ 4y2(1− (1− f)2)2 sin2 ψ cos2 ψ

− 4((cos2 ψ(1− f)2 + sin2 ψ)((y2 sin2 ψ −R2
⋆,eq + x2)(1− f)2 + y2 cos2 ψ)). (4.6)

In equation (4.5), z+ corresponds to the stellar surface with positive z value (first inter-
ception of the line of sight with the photosphere). Then z− denotes the stellar surface with
negative z value, representing the second interception of the line of sight with the photo-
sphere which is invisible from the observer. Then, the relation among effective oblateness,
true oblateness and ψ (equation 4.2) is derived by selecting the discriminant d equal to
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zero. In that case the line of sight intersects the star just once, which directly traces the
contour of the stellar disk in the sky plane (right panel in Figure 4.2).

In order to make the analytic forms for the integrations simpler, the following formu-
lation is performed in the “primed” coordinates:

x′ = x (4.7)

y′ =
y

1− feff
, (4.8)

where the stellar disk is reduced to the circle in the sky plane. Instead, the planet
gets to deviate from the circle and take elongated form to the y-direction, namely, an
ellipse. In this coordinates r′ and θ′ are defined as r′ =

√
x′2 + y′2 and θ′ = tan−1 (y′/x′),

respectively.

4.3 Flux from the oblate star

With the help of the primed coordinates, equations (4.1) can be rewritten as

F0 =

∫ +R⋆,eq

−R⋆,eq

dx

∫ +(1−feff)
√

R2
⋆,eq−x2

−(1−feff)
√

R2
⋆,eq−x2

dyIλ(x , y)

= (1− feff)

∫ +R⋆,eq

−R⋆,eq

dx ′
∫ +

√
R2

⋆,eq−x ′2

−
√

R2
⋆,eq−x ′2

dy ′Iλ(x
′, (1− feff)y

′)

= (1− feff)

∫ R⋆,eq

0

∫ 2π

0

Iλ(r
′, θ′)r′dr ′dθ′, (4.9)

and similarly,

Fblocked(t) = (1− feff)

∫ R⋆,eq

0

∫ 2π

0

Γ (r ′, θ′, t)Iλ(r
′, θ′)r ′dr ′dθ′, (4.10)

where r′ =
√
x′2 + (1− feff)2y′2 and θ′ = tan−1((1− feff)y

′/x′). The (1 − feff) factor in
above expressions eventually drops when calculating the normalized flux F (t) = (F0 −
Fblocked(t))/F0 since it appears on both numerator and denominator.

4.4 Stellar intensity Iλ(r
′, θ′)

This section is devoted to specify the explicit form of the stellar intensity Iλ(r
′, θ′) by

taking into account the physical phenomena that are expected to take plane in the actual
stars. We assume that the stellar disk is blackbody Bλ(T ) but with the limb darkening
factor L(r′, θ′):

Iλ(r
′, θ′) = Bλ(T (r

′, θ′))L(r′, θ′), (4.11)
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with

Bλ(T (r
′, θ′)) =

2hc2

λ5
1

exp( hc
λkBT

)− 1
(4.12)

and

L(r′, θ′) = 1− u1(1− µ)− u2(1− µ)2. (4.13)

Here µ is the cosine of the angle between the stellar surface gravity ĝ and the line of sight
ẑ. In (x0, y0, z0) coordinates, the line of sight vector ẑ is given by

ẑ = (0,− sinψ, cosψ). (4.14)

For the purpose of specifying ĝ, we start with the potential Ψ outside the star with the
rotational frequency ω⋆ as

Ψ = −GM⋆

r
− 1

2
ω2
⋆r

2 cos2 θ, (4.15)

where r is the distance measured from the stellar center and θ is the stellar latitude. Note
here that although the centrifugal force causes the star to be deformed, the gravitational
potential (the first term in the right-hand side in equation 4.15) is assumed to be the spher-
ical one. Namely, the effect of rotation appears only through the centrifugal potential,
the second term in the right-hand side in equation (4.15). The more general expressions
for the gravitational potential outside the rotationally-deformed star are summarized in
Appendix D. In the (x0, y0, z0) coordinates, equation (4.15) becomes

Ψ = − GM⋆√
x20 + y20 + z20

− 1

2
ω2
⋆(x

2
0 + z20). (4.16)

Therefore, the effective force at the stellar surface (x0, y0, z0) becomes

g = −GM⋆

R2
r̂ + ω2

⋆R⊥r̂⊥ = −GM⋆

R2

(
r̂ − ω2

⋆R
2R⊥

GM⋆

r̂⊥

)
, (4.17)

where R =
√
x20 + y20 + z20 , r̂ = (x0, y0, z0)/R, R⊥ =

√
x20 + z20 (distance from the stellar

rotational axis) and r̂⊥ = (x0, 0, z0)/R⊥ (unit vector from the stellar rotational axis).
Since r̂·r̂⊥ = R⊥/R, the norm of equation (4.17) becomes

g(r′, θ′) =
GM⋆

R2

√
1 +

(
ω2
⋆R

2R⊥

GM⋆

)2

− 2ω2
⋆R

2R⊥

GM⋆

(r̂·r̂⊥)

=
GM⋆

R2

√
1 + 4fR̃R̃2

⊥(fR̃
3 − 1), (4.18)

where f = ω2
⋆R

3
⋆,eq/2GM⋆ (equation 3.14), R̃≡R/R⋆,eq and R̃⊥≡R⊥/R⋆,eq. Finally, we

find µ as

µ = −ĝ·ẑ =
1

R
√

1 + 4fR̃R̃2
⊥(fR̃

3 − 1)
(−y0 sinψ + z0(1− 2fR̃3) cosψ). (4.19)
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Specifying equation (4.19) requires (x0, y0, z0) which are related with (x, y, z) through
equation (4.3). Further, (x, y, z) can be translated from (x, y) = (r′ cos θ′, (1−feff)r′ sin θ′)
and equation (4.5). Therefore, one can evaluate equation (4.3) by r′, θ′, ψ and f .

In addition to µ, u1 and u2 are also necessary to evaluate the equation (4.13). In
general u1 and u2 are used in terms of the limb-darkening parameters c1 = u1 + u2 and
c2 = u1 − u2 (see section 5.2 for the assumed values of c1 and c2).

As for the planck function (equation 4.12), simple manipulation below can translate
it into more tractable form as

Bλ(T ) =
2hc2

λ5
1

exp( hc
λkBT

)− 1
= Bλ(Tpol)

exp(x (λ,Tpole))− 1

exp(x (λ,T ))− 1
, (4.20)

where

x(λ, T ) ≡ hc

λkBT
= 2.397958702×

(
λ

µm

)−1

×
(

T

6000K

)−1

. (4.21)

4.5 Effective temperature Teff(r
′, θ′)

The temperature profile on the stellar disk is required to calculate the total stellar flux.
In this analysis, we adopt the von Zeipel model (see for example von Zeipel 1924, Maeder
1999 and Maeder 2009) following B13:

Teff(r
′, θ′)

Tpol
=

(
g(r′, θ′)

gpol

)βGD

, (4.22)

where Tpol and gpol are the polar effective temperature and polar surface gravity, and βGD

is the gravity darkening parameter (fixed to the theoretical value of 0.25 in this work).
gpol is given by equation (4.18) with R⊥ = 0 and R⋆,pol = (1 − f)R⋆,eq. (r′, θ′) is related
to (x, y, z) with (x, y) = (r′ cos θ′, (1 − feff)r

′ sin θ′) and equation (4.5), which in turn is
converted to (x0, y0, z0) with equation (4.3).



Chapter 5

Results and Discussion

5.1 Data reduction

The observational data are kindly provided by Prof. Julian van Eyken, one of the authors
of B13, and identical to those used by B13; 11 reliable transits for 2009 observation and 6
reliable ones for 2010 observation as introduced in chapter 2. The effects of stellar activity,
long term periodical fluctuation (for instance, due to spot modulation) and background
noise are already removed and whitened (see Figures 2.1 and 2.2). In this section we
describe procedures to construct the template light curves basically following B13. We
use these template light curves to compare with the model light curves following the
procedure in chapter 4. Since the 2009 and 2010 transits were taken monochromatically
with wavelength of 0.658µm, we fix the wavelength in equation (4.12) to 0.658µm in all
the following analyses. The data analysis proceeds as follows:

1. Phase-fold. Phase-fold is to make all transit light curves be piled up with the same
orbital phase being located at the same position. The single light curve is left after
this procedure. Figures 5.1 and 5.2 present the phase-folded transit light curves for
2009 and 2010 observation, respectively.

2. Clipping. During the orbital period of ∼0.448413 days (van Eyken et al. 2012), the
transit actually lasts only for ∼0.1 days. Thus a major part of the phase-folded
light curve corresponds to the out-of-transit phase. In order to reduce the number
of the data points and following computational cost, we focus on the range of orbital
phase from 15, 000 s to 30, 000 s (light gray regions in Figures 5.1 and 5.2).

3. Binning. All data points are combined into one-minute bins (Figure 5.3). All
individual fits in the remaining of this thesis are performed with these 2009 and
2010 template light curves.

4. Positioning the 2009 and 2010 template light curves. The procedures 1 - 3 corre-
spond to the long term averaging over 1.5 months for 2009 observation and 1 week
for 2010 observation. Therefore, it is ambiguous to which transit the phase-folded,
clipped, binned light curves correspond during the 2009 and 2010 observations. Thus
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Figure 5.1: Phase-folded transit light curve for 11 reliable light curves in 2009 observation.
Different colors show different days when transit was observed. We did not use all data
points in the phase-folded data in this work, and light gray region denotes the clipped
range for the following procedures.

we need to specify where both transit light curves should be placed, particularly with
how long separation. Where both light curves should be placed, particularly with
how long separation they should be placed, is one of the most important ambiguities
in the current modelling. A difference in their mutual separation will be linearly
reflected into the difference in the precession period (equation 3.17) that is sensitive
on a variety of system parameters (n, a,R⋆, ϕ, ϕp, J2 and all variables included in J2).
As shown in chapter 2, the individual fitting for 2009 and 2010 transit light curves
in B13 provided the epochs of inferior conjunction (the epoch t0 which satisfies
ω + f = π/2) of 30861700 s and 60848300 s, respectively. Their mutual separation
turns out to correspond to 774-times transit period given that orbital period P is
0.448413 days as estimated in van Eyken et al. (2012). We follow them and place
our 2009 and 2010 phase-folded, clipped, binned light curves so that they have a
mutual separation of 774-times orbital period P (see Table 2.4; 0.448410 days for
M⋆ = 0.34M⊙, and 0.448413 days for M⋆ = 0.44M⊙). All joint fits in the remaining
of this thesis are performed with this 2009-2010 combined template light curves.

The parameter fits are performed in the following way with the aid of the Levenberg-
Marquardt algorithm. In this scheme, the values of parameters are modified repeatedly
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Figure 5.2: Same as Figure 5.1, but for 6 reliable light curves in 2010 observation.
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Figure 5.3: The template light curves after one-minute binning for 2009 (left) and 2010
(right) observations.

so that they minimize the χ2 value defined as

χ2 =
∑
i

(fdata,i − fmodel,i)
2

σ2
data,i

, (5.1)
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where i indicates the variables at ti. fdata,i and σdata,i are the stellar flux and error of
the template light curves, and fmodel,i denotes the stellar model flux calculated by the
methods in chapter 4.

5.2 Individual fittings

We first perform the individual fits for 2009 and 2010 light curves, respectively, for the
purpose of checking whether our light curve modelling scheme in chapter 4 operates
correctly. The fixed values or explored ranges (basically following B13) are summarized
in Table 5.1.

Table 5.1: Parameters in the individual fittings

parameter fixed value explored range

R⋆,eq(R⊙) - 0.8 - 1.6
Rp/R⋆,eq - 0.01 - 0.50
Prot (days) 0.448410 -
Porb (days) 0.448410 -

t0 (s) -
30861700±4320 (2009)

or 60848300±4320 (2010)
iorb(

◦) - 0− 90
Ω(◦) - 0− 360
i⋆(

◦) - 90− 180
e cosω 0 -
e sinω 0 -
Tpol(K) 3470 -
c1 0.735 -
c2 0.0 -
βGD 0.25 -

In Table 5.1, R⋆,eq is the stellar equatorial radius, Rp is the planetary radius, Prot is
the stellar spin period (we adopt the synchronous condition, Prot = Porb in this section),
t0 is the time of inferior conjunction (ω + f = π/2) centered on the values in individual
fits in B13 with error of 0.05 days, i⋆ is the stellar inclination, iorb is the planetary or-
bital inclination, Ω is the longitude of the ascending node, e is the orbital eccentricity,
ω is the argument of the periapse in the planetary orbit, Tpol is the stellar polar sur-
face temperature, c1 and c2 are limb-darkening parameters and βGD is gravity darkening
parameter.

We adopt the same fixed values for Prot, Porb, c1 and βGD as in B13. Moreover, the
explored range for R⋆,eq is also identical to that in B13. The value of 3470 K is used as the
stellar effective temperature in B13. Since it is convenient to adopt the polar temperature
rather than effective temperature for our light curve model in chapter 4, we adopt the
value of 3470 K as stellar polar temperature, based on the fact that the deviation of the
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polar one from effective one would be negligible. Since the value for c2 is not stated in
B13, we employ the theoretical value of 0 by the estimation with the help of Claret et al.
(1995) and Sing (2010).

Our results and comparison with B13 are described in Table 5.2. Table 5.2 indicates

Table 5.2: Individual fitting for 2009 (left) and 2010 (right) transits. The χ2
r value of B13

is just for reference.
2009 2010

B13 this work

R⋆(R⊙) 1.19±0.07 1.19±0.03
Rp(RJ) 2.00±0.17 1.89±0.06
t0(s) 30861700±200 30861249±242
i(◦) 64±3 64.0±1.8
λ(◦) 90±22 92.0±24.3
ψ(◦) 2±19 -2.4±19.8

d.o.f - 244
χ2
r (2.11) 2.18

B13 this work

R⋆(R⊙) 1.39±0.11 1.34±0.08
Rp(RJ) 1.80±0.20 2.26±0.99
t0(s) 60848300±290 60848126±575
i(◦) 58±5 54.3±5.2
λ(◦) 136±33 134±36.1
ψ(◦) 31±25 17.9±32.7

d.o.f - 239
χ2
r (1.54) 1.70

that results in this work and those in B13 are in good agreement. Although t0 for 2009
is the only exception, its extent of deviation is not so large. Since our way of evaluating
χ2
r value is not necessary the same as that in B13, we cannot make simple comparison of
χ2
r between them and us. We show the χ2

r value of B13 not for comparison but just for
reference, and the same applies to the following (Tables 5.2 and 5.4). These achievements
lead to the conclusion that our light curve modelling and fitting scheme does operate
correctly.

5.3 Extrapolation of the individual fittings

Before the joint fits, B13 extrapolated 2009/2010 individual fits through the nodal preces-
sion model, and found that the simple forward/backward predictions with M⋆ = 0.44M⊙
and Mp = 1.0MJ do not reproduce the transit light curve in 2010/2009. Our 2009/2010
extrapolations following B13 also fail to reproduce the observed light curves in 2010/2009
in a similar fashion to the results by B13. Therefore, we need to fit both 2009 and 2010
light curves simultaneously in joint fits. Since the shapes of extrapolated light curves
are almost identical with those in B13, it is concluded that our formulae for the nodal
precession in chapter 3 operates properly.

5.4 Joint fittings with the synchronous condition

The joint fitting always accompanies the calculation of the nodal precession from 2009
to 2010. So we need to add M⋆ and Mp in the parameters to specify the magnitudes of



48 Results and Discussion

stellar spin and planetary orbital angular momenta. The fixed values or explored ranges
of the system parameters in joint fits are summarized in Table 5.1.

Table 5.1: Parameters in the joint fittings

parameter fixed value explored range

M⋆(M⊙) 0.34 or 0.44 -
Mp(MJ) - 0.01 - 100
R⋆,eq(R⊙) - 0.8 - 1.6
Rp/R⋆,eq - 0.01 - 0.50

Prot=Porb (days)
0.448410 (for M⋆ = 0.34M⊙)

or 0.448413 (for M⋆ = 0.44M⊙) -
t0 (s) - 60848500±4320

i(◦) -
125.7±10.4 (prograde)

or 54.3±10.4 (retrograde)

λ(◦) -
46±72.2 (prograde)

or 134±72.2 (retrograde)
ψ(◦) - 17.9±65.4
e cosω 0 -
e sinω 0 -
Tpol(K) 3470 -
c1 0.735 -
c2 0.0 -
βGD 0.25 -

The parameter range for Mp is the same as that in joint fits in B13. We fix the stellar
mass M⋆ to 0.34/0.44 M⊙ depending on the stellar model in Siess et al. (2000) or Baraffe
et al. (1998), and vary only R⋆ as in B13. Thus the parallel analyses for both cases are
required as will be shown in the following subsections.

As noted in chapter 2, both prograde and retrograde solutions on ϕ are possible by
only individual fittings. Since the joint fits include the nodal precession and the precession
period depends on ϕ (PΩ̇ ∝ 1/ sin 2ϕ), we perform both prograde and retrograde joint fits
to see which solution can reproduce 2009 and 2010 light curves better. Since both prograde
and retrograde solutions of 2009 in individual fits by B13 are close to 90◦ (89◦.1 and 90◦.9),
the corresponding precession is too slow to provide the significant change to light curves
between 2009 and 2010. Therefore B13 performed the joint fits within the bounds of 2010
individual fits, and we follow it. Since the angular results by joint fits in B13 are not
within the 1σ errors of the 2010 individual fits but within the 2σ errors (i = 114◦.8±1◦.6
by joint fits while i = 122◦±5◦ by 2010 individual fits), we adopt the 2σ errors in 2010
individual fits as the angular ranges for the joint fits.
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5.4.1 M⋆ = 0.34M⊙ case

Table 5.2 compares the results of B13 and ours for M⋆ = 0.34M⊙, and indicates that
results by B13 and ours are in good agreement. Since it is checked that the joint fit starting

Table 5.2: Best-fit parameters in the joint fitting for M⋆ = 0.34M⊙. The χ
2
r value of B13

is just for reference.

parameter B13 this work

Mp(MJ) 3.0±0.2 2.61±0.41
R⋆(R⊙) 1.04±0.01 1.14±0.02
Rp(RJ) 1.64±0.07 1.87±0.04
t0 (s) 60848500±100 60847907±19
i(◦) 114.8±1.6 121.5±0.9
λ(◦) 43.9±5.2 51.7±2.8
ψ(◦) 29.4±0.3 25.4±2.4

ϕ(◦) 69 75.3
ϕ⋆(

◦) 18 14.4
ϕp(

◦) 51 61.0
PΩ̇ (days) 292.6 287.5

f 0.109 0.145

d.o.f - 490
χ2
r (2.17) 1.99

Table 5.3: Stellar radius with different definitions for M⋆ = 0.34M⊙

B13 this work this work ×
√
1− f this work × 3

√
1− f

R⋆(R⊙) 1.04±0.01 1.14±0.02 1.05±0.02 1.08±0.02
Rp(RJ) 1.64±0.07 1.87±0.04 1.73±0.04 1.77±0.04

with the solution by B13 (middle column in Table 5.2) returns the solution identical to our
results (right column in Table 5.2), we conclude that we found the solution corresponding
to that in B13. Within these parameters, Mp, R⋆ and Rp are worth being individually
examined because they are most basic physical parameters for the star and planet. The
planetary mass in this work agrees with that in B13 within 1σ precision, while this is not
the case for stellar and planetary radii.

This discrepancy could be attributed to the difference in the definitions of the stellar
radius (R⋆). Stellar radius in this work refers to the stellar equatorial radius, while there
is no statement for the rigid definition of R⋆ in B13. Therefore it is possible that they
use the symbol R⋆ to denote the stellar effective radius, which is different from stellar
equatorial radius by the order of f . This difference cannot be neglected in our current
viewpoint since we drop O(f 2) and higher order terms but does not O(f). There exists
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several ways to define the stellar effective radius. One of them is to define it so that the
surface area of the stellar disk in the sky plane is identical to that of the circle with stellar
effective radius as

R⋆,eff ≡
√
R⋆,eqR⋆,pol = R⋆,eq

√
1− f, (5.2)

where R⋆,pol = (1− f)R⋆,eq is the stellar polar radius. Another way is to define it so that
the volume of the star is conserved as

R⋆,eff ≡ 3

√
R2

⋆,eqR⋆,pol = R⋆,eq
3
√

1− f. (5.3)

Table 5.3 compares the stellar radius in B13 and stellar radii in this work with several
definitions (R⋆,eq itself, R⋆,eq factored by

√
1− f and R⋆,eq factored by 3

√
1− f). Then it

is concluded that the stellar radius in B13 and ours agree when B13 defined the symbol
R⋆ to denote the stellar effective radius (equation 5.2).

The planetary radius is evaluated through the transit depth which is dependent on the
ratio of planetary to stellar radius (Rp/R⋆). Therefore the difference in the definition of
stellar radius propagates into the evaluation of planetary radius. Table 5.3 demonstrates
also the planetary radii with different definitions for the stellar radius. And it is seen that
planetary radius in B13 agrees with ours when R⋆ in B13 is intended to denote the stellar
effective radius (equation 5.2).

This propagation of discrepancy from stellar to planetary radius can be checked by
taking the ratio of Rp/R⋆ in this work to that in B13 as

Rp/R⋆(this work)

Rp/R⋆(B13)
=

1.87/1.14

1.64/1.04
∼ 1.04, (5.4)

which is found to be close to unity.
Although angular parameters (i, λ, ψ, ϕ, ϕ⋆ and ϕp) by B13 and this work do not agree

with each other within 1σ precision, their discrepancies are found to be within several
degrees (◦). These considerations on individual parameters also support the conclusion
that our solution correspond to that in B13.

5.4.2 M⋆ = 0.44M⊙ case

Table 5.4 compares the results of B13 and ours forM⋆ = 0.44M⊙. First of all, it should be
noted that the joint fit starting with the solution by B13 (middle column in Table 5.4) is
not converged into our solution (right column in Table 5.2) but provides the solution worse
than ours in terms of χ2

r value. Thereby we conclude that we succeeded in discovering
the better solution than that in B13.

The discussion on individual parameters is as follows. The planetary mass in this
work agrees with that in B13 with 1σ precision as does in the case of M⋆ = 0.34M⊙.
However, the stellar and planetary radii are not in agreement even under the modification
by either ×

√
1− f or × 3

√
1− f as shown in Table 5.5. This discrepancy is in favor of the
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Table 5.4: Best-fit parameters in the joint fitting for M⋆ = 0.44M⊙. The χ
2
r value of B13

is just for reference.

parameter B13 this work

Mp(MJ) 3.6±0.3 4.20±0.53
R⋆(R⊙) 1.03±0.01 1.24±0.02
Rp(RJ) 1.68±0.07 2.04±0.04
t0 (s) 60848363±38 60848041±18
i(◦) 110.7±1.3 121.9±0.8
λ(◦) 54.5±0.5 44.3±3.9
ψ(◦) 30.3±1.3 30.8±2.6

ϕ(◦) 73.1 75.4
ϕ⋆(

◦) 20.2 17.5
ϕp(

◦) 52.9 58.0
PΩ̇ (days) 581.2 283.7

f 0.083 0.144

d.o.f - 488
χ2
r (2.19) 2.15

Table 5.5: Stellar radius with different definitions for M⋆ = 0.44M⊙

B13 this work this work ×
√
1− f this work × 3

√
1− f

R⋆(R⊙) 1.03±0.01 1.24±0.02 1.15±0.02 1.18±0.02
Rp(RJ) 1.68±0.07 2.04±0.04 1.89±0.04 1.94±0.04

conclusion that solution by B13 and ours are essentially different. Since the planet-star
radius ratios are almost identical with each other

Rp/R⋆(this work)

Rp/R⋆(B13)
=

2.04/1.24

1.68/1.03
∼ 1.01, (5.5)

specifically, this result indicates that our analysis estimated the significantly larger value
for stellar radius than that in B13. This overestimation sensitively affects the precession
period. It is remarkable that our result corresponds to the similar precession period to
results in Table 5.2 (∼ 300 days), while result in B13 shows about twice slower preces-
sion (∼ 600 days). We here recall the dependence of the precession period on physical
parameters as

PΩ̇ ∝M5/3
⋆ R−5

⋆ ω−2
⋆ n−7/3 sinϕp(sin 2ϕ)

−1. (3.17)

The larger stellar mass of 0.44M⊙ compared to 0.34M⊙ with other parameters (R⋆, ω⋆, n,
ϕp and ϕ) almost identical between these cases provided almost doubled precession period
(581.2 days compared to 292.6 days) in B13. In this work, however, the effect of larger
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stellar mass ((0.44/0.34)5/3) is considerably suppressed by the effect of larger estimation
for the stellar radius ((1.24/1.14)−5), which leads to the comparable precession period
of 283.7 days (M⋆ = 0.44M⊙) to 287.5 days (M⋆ = 0.34M⊙). This is the example case
of the degeneracy of precession period noted in chapter 2. Namely, the precessions with
frequency of 1

2
Ω̇, Ω̇, 2Ω̇, ... are possible as the solutions.

5.5 Data analysis without the synchronous condition

Next we move on to the parameter fit adopting the stellar spin period as an additional
fitting parameter. We abandon all solutions that exceed the stellar break-up condition
beyond which the star cannot retain the gravitationally-bounded shape:

R⋆,eqω
2
⋆ −

GM⋆

R2
⋆,eq

> 0

⇔ Prot > 2π

√
3

4πGρ⋆
. (5.6)

5.5.1 Individual fittings

In B13, they utilized the results on the angular parameters in individual fits with Prot =
0.448410 days in order to set the angular ranges of the subsequent joint fits. However, it
is unclear that this angular ranges in individual fits with Prot = 0.448410 days are also
applicable to the joint fits without the synchronous condition where the stellar spin period
can deviate from Prot = 0.448410 days. Before the joint fits without the synchronous
condition, therefore, it is necessary to investigate the dependence of angular ranges in the
individual fits on the stellar spin period. If the angular ranges are not affected by the
stellar spin period so much, then we could utilize the same angular ranges in the joint
fits without the synchronous condition as those in the individual fits with synchronous
condition with Prot = 0.448410 days. Based on this motivation, we first perform the 2010
individual fits with fixed stellar spin period of Prot = 0.3, 0.4, 0.5, ... , 1.9, 2.0 days and
investigated how the angular ranges depend on the stellar spin period. The results are
summarized in Table 5.1. Table 5.1 implies

1. All i values are consistent within 1σ error in the case of Prot = 0.448410 days (5◦.2).

2. All λ values but that for Prot = 0.3 days are consistent within 1σ error in the case
of Prot = 0.448410 days (36◦.4).

3. All ψ values are consistent within 1σ error in the case of Prot = 0.448410 days
(32◦.7).

4. χ2
r value becomes worse as the star rotates more slowly.

Again the angular results by joint fits in B13 are beyond the 1σ error of the 2010 individual
fits but within the 2σ. Based on this fact, we set the angular ranges for the joint fits
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Table 5.1: Angular parameters and χ2
r value for the 2010 individual fittings for differently-

fixed stellar spin periods. Since the covariance matrix from the Levenberg-Marquardt
fitting algorithm is used to generate the quoted errors, errors in angular parameters could
exceed 180◦.

stellar spin period (days) i(◦) λ(◦) ψ(◦) χ2
r

0.3 54.2±13.4 81.6±28.3 41.4±12.9 1.67
0.4 52.5±11.2 113.4±16.1 31.7±20.1 1.68

0.448410
(same as that in section 5.2) 54.3±5.2 133.9±36.4 17.9±32.7 1.71

0.5 56.2±15.8 133.0±161.9 21.4±126.3 1.84
0.6 56.3±29.5 133.5±374.9 24.9±317.6 1.97
0.7 55.7±42.2 134.1±615.4 26.6±547.2 2.03
0.8 55.3±58.0 134.3±864.5 27.4±803.2 2.06
0.9 54.8±70.6 134.6±1012.6 27.9±981.1 2.08
1.0 54.9±51.3 134.7±575.9 28.3±885.3 2.09
1.1 55.0±42.8 134.8±460.9 28.7±830.6 2.11
1.2 55.1±36.8 135.0±244.9 28.9±735.1 2.12
1.3 55.2±32.6 135.0±193.3 29.1±776.4 2.12
1.4 55.2±31.2 135.0±197.3 29.3±858.2 2.13
1.5 55.3±28.3 135.2±226.3 29.4±883.5 2.13
1.6 55.3±26.9 135.2±244.1 29.5±969.0 2.14
1.7 55.3±26.2 135.2±245.9 29.6±3567.3 2.14
1.8 55.4±25.1 135.0±3397.2 29.6±4897.9 2.14
1.9 55.4±24.4 135.2±340.4 29.7±1279.9 2.14
2.0 55.4±23.8 135.1±182.7 29.8±1339.0 2.14

without the synchronous condition basically as the 2σ errors of the 2010 individual fits
for Prot = 0.448410 days. The only one exception is the range for λ. The result of λ
for Prot = 0.3 days (81◦.6±28◦.3) goes beyond even 2σ errors of our 2010 individual fits
for Prot = 0.448410 days (133◦.9±72◦.8). Taken together, we adopt the survey ranges for
angular parameters as follows.

1. The survey range of i is within 2σ error in the case of Prot = 0.448410 days, as
i(◦) = 126.7±10.4 for prograde solution, i(◦) = 54.3±10.4 for retrograde solution.

2. The survey range of λ is enlarged so that the range in the case of Prot = 0.448410
days covers the range in the case of Prot = 0.3 days, as λ(◦) = 46.1±80.6 for prograde
solution, λ(◦) = 133.9±80.6 for retrograde solution.

3. The survey range of ψ is within 2σ error in the case of Prot = 0.448410 days, as
i(◦) = 17.9±55.4.

Ranges to be surveyed for other parameters are the same as those in Table 5.1.
In addition, we set the upper and lower limits on the stellar spin period Prot as follows.
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1. Upper limit is 30 days resembling the rotational period of the Sun.

2. Lower limit is set so that Prot is within the boundary beyond which the the star

breaks up even with the lower limit radius (0.8R⊙), as Prot > 2π
√

(0.8R⊙)3

GM⋆
.

5.5.2 Joint fittings for M⋆ = 0.34M⊙ case

We repeated the joint fits starting with a variety of the initial values for angular parameters
(iorb, Ω, i⋆) and stellar spin period (Prot). Table 5.2 presents the best, second-best and
third-best prograde solutions and best prograde solution with synchronous condition for
comparison. We were not able to find the self-consistent retrograde solutions. Table 5.2

Table 5.2: Best solutions in the joint fittings without the synchronous condition forM⋆ =
0.34M⊙

parameter synchronous case best second-best third-best

Mp(MJ) 2.61±0.41 6.24±0.29 7.20±0.32 6.74±0.13
R⋆,eq(R⊙) 1.14±0.02 1.22±0.01 1.21±0.01 1.18±0.01

R⋆,eq

√
1− f(R⊙) 1.05±0.02 1.06±0.01 1.05±0.01 1.05±0.01

R⋆,eq
3
√
1− f(R⊙) 1.08±0.02 1.11±0.01 1.10±0.01 1.10±0.01

Rp(RJ) 1.87±0.04 2.34±0.07 2.53±0.12 2.08±0.05
Rp

√
1− f(RJ) 1.73±0.04 2.05±0.07 2.19±0.10 1.86±0.04

Rp
3
√
1− f(RJ) 1.77±0.04 2.14±0.07 2.30±0.11 1.93±0.04

Prot (days) 0.448410 0.389±0.006 0.375±0.006 0.397±0.006
t0 (s) 60847907±19 60847981±19 60847950±20 60847966±18
i(◦) 121.5±0.9 126.4±0.7 127.2±0.8 124.0±0.7
λ(◦) 51.7±2.8 52.7±2.0 54.0±2.0 50.3±1.0
ψ(◦) 25.4±2.4 37.3±1.7 41.1±1.8 41.2±0.0

ϕ(◦) 75.3 88.4 92.5 88.2
ϕ⋆(

◦) 14.4 26.9 30.4 30.4
ϕp(

◦) 61.0 61.5 62.1 57.8
PΩ̇ (days) 287.5 1398.7 819.3 1425.2

f 0.145 0.234 0.251 0.207

d.o.f 489 489 489 489
χ2
r 1.989 1.970 1.973 1.974

concludes that the removal of the spin-orbit synchronous condition causes a variety of
solutions to be possible for the current observational data. In other words, the model
light curves constructed by these solutions are almost identical with each other as Figure
5.4 plots. Therefore we are not able to distinguish them with current data yet and it is
still premature to conclude that the best solution in Table 5.2 are the unique solution and
all others fail.
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Figure 5.4: The best-fit for 2009 (left) and 2010 (right) observations with and without
synchronous condition (red and blue, respectively) for M⋆ = 0.34M⊙.

5.5.3 Joint fittings for M⋆ = 0.44M⊙ case

We describe the best, second-best and third-best prograde solutions for M⋆ = 0.44M⊙
and best prograde solution with the synchronous condition for comparison in Table 5.3.
Again in this case we were unable to find the self-consistent retrograde solutions. The
conclusion for M⋆ = 0.44M⊙ is the same as that for M⋆ = 0.34M⊙. Namely, a variety of
solutions are possible for the current data, and they give almost identical light curves as
Figure 5.5. This degeneracy prevents us from interpreting that the best solution without
synchronous condition is the unique solution in this case and other solution candidates
are all of no use.
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Figure 5.5: The best-fit for 2009 (left) and 2010 (right) observations with and without
synchronous condition (red and blue, respectively) for M⋆ = 0.44M⊙.
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Table 5.3: Best solutions in the joint fittings without the synchronous condition forM⋆ =
0.44M⊙

parameter synchronous case best second-best third-best

Mp(MJ) 4.20±0.53 5.82±0.53 8.36±0.39 7.76±0.35
R⋆,eq(R⊙) 1.24±0.02 1.26±0.02 1.32±0.01 1.31±0.01

R⋆,eq

√
1− f(R⊙) 1.15±0.02 1.14±0.02 1.13±0.01 1.12±0.01

R⋆,eq
3
√
1− f(R⊙) 1.18±0.02 1.18±0.02 1.19±0.01 1.18±0.01

Rp(RJ) 2.04±0.04 2.11±0.05 3.05±0.14 3.29±0.18
Rp

√
1− f(RJ) 1.89±0.04 1.91±0.05 2.62±0.12 2.81±0.15

Rp
3
√
1− f(RJ) 1.94±0.04 1.98±0.05 2.75±0.13 2.96±0.16

Prot (days) 0.448413 0.412±0.007 0.366±0.006 0.356±0.007
t0 (s) 60848041±18 60848060±17 60848161±19 60848274±21
i(◦) 121.9±0.8 122.8±0.9 128.9±0.7 129.8±0.6
λ(◦) 44.3±3.9 43.9±3.4 45.8±2.2 41.7±2.3
ψ(◦) 30.8±2.6 34.3±2.2 38.9±1.5 38.0±1.4

ϕ(◦) 75.4 78.7 88.5 86.7
ϕ⋆(

◦) 17.5 21.5 26.3 24.1
ϕp(

◦) 58.0 57.2 62.1 62.6
PΩ̇ (days) 283.7 281.4 1288.5 593.9

f 0.144 0.178 0.263 0.271

d.o.f 489 489 489 489
χ2
r 2.155 2.115 2.146 2.150

5.6 Discussion

5.6.1 Re-analysis of the current data without phase-fold

It is worthwhile referring to the advantage and drawback of the phase-fold. In this pro-
cedure the white noises on each light curve are significantly offset to produce the less
noisy light curve. The observed data of PTFO 8-8695 is so noisy that noise-reduction by
phase-fold is very useful to analyze the light curve with better precision and accuracy. The
weak point of this procedure is, however, that any change of transit light curve over the
observational intervals is lost by combining several light curves into one. Since 2009 obser-
vation spreads over about 1.5 months and 2010 over about 1 week, this problem is rather
striking particularly in 2009 observation. Figure 5.6 shows the theoretical prediction of
the transit light curves within the 2009 observational term from 2009 December 4 to 2010
January 15 for M⋆ = 0.34M⊙ with the synchronous condition. The top panel illustrates
the evolution of transit light curves for every two weeks (red, magenta, cyan and blue, in
series), and these epochs correspond to the colored vertical lines at the bottom panel in
series. It can be seen that the 1.5 months duration obviously brings about the significant
change in shape of transit light curves, and thereby some information on their variabil-
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Figure 5.6: The predicted evolution of the transit light curve during the 2009 observa-
tional epoch (from 2009 December 1 to 2010 January 18) with the spin-orbit synchronous
condition forM⋆ = 0.34M⊙. The top panel shows the time evolution of transit light curve
for every two weeks (red, magenta, cyan and blue, in series), and these observational
epochs correspond to the colored vertical lines at the bottom panel.

ity is lost by phase-fold. This theoretical prediction questions the validity of phase-fold
and then raises the necessity of re-analyzing the current data without phase-fold. This
re-analysis accompanies the increase of the computational cost to treat larger number of
transit light curves simultaneously. However, this problem is worth being tackled with
seriously for the purpose of picking up the additional information on PTFO 8-8695 system
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that phase-folded data never provides.
Figure 5.7 is to assess the features of each transit light curve which phase-fold and

subsequent averaging would conceal. Figure 5.7 is basically the same as Figures 5.1 and
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Figure 5.7: Phase-folded transit light curve for 11 reliable light curves in 2009 (top) and
2010 (bottom) observation supplemented with the best-fit model light curves (black lines).
Different colors show different days when transit was observed.

5.2 but supplemented with the best-fit model light curve (black lines). It is obvious that
2009 December 9 (red at the top panel), 2009 December 27 (magenta at the top panel),
2010 December 11 (blue at the bottom panel) and 2010 December 15 (purple at the
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bottom panel) transits significantly deviate from the best-fit to the averaged light curve.
Apart from the discussion whether these deviation comes from the precession-induced
variability of the transit light curves, it is concluded that the averaging followed by the
phase-fold would miss such features of each transit light curve.

5.6.2 Future prediction to distinguish the possible solutions

We next discuss the difference of the variability among the possible solutions given in
the previous section. The future prediction of the transit light curve shape is presented,
and their detectability is argued in this section for the purpose of distinguishing the
possible solutions. As shown in the previous section, removal of the spin-orbit synchronous
condition provides the diversity of the architecture of the nodal precession, thus the
possible solutions without the synchronous condition are mutually different. It is worth
being stressed that such a difference of the precession state is the key to distinguish a
variety of solutions from the future observation for PTFO 8-8695 system. First, we see
how the precession architectures between them differ from 2009 to 2010 observation. Since
the precession periods of the best solution with the synchronous condition, best, second-
best and third-best solutions without the synchronous condition are completely different
(288, 1399, 819 and 1425 days for M⋆ = 0.34M⊙ and 284, 281, 1289 and 594 days for
M⋆ = 0.44M⊙), the variability of transit light curves are predicted to be correspondingly
different. Figure 5.8 illustrates how differently the four solutions forM⋆ = 0.34M⊙ (Table
5.2) connect the 2009 and 2010 observations, and Figure 5.9 is for M⋆ = 0.44M⊙ (Table
5.3). In Figures 5.8 and 5.9, the time evolution of the transit depth by the best solution
with the synchronous condition is shown as red lines, while magenta, cyan and blue lines
are for the best, second-best and third-best solutions without the synchronous condition,
respectively. Although each solution provides almost identical transit light curves at the
epoch of 2009 and 2010 observations (top-left and bottom-right graphs, respectively, in
the top panels in Figures 5.8 and 5.9), it is obvious that their shapes at the intermediate
epochs are different with each other. Specifically, the bottom-left graphs at the top panels
in Figures 5.8 and 5.9 illustrate one of the epochs when the difference of the transit depth
among possible solutions is expected to be maximized. This is the epoch during which
some of the transit signals are expected to disappear (red for M⋆ = 0.34M⊙, and red and
magenta for M⋆ = 0.44M⊙). Thereby such a (almost) transit-less epoch is particularly
preferable to the observation for the immediate distinction of these possible solutions. In
conclusion, taking the additional observation is the most straightforward way to see which
solution is likely to hold in the actual system.

For that reason, we are now collaborating with Prof. Atsunori Yonahara and his
colleagues in Kyoto Sangyo University (KSU). They are now trying to observe PTFO
8-8695 with their 1.3 m Araki-telescope in Koyama Astronomical Observatory (KAO),
and under the process of detecting the actual transit signals. The transit observation will
be performed intensively from 2014 November to 2015 January during which the time
evolution of the transit light curves is predicted as in the light gray regions in Figures
5.10 and 5.11. Again the best solution with the synchronous condition is shown as red
lines, while magenta, cyan and blue lines are for the best, second-best and third-best
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Figure 5.8: The predicted evolution of the light curves for the four solutions in Table 5.2
from 2009 to 2010 observation epoch for M⋆ = 0.34M⊙. The bottom panel illustrates
the whole evolution from 2009 (leftmost vertical line) to 2010 (rightmost vertical line).
The four vertical lines are drawn for every four months, each of which corresponds to
the enlarged graph at the top panel. The best solution with the synchronous condition
is denoted as red lines, while magenta, cyan and blue are for the best, second-best and
third-best solutions without the synchronous condition, respectively.
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Figure 5.9: Same as Figure 5.8, but for M⋆ = 0.44M⊙.

solutions without the synchronous condition, respectively. Figures 5.10 and 5.11 imply
that some epochs during KAO photometric observation are available to distinguish these
solutions since their predicted transit depth differs by several percents. Specifically for
M⋆ = 0.34M⊙, the difference is expected to be close to 10% at the first term of the
observation (compare cyan and the others during 2014 November; top graphs at the top
panel in Figure 5.10). Or for M⋆ = 0.44M⊙, the difference is estimated to be about 3%
at the later term of the observation (compare blue and the others during 2015 January;
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Figure 5.10: The predicted evolution of the light curves for the four solutions in Table
5.2 from 2014 November 1 to 2015 December 31 for M⋆ = 0.34M⊙. The bottom panel
illustrates the whole evolution. The four vertical lines are drawn for every one month
during the observational term by KAO (light gray region), each of which corresponds to
the enlarged graph at the top panel. The best solution with the synchronous condition
is denoted as red lines, while magenta, cyan and blue are for the best, second-best and
third-best solutions without the synchronous condition, respectively.
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Figure 5.11: Same as Figure 5.10, but for M⋆ = 0.44M⊙.

bottom graphs at the top panel in Figure 5.11). It is worthwhile emphasizing that these
differences of several percents are detectable by the facilities in KAO.

5.6.3 The possibility for the detection of the planetary spin

Recently the planetary spin has been attracting more and more attention. The planetary
spin periods and directions in the solar system are well measured and widely known. As
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for spin periods, they are estimated to be ∼59 days for Mercury, ∼117 days for Venus,
∼24 hours for Earth, ∼25 hours for Mars, ∼10 hours for Jupiter, ∼10 hours for Saturn,
∼17 hours for Uranus and ∼16 hours for Neptune. Among them, Mercury and Venus are
now considered to be under the influence of the tidal interaction with the Sun and their
rotations are already significantly spun down to approach their orbital periods. Moreover,
Spin directions with respect to orbital planes are measured to be < 0◦.027 for Mercury,
∼ 117◦ for Venus, ∼ 23◦ for Earth, ∼ 25◦ for Mars, ∼ 3◦ for Jupiter, ∼ 25◦ for Saturn,
∼ 98◦ for Uranus and ∼ 28◦ for Neptune. Among them, Uranus is widely know for its
sideways rotation and Venus is famous for its turned-over rotation, whose origins remain
poorly understood. The current frequency and direction of the planetary spin are expected
to result from the accretion of the angular momentum during planetary formation phase.
Therefore, the spin rate and direction straightly reflect the angular momentum accumu-
lation through the planetesimal collision/accretion process and subsequent gas accretion
process that planets experienced during their formation stage. Since the exoplanetary
samples whose spin rate and direction are detected simultaneously definitely contribute
to reveal such processes, the estimation of the spin states in the exoplanetary systems is
the important challenge.

The detection of the planetary spin had not been realized for long time. This is
mainly because the effect of the planetary spin on the observational data is so tiny that
noises on the data from any observational facilities conceals the signatures of planetary
spin. However recent great improvements on the observational precision and accuracy, for
example the launch of Kepler satellite, are now creating new scientific field of approaching
the planetary spin effect. Recently Snellen et al. (2014) succeeded in estimating the
planetary equatorial spin velocity of β Pictoris b to be ∼25 km/s. This work comes from
the investigation of the rotationally-induced broadening of planetary thermal emission
line that is obtained by direct imaging method. This indicates that a young gas giant β
Pictoris b rotates significantly faster than any planets in our solar system. To say further,
Zhu et al. (2014) achieved the simultaneous detection of both planetary spin period and
direction to be ∼1.6 hours and ∼ 70◦ with respect to its orbital plane for Kepler-39
b. In this work planetary spin rate and direction are measured through the analysis of
the planetary rotationally-induced oblateness on the Kepler transit light curves. To do
that they investigated the slight deformation of the transit light curves induced by the
elliptical shape of the transiting planet, which was far from available without extreme
precision and accuracy of the Kepler data. To sum up, these successful works on the
detection of planetary spin represent that new astronomical generation is approaching
where the investigation of planetary spin effect is within our scientific reach.

As for the planetary spin, some interesting suggestions are also given by this work.
The precession model derived as Lagrange’s planetary equations in chapter 3 cannot
treat the planetary spin because they are formulated analytically with the assumption
that the orbiting planet is point-mass in the absence of rotational angular momentum.
Therefore, we performed the numerical integration of the EOM in Appendix D (equation
D.50 ∼ equation D.52) in order to assess the effect of the planetary spin on the dynamical
evolution of the system. Although also in the PTFO 8-8695 system the planetary spin
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angular momentum is smaller in magnitude than that of the star by about four orders

of magnitude (|Sp|/|S⋆| = C̃p

C̃⋆

Mp

M⋆

(
Rp

R⋆

)2
ωp

ω⋆
∼ 10−4), the planetary spin is found to be

significantly influential on the nodal precession by our numerical calculations. Exactly
speaking, the planetary spin angular momentum makes total angular momentum vector
(S⋆ + L + Sp) slightly deviate from the summation of stellar spin and planetary orbital
motion (S⋆ + L), which slightly modifies the architecture of the nodal precession. Such
difference appears in the resulting precession period. The precession period deviates
from that in Sp-less case by several days, depending on the planetary spin frequency
and direction. Unfortunately the current data is so noisy that we cannot pick up such
a tiny signal induced by the planetary spin. However, future observational data that
will be provided with higher precession and accuracy could make it possible to detect of
the planetary spin in the oblate star-planet systems. The formulations necessary in such
circumstances are already in our possession, as shown in Appendix D.

5.6.4 Tidal evolution of PTFO 8-8695 system

The results and discussion so far are all focused on the short term evolution of the system;
the nodal precession whose expected time scale is several hundred days. In addition
to such a short term behavior, long term evolution of the system also presents another
perspective to get insight into the nature of the pre-main-sequence star and close-in planet
system. As introduced in chapter 1, planetary system with close-in planets cannot avoid
the influence of the tidal interaction between the star and planet, which is dominant for
the long term evolution of the system. Since the tidal force between the star and planet
has the dependence on their separation of order of -3 (Ftide ∝ r−3) unlike the inverse
square law for the Newtonian gravity (Fgrav ∝ r−2), the tidal force becomes stronger as
the planet is located closer to the central star. The orbital semi-major axis of the PTFO
8-8695 b is so small (a ≤ 2R⋆) that we need to take into account the tidal effect when
pursuing the long term evolution of PTFO 8-8695. The introduction and formulation of
the standard equilibrium tidal model are presented in Appendix D.3. Note here that the
two new parameters show up when evaluating the effectiveness of the tidal effect, Love
number k2 and tidal delay time ∆t. The Love number and tidal delay time both refer to
the fluid property of the central star. The former is in terms of stellar elasticity against
the stress and the latter is in terms of the delay of the response of the stellar tidal bulge
induced by the tidal force from the planet. In general cases, the effectiveness of the tidal
force is argued with the tidal quality factor, Q, which is the combination of k2 and ∆t as
Q ∝ 1/(k2×∆t). Note that larger value of Q corresponds to weaker tidal effect.

All calculation to pursue the tidal evolution of the system was performed by numerical
integration of equation (D.61) ∼ equation (D.63). The test calculation employing the
values of Love number and tidal delay time estimated for the Sun (k2=0.028 and ∆t=0.1
s) indicates that tidal effect leads to the planetary orbital decay (a → 0) with the time
scale of order of 104 yrs, which is two orders of magnitude smaller than the age of the
central star PTFO 8-8695 (2.6-2.7 Myrs) as shown in Figure 5.12. This rapid orbital
decay is totally inconsistent with the observational picture that favours the existence of
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Figure 5.12: Time evolution of the planetary semi-major axis with the Love number of
k2 = 0.028 and tidal delay time of ∆t = 0.1 s, both of which are estimated for the Sun.
The vertical axis is normalized by the stellar radius of PTFO 8-8605, and stellar inside is
denoted as the orange region.

close-in planet in PTFO 8-8695 system. Since the values above are those estimated for
the Sun, however, there is no need for them to be the same as those of the pre-main-
sequence star PTFO 8-8695. By estimating the reasonable value (or lower constraint) of
tidal quality factor Q for PTFO 8-8695, on the contrary, one can approach the internal
structure and fluid properties of pre-main-sequence stars which are poorly known today
due to the scarcity of the observed samples. Such new insights on the physical properties
of pre-main-sequence stars are expected to shed light on the stellar evolution mechanism
which leaves many questions today.



Chapter 6

Summary and Future Prospects

Recent observations have detected a large number of exoplanets and revealed the diversity
of exoplanetary systems beyond our conventional perspective on the planetary systems.
And it is now required to characterize the observed exoplanets for the better understand-
ing of the formation scenario of the planetary systems. In this thesis, we characterized
a transiting planetary system PTFO 8-8695 through the unexpected shapes and time-
variability of its transit light curves taken by Palomar Observatory in 2009 and 2010.
For that purpose, we formulated the equations necessary for the dynamical evolution of
the system and modelled the light curve generating scheme. The pioneering work on
this planetary system, Barnes et al. (2013), adopted the spin-orbit synchronous condition
under which the stellar rotational period is synchronized to the planetary orbital period.
However, the standard tidal theory suggests that the spin-orbit synchronous condition is
unphysical and difficult to hold in PTFO 8-8695 system. Based on this motivation, we
re-analyzed PTFO 8-8695 system basically following the procedure in Barnes et al. (2013),
but adopting stellar spin period not as a fixed value to the planetary rotational period
but as a fitting parameter. The achievements of our study are summarized as follows.

1. Discovery of the diversity of the solutions in the absence of the spin-orbit syn-
chronous condition. Before the main fittings, we performed the 2009, 2010 indi-
vidual fit and 2009-2010 joint fit with the spin-orbit synchronous condition for the
purpose of comparing the results with those by Barnes et al. (2013). We found
that our fits provided almost identical results with those by Barnes et al. (2013),
which implies that both our equations for the dynamical evolution of the system
in chapter 3 and our light curve model in chapter 4 operate correctly. The main
fittings indicated that a variety of solutions are possible for this planetary system in
the absence of the spin-orbit synchronous condition, all of which present χ2

r values
comparable to or slightly better than that with synchronous condition (Tables 5.2
and 5.3). In fact, the differences of χ2

r values among those solutions are so tiny that
it is premature to conclude that one solution out of several possible ones definitively
corresponds to the true solution while all others fail. It should be noted here that
although the transit light curves by these solutions coincide at the epochs of 2009
and 2010 observations, they are expected to be totally different with each other at
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other epochs. To say further, utilizing the differences in the precession period is the
easiest way to distinguish the possible solutions because the predicted precession
periods among them vary greatly. Specifically, the precession period is estimated
to be 1399, 819 and 1425 days for the best, second-best and third-best solutions for
M⋆ = 0.34M⊙, respectively, and 281, 1289 and 594 days for the best, second-best
and third-best solutions for M⋆ = 0.44M⊙, respectively. This diversity in the pre-
cession period inevitably results in the difference in the shape of the transit light
curves at the epochs of future observation, from which the selection of the true so-
lution becomes possible. We provided the future prediction of the light curves as a
groundwork for such future observations (Figures 5.10 and 5.11). We are now col-
laborating with the researchers in Kyoto Sangyo University and under the process
of acquiring the photometric data of PTFO 8-8695 during 2014 November - 2015
January. The additional transit light curves from such observations are expected to
serve as the clues not only to select the possible solutions by this work, but also to
constrain the system parameters strongly.

2. Specification of the demerits of the phase-fold of transit light curves in Barnes et al.
(2013). The phase-fold makes several transit light curves combined into one. Since in
particular the 2009 observational term spreads over about 1.5 months, however, this
procedure adopted in Barnes et al. (2013) would drop the variability of the transit
light curve during the observational intervals. By reproducing the time evolution
of the transit light curve during 2009 observational term, we pointed out that 1.5
months interval brings about the significant change in light curves (Figure 5.6).
Therefore it is concluded that a part of the information in original data is lost by
phase-fold. The re-analysis of the current data without phase-fold is an important
issue to be tackled with.

3. Prospects of the detection of the planetary spin. The effect of the planetary spin
on the architecture of the precession was checked with our general formulation in
Appendix D. Although the planetary spin angular momentum is smaller in mag-
nitude than stellar spin or planetary orbital angular momenta by several orders of
magnitude, it is shown that the planetary spin alters the precession period by sev-
eral days, depending on the spin frequency and direction. Thus the accumulation
of the observational data could open the path to investigate the exoplanetary spin
frequency and direction. Since the planetary spin state is expected to reflect the
angular momentum accumulation history that the proto-planets had experienced,
the estimation of the spin state contributes to reveal the angular momentum trans-
portation mechanism within the protoplanetary disk which is not well known today.

4. Tidal evolution of the pre-main-sequence star system. Besides the short term evolu-
tion of the system (the nodal precession with periods of several hundred or thousand
days), we pursued the long term evolution of PTFO 8-8695 system taking into ac-
count the tidal effect between the central star and the planet. And then we found
that the results of the evolution with the tidal quality factor Q whose value is
identified with that of the Sun are incompatible with the current configuration of
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PTFO 8-8695 system. Specifically, the planet is predicted to fall into the central
star within the time scale shorter than the age of the system (Figure 5.12). Since
the Q value reflects the internal profiles of the star and planet, identification of the
Q value consistent with the current architecture of the system may make it possible
to investigate the internal structures of pre-main-sequence star or hot Jupiter which
remain unclear until today.

Although the statistics on the spin-orbit angle ϕ greatly contributes to reveal the
origin of the widely-observed close-in planets, the measurement of ϕ has not been well
performed for the younger systems until today. This is because the RM effect, which
is the most popular method to detect the projected spin-orbit angle λ, is hard to be
applied to younger systems since faster rotation and higher noise level of younger stars
make it difficult to detect the stellar spin signals by the observations. On the other
hand, the nodal precession with gravity darkening effect becomes more available for the
detection of ϕ as the star rotates faster. This is because the larger extent of the stellar
rotational deformation appears as the more drastic variability of the transit light curves.
This method for the measurement of ϕ making use of the nodal precession constructs the
complementary relation with the measurements with the RM effect, and is expected to
be successful as the standard model for the estimation of ϕ for the rapid rotator systems
(in general, younger systems).

The wavelength dependence of the shapes of transit light curves could also open the
road of providing severer constraints on the system parameters. Originally,transit light
curves are usually near-achromatic since planetary occultation basically gives no dis-
tinction for the wavelengths, and all wavelengths are united to construct the actually-
observable stellar flux. However, both limb-darkening effect and gravity darkening effect
have the wavelength dependence for their effectiveness. Thereby transit light curves show
different shapes when seen by different wavelengths. The monochromatic transits at 0.658
µm is assumed in this work following Barnes et al. (2013), however, the future transit
observations with different wavelengths are expected to provide other insights into the
properties of the system. In principle, the future observation for the stronger constraints
on the system parameters is not necessarily performed with the spectroscopical facilities
which usually require much equipment efforts, but can be achieved by only photometric
observations at the several wavelengths.





Acknowledgments

I would like to express my sincere gratitude to all of my collaborators. I could not have
completed this dissertation without their help.

In particular, I would like to gratefully express thanks to my supervisor, Prof. Yasushi
Suto, who provided me the opportunity to study and enjoy the exoplanetary science.
He always seriously listened to my questions or ideas, and gave me precious advices on
my research based on his great insight into various aspects of exoplanets. His way of
thinking and his point of view on how science and people in science should be always
encouraged me to put forward my research. I am also grateful to Yuxin Xue, who gave
me various techniques of programming and spared time for me to check my code. I
also sincerely acknowledge Kento Masuda, who taught me the dynamics of the planetary
systems and the way of analysing the transit light curves from the beginning. He also
readily took charge of formulating the light curve model, and made great effort to improve
it. Furthermore, every day’s insightful discussion with him always motivated me and
triggered my research to go ahead. Also to all other people in UTAP, the University
of Tokyo Theoretical Astrophysics group, I wish to show my gratitude. They attended
my seminars, provided me helpful advices and gave me comfortable environments for my
research.

Besides the UTAP members, I would like to show my deepest gratitude to Prof. Julian
van Eyken and his collaborators, who willingly made the data by Palomar Observatory
available to us, and Prof. Masahiro Ikoma, who got in contact with them. This work could
never have been finished without their kindness. I also feel thankful to Prof. Atsunori
Yonehara and his colleagues in Kyoto Sangyo University, who are now trying to obtain
additional photometry on PTFO 8-8695.

Finally, I greatly thank my parents, Tsutomu Kamiaka and Junko Kamiaka. They always
respected my decisions on my career judgement and supported me in all aspects.

71





Appendix A

Planet Formation Theory

Appendix A.1 Conventional theory

Until a couple of decades ago, the solar system was the unique planetary system, and
it consists of planets, dwarf planets and many other small objects including asteroids,
Kuiper-belt objects, the Oort clouds and so on. Among them, planets have been known
and been major research areas in physics, astronomy and planetary science. They are
classified into mainly three groups; “terrestrial planets” for the innermost four planets
(Mercury, Venus, Earth, Mars), “gas giants” for the intermediate two planets (Jupiter
and Saturn) and “ice giants” for the outermost two planets (Uranus and Neptune). Since
we did not know the architecture of other planetary systems before the first detection of
an exoplanet, planet formation scenario had been developed and improved for the purpose
of the natural explanation to the architecture of the solar system. The most successful
planet formation theory, the Hayashi model, greatly attracts the attention and is widely
accepted (Hayashi et al. 1985). The basic processes are briefly summarized as follows.

1. In the phase of the formation of the central protostar through the contraction of
the molecular clouds, some portion of gas and dust components that retains their
primordial angular momentum cannot accrete into the protostar and hence form
the protoplanetary disk around the protostar.

2. The dust component within the disk is gradually settled into the mid-plane re-
gion, providing the environment suitable for the formation of planetesimals through
accretion.

3. Mutual collisions among planetesimals lead to the formation of the proto-planets.
This process is more likely to take place in the outer region of the snow line beyond
which the stellar irradiation is not so severe that the dust particles are easy to
coagulate. Therefore, the proto-planets within the snow line tend to be relatively
smaller (known as terrestrial planets), while the solid cores beyond the snow line
tend to become massive enough to trigger the subsequent acquisition of the gas
envelopes to become gas giants.
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Another important insight from this model is concerned with the orbital inclinations
and eccentricities of the planets. Assuming that the stellar equatorial plane and protoplan-
etary disk are intrinsically coplanar, the Hayashi model predicts the resulting distribution
of the planetary orbits to be coplanar and aligned with stellar equatorial plane, since all
planet formation processes are considered to occur within the protoplanetary disk. More-
over, the resulting eccentricity of planets is likely to be close to zero, even if not, cannot be
substantially large. This is because the friction of the planets within the protoplanetary
disk with disk gas components acts on the planets to suppress their eccentricities to be
close to zero.

In conclusion, the architecture of the planetary system that the Hayashi model predicts
is the circular and coplanar system where the terrestrial planets reside in the inner part
of the planetary system, and gas giants reside in the outer part. The most successful
achievement of this model is that it can naturally explain the architecture of the solar
system. This planet formation scenario is now known and widely accepted as the core
accretion scenario (for example, see Ikoma et al. 2000, Armitage 2010).

Appendix A.2 Spin-orbit angle distribution and its

implication to planet formation the-

ory

It is believed that the discrepancy between the observationally-revealed architecture of
the planetary systems and theoretical prediction such as the existence of hot Jupiters,
eccentric planets and retrograde planets could be reconciled by a slight modification of
the Hayashi model. Specifically, the subsequent orbital migration after the formation of
gas giants is responsible for the explanation of the diversity of the exoplanetary systems.
According to that idea, some gas giants formed in the outer region of the planetary
system are to experience the subsequent orbital migration, leading to the giant planets
located at the vicinity of the central star as observational data demonstrate (Ida & Lin
2004). There exist two widely accepted mechanisms as the cause of the inward orbital
migration; one is disk interaction model (Lin et al. 1996, Bate et al. 2003) and the other is
gravitational scattering model (Wu & Murray 2003, Nagasawa & Ida 2011). The detailed
explanation of these mechanisms with the help of analytical and/or numerical studies are
beyond the scope of this paper, but we summarize their basic pictures briefly.

Disk interaction model is based on the idea that gas giants within the protoplanetary
disk suffer from the friction with the remaining gas component of the disk, and exchanges
their angular momentum. In this model, gas giants gradually shrink their orbits by
providing their angular momentum to the surrounding gas components, and finally reach
the vicinity of their central stars. This type of migration is called Type I/II migration
depending on the mass of gas giants (Type I for less massive gas giants, Type II for
massive gas giants). Especially Type II migration predicts that migrating gas giant open
the gap around it within the disk (Klahr & Kley 2006, Duffell & MacFadyen 2013). The
gas component flows into the gas giant from inner region of the gap and goes away into
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Figure A.1: Schematic illustration of the disk interaction model. The stellar spin and
planetary orbital axes are denoted as the red and blue arrows, respectively. The spin-
orbit angle, the angle between the stellar spin and planetary orbital axes is defined as
ϕ. The path of planetary orbital migration within the protoplanetary disk (light green
region) is shown as the solid spiral.

the outer region of the gap. Thus the gas attains positive angular momentum from the
planetary orbit, and gas giants migrate inward.

The gravitational scattering model concerns the dynamical evolution of the system
after the protoplanetary disk dissipation. This model assumes the planetary system har-
bouring two or more gas giants orbiting around the central star. At the close encounter
between gas giants, mutual gravitational interaction blows away one planet to outer orbit
or even eject it from the planetary system. In turn, the counterpart planet falls into
inner orbit to be observed as hot Jupiter, because total angular momentum of two gas
giants is conserved. This model predicts that the resulting inner gas giant tends to show

φ≠ gravitational

sca�ering

stellar

spin axis

planetary

orbital axis

Figure A.2: Schematic illustration of the gravitational scattering model. The stellar spin
and planetary orbital axes are denoted as the red and blue arrows, respectively. The spin-
orbit angle, the angle between the stellar spin and planetary orbital axes is defined as ϕ.
The dashed and solid lines are the planet and its orbit before and after the gravitational
scattering, respectively.
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high orbital inclination with respect to the central star’s equatorial plane, and/or high
eccentricity. In fact, the radial velocity measurement of the exoplanetary systems is now
accumulating the samples showing high eccentricity signature (Figure 1.1), which indi-
cates that this dynamical scenario is capable of explaining the origin of such hot Jupiters.

So far, it is not yet clear which model is mainly responsible for the observed distribution
of the hot Jupiters or their relative contribution in the actual planetary systems, since
both models are consistent with the current data. Here, the key parameter to distinguish
between the two models is the spin-orbit angle, ϕ, the angle between the stellar spin
axis and planetary orbital axis. As mentioned above disk interaction model predicts the
planetary orbital axis is aligned with the stellar spin axis (namely, spin-orbit angle ϕ is
close to 0◦ (Figure A.1), whereas gravitational scattering model predicts spin-orbit angle
ϕ is distributed broadly (Figure A.2). Therefore, statistics of the measured ϕ reveals
which planet migration model is dominant in the actual planetary systems.

We here should pay attention to the possibility that the spin-orbit angle ϕ evolves
with time due to the tidal effect with the central star after hot Jupiters reached the
vicinity of the central star (Hut 1981, Barker & Ogilvie 2009 and Correia et al. 2011).
In general, the tidal force between star and planet makes (i) planetary semi-major axis
damp, (ii) orbital eccentricity damp (approaching circular orbit), (iii) stellar/planetary
spin frequency and orbital frequency be synchronized and (iv) stellar equatorial plane
and planetary orbital plane be coplanar (ϕ → 0◦). Therefore the determined spin-orbit
angle ϕ from observational data may reflect the degree of the tidal effect that the star and
planet experience after the inward orbital migration of gas giants. Thus this process may
conceal the initial memory of the orbital migration mechanism and prevent us from simple
interpretation to ϕ. The strength of the tidal effect is also another important problem.

Tidal dissipation is thought to occur mainly in the convective envelope of the central
star, whose depth is sensitive to the spectrum type of the star. Some works (Winn
et al. 2010, Dawson 2014) claim that the tidal effect becomes stronger for Teff < 6100K
cases (with thick convective envelope) than for Teff > 6100K cases (with tiny convective
envelope). This fact makes the problem more complicated because we have to take the
effective temperature of the star into account for the estimation of the spin-orbit angle ϕ.

The Rossiter-McLaughlin effect (hereafter, the RM effect) is the most popular method
to measure the spin-orbit angle (Rossiter 1924 and McLaughlin 1924). In general, stellar
rotation causes the stellar flux from the stellar potion approaching the observer to be
blue shifted, while the stellar flux from the stellar portion receding the observer to be
red shifted, resulting in the broadened spectra lines. When the planet is prograde and
the transit event is seen by edge-on, planet hides first the approaching and then receding
portion of the stellar disk. Accordingly, the spectrum lines from the star are as a whole
to be red and then blue shifted. The extent that the spectrum lines are blue/red shifted
and its time variation differ according to (i) the direction of stellar spin axis (stellar
obliquity), (ii) the direction with which the transiting planet enters the stellar disk and
(iii) the impact parameter of the transit, from which one can measure the spin-orbit angle
projected onto the sky plane, λ. Recently large number of measurement of spin-orbit angle
ϕ has been performed, some of them reporting spin-orbit aligned cases and the others
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are misaligned (Hirano et al. 2012, Albrecht et al. 2013, Queloz et al. 2000, Winn et al.
2005, Hirano et al. 2011 and Walkowicz & Basri 2013). Figure A.3 shows the observed
distribution of projected spin-orbit angle λ. Although it can be seen that observed samples
have the tendency to be concentrated near alignment state λ∼0◦, significant fraction of
planetary systems is highly misaligned, even in retrograde orbits.

Figure A.3: Observed distribution of the projected spin-orbit angle λ via the RM effect as
of August 20, 2013. Black circles denote the inner-most in single transiting systems, while
red circles denote the largest planets in the multi-transiting systems. The solar system
planets are depicted as blue diamonds. Figure taken from Xue et al. (2014).

The sensitivity of the RM effect to measure λ declines when the central star rotates
rapidly. This is partly because rapid rotation causes the observed spectra lines to be
severely broadened, which makes the blue/red shift difficult to be clearly analyzed. In
general, magnetic braking mechanism is thought to decelerate the stelar rotation with
time, leading to sharper spectra lines as the star becomes older. Therefore in other words,
the RM effect is hard to be applied to the pre-main-sequence stars since they are usually
considered as rapid rotators. Another reason for this tendency is that younger stars
are so active that higher noise level may inhibit us from obtaining precise and accurate
observational signals. Thus almost all successful works with the RM effect are focused on
the matured main-sequence stars. The spin-orbit angle in the younger system, however,
has not been seriously investigated until today.

Although projected spin-orbit angle λ is useful in revealing the configuration of the
directions of stellar spin or planetary orbit in the observing system, λ is different from the
three dimensional spin-orbit angle ϕ. To say further, λ is alway smaller than ϕ because
it is projected quantity. Recently, a new method that combines the RM effect and stellar
seismology becomes available in estimating ϕ (Huber et al. 2013, Benomar et al. 2014)
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since the investigation of the stellar seismology provides the information on the direction
of the stellar spin.

In conclusion for this chapter, both statistics of the observational data on spin-orbit
angle ϕ and detailed understanding on the tidal effect responsible for the time evolution
of ϕ are definitely required in order to make clear the actual formation scenario of widely
observed hot Jupiters.



Appendix B

Keplerian Motion

Appendix B.1 Planetary position and velocity in terms

of true anomaly

Under the condition where the central star and the planet can be assumed to be the point
masses, the orbit of the planet is derived in analytical form as an elliptical motion from
Newton’s equation, which is so-called two-body problem. In this chapter, the index 0 is
to denote the central star, while 1 is for the planet. The following contents are easier to
understand with Figures 3.1 and 3.2. The equations of motion in the inertial frame with
star (mass M0) and planet (mass M1) under the gravitational interactions are given by

M0r̈0 = +G
M0M1

r
r (B.1)

M1r̈1 = −GM0M1

r
r, (B.2)

with gravitational constant G, position vectors of the star r0 and the planet r1, and the
relative motion of the planet with respect to the star r = r1 − r0. From these equations,
the time evolution of the relative motion r is calculated by solving

r̈ +G(M0 +M1)
r

r
= 0, (B.3)

whose integration leads to

r×ṙ = h, (B.4)

where h is the constant vector perpendicular to both r and ṙ. Therefore the planetary
orbit lies within the plane normal to h, and never changes its direction with time.

In order to solve equation (B.3), we adopt the polar coordinate centered on the star,
whose position, velocity and acceleration vectors are written as

r = rr̂ (B.5)

79
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ṙ = ṙr̂ + rθ̇θ̂ (B.6)

r̈ = (r̈ − rθ̇2)r̂ +

[
1

r

d

dt
(r2θ̇)

]
θ̂, (B.7)

where r̂ and θ̂ are the unit vectors along with radial and azimuthal directions, respectively.
Substitution of equations (B.5) and (B.6) into equation (B.4) gives

h = r2θ̇ẑ, (B.8)

with unit vector ẑ lying along with the normal to orbital plane. The magnitude of this
vector

h = r2θ̇ (B.9)

remains constant although r and θ̇ may vary with time. Therefore, the the area element
dA swept by the planetary position vector during the time interval dt is

dA =

∫ r

0

rdrdθ =
1

2
t2dθ, (B.10)

and thus

Ȧ =
1

2
r2θ̇ =

1

2
h = constant, (B.11)

which states that the star-planet line sweeps the equal areas in equal times.
Comparison equation (B.7) with equation (B.3) provides the scalar differential equa-

tion,

r̈ − rθ̇2 = −G(M0 +M1)

r2
. (B.12)

Transition of the variable r into u = 1
r
and making use of equation (B.9) give

r̈ = −hd
2u

dθ2
θ̇ = −h2u2d

2u

dθ2
, (B.13)

leading to

d2u

dθ2
+ u =

G(M0 +M1)

h2
, (B.14)

where time derivative was all eliminated. The solution of this equation becomes

u =
G(M0 +M1)

h2
[1 + e cos (θ −ϖ)] (B.15)
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where e and ϖ are two constants of integration, and turning back to r gives

r =
p

1 + e cos (θ −ϖ)
, (B.16)

with p = h2/G(M0 +M1). In general, this kind of solution is applied into three different
motions (elliptic orbit including a circle, parabola and hyperbola) depending on the initial
conditions of the system. We here consider only elliptic motions and for which

p = a(1− e2), (B.17)

where a constant variable a is the semi-major axis of the elliptic orbit. a and the semi-
minor axis b are related through e by

b2 = a2(1− e2) (B.18)

Therefore, r can be given by

r =
a(1− e2)

1 + e cos (θ −ϖ)
(B.19)

with any given value of θ. In addition, the planet is located at the periapse (r = a(1− e))
when θ = ϖ, whereas located at the apoapse (r = a(1 + e)) when θ = ϖ + π. Here ϖ
coincides with the angular direction for which the planet lies in the periapse. Then we here
define the true anomaly f measured with respect to the periapse direction (f = θ −ϖ),
which gives

r =
a(1− e2)

1 + e cos f
. (B.20)

If we define the cartesian coordinate centered on the star with x-axis pointing the direction
of the periapse, the position of the planet is represented as

x = r cos f (B.21)

y = r sin f. (B.22)

The orbital period, T , can be related to other orbital parameters. Since T is the
time required for the star-planet line to sweep the all elliptic area of the planetary orbit
(A = πab), so from equation (B.11)

T 2 =

(
A

Ȧ

)2

=

(
πab
1
2
h

)2

=
4π2

G(M0 +M1)
a3, (B.23)

which turns out to be independent of the orbital eccentricity e. This equation corresponds
to the Kepler’s third law. We here define the mean motion n as the planetary orbital
frequency,

n =
2π

T
, (B.24)
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which rewrites the Kepler’s third law and h;

G(M0 +M1) = n2a3, (B.25)

h = na2
√
1− e2 =

√
G(M0 +M1)a(1− e2). (B.26)

It is useful to write down the analytic expression for the planetary velocity v as well
as the position r (equation B.20). To proceed, we take scalar product of equation (B.3)
with ṙ and use equations (B.5) and (B.6), lending to

ṙ·r̈ +G(M0 +M1)
ṙ

r2
= 0, (B.27)

whose integration provides

1

2
v2 − G(M0 +M1)

r
= C, (B.28)

where v2 = ṙ·ṙ and C is the constant of the integration. Equation (B.28) clearly shows
that the orbital energy per unit mass is conserved through the planetary orbital motion.
With the help of equation (B.6), we obtain

v2 = ṙ·ṙ = ṙ2 + r2ḟ 2. (B.29)

Differentiation of equation (B.20) shows

ṙ =
rḟe sin f

1 + e cos f
, (B.30)

which can be combined with equations (B.26), (B.20) and (B.26) into

ṙ =
na√
1− e2

e sin f (B.31)

and

rḟ =
na√
1− e2

(1 + e cos f). (B.32)

Therefore we can rewrite equation (B.29);

v2 =
n2a2

1− e2
(1 + 2e cos f + e2), (B.33)

or

v2 = G(M0 +M1)

(
2

r
− 1

a

)
, (B.34)

which are the function of f and r, respectively.



Appendix B.2
Planetary position in terms of time 83

Appendix B.2 Planetary position in terms of time

In the previous section, we eliminated the time derivative from differential equations, so we
got the planetary position r in terms of θ (equivalently, true anomaly f). In this section,
we show the way to relate the planetary position and time through several variables and
equations. For that, we first rewrite ṙ in terms of r with the aid of equations (B.20),
(B.25), (B.32) and (B.34). It returns

ṙ =
na

r

√
a2e2 − (r − a)2. (B.35)

This differential equation can be solved by introducing a new variable, eccentric anomaly
E, so that E satisfies

r = a(1− e cosE). (B.36)

Then differential equation is transformed into

Ė =
n

1− e cosE
, (B.37)

and the solution is given by

n(t− t0) = E − e sinE, (B.38)

where t0 is to be the constant of the integration which meets E = 0 when t = t0. By
introducing additional variable mean anomaly,M = n(t−t0), it becomes possible to write

M = E − e sinE, (B.39)

which is known as Kepler equation. It is clear that M = f = 0 when t = t0, and
M = f = π when t = t0 + T/2. Also, one can see that mean anomaly M varies linearly
with time.

For a given t, one can (i) determine M from M = n(t− t0), and (ii) find E by solving
equation (B.39), (iii) get r from equation (B.36). When specifying the three dimensional
planetary position in terms of the orbital elements, however, it is convenient to write
down the planetary position in terms of true anomaly f , rather than eccentric anomaly
E. From geometrical exercises, it can be shown that E and f are related;

tan
f

2
=

√
1 + e

1− e
tan

E

2
. (B.40)

Finally, this equation completes the path to relate the given time t and planetary position
r, represented in terms of f (equation B.20).
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Appendix B.3 Three dimensional representation of

the planetary orbit

Three dimensional planetary position vector is written down as x
y
z

 =

 r cos f
r sin f

0

 (B.41)

in the coordinates centered on the star where x-axis points the direction of the periapse
of the planetary elliptic orbit, y-axis is perpendicular to the x-axis and lies within the
planetary orbital plane, and z-axis points the direction normal to the orbital plane giving
a right-handle triad with both x and y-axes. By definition, planet orbits within the x-y
plane.

We next convert this expressions into those in the reference frame where Z-axis points
the observer and X-axis lies along with reference direction, making remaining Y -axis form
a right-handed triad with both X and Z-axes. The plane which contains X and Y -axes
is the reference plane.

Let i denote the orbital inclination, the angle between the orbital plane and the ref-
erence plane. The ascending node is defined as the point where the planet crosses the
reference plane from negative-Z region to positive-Z region. The longitude of the ascend-
ing node, Ω, is to depict the argument of the ascending node measured from X-axis. The
angle between the radius vector to the longitude of the ascending node and the radius
vector to the periapse is called argument of periapse with the character ω. Note that
the inclination i is defined for 0◦ < i < 180◦, and the orbit is called prograde when
0◦ < i < 90◦, while retrograde when 90◦ < i < 180◦.

(x, y, z) system and (X,Y, Z) system are related with each other through three-times
rotational manipulations.

1. rotation about the z-axis by the angle ω so that x-axis coincides with the radial
vector to the longitude of the ascending node.

2. rotation about the x-axis by the angle i so that the reference and orbital plane are
aligned.

3. rotation about the z-axis by the angle Ω so that the radial vector to the periapse
coincides with X-axis.

Rotation matrices about x, y and z-axes are specified as

Px(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 , (B.42)

Py(ϕ) =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 , (B.43)
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and

Pz(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 . (B.44)

Consequently,  X
Y
Z

 = Pz(Ω)Px(i)Pz(ω)

 x
y
z

 , (B.45)

which gives by equation (B.41)

X = r(cosΩ cos (ω + f)− sinΩ sin (ω + f) cos i)

Y = r(sinΩ cos (ω + f) + cosΩ sin (ω + f) cos i)

Z = r sin (ω + f) sin i.

(B.46)

These are the analytical expressions for the three dimensional planetary position in the
reference frame in terms of true anomaly f .
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Transits

Appendix C.1 General theory

Appendix C.1.1 Geometry of the transits

When seen nearly from edge-on, the star and planet in an exoplanetary system periodically
eclipse each other. In general the star and planet have quite unequal sizes, and the eclipse
of the smaller body in front of the larger body is called transit and the eclipse of the
smaller body behind the larger body is occultation (Figure C.1). We hereafter focus on

Figure C.1: Schematic illustration of the transits and occultations. We observe not the
stellar and planetary flux separately, but only combined one. During a transit, the flux
decreases because the planet masks a fraction of the stellar disk. Figure taken from Winn
(2010).

the transits alone (see Winn 2010 for occultations).

87
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For the geometric description, we adopt the (X, Y, Z) coordinates in Appendix B
with X-Y plane coincidental with the sky plane and positive Z-direction pointing at
the observer (Figure 3.2). The transit occurs when the sky-projected planetary position,
rsky =

√
X2 + Y 2, is smaller than the stellar radius R⋆. This relation is specified with the

aid of equations (B.20) and (B.46);

rsky =
a(1− e2)

1 + e cos f

√
1− sin2(ω + f) sin2 i < R⋆, (C.1)

where a, e, ω, i and f are the semi-major axis of the planetary orbit, orbital eccentricity, the
argument of periapse, orbital inclination and true anomaly, respectively. In general cases,
the epochs when rsky is minimized are around the inferior conjunction when ω+f = +π/2
unless the central star is highly oblate, the planetary orbit is extremely eccentric or close-
in orbits are with grazing eclipses. Then the condition (C.1) is reduced in terms of the
impact parameter b, the sky-projected distance at the inferior conjunction in units of the
stellar radius;

b =
a cos i

R⋆

(
1− e2

1 + e sinω

)
< 1. (C.2)

For the common case R⋆≪a, the planet’s path across the stellar disk is approximately a
straight line between the points X = ±R⋆

√
1− b2 at Y = bR⋆ (X-axis is chosen to be

parallel to the transit path here; Ω = 180◦). Note that R⋆≪a does not hold in PTFO
8-8695 system where the orbiting exoplanet is so close to the central star that a∼1.7R⋆.

Appendix C.1.2 Phases of the transits

In a non-grazing eclipse, the stellar and planetary disks are tangent at four contact epochs
t1, t2, t3 and t4 as illustrated in Figure C.2 (In a grazing eclipse, second and third contact
do not occur). The epochs t1 and t4 can be calculated with rsky = R⋆ +Rp, while t2 and
t3 are with rsky = R⋆−Rp. The planetary orbital phase is classified into three stages with
the help of t1-t4;

1. out-of-transit (t < t1 or t4 < t). The planetary disk never overlaps with the stellar
disk.

2. ingress (t1 < t < t2) and egress (t3 < t < t4). Some (not all) portion of the planetary
disk overlaps with the stellar disk.

3. full-transit (t2 < t < t3). The planetary disk completely overlaps with the stelar
disk.

The durations of ingress and egress are almost the same unless the stellar oblateness is
very large or the planetary orbit is highly eccentric where the projected speed of the
planet varies between ingress and egress.

The ordinary shape of transit light curve is given in Figure C.3.
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Figure C.2: Schematic illustration of the out-of-transit, ingress/egress and full-transit
phases in the X-Y plane (sky plane). The X and Y axes are chosen so that the descending
node of the planet’s orbit is placed along the positive-X axis (i.e., Ω = 180◦). t1-t4 are the
four contact epochs between the stellar and planetary disks. τ and T are the durations of
ingress/egress and full-transit phases, respectively. b is the impact parameter of transit,
and δ denotes the extent of flux reduction during the full-transit phase. Figure taken
from Winn (2010).

Appendix C.2 Supplements to the light curve mod-

elling

Appendix C.2.1 Integration scheme of Fblocked(t)

full transit or ingress/egress

When integrating equation (4.10), we need to judge the system is under (i) out-of-transit,
(ii) ingress/egress or (iii) full transit. The position of the planetary disk center in the sky
plane, (x′p, y

′
p), is calculated from Keplerian motion (see equation B.46 in Appendix B) as

x′p = r(cosΩ cos (ω + f)− sinΩ sin (ω + f) cos i) (C.3)

y′p =
r

1− feff
×(sinΩ cos (ω + f) + cosΩ sin (ω + f) cos i). (C.4)
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Figure C.3: Phase-folded transit light curve of HD 209458. Figure taken from Brown
et al. (2001).

Then, the distance from the origin to the point on the edge of planetary disk, dp, is
parametrized as

d2p(θ) =
[
x′p +Rp cos

(π
2
+ θ′p + θ

)]2
+

[
y′p +

Rp

1− feff
sin
(π
2
+ θ′p + θ

)]2
, (C.5)

where Rp is the planetary radius, θ′p = tan−1(y′p/x
′
p) and 0 < θ < 2π. The values of θ

that minimizes/maximizes dp, θp,min/θp,max, correspond to the roots of

fp(θ) ≡
dd2

p

dθ

= 2y′p
Rp

1− feff
cos
(π
2
+ θ′p + θ

)
− 2x′pRp sin

(π
2
+ θ′p + θ

)
+ 2

[(
Rp

1− feff

)2

−R2
p

]
sin
(π
2
+ θ′p + θ

)
cos
(π
2
+ θ′p + θ

)
(C.6)

in 0 < θp,min < π and π < θp,max < 2π, respectively. Then we define the (i) out-of-transit,
(ii) ingress/egress and (iii) full transit as

1. rmin ≡ dp(θp,min) ≥ R⋆,eq

2. rmin ≡ dp(θp,min) < R⋆,eq and rmax ≡ dp(θp,max) > R⋆,eq

3. rmax ≡ dp(θp,max) ≤ R⋆,eq

In case 1, obviously Fblocked(t) = 0. We discuss cases 2 and 3 separately below.
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integration during the ingress/egress

In this case, Fblocked is calculated as

Fblocked(t) = (1− feff)

∫ R⋆,eq

rmin

r′dr ′
∫ θmax(r ′)

θmin(r ′)

dθ′Iλ,p(r
′, θ′), (C.7)

where the integration over θ′ is ahead, followed by radial integration. Here θmin(r
′) and

θmax(r
′) are lower and upper limits in the integration, respectively, which are estimated

as follows (see Figure C.4).
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Figure C.4: Schematic illustration of the angles;
θp,min, θp,max, θmin(r

′), θmax(r
′), θp,lower(r

′), θp,upper(r
′) for x′2p + y′2p ≥ R⋆,eq (left) and

x′2p + y′2p < R⋆,eq (right). The stellar disk is denoted as the red region, and the planetary
disk is blue.

First, the positions of intersection between the planetary disk and the circle with radius
r′ centered on the origin can be determined in terms of the angle θ in polar coordinates
centered on (x′p, y

′
p) as the roots of(

Rp cos
(
π
2
+ θ′p + θ

)
+ x′p

r′

)2

+

(
Rp

1−feff
sin
(
π
2
+ θ′p + θ

)
+ y′p

r′

)2

= 1. (C.8)

Note that the roots θp,lower(r
′) and θp,upper(r

′) are chosen according to the position of the
planetary disk center as

• for x′2p + y′2p ≥ R⋆,eq, θp,min < θp,lower(r
′) < π and 0 < θp,upper(r

′) < θp,min

• for x′2p + y′2p < R⋆,eq, π < θp,lower(r
′) < θp,max and θp,max < θp,upper(r

′) < 2π.
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Second, θp,lower(r
′) and θp,upper(r

′) are translated to the angles θmin(r
′) and θmax(r

′) in
the polar coordinates centered on the origin through the relation(

r′ cos θmin/max(r
′)

r′ sin θmin/max(r
′)

)
=

(
x′p
y′p

)
+

(
Rp cos

(
π
2
+ θ′p + θp,lower/upper(r

′)
)

Rp

1−feff
sin
(
π
2
+ θ′p + θp,lower/upper(r

′)
) ) . (C.9)

integration during the full transit

During the full transit, Fblocked(t) is calculated in the polar coordinates (r̃, θ̃) centered on
(x′p, y

′
p);

Fblocked(t) = (1− feff)

∫ 2π

0

dθ̃

∫ R̃(θ̃)

0

r̃dr̃ Iλ,p(r̃ , θ̃), (C.10)

where Iλ,p is defined as

Iλ,p(r̃, θ̃) ≡ Iλ

(√
(x′p + r̃ cos θ̃)2 + (y′p + r̃ sin θ̃)2, tan−1

[
(y′p + r̃ sin θ̃)/(x′p + r̃ cos θ̃)

])
.

(C.11)

The integration with respect to r̃ is ahead, followed by θ̃ integration. The upper limit of
the radial integration, R̃(θ̃), is dependent on θ̃ since the planetary disk takes elongated
shape to the y-direction through the transformation making elliptic stellar disk into circle
form (y′ = y/(1− feff)), and given by the condition(

R̃(θ̃) cos θ̃

Rp

)2

+ (1− feff)
2

(
R̃(θ̃) sin θ̃

Rp

)2

= 1 (C.12)

as

R̃(θ̃) =
Rp√

cos2 θ̃ + (1− feff)2 sin
2 θ̃
. (C.13)

Appendix C.2.2 Consistency relation for Tpol

The temperature parameter necessary for our light curve model is the polar surface tem-
perature Tpol, while the parameter that observations provide is the stellar effective tem-
perature Teff . They are not identical, but related as (Philippov & Rafikov 2013)

Tpol = Teff×

[
1

πR2
⋆,eq(1− feff)

∫
stellar disk

L(r′, θ′)

(
g(r′, θ′)

gpole

)4βGD

r′dr ′dθ′

]−1/4

. (C.14)

In this thesis, however, Tpol and is assumed to be the same as Teff since the difference
would generally be negligible.
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Appendix C.2.3 Absolute dimension of the system

In the formulation in chapters 3 and 4, the resulting transit light curve is invariant under
the transformation ofM⋆ and R⋆,eq that keeps ρ⋆ ≡M⋆/

4
3
πR3

⋆,eq the same. Therefore, any
M⋆ and R⋆,eq scaled in such a way are approved as the solutions that satisfy the observed
transit light curves, which make it impossible to obtain the absolute set of M⋆ and R⋆,eq

(i.e., one cannot get M⋆ and R⋆,eq separately). One way to solve this problem is to make
use of the information on spectroscopic v sin i⋆, because

v sin i⋆ =
2πR⋆,eq

Prot

sin i⋆ =
2π

Rrot

(
3M⋆

4πρ⋆

)1/3

sin i⋆

= 4.90187 kms−1

(
1/Prot

µHz

)(
M⋆

M⊙

)1/3(
ρ⋆

gcm−3

)−1/3

sin i⋆ (C.15)

explicitly includes either M⋆ or R⋆,eq (for example, Barnes et al. 2011).





Appendix D

General Formulation of Equations of
Motion

Appendix D.1 Gravitational potential energy

Appendix D.1.1 Centrifugal forces

In this chapter, the index 0 with mass M or radius R is to denote the central star while
1 for the planet. Stellar or planetary spin causes them to be deformed due to the effect
of centrifugal force. Let x3-axis be along with the spin vector (with spin rate ω, unit
vector Ŝ) of the rotating body, x1- and x2-axes be mutually orthogonal directions placed
within the plane perpendicular to the x3-axis. In addition, let r, θ and ϕ be the radial
extent, colatitude and longitude measured in the spherical coordinates centered on the
body, respectively. The centrifugal force per unit mass is given as (Goldstein et al. 2002)

Fcf = ω2(x1x̂1, x2x̂2, 0), (D.1)

and centrifugal potential Vcf which satisfies Fcf = −∇Vcf is given by

Vcf(r, θ) = −1

2
ω2r2 sin2 θ. (D.2)

This potential is found to be independent of the longitude, which means that the rotational
effect breaks the spherical symmetry of the system but retains axisymmetry (a = b > c
where a, b and c are the radii of the object along with x1-, x2- and x3-axis, respectively).

Appendix D.1.2 Gravitational potential outside of the rotating
body

First we set r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) as a position vector of the point outside
the star and r′ = (r′ sin θ′ cosϕ′, r sin θ′ sinϕ′, r cos θ′) as a position vector of the mass
element within the star (r > r′), with (θ, ϕ) showing the polar and azimuthal angles of r

95
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and (θ′, ϕ′) for r′. Based on this expression, the integral over the whole figure of the star
with respect to r′ provides the gravitational potential V at r:

V = −G
∫
star

1

|r − r′|
dM0, (D.3)

where G is gravitational constant, dM0 = ρ0r
′2 sin θ′dr ′dθ′dϕ′ is the mass element placed

at r′ with mass density distribution of the star ρ0.
The integrand can be expanded as

1

|r − r′|
= r−1

[
1− 2

r′

r
(r̂·r̂′) +

(
r′

r

)2
]− 1

2

=
1

r

∞∑
n=0

(
r′

r

)n

Pn(r̂·r̂′), (D.4)

where Pn(r̂·r̂′) is a Legendre polynomial of degree n. In the spherical coordinates, the
argument (r̂·r̂′) is rewritten in terms of colatitudes and longitudes of r and r′ as

r̂·r̂′ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′). (D.5)

The following theorem for the Legendre polynomials is helpful to write down Pn(r̂·r̂′) in
terms of colatitudes and longitudes as

Pn(r̂·r̂′) =
n∑

m=0

(2− δm0)
(n−m)!

(n+m)!
Pnm(cos θ)Pnm(cos θ

′)cos(m(ϕ− ϕ′))

= Pn(cos θ)Pn(cos θ
′) + 2

n∑
m=1

(n−m)!

(n+m)!
Pnm(cos θ)Pnm(cos θ

′)cos(m(ϕ− ϕ′)),

(D.6)

where Pnm is the associated Legendre polynomial of degree n, orderm (note:m ≤ n, Pn0(x) =
Pn(x)) and δm0 is Kronecker’s delta. The explicit forms of Pnm up to the 4th degree are
presented in Table D.1. Note that ρ0 = ρ0(r

′, θ′) does not depend on ϕ′ and is symmetric
for northern and southern hemispheres of the rotating star.

With Stokes coefficients Cnm, Snm defined as{
Cnm

Snm

}
=

1

M0R0
n (2− δm0)

(n−m)!

(n+m)!

∫
star

(r′)n Pnm(cos θ
′)

{
cos(mϕ′)
sin(mϕ′)

}
dM0, (D.7)

the gravitational potential V can be expressed briefly as

V = −GM0

r

∞∑
n=0

n∑
m=0

(
R0

r

)n

(Cnm cos(mϕ) + Snm sin(mϕ))Pnm(cos θ) (D.8)
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with stellar mass M0 and stellar equatorial radius R0. Baring in mind that Sn0 = 0,
we here derive the explicit form of Stokes coefficients up to 4th degree. In the following
procedure, we use x′1x′2

x′3

 =

r′ sin θ′ cosϕ′

r′ sin θ′ sinϕ′

r′ cos θ′

 , (D.9)

and the symmetry of ρ0 with respect to the θ = π/2 plane (stellar equator). Namely, ρ0
is an even function with respect to cos θ′.

• n = 0

C00 =
1

M0

∫
star

dM0 = 1 (D.10)

• n = 1

C10 =
1

M0R0

∫
star

r′ cos θ′dM0 =
1

M0R0

∫
star

x ′
3dM0 = 0 (D.11)

C11 =
1

M0R0

∫
star

r′ sin θ′ cosϕ′dM0 =
1

M0R0

∫
star

x ′
1dM0 = 0 (D.12)

S11 =
1

M0R0

∫
star

r′ sin θ′ sinϕ′dM0 =
1

M0R0

∫
star

x ′
2dM0 = 0 (D.13)

• n = 2

C20 =
1

M0R2
0

∫
star

r′2
(
3

2
cos2 θ′ − 1

2

)
dM0

= − 1

M0R2
0

(
I33 −

1

2
(I11 + I22)

)
= − 1

M0R2
0

(C0 − A0) (D.14)

C21 =
1

M0R2
0

∫
star

r′2 sin θ′ cos θ′ cosϕ′dM0 =
I31

M0R2
0

= 0 (D.15)

S21 =
1

M0R2
0

∫
star

r′2 sin θ′ cos θ′ sinϕ′dM0 =
I23

M0R2
0

= 0 (D.16)

C22 =
1

4M0R2
0

∫
star

r′2 sin2 θ′ cos 2ϕ′dM0 =
I22 − I11
4M0R2

0

= 0 (D.17)

S22 =
1

4M0R2
0

∫
star

r′2 sin2 θ′ sin 2ϕ′dM0 =
I12

2M0R2
0

= 0, (D.18)

where the moment of inertia tensor Iij(i, j = 1, 2, 3) of the rotating star are defined
as

Iii =

∫
star

(x2j + x2k)dM0 for i ̸= j ̸= k (D.19)

Iij = −
∫
star

xixjdM0 for i ̸= j , (D.20)
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and from axisymmetry

I11 = I22(≡ A0) ̸= I33(≡ C0) (D.21)

Iij(i ̸= j) = 0. (D.22)

• n = 3

C30 =
1

M0R3
0

∫
star

r′3
(
5

2
cos3 θ′ − 3

2
cos θ′

)
dM0 = 0 (D.23)

C31 =
1

M0R3
0

∫
star

r′3 sin θ′
(
5

4
cos2 θ′ − 1

4

)
cosϕ′dM0 = 0 (D.24)

S31 = − 1

M0R3
0

∫
star

r′3 sin θ′
(
5

4
cos2 θ′ − 1

4

)
sinϕ′dM0 = 0 (D.25)

C32 =
1

M0R3
0

∫
star

r′3
1

4
cos θ′ sin2 θ′ cos 2ϕ′dM0 = 0 (D.26)

S32 =
1

M0R3
0

∫
star

r′3
1

4
cos θ′ sin2 θ′ sin 2ϕ′dM0 = 0 (D.27)

C33 = − 1

M0R3
0

∫
star

r′3
1

24
sin3 θ′ cos 3ϕ′dM0 = 0 (D.28)

S33 = − 1

M0R3
0

∫
star

r′3
1

24
sin3 θ′ sin 3ϕ′dM0 = 0 (D.29)

• n = 4

C40 =
1

M0R4
0

∫
star

r′4P4(cos θ
′)dM0 ( ̸= 0) (D.30)

C41 =
1

M0R4
0

∫
star

r′4 sin θ′
(
7

4
cos3 θ′ − 3

4

)
cosϕ′dM0 = 0 (D.31)

S41 = − 1

M0R4
0

∫
star

r′4 sin θ′
(
7

4
cos3 θ′ − 3

4

)
sinϕ′dM0 = 0 (D.32)

C42 =
1

M0R4
0

∫
star

r′4 sin2 θ′
(

7

24
cos2 θ′ − 1

24

)
cos 2ϕ′dM0 = 0 (D.33)

S42 =
1

M0R4
0

∫
star

r′4 sin2 θ′
(

7

24
cos2 θ′ − 1

24

)
sin 2ϕ′dM0 = 0 (D.34)

C43 = − 1

M0R4
0

∫
star

r′4 cos θ′ sin3 θ′ cos 3ϕ′dM0 = 0 (D.35)

S43 = − 1

M0R4
0

∫
star

r′4 cos θ′ sin3 θ′ sin 3ϕ′dM0 = 0 (D.36)

C44 =
1

M0R4
0

∫
star

r′4 sin4 θ′ cos 4ϕ′dM0 = 0 (D.37)

S44 =
1

M0R4
0

∫
star

r′4 sin4 θ′ sin 4ϕ′dM0 = 0 (D.38)
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The gravitational coefficients of degree n, Jn,0 (the latter index is to denote the star
or planet), is defined as (Zharkov & Trubitsyn (1974), Armitage (2010))

Jn,0 = − 1

M0R2
0

∫
star

(r′)nPn(cos θ)dM0, (D.39)

and it is not difficult to check J2,0 = −C20, J4,0 = −C40.

Finally, recalling cos θ = r̂·x̂3 = r̂·Ŝ0, above results in terms of the Stokes coefficients
yield the gravitational potential outside the rotating star to the 4th order of (R0/r):

V ≃ −GM0

r

[
1− J2,0

(
R0

r

)2

P2(r̂·Ŝ0)− J4,0

(
R0

r

)4

P4(r̂·Ŝ0)

]
. (D.40)

The gravitational potential actually used in our analysis does not contain the J4,0 term:

V ≃ −GM0

r

[
1− J2,0

(
R0

r

)2

P2(r̂·Ŝ0)

]
. (D.41)

Note that symmetry of the rotating body causes the gravitational coefficients with odd
degrees to vanish (i.e., J2n+1,0 = 0 (n = 0, 1, 2, ...)).

Appendix D.1.3 Gravitational potential energy in the oblate
star-planet system

Let r0 be the relative position vector pointing from the center of the star to the center of
the planet, and r′′ be the displacement vector of the planetary mass element dM1 from
the center of the planet. Thereby the position of planetary mass element, r, is given by
r = r0 + r′′ (r0 > r′′). Then integral of V multiplied by dM1 over the whole volume of
the planet (r′′ is supposed to sweep the whole planet) provides the gravitational potential
energy U of the system consisting of the rotating star and rotating planet:

U =

∫
planet

V dM1 = −
∫
planet

GM0

r

[
1− J2,0

(
R0

r

)2

P2(r̂ ·Ŝ0)− J4,0

(
R0

r

)4

P4(r̂ ·Ŝ0)

]
dM1.

(D.42)

Figure D.1 is helpful to understand the relation of several vectors in the oblate star-planet
system. The 1/r term in equation (D.42) can be rewritten in terms of r0, r

′′:
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r =r (� ,� )

r=r(�,�)

���,���)

0 0 0 0
S0

S1

dM1

Figure D.1: Schematic illustration of the relation of vectors in the oblate star-planet
system. The star is denoted as the red ellipse, while the planet is blue.

1

r
=

1

r0

[
1 + 2

r′′

r0
(r0·r′′) +

(
r′′

r0

)2
]− 1

2

=
1

r0

[
1− 2

r′′

r0
(−r0·r′′) +

(
r′′

r0

)2
]− 1

2

=
1

r0

∞∑
n=0

(
r′′

r0

)n

Pn(−r0·r′′) =
1

r0

∞∑
n=0

(
r′′

r0

)n

(−1)nPn(r0·r′′)

=
1

r0

∞∑
n=0

n∑
m=0

(
r′′

r0

)n

(−1)n(2− δm0)
(n−m)!

(n+m)!
Pnm(cos θ0)Pnm(cos θ

′′)cos(m(ϕ0 − ϕ′′))

(D.43)

where (θ0, ϕ0), (θ
′′, ϕ′′) are the polar and azimuthal angles of r0, r

′′, respectively, in the
spherical coordinate centered on the planet where its spin vector Ŝ1 is along with z-axis
(cos θ0 = r̂0·Ŝ1, cos θ

′′ = r̂′′·Ŝ1).

We focus on the gravitational potential energy U up to 5th order of 1/r0:

U ≃
∫
planet

V dM1 = −GM0M1

r0

[
1−

4∑
n=1

(
1

r0

)n

An

]
. (D.44)

With the help of the expansion formula for 1/r, An can be specified as follows.
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• n = 1

A1 = R1

1∑
m=0

(C1m cos(mϕ0) + S1m sin(mϕ0))P1m(cos θ0) = 0, (D.45)

where Cnm, Snm take the same forms as the stellar case but (M0, R0, r
′, θ′, ϕ′) should

be replaced by the planetary ones (M1, R1, r
′′, θ′′, ϕ′′).

• n = 2

A2 = J2,0R
2
0P2(r̂0·Ŝ0)−R2

1

2∑
m=0

(C2m cos(mϕ0) + S2m sin(mϕ0))P2m(cos θ0)

=
∑
i=0,1

J2,iR
2
iP2(r̂0·Ŝi) (D.46)

• n = 3

The specification of A3, A4 requires the angular relation between Ŝ0 and r̂′′. Ŝ0

is the constant vector in the spherical coordinates centered on the planet, then∫
planet

(r̂′′·Ŝ0)dM1 = 0 since ρ1 is an even function with respect to cos θ′′.

A3 =
3J2,0R

2
0

M1

(r̂0·Ŝ0)

∫
planet

r′′(r̂′′·Ŝ0)dM1

+R3
1

3∑
m=0

(C3m cos(mϕ0) + S3m sin(mϕ0))P3m(cos θ0)

− J2,0R
2
0R1

(
15

2
(r̂0·Ŝ0)

2 − 3

2

) 1∑
m=0

(C1m cos(mϕ0) + S1m sin(mϕ0))P1m(cos θ0)

=0 + 0 + 0 = 0 (D.47)
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• n = 4

A4 =J4,0R
4
0P4(r̂0·Ŝ0)

−R4
1

4∑
m=0

(C4m cos(mϕ0) + S4m sin(mϕ0))P4m(cos θ0)

+
5

2
J2,0R

2
0R

2
1

(
7(r̂0·Ŝ0)

2 − 1
) 2∑

m=0

(C2m cos(mϕ0) + S2m sin(mϕ0))P2m(cos θ0)

− 15
J2,0R

2
0

M1

(r̂0·Ŝ0)

∫
planet

r′′2(r̂0·r̂′′)(r̂′′·Ŝ0)dM1

+
3

2

J2,0R
2
0

M1

∫
planet

r′′2(r̂′′·Ŝ0)
2dM1

− J2,0R
2
0

M1

(
5(r̂0·Ŝ0)

2 − 1

2

)(∫
planet

r′′2dM1

)
=
∑
i=0,1

J4,iR
4
iP4(r̂0·Ŝi)

− 5

2

J2,0J2,1R
2
0R

2
1

M1

(
7(r̂0·Ŝ0)

2 − 1
)
P2(r̂0·Ŝ1)

+
J2,0R

2
0

M1

∫
planet

r′′2
(
5(r̂0·Ŝ0)

2 − 1

2
− 15(r̂0·Ŝ0)(r̂0·r̂′′)(r̂′′·Ŝ0) +

3

2
(r̂′′·Ŝ0)

2

)
dM1

(D.48)

A2 term is found to be the summation of most dominant terms out of the terms in-
duced by stellar/planetary deformation (i.e., all terms except for a simple Newtonian
potential GM0M1/r0). This term is derived by assuming that the counterpart object of
deformation-calculating body is point-mass. In turn, A4 term results from the simulta-
neous consideration of both stellar/planetary deformation with finite (nonzero) volumes.
Therefore, A2 term is the order of f , while A4 terms is the order of f 2.

Appendix D.2 Hamiltonian and equations of motion

for the spin-orbit nodal precession

Appendix D.2.1 Equations of motion in the oblate star-planet
system

With the help of the analytic expression for the gravitational potential energy in the
oblate star-planet system, the Hamiltonian of the system is obtained:

H =
p2

2β
− GM0M1

r

(
1−

∑
i=0,1

J2,i

(
Ri

r

)2

P2(r̂·Ŝi)

)
+
∑
i=0,1

S2
i

2C̃iMiR2
i

, (D.49)
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where the first term in right hand side is the kinetic energy of the orbiting planet relative
to the central star with β denoting the reduced mass, the second term is gravitational
potential energy and the third term corresponds to the stellar and planetary rotational
energy, respectively. Hamilton’s equations enables us to write down the equations of
motion (EOM) in this system in terms of the differential equations for planetary position
r, planetary momentum p, stellar spin angular momentum S0 and planetary spin angular
momentum S1 (Boué & Laskar 2006, 2009):

ṙ = ∇pH =
p

β
(D.50)

ṗi =− (∇rH)i

=− βµ

(2r)5

[
2r2ri +

∑
j=0,1

3R2
jJ2,j(Ŝj·r̂)

[(
1 + 2(Ŝj·r̂)Ŝj,ir̂i − 5(ŝj·r̂)2

)
ri +

1

r
(r2 − r2i )Ŝj,i

]]
(D.51)

Ṡi = 2∇Si
H×Si =

3GM0M1J2,iR
2
i

r3
(r̂·Ŝi)(r̂×Ŝi). (D.52)

It is not difficult to check the angular momentum conservation law with above formulae
and orbital angular momentum L = r×p as

Ṡ0 + Ṡ1 + L̇ = Ṡ0 + Ṡ1 + ṙ×p+ r×ṗ = 0. (D.53)

In order to pursue the dynamical evolution of the system with time, numerical integration
of these equations is most robust and straightforward way.

Appendix D.2.2 Laplace-Runge-Lenz vector

Laplace-Runge-Lenz vector (hereafter, Lenz vector) is the vector pointing towards the
periapse from the central star with the magnitude identical to the value of orbital eccen-
tricity e:

e =
ṙ×L

βµ
− r

r
, (D.54)

with µ = G(M0 +M1).

Appendix D.2.3 Equations of motion after orbital averaging

In the case where the dynamical evolution of the system of interest occurs with much
longer time scale than the planetary orbital period, it is convenient to take orbital aver-
age of EOM to pursue the secular evolution of the system. This procedure reduces the
computational cost, thereby one can calculate the evolution of the system for longer time.
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For instance, the precession period in the PTFO 8-8695 system (∼ 100-1000 days), which
is much longer than the planetary orbital period (∼10 hours). Moreover, the time scale
necessary for the tidal effect between the central star and the planet to become dominant
is much larger than either of them (> 104 years).

Orbital averaging is the average with respect to the planetary true anomaly f (
∫ 2π

0
df ),

the angular parameter used to denote on what orbital phase the planet is located for a
given time. Under this operation, the information on the planetary orbital phase and
planetary momentum is lost, and correspondingly EOM for the planetary orbital mo-
tion (ṙ and ṗ) are replaced by differential equations with respect to the orbital angular
momentum and Lenz vector (L̇ and ė). The EOM after averaging becomes.

Ṡi =αi(L̂·Ŝi)(L̂×Ŝi), (D.55)

L̇ = −Ṡ0 − Ṡ1, (D.56)

ė =
∑
i=0,1

αi

L

(
(L̂·Ŝi)(ê×Ŝi) +

1

2
(1− 5(L̂·Ŝi)

2)(ê×L̂)

)
, (D.57)

where

αi =
3GM0M1J2,iR

2
i

2a3(1− e2)3/2
. (D.58)

Appendix D.3 Equilibrium tidal theory and equations

of motion

Appendix D.3.1 Equilibrium tidal potential

The tidal potential UT for the star and planet is written (Kaula 1964, Mignard 1979 and
Correia et al. 2011):

UT =
G

r3

∑
i=0,1

k2,iM
2
(1−i)

R5
i

r′3i
P2(r̂·r̂′

i), (D.59)

where r′ is the position of the interacting body at a time delayed of ∆ti. k2,0 and k2,1
are the second Love numbers for the star and planet, respectively. As the rheology of
stars and planets are not well known, the quantitative evaluation of ∆ti is very difficult.
Therefore, we adopt here a model with constant ∆ti just for simplicity:

r′
i = r +∆ti(ωiŜi×r − ṙ). (D.60)
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Appendix D.3.2 Equations of motion for the tidal evolution

The equations of motion for the secular tidal evolution are given by making use of tidal
potential (D.59) instead of rotational potential (D.44) in Hamilton’s equations (D.50)-
(D.52) and by orbital averaging:

Ṡi = Kin

[
f4(e)

√
1− e2

ωi

2n
(Ŝi − (L̂·Ŝi)L̂)− f1(e)

ωi

n
Ŝi + f2(e)L̂+

(e·Ŝi)(6 + e2)

4(1− e2)9/2
ωi

n
e

]
,

(D.61)

L̇ = −Ṡ0 − Ṡ1, (D.62)

ė =
∑
i=0,1

15

2
k2,in

(
M(1−i)

Mi

)(
Ri

a

)5

f4(e)(L̂×ê)

−
∑
i=0,1

Ki

βa2

[
f4(e)

ωi

2n
(ê·Ŝi)L̂−

(
11

2
f4(e)(L̂·Ŝi)

ωi

n
− 9f5(e)

)
e

]
, (D.63)

where

Ki = ∆ti
3k2,iGM

2
(1−i)R

5
i

a6
, (D.64)

f1(e) =
1 + 3e2 + 3e4/8

(1− e2)9/2
, (D.65)

f2(e) =
1 + 15e2/2 + 45e4/8 + 5e6/16

(1− e2)6
, (D.66)

f3(e) =
1 + 31e2/2 + 255e4/8 + 185e6/16 + 25e8/64

(1− e2)15/2
, (D.67)

f4(e) =
1 + 3e2/2 + e4/8

(1− e2)5
, (D.68)

and

f5(e) =
1 + 15e2/4 + 15e4/8 + 5e6/64

(1− e2)13/2
. (D.69)
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Appendix D.4 From angular momentum vectors to

rotational/orbital parameters

Given angular momentum vectors and Lenz vector for a given time, they can be converted
into the rotational/orbital parameters of the system (ωi:spin frequency of the star or
planet, a:planetary orbital semi-major axis and e:planetary orbital eccentricity), which
are required in right hand side in (D.61) ∼ (D.63) when evaluating the angular momentum
vectors at the next time step:

ωi =
Si·Ŝi

C̃iMiR2
i

(D.70)

a =
|L|2

βµ2(1− e2)
(D.71)

e = |e|, (D.72)

where C̃i is the moment of inertia coefficient for the rotating body.
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D., Udry, S., & Wilson, D. M. 2010, ApJ, 709, 159, WASP-17b: An Ultra-Low Density
Planet in a Probable Retrograde Orbit

Armitage, P. J. 2010, Astrophysics of Planet Formation

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403, Evolu-
tionary models for solar metallicity low-mass stars: mass-magnitude relationships and
color-magnitude diagrams

Barker, A. J. & Ogilvie, G. I. 2009, MNRAS, 395, 2268, On the tidal evolution of Hot
Jupiters on inclined orbits

Barnes, J. 2013, Origins Of Intermediate-Period Planets From Spin-Orbit Alignment,
NASA Proposal #13-ADAP13-213

Barnes, J. W. 2009, ApJ, 705, 683, Transit Lightcurves of Extrasolar Planets Orbiting
Rapidly Rotating Stars

Barnes, J. W., Linscott, E., & Shporer, A. 2011, ApJS, 197, 10, Measurement of the Spin-
Orbit Misalignment of KOI-13.01 from Its Gravity-darkened Kepler Transit Lightcurve

Barnes, J. W., van Eyken, J. C., Jackson, B. K., Ciardi, D. R., & Fortney, J. J. 2013,
ApJ, 774, 53, Measurement of Spin-orbit Misalignment and Nodal Precession for the
Planet around Pre-main-sequence Star PTFO 8-8695 from Gravity Darkening

Bate, M. R., Lubow, S. H., Ogilvie, G. I., & Miller, K. A. 2003, MNRAS, 341, 213, Three-
dimensional calculations of high- and low-mass planets embedded in protoplanetary
discs

109



110 REFERENCES

Benomar, O., Masuda, K., Shibahashi, H., & Suto, Y. 2014, PASJ, Determination of three-
dimensional spin-orbit angle with joint analysis of asteroseismology, transit lightcurve,
and the Rossiter-McLaughlin effect: Cases of HAT-P-7 and Kepler-25
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