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Abstract

Clusters of galaxies are among the most important sources of astrophysical and cosmological
information especially on the formation history of the large scale structure and the estimates of
cosmological parameters. Among others, mass of clusters is the most fundamental quantities.
The most conventional method to estimate mass is based on X-ray observations of the intraclus-
ter medium (ICM) combined with the assumption that the ICM is in hydrostatic equilibrium
(HSE) with the total gravity of the cluster. It is unlikely, however, that the HSE assumption
strictly holds, especially for unrelaxed clusters given their on-going dynamical evolution. There-
fore it is important to examine the validity of the HSE assumption, which has been mostly
assumed just for simplicity.

In this thesis, we examine the validity of HSE using simulated clusters taken from a cos-
mological hydrodynamical simulation and a SPH simulation. First, we focus on the difference
between the true mass and the mass estimated under the HSE assumption (the HSE mass). We
define and evaluate several effective mass terms corresponding to the Euler equations of the gas
dynamics, and quantify the degree of the validity of HSE in terms of the mass estimate. We
find that the HSE mass deviates from the true mass by up to ～ 30 %. We demonstrate that
the overall gravity of the cluster is balanced by the thermal gas pressure gradient and the gas
acceleration term and that the inertial term in the Euler equations makes a smaller contribution
to the total mass.

Since observables in X-ray observations are projected properties of ICM, the mass constructed
from them is further biased in addition to the intrinsic violation of HSE. To investigate this prob-
lem, we calculate the surface brightness and spectroscopic-like temperature using the simulation
data and find density and temperature profiles which reproduce the observables by fitting. Then
the mass constructed from the best-fit profiles is compared with the three-dimensional HSE mass.
We show that the two-dimensionality of the observables only slightly affects the mass estimates.
If, however, a simulated cluster has big substructures in outer regions, the mass of the cluster
is underestimated at large radii.
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Chapter 1

INTRODUCTION

Clusters of galaxies are important sources of various cosmological and astrophysical information
especially on the formation history of the large scale structure and the estimates of cosmological
parameters (Allen et al., 2011, for a recent review). Among others, mass of clusters is one
of the most fundamental quantities in virtually all studies. The most conventional method is
based on X-ray observations of the intracluster medium (ICM) combined with the assumption
that the ICM is in hydrostatic equilibrium (HSE) with the total gravity of the cluster (We
call the mass estimated by this method “the HSE mass”). It is unlikely, however, that the
HSE assumption strictly holds, especially for unrelaxed clusters given their on-going dynamical
evolution. Therefore it is important to examine the validity of the HSE assumption, which has
been mostly assumed just for simplicity. The quantitative analysis of its validity and limitation
is directly related to the applicability to the future scientific opportunities, including upcoming
X-ray missions such as extended Röntgen Survey with Imaging Telescope Array1 (eROSITA) and
ASTRO-H2, and observations of the Sunyaev-Zel’dovich effect performed by Atacama Cosmology
Telescope3 (ACT) and South Pole Telescope4 (SPT).

The validity of the HSE assumption for observed clusters may be examined in a straightfor-
ward fashion by comparison of the HSE mass with the cluster mass estimated by other methods.
In this respect, gravitational lensing is particularly suited because it directly probes the total
gravitational mass without any assumption on dynamical states of dark matter. On the other
hand, the lensing observations require a high angular resolution of the background galaxy im-
ages and are feasible only for a limited number of clusters located at z . 0.5. In addition,
the estimated lensing mass corresponds to the cylindrical mass along the line of sight, and may
include an extra contribution not associated with the cluster itself. Previous studies (e.g., Mah-
davi et al., 2008; Zhang et al., 2008, for recent ones) show that the HSE mass is smaller by
approximately 20 percent on average than the lensing mass, suggesting either HSE or lensing,
or even both, should be systematically biased.

Another method to examine the validity of the HSE assumption that we pursue in this paper
is to use numerical simulations, which enable us to make a detailed and critical comparison of the
simulated data against the model prediction. Therefore we can locate the origin of systematic
bias, if any, of the HSE assumption. This is useful because we may be able to apply the correction
to the observational data eventually.

Of course there are a number of previous studies of HSE using simulated clusters, but their

1http://www.mpe.mpg.de/eROSITA
2http://astro-h.isas.jaxa.jp
3http://www.princeton.edu/act
4http://pole.uchicago.edu
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8 CHAPTER 1. INTRODUCTION

results do not seem to be converged. For instance, let us focus on a couple of recent papers (Fang
et al., 2009; Lau et al., 2009) that studied systematic errors in the HSE mass using the same set
of 16 clusters simulated by Nagai et al. (2007). Fang et al. (2009) analyzed the gas particle data
on the basis of the Euler equations, and evaluated the effective mass terms corresponding to
several different terms in the equations. Lau et al. (2009) performed basically the same analysis,
but used the Jeans equations instead of the Euler equations despite the fact that they considered
the gas particles in the simulated clusters. Both reached the similar conclusion that the HSE
mass underestimates the true mass of clusters systematically by ∼ 10–20 %. Nevertheless their
physical interpretations of the origin of the bias are very different; Fang et al. (2009) claimed
that the coherent rotation of gas plays a significant role as an additional support against the
gravity, while Lau et al. (2009) concluded that the random gas motion is responsible for the
departure from HSE, and the gas rotation makes a relatively negligible contribution.

The above discussion is on the validity of HSE using three-dimensional simulation data. In
real observations, mass of clusters is estimated from two-dimensional observables. There can
be systematic biases in mass estimates even if uncertainties from observational apparatuses are
removed.

The purpose of this thesis is to investigate the validity using a hydrodynamical simulation by
Cen (2012) and a SPH simulation by Dolag et al. (2009). First, we focus on intrinsic differences
between the true mass and the HSE mass. In particular, we compare the two different analysis
formulations adopted by Fang et al. (2009) and Lau et al. (2009), and argue that the Euler
equations, rather than the Jeans equations modified by a gas pressure gradient term (Rasia
et al., 2004; Lau et al., 2009), should be used in analyzing the gas dynamics. Next, we investigate
biases in mass estimates from two-dimensional observables.

The rest of this thesis is organized as follows. We review structure formation in the universe
and X-ray observations of galaxy clusters in Chapter 2 and 3, respectively. In these chapters,
we summarize what roles galaxy clusters play in cosmology and astrophysics. In Chapter 4, we
explain what kinds of simulations are used in this study. Using these simulations, we discuss in
Chapter 5 the validity of hydrostatic equilibrium in three-dimensional space. In Chapter 6, we
investigate biases in mass construction from two-dimensional mock observables combined with
the results in Chapter 5. Finally we summarize the results and make a conclusion in Chapter
7.



Chapter 2

STRUCTURE FORMATION IN
THE UNIVERSE

2.1 Background Universe

2.1.1 Friedmann-Robertson-Walker Model

In order to understand the behavior of cosmological fluctuations that dictates the evolution of
clusters of galaxies. We briefly summarize the homogeneous and isotropic universe model in this
section.

The cosmological principle states that at every point in the universe, an observer exists for
whom the universe appears isotropic. We define comoving coordinates xi as ones that move
along with such an observer. Then the physical length is given by a(t)xi, where a(t) is called
the scale factor. The metric of a homogeneous and isotropic universe is given by the Friedmann-
Lemâıtre-Robertson-Walker metric:

ds2 = −dt2 + a2(t)
[
dx2 + SK(x)

(
dθ2 + sin2 θdφ2

)]
, (2.1)

where

SK(x) =



sinh
√
−Kx√

−K
; (K < 0)

x ; (K = 0)

sin
√
Kx√
K

; (K > 0)

, (2.2)

and K is the curvature of the universe. Here a(t) is normalized to unity at the present time t0.

Through the Einstein equations, one obtains equations governing the dynamics of a(t) in a
perfect fluid of density ρ and pressure p as(

ȧ

a

)2

+
K

a2
=

8πG

3
ρ+

Λ

3
, (2.3)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (2.4)

ρ̇+ 3
ȧ

a
(ρ+ p) = 0, (2.5)

9



10 CHAPTER 2. STRUCTURE FORMATION IN THE UNIVERSE

where Λ is the cosmological constant. Equation (2.3) is called the Friedmann equation. Note
that one of the above three equations can be derived from the other two.

Assume a matter component that obeys the time-independent equation of state:

p = wρ, (2.6)

then Equation (2.5) yields

ρ ∝ a−3(1+w) (w ̸= −1). (2.7)

Now we consider some specific cases.

(a) Non-relativistic matter component

Non-relativistic matter has pressure much less than its mass energy: p ≪ ρ, hence approx-
imately given by

w = 0, ρm ∝ a−3. (2.8)

(b) Radiation component

The pressure of a relativistic component is a third of its energy density, p = ρ/3. Therefore

w =
1

3
, ρr ∝ a−4. (2.9)

(c) Cosmological constant

The cosmological constant can be regarded as a component whose density and pressure
are given by

ρ =
Λ

8πG
, p = − Λ

8πG
, (2.10)

which is equivalent to

w = −1, ρΛ = const. (2.11)

The standard model of the universe identifies the cosmological constant with the so-called
dark energy.

Hereafter we take into account only the above three components.

2.1.2 Cosmological Parameters

We introduce the Hubble parameter H:

H =
ȧ

a
, (2.12)

which describes the expansion (or contraction) rate of the universe. Next we define the critical
density as the mean density in the flat universe (K = 0):

ρc =
3H2

8πG
. (2.13)

Using H and ρc, Equation (2.3) is rewritten as

1 = Ωm +Ωr +ΩΛ +ΩK , (2.14)



2.1. BACKGROUND UNIVERSE 11

where
Ωm =

ρm
ρc

, Ωr =
ρr
ρc

, ΩΛ =
ρΛ
ρc

(2.15)

are the density parameters of matter, radiation and dark energy, respectively, and

ΩK = − K

3H2
(2.16)

is the curvature parameter. Observations suggest (e.g. Hinshaw et al., 2012)

H0 ≃ 70 km s−1 Mpc−1, (2.17)

Ωm,0 ≃ 0.28, Ωr,0 ≃ 0, ΩΛ,0 ≃ 0.72, ΩK,0 ≃ 0, (2.18)

where the subscript ‘0’ denotes the values of the parameters at the present time t0. It is
conventional to use the dimensionless Hubble constant h defined through

H0 = 100h km s−1 Mpc−1. (2.19)

Hereafter we neglect the radiation component. In this case, the Friedmann equation (2.3) is

H = H0

√
Ωm,0a−3 +ΩΛ,0 + (1− Ωm,0 − ΩΛ,0)a−2. (2.20)

2.1.3 Models of the Universe

Here we show a few representative models of the universe with specific values of Ωm and ΩΛ.

(a) Einstein-de Sitter universe: Ωm = 1,ΩΛ = 0

a =

(
3

2
H0t

)2/3

(2.21)

H =
2

3t
(2.22)

ρ =
1

6πGt2
(2.23)

(b) Friedmann universe: ΩΛ = 0

a =
Ωm,0

2(1− Ωm,0)
(cosh η − 1)

H0t =
Ωm,0

2(1− Ωm,0)3/2
(sinh η − η)

; (Ωm,0 < 1) (2.24)

a =
Ωm,0

2(Ωm,0 − 1)
(1− cos η)

H0t =
Ωm,0

2(Ωm,0 − 1)3/2
(η − sin η)

; (Ωm,0 > 1) (2.25)

(c) Flat universe: Ωm +ΩΛ = 1

a =



(
Ωm,0

1− Ωm,0

)1/3

sinh2/3
(
3

2
H0t

√
1− Ωm,0

)
; (Ωm,0 < 1)(

Ωm,0

Ωm,0 − 1

)1/3

sin2/3
(
3

2
H0t

√
Ωm,0 − 1

)
; (Ωm,0 > 1)

(2.26)
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2.2 Evolution Equations of Density Fluctuations

In this section we consider a multi component perfect fluid. In Newtonian dynamics, the motion
of one of the components is governed by the continuity equation and the Euler equations:

∂ρ

∂t
+∇ · (ρu) = 0, (2.27)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p−∇ϕ, (2.28)

where u is the Eulerian velocity. The gravitational potential ϕ is related to the total density
ρtot and pressure ptot in the system through the Poisson equation:

△ϕ = 4πG(ρtot + 3ptot). (2.29)

In order to investigate the behavior of cosmological fluctuations, we rewrite the above equations
in comoving coordinates. Let physical and comoving coordinates be r and x. They are related
as

r = ax. (2.30)

Then the velocity u = ṙ is rewritten as

u = ȧx+ v, (2.31)

where we defined
v = aẋ (2.32)

as the peculiar velocity and ȧx is interpreted as a change in motion due to the cosmic expansion.
Derivatives and the potential are transformed as

∂

∂t
→ ∂

∂t
− ȧ

a
x · ∇, ∇ → 1

a
∇ (2.33)

and

ϕ → ϕ+
1

2
aäx2, (2.34)

where the inertial force is incorporated in the potential. Using the above results, the continuity,
Euler and Poisson equations are finally rewritten as

∂ρ

∂t
+ 3

ȧ

a
ρ+

1

a
∇ · (ρv) = 0, (2.35)

∂v

∂t
+

ȧ

a
v +

1

a
(v · ∇)v = − 1

aρ
∇p− 1

a
∇ϕ (2.36)

and
△ϕ = 4πGa2(ρtot − ρ̄tot + 3ptot − 3p̄tot), (2.37)

where ρ̄tot and p̄tot are the mean density and pressure which show up in the Friedmann equation:

ä

a
= −4πG

3
(ρ̄tot + 3p̄tot). (2.38)

Now we consider fluctuations in density and pressure of a specific component:

ρ(x, t) = ρ̄[1 + δ(x, t)], (2.39)
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p(x, t) = p̄+ δp(x, t)). (2.40)

Substituting them into the continuity and Euler equations, one obtains

∂δ

∂t
+

1

a
∇[(1 + δ)v] = 0, (2.41)

∂v

∂t
+

ȧ

a
v +

1

a
(v · ∇)v = − ∇δp

aρ̄(1 + δ)
− 1

a
∇ϕ (2.42)

and
△ϕ = 4πGa2(ρ̄totδtot + 3δptot). (2.43)

For simplicity we consider small amplitude fluctuations. Combining Equations (2.41) and
(2.42) and dropping off non-linear terms, one obtains

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

△δp

a2ρ̄
+ 4πG(ρ̄δtot + 3δptot). (2.44)

This is the basic equation for the linear evolution of non-relativistic density fluctuations.

2.3 Jeans Instability

We assume that there is no fluctuations in entropy S of the universe and the pressure fluctuation
can be written as

δp =

(
∂p

∂ρ

)
S

ρ̄δ = c2sρ̄δ, (2.45)

where cs is the sound speed of the fluid. We also assume that fluctuations of other components
are negligible. Then Equation (2.44) is

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
−
(
4πGρ̄δ +

c2s
a2

△δ

)
= 0. (2.46)

If we Fourier transform the density fluctuation δ(x, t) as

δ(x, t) =
1

(2π)3

∫
d3k δ̃(k, t)eik·x, (2.47)

the Fourier component δ̃(k, t) obeys the following equation:

∂2δ̃

∂t2
+ 2

ȧ

a

∂δ̃

∂t
−
(
4πGρ̄− c2sk

2

a2

)
δ̃ = 0. (2.48)

For simplicity we ignore the expansion of the universe for a while :

∂2δ̃

∂t2
+

c2s
a2

(k2 − k2J)δ̃ = 0, (2.49)

where
kJ =

a

cs

√
4πGρ̄ (2.50)

is the Jeans wavenumber. If k > kJ , δ̃ oscillates and does not grow. If k < kJ , δ̃ grows. The
cosmic expansion behaves as a friction that prevents the gravitational contraction.
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If we define the Jeans wavelength which corresponds to the Jeans wavenumber as

λJ = a
2π

kJ
= cs

√
π

Gρ̄
, (2.51)

the Jeans mass

MJ =
4π

3
ρ̄

(
λJ

2

)3

=
c3s
6

√
π5

G3ρ̄
(2.52)

gives a measure of the minimum mass which can gravitationally grow.

2.4 Growth of Density Fluctuations

A density fluctuation with a larger scale than the Jeans scale obeys the following equation:[
d2

dt2
+ 2

ȧ

a

d

dt
− 4πGρ

]
δ = 0. (2.53)

This holds in both the real and Fourier spaces. From the Friedmann equations without rela-
tivistic components, one finds [

d2

dt2
+ 2

ȧ

a

d

dt
− 4πGρ

]
ȧ = 0. (2.54)

Therefore H = ȧ/a is one of the solutions of the equation (2.53):

D− ∝ H(t). (2.55)

Since the Hubble parameter decreases with time, D− corresponds to the decaying mode. The
other solution is found from the general theory of second-order linear differential equations:

D+ ∝ H

∫ a

0

da

a3H3
. (2.56)

This solution increases with time and is often called the growing mode or the linear growth rate.
The linear growth rate can be rewritten as

D+ =
5

2
aΩm

∫ 1

0

dx

(Ωm/x+ΩΛx2 + 1− Ωm − ΩΛ)3/2
, (2.57)

where the proportional coefficient is chosen so that D+ → a as a → 0. Let us consider some
specific cases.

(a) Einstein-de Sitter universe

For an Einstein-de Sitter universe, the solution for Equation (2.57) can be easily found:

D+ = a ∝ t2/3. (2.58)

Therefore the time-dependence of the growing mode D+ is the same as that of the scale
factor a. We may add the decaying mode is proportional to the inverse of the time:

D− ∝ t−1. (2.59)
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(b) Friedmann universe

For a universe with ΩΛ = 0,

D+ =
5

2

aΩm

1− Ωm
·


1 + 2Ωm

1− Ωm
− 3Ωm

(1− Ωm)3/2
tanh−1

√
1− Ωm (Ωm < 1)

1 + 2Ωm

Ωm − 1
− 3Ωm

(Ωm − 1)3/2
tan−1

√
Ωm − 1 (Ωm > 1)

(2.60)

(c) Flat universe

For a universe with Ωm > 0 and Ωm +ΩΛ = 1, we define χ = Ω−1
m − 1 and substitute

x =

(
1− t

1 + χt

)1/3

(2.61)

into Equation (2.57), resulting in

D+ =
5

6
a

∫ 1

0
dt (1− t)−1/6(1 + χt)−1/3. (2.62)

Using the formula for Gauss’s hypergeometric function 2F1(a, b, c; z):

2F1(a, b, c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− zt)−b (2.63)

for |z| < 1, one finds

D+ = a2F1

(
1,

1

3
,
11

6
;−χ

)
, (2.64)

where the domain of χ is analytically continued to χ ≥ 1.

Figure 2.1 shows the linear growth rates for the above three cases as functions of the scale factor
a.

In general, the density fluctuation can be written in the following form:

δ(x, t) = D(t)δ(x, t0) + decaying mode, (2.65)

where D(t) = D+(t)/D+(t0) is the linear growth rate normalized at the present time.

2.5 Spherical Collapse Model

The spherical collapse model is a simple model to describe the non-linear growth of fluctuations.
For simplicity, we consider the Einstein-de Sitter universe. Assume a sphere of constant mass M
and time-varying radius r(t) starts to expand from r = 0 at t = 0, then its motion is described
by the following equation:

d2r

dt2
= −GM

r2
. (2.66)

Integrating this over time, one obtains

1

2

(
dr

dt

)2

− GM

r
= E, (2.67)
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0.0 0.2 0.4 0.6 0.8 1.0
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+
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(0.3,0.7)

(0.3,0)

Figure 2.1: The linear growth rates δ+ for three sets of values of density parameters (Ωm,0,ΩΛ,0)
are shown as functions of the scale factor a. For dotted, dashed and solid lines, (Ωm,0,ΩΛ,0) are
(1, 0), (0.3, 0) and (0.3, 0.7), respectively.

where E is the energy of the system. If E < 0, the expansion stops at some epoch point, and
the sphere starts to collapse. Equation (2.67) has a parametric solution:

r =
GM

−2E
(1− cos θ) = A(1− cos θ)

t =
GM

(−2E)3/2
(θ − sin θ) = B(θ − sin θ).

(2.68)

Since the density of the sphere and the cosmic mean density are given by

ρ =
3M

4πr3
, ρ̄ =

1

6πGt2
, (2.69)

the density fluctuation is

δ =
ρ

ρ̄
− 1 =

9GMt2

2r3
− 1 =

9

2

(θ − sin θ)2

(1− cos θ)3
− 1. (2.70)

When θ = π, the sphere turns around. At this time,

tt = πB, rt = 2A (2.71)

and the density fluctuation is

δt =
9π2

16
≃ 4.55. (2.72)



2.6. COOLING DIAGRAM 17

The subscript t denotes the values at the turn-around time. When θ = 2π, the sphere collapses,
i.e., r(t) becomes 0. At this time,

tc = 2πB. (2.73)

The subscript c denotes the values at the collapse time.
The virial theorem suggests

⟨U⟩t = ⟨K⟩v + ⟨U⟩v =
1

2
⟨U⟩v, (2.74)

where ⟨U⟩ and ⟨K⟩ are the time averages of the potential and kinetic energy of the system and
the subscript v denotes the values at the time when the system is virialized. Since the potential
is proportional to r−1, one finds

rv =
1

2
rt. (2.75)

If we identify the virial time with the collapse time in the spherical collapse model, then

δc =
3M

4πr3vρc
− 1 = 18π2 − 1 ≃ 177. (2.76)

Next we expand t and r(t) for small θ:

r =
A

2
θ2 +O(θ4),

t =
B

6
θ3 +O(θ5).

(2.77)

Then the density fluctuation is

δ =
3

20
θ2 +O(θ4) ≃ 3

20

(
6t

B

)2/3

. (2.78)

Since δ ∝ t2/3, this can be considered as the fluctuation in the linear theory. At the turn-around
and collapse time,

δlineart =
3(6π)3/2

20
≃ 1.06, (2.79)

δlinearc =
3(12π)3/2

20
≃ 1.69. (2.80)

These values correspond to δt and δc in the non-linear theory discussed above. Although we
here consider only the Einstein-de Sitter universe, the value of δlinearc is insensitive to models of
the universe (see Appendix A).

2.6 Cooling Diagram

In this section, we consider the role of temperature of a fluid in the structure formation.
The potential energy U of a homogeneous sphere with density ρ and radius R is

U = −
∫ R

0
dr

G

r
M
( r

R

)3
4πr2ρ = −3

5

GM2

R
(2.81)

From the virial theorem, the kinetic energy K is given by

K = −1

2
U =

3

10

GM2

R
. (2.82)
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Figure 2.2: The cooling function Λ(T ) when the metalllicity Z is equal to the solar metallicity
(solid) and zero (dashed). These curves are calculated using SPEX.

The kinetic energy is also written as

K =

∫
4πr2dr

ρv2

2
=

1

2
Mσ2, (2.83)

where

σ2 =
1

ρ

∫
4πr2dr

ρv2

2
(2.84)

is the velocity dispersion. Note that the mean velocity vanishes in the center-of-mass system.
Equating the above two expressions of K, the virial mass Mv is defined as

Mv =
5

3

Rσ2

G
. (2.85)

For an ideal gas,
1

2
µmpσ

2 =
3

2
kBT, (2.86)

where µ is the mean molecular weight. For a gas with hydrogen and helium mass fractions of
3/4 and 1/4, µ = 16/27 ≃ 0.59. Combining Equations (2.85) and (2.86), the virial temperature
Tv is defined as

Tv =
GMµmp

5RkB
. (2.87)

Note that Tv loses the original meaning of temperature unless the system is in equilibrium.
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In the spherical collapse model, a structure of any scale forms and its contraction is supposed
to stop when it is virialized. In reality, however, the energy loss due to radiative processes allows
further contraction. The energy loss rate per unit volume is described by the cooling function
Λ(T ):

−dE

dt
= n2Λ(T ) (2.88)

Note that Λ(T ) strongly depends on the atomic composition of the gas. Figure 2.2 shows the
behavior of Λ(T ) for the cases of solar metallicity and zero metallicity. The curves are calculated
using a spectral fitting package SPEX1.
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Figure 2.3: A cooling diagram. The free-fall time is equal to the cooling time on the solid and
dashed curves when the metallicity is solar abundance and zero, respectively. It is assumed that
the baryon fraction fb is 0.1.

The time scale on which the thermal energy of gas 3nkBT/2 is lost due to the radiative
processes is

τcool =
3

2

kBT

nΛ(T )
, (2.89)

which is called the cooling time.

Let us compare τcool with the free-fall time τff defined as

τff = tc − tt =
π

2

√
r3t

2GM
=

√
3π

32Gρt
=

√
3π

32Gµmpn
, (2.90)

1http://www.sron.nl/spex
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where ρt = 3M/4πr3t . This is the time scale of a gravitational collapse of a homogeneous sphere.
Figure 2.3 demonstrates the curves on which τcool is equal to τff . In this figure, the baryon

fraction is assumed to be 0.1, i.e., the free-fall time is 1/
√
10 of that of the gas alone. Such

a diagram is called the cooling diagram. In the region above the curve, τcool < τff , i.e., the
cooling process is fast enough for the gas to contract and form small-scale structures. On the
other hand, in the region below the curve, where τcool > τff , the gas quasi-statically contracts
after the virial equilibrium. Figure 2.3 also shows lines on which the virial mass is constant and
indicates that a gas with mass . 1012M⊙ can form small structures. This corresponds to the
typical mass scale of galaxies. For an object with mass of ∼ 1014M⊙, the radiative cooling is
not efficient and the object quasi-statically contracts over a Hubble time, which corresponds to
a cluster of galaxies.

2.7 Press-Schechter Theory

For most astrophysical and cosmological applications, statistical properties of clusters are needed.
It is crucial, but difficult to estimate how much objects with a given mass exist in the universe
since density fluctuations grow in the highly non-linear regime. Press & Schechter (1974) have
proposed a treatment with combination of linear and non-linear models.

Given the probability distribution of the density fluctuations, we can theoretically estimate
how much structures of mass M exist in the universe. Assume that the probability distribution
function has a Gaussian form:

P (δ)dδ =
1√
2πσ2

exp

(
− δ2

2σ2

)
dδ. (2.91)

The mass fluctuation δM is obtained by integrating the δlinear(q, t) on Lagrangian coordinates
q:

δM (q, t) =
3

4πR3

∫
|q−q′|≤R

d3q′ δlinear(q′, t). (2.92)

Then the probability distribution of δM also has a Gaussian form:

P (δM ) =
1√

2πσ2
M

exp

(
−

δ2M
2σ2

M

)
(2.93)

The fraction of the Lagrangian region which is eventually incorporated into structures of
mass > M is

P (M) =

∫ ∞

δc

dδM P (δM ). (2.94)

The lower bound of the integral is often chosen to be δc in the spherical model. Finally, the
number density of structures of mass M is estimated as

dn

d lnM
= 2ρ̄|P (M)− P (M + dM)| = 2ρ̄

∣∣∣∣ dPdσM

∣∣∣∣ ∣∣∣∣dσMdM

∣∣∣∣ . (2.95)

The factor 2 comes from an ad hoc treatment in the Press-Schechter theory. Equation (2.95) is
called the mass function. For a Gaussian distribution function,

dn

d lnM
=

√
2

π

ρ̄

M

∣∣∣∣d lnσMd lnM

∣∣∣∣ δc
σM

exp

(
− δ2c
2σ2

M

)
. (2.96)
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More recently, the mass function is predicted by N -body simulations. Equation (2.96) shows,
however, the mass function depends on cosmological parameters through the linear growth rate
of density fluctuations, the dispersion of mass fluctuations, etc. This is why clusters of galaxies
play an important role in determining cosmological parameters.





Chapter 3

AN X-RAY VIEW OF CLUSTERS
OF GALAXIES

3.1 Basic Properties of Clusters of Galaxies

Just as its name indicates, a cluster of galaxies consists of hundreds or thousands of galaxies in
a diameter on the order of a few Mpc. However, galaxies account for only several percent of the
total mass of the cluster, typically ∼ 1014M⊙. A cluster is filled with a hot diffuse gas called a
intracluster gas. The intraclsuter gas still occupies no more than a few ten percent of the total
mass. The remaining mass is thought to reside in unknown dark matter.

The dynamical time scale τdyn of a cluster is given as

τdyn =
1√
Gρ

∼ O(1) Gyr. (3.1)

Compared to the age of the universe, ∼ 14 Gyr, τdyn is short enough for a cluster to settle in
dynamical equilibrium, but long enough to remember the initial conditions of the universe. This
is a major reason why clusters can be strong cosmological probes.

The virial temperature Tv (defined in Section 2.6) is given by

kBTv =
GMµmp

5R
∼ O(1) keV. (3.2)

This temperature corresponds to the energy range of X-rays. In fact, the intracluster gas is the
strongest diffuse X-ray emitter in the universe.

3.2 Radiative Processes

3.2.1 Bremsstrahlung

In the X-ray region, the most important radiative process in clusters is bremsstrahlung. If the
gas has a thermal, i.e., Maxwellian velocity distribution characterized by temperature T , the
total power ϵff per unit volume due to thermal bremsstrahlung is given by

ϵff =

(
2πkBT

3me

)1/2 16

3

e6

me~c3
Z2neniḡ

ff(T ), (3.3)

where ne and ni are electron density and ion density, respectively, Z is the atomic number of
the ion, me is the electron mass and ḡff(T ) is a quantum correction called the Gaunt factor. We

23
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emphasize that ϵff is proportional to the square of density. Compared to optical observations
of galaxies where emissivity is proportional to density ngal of galaxies, the signal-to-noise ratio
in X-ray observations is higher by a factor ngal/⟨ngal⟩ ∼ 103, where ⟨ngal⟩ is the mean galaxy
density in the universe. This is why clusters are more clearly identified in X-ray observations.

3.2.2 Line Emission

Intracluster medium has a variety of spectra in the X-ray region, depending on atomic compo-
sition, temperature, ionization fraction, etc. The ionization energy EI of a hydrogen-like ion is
given by

EI = −Z2

n2

mee
4

2~2
≃ −13.6× Z2

n2
eV, (3.4)

where n is the principal quantum number. For atoms from oxygen (Z = 8) to iron (Z = 26) which
have relatively higher cosmic abundance, EI is in the X-ray region. Generally, the emissivity of
a line emission is proportional to densities of ions and electrons.

3.3 Observables

The most important observables of clusters in X-ray are surface brightness and spectroscopic
temperature. The X-ray surface brightness IX is defined as an integration of cooling function
in the X-ray energy region along the ling-of-sight.

IX =

∫
dl nenpΛX(T ). (3.5)

The spectroscopic temperature Tspec is estimated by spectral fitting. Since the emissivities of
the continuum (mainly bremsstrahlung) and line spectra are both proportional to the square
of density, the ratio of line emission to continuum emission is independent of density and gives
information on temperature alone. Then density can be derived from the surface brightness.

3.4 Hydrostatic Equilibrium

Given the density n and temperature T of a gas, its pressure p is obtained by

p = nkBT. (3.6)

In order to estimate the total massM(r) of the cluster within a sphere of radius r, the assumption
of hydrostatic equilibrium (HSE) is usually made:

1

ρ

dp

dr
= −GM(r)

r2
, (3.7)

where we have also assumed spherical symmetry of the system. Then the total mass can be
written as

MHSE(r) = − rkBT

Gµmp

[
d ln ρ

d ln r
+

d lnT

d ln r

]
. (3.8)

Note that the mass is independent of the magnitude of the density.

Traditional analytic models of galaxy clusters assume isothermality since temperature gra-
dient is difficult to measure. In this case, the second term of the parenthesis of Equation (3.8) is
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Figure 3.1: The ratio of the first (solid) and second (dashed) terms of (3.8) to the total HSE
mass for the cluster g1542a (see Chapter 4). At each radius, the sum of the values of the two
lines is unity. The range of r is divided into 40 logarithmically equal bins.

dropped off. Figure (3.1) illustrates fractions of the first and second terms of Equation (3.8) for
the cluster g1542a from a SPH simulation described in Chapter 4. The cluster g1542a is appar-
ently relaxed and has no big substructure. The mass due to temperature gradient contributes
∼ 20 % to the total. This contribution would be too large for precise mass measurement. We
do not assume isothermality in the following chapters.

Although the HSE assumption is widely used in conventional X-ray data analysis of clusters,
its validity is not fully understood. A rough measure of the validity of HSE is provided by the
sound crossing time scale τsc defined as

τsc =
R

cs
∼ O(108) yr (3.9)

where R (∼ 1 Mpc) is a characteristic length of a cluster and cs is the sound speed in the ICM
(For an ideal gas, c2s = γkBT/µmp where µ is the mean molecular weight). If τsc < τdyn, pressure
reacts fast enough to resettle the system in balance the gravitational collapse, and thus the HSE
assumption is valid in the zeroth approximation. For a cluster, the sound crossing time scale
is shorter, but not too shorter than the dynamical time scale (Equation (3.1)). Therefore the
validity of HSE leaves much room for discussion. This is the main topic of this thesis.





Chapter 4

COSMOLOGICAL SIMULATIONS

In order to investigate the validity of the HSE assumption, we analyze clusters extracted from
cosmological simulations. We use one cluster from an adaptive mesh refinement (AMR) hy-
drodynamical simulation performed by Renyue Cen and 11 clusters from a smoothed particle
hydrodynamical (SPH) simulation performed by Klaus Dolag. Before presenting results of our
analysis, we briefly summarize the main features of these two kinds of simulations in this chapter.
We also show properties of the clusters to be analyzed.

4.1 AMR Hydrodynamical Simulation

The AMR simulation in this study was carried out with an Eulerian adaptive mesh refinement
code, Enzo (Bryan, 1999; Bryan & Norman, 1999; O’Shea et al., 2004; Joung et al., 2009). We
refer readers to Cen (2012) for more detail. The simulation was run first with a low resolution
mode in a periodic box of 120 h−1 Mpc on a side. Then a region centered on a cluster with
a mass of ∼ 2 × 1014h−1M⊙ was resimulated with a higher resolution in an adaptively refined
manner. The size of the refined region is 21 × 24 × 20(h−1Mpc)3. The mean interparticle
separation and mass of dark matter particles in the refined region are 117 h−1 kpc (comoving)
and 1.07× 108h−1M⊙, respectively.

Star particles are created according to the prescription of Cen & Ostriker (1992). Their
typical mass is ∼ 106M⊙. The simulation includes a metagalactic UV background (Haardt &
Madau, 1996), shielding of UV radiation by neutral hydrogen (Cen et al., 2005) and metallicity-
dependent radiative cooling (Cen et al., 1995). While supernova feedback is modeled following
Cen et al. (2005), AGN feedback is not included in this simulation, which may cause unreal-
istically high abundance of baryons in the innermost region of the cluster. The cosmological
parameters used in this simulation are (Ωb,Ωm,ΩΛ, h, ns, σ8) = (0.046, 0.28, 0.72, 0.70, 0.96,
0.82), following the WMAP7-normalized ΛCDM model (Komatsu et al., 2011).

Then a cluster is identified and the cubic box of a side of 3.8h−1 Mpc surrounding the entire
cluster is extracted from the simulation data. The dark matter and stars are represented by
particles, and the temperature and density of gas are given on the 5203 grids (the grid length is
7.324h−1kpc).

The radius r500 of the cluster is ∼ 640h−1 kpc (r500 is defined so that the mean density
inside r500 is 500 times the critical density of the universe). The center-of-mass velocity of
the cluster within r500 is set to vanish. The total mass M500 within r500 is ∼ 2 × 1014M⊙.
The spherical average gas temperature at r500 is ∼ 2 keV, and the circular speed there is
v500 =

√
GM500/r500 ∼ 1000 km s−1.
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Projected densities of gas, dark matter and stars on x-z plane are plotted in the left panels
of Figure 4.1. The right panels of Figure 4.1 show the three-dimensional view of the three
components. The left (right) plots are color-coded according to the surface (space) densities
normalized by the fraction of each component averaged over the box, Ω̃k (k = gas, dark matter
and stars). Note that the fraction Ω̃k is different from the density parameter Ωk because the
box is selected preferentially around the cluster.

As is clear from Figure 4.1, the gas distribution is smoother but very well traces the under-
lying dark matter distribution. In contract, stars are more significantly concentrated in high
density regions, and exhibit numerous small clumps, most of which are not identified/resolved
in the gas distribution.

Figure 4.2 plots the radial density and mass profiles of the cluster. The stellar fraction
in the inner region (r < 200h−1kpc) is significantly higher than the typical observed value.
This is a well-known common problem among current high-resolution cosmological simulations,
and implies that some important baryon physics including high-energy phenomena and star
formation is still missing in the simulation. We perform the analysis of cluster gas, assuming
that this excessive star densities in the inner region does not affect our conclusions at outer
radius.

Figure 4.3 represents velocity fields in x-y, y-z and z-x planes passing through the center of
the cluster. The red/blue arrows have negative/positive radial velocity, showing that the gas in
the outer regions (r & 1h−1 Mpc) falls toward the center while its direction is randomized in
the inner region.

4.2 SPH Simulations

The SPH simulations used in this study were performed by K. Dolag using the TreePM/SPH
code GADGET-2 (Springel et al., 2001, 2005). We refer readers to Dolag et al. (2006, 2009) for
more detail. First, 10 regions containing massive halos were extracted from a lower resolution
DM-only simulation performed by Yoshida et al. (2001). Then these regions were resimulated
with higher resolution including baryon physics. The simulations include radiative cooling,
heating due to a uniform redshift-dependent UV background according to Haardt & Madau
(1996). Star formation and feedback processes are also included based on Springel & Hernquist
(2003). The cosmological parameters in the simulations are based on a flat ΛCDM model with
Ωm,0 = 0.3, H0 = 70 km s−1 Mpc−1, fbar = 0.13 (the baryon fraction) and σ8 = 0.9.

In this study, we use 5 regions named g1, g72, g1542, g3344 and g914. The regions g1 and
g72 contain 6 and 2 clusters, respectively. The other regions have only one cluster for each,
hence there are 11 clusters in total. The clusters in the same region is named a, b, c, . . . in a
decreasing order of mass. For the analysis in the subsequent chapters, we arrange mesh data for
each cluster. A physical variable A defined at a point x is given by

A(x) =
∑
i

mi
Ai

ρi
W (x− xi, h), (4.1)

where mi, ρi and Ai are the mass, density, the physical variable of consideration defined for the
SPH particle i and W (x, h) is the kernel function characterized by the smoothing length h. The
kernel function W is often defined to be a Gaussian function:

W (x, h) =

(
1

h
√
π

)3

exp

(
−x2

h2

)
(4.2)
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Figure 4.1: Densities of gas (top), dark matter (middle) and stars (bottom) are shown in two
ways for each. Left : Projected surface densities on x-z plane normalized by the fraction of each
component in the box: log10[

∫
dl ρkΩ̃

−1
k /(g cm−3 h−1 kpc)], where k is one of gas, dark matter

and stars and Ω̃k is the fraction of k component in the box. Right : Equal-density surfaces for
log10[ρkΩ̃

−1
k /(g cm−3 h−1 kpc)]=−28.0 (blue), −27.0 (green) and −26.0 (red). Densities are

normalized in the same way as the left panel.
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Figure 4.2: Radial profiles of densities (left) and masses (right) are shown for gas (red), dark
matter (green) and stars (blue). The black line in the right panel shows the total gravitational
mass; Mtot = Mgas +Mdm +Mstar. The analysis is performed on the 50 logarithmically equal
radial bins.
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Figure 4.3: Velocity fields in x-y (left), y-z (middle) and z-x (right) planes passing through the
center of the cluster. The arrow is red if vr < 0, and blue if vr > 0. The length of the arrow is
proportional to the magnitude of the velocity. An arrow with a speed of 1000 km s−1 is shown
for reference.

or a spline function:

W (x, h) =
3

2πh3
·



2

3
− x2

h2
+

1

2

x3

h3

(
0 ≤ x

h
< 1
)
,

1

6

[
2− x3

h3

] (
1 ≤ x

h
< 2
)
,

0
(
2 ≤ x

h

)
.

(4.3)

We use the latter form in this study. Figures 4.4 to 4.7 show the gas density and temperature on
the x-y plane. Although the clusters g1b to g1f and g72b are substructures of the clusters g1a
and g72a, respectively, their densities look not so much different from those of isolated clusters.
On the other hand, the temperatures of substructures, especially of g1d, g1e and g1f show fairly
irregular behaviors. This is because the hot gas of the central cluster is extended to the outer
region.
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Figure 4.4: Density (left) and temperature (right) maps on the x-y plane of the clusters g1a
(top), g1b (middle) and g1c (bottom)
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Figure 4.5: Density (left) and temperature (right) maps on the x-y plane of the clusters g1d
(top), g1e (middle) and g1f (bottom)
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Figure 4.6: Density (left) and temperature (right) maps on the x-y plane of the clusters g72a
(top) and g72b (bottom)
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Figure 4.7: Density (left) and temperature (right) maps on the x-y plane of the clusters g1542a
(top), g3344a (middle) and g914a (bottom)





Chapter 5

VALIDITY OF HYDROSTATIC
EQUILIBRIUM

5.1 Method to Examine the Validity of HSE

Our analysis method to discuss the validity of HSE using gases in simulated clusters is based on
the Euler equations:

∂v

∂t
+ (v · ∇)v = − 1

ρgas
∇p−∇ϕ, (5.1)

where ϕ is the gravitational potential, and ρgas, v and p are the density, velocity and pressure
of gas. While the Jeans equations do not describe the gas dynamics in their original form,
Rasia et al. (2004) and Lau et al. (2009) added the gas pressure gradient term to the Jeans
equations, and adopted the resulting equations in analyzing simulated clusters. We argue in the
next subsection that this is not justified, and present the result based on the Jeans equations
but using collisionless dark matter particles in Appendix C, for reference. We define the total
mass Mtot of a cluster inside a volume V as

Mtot =

∫
V
d3x ρtot, (5.2)

where ρtot is the total density of the cluster. For the simulated cluster considered throughout
this paper, ρtot consists of densities of gas, dark matter and stars, i.e., ρtot = ρgas + ρdm + ρstar.
The total mass can be rewritten in terms of p and v using Poisson’s equation and Gauss’s
theorem:

Mtot =
1

4πG

∫
∂V

dS · ∇ϕ =
1

4πG

∫
∂V

dS ·
[
− 1

ρgas
∇p− (v · ∇)v − ∂v

∂t

]
, (5.3)

where ∂V is the surface surrounding the volume V and we have used equation (5.1) in the second
equality. Now the total mass is evaluated by the gas quantities alone, without any knowledge on
dark matter and stars. This is why the present method is applicable, in principle, to the X-ray
data of galaxy clusters.

If we adopt a spherical surface as ∂V , the total mass can be decomposed into the following
four effective mass terms:

Mtot = Mtherm +Mrot +Mstream +Maccel, (5.4)
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where

Mtherm = − 1

4πG

∫
∂V

dS
1

ρgas

∂p

∂r
, (5.5)

Mrot =
1

4πG

∫
∂V

dS
v2θ + v2φ

r
, (5.6)

Mstream = − 1

4πG

∫
∂V

dS

[
vr

∂vr
∂r

+
vθ
r

∂vr
∂θ

+
vφ

r sin θ

∂vr
∂φ

]
, (5.7)

and

Maccel = − 1

4πG

∫
∂V

dS
∂vr
∂t

. (5.8)

We emphasize here that the above set of equations does not assume spherical symmetry of the
system; we just take a spherical surface as the integral surface and write down equation (5.3) in
spherical coordinates.

The first term, Mtherm, originates from the thermal pressure gradient of gas. If the gas
motion is negligible, Mtherm should be equal to the total mass Mtot, and thus regarded as a
cluster mass estimated under the HSE assumption. In other words, the difference between Mtot

and Mtherm is a quantitative measure of the departure from the HSE assumption.

The inertial term (v ·∇)v in the Euler equations reduces to Mrot and Mstream. If there exists
a coherent rotational motion around the center of the cluster, Mrot can be interpreted as the
centrifugal force term. Without such a motion, however, the local tangential velocity of different
directions at different locations on the sphere could make Mrot significantly large. During the
course of the cluster evolution, gas generally falls toward the center of the cluster with larger
streaming speed with increasing radius from the center. In this case, Mstream becomes negative
and cannot be neglected. On the other hand, it becomes positive and/or negligible, especially in
the innermost region where the gas velocity is more randomized than that in the outer regions.

Finally the acceleration term, Maccel, corresponds to the −∂vr/∂t term in the Euler equa-
tions, and becomes positive/negative when gas is decelerating/accelerating.

All the mass terms are invariant with respect to the choice of the axis of the spherical
coordinates, but are not necessarily positive. Note also that Mrot and Mstream, corresponding to
the inertial term, are not invariant with respect to the Galilei transformation. Thus we evaluate
those in the center-of-mass frame of the entire simulated cluster.

5.2 Comparison with Analysis Methods Adopted by Previous
Work

The set of basic equations that we adopt in this paper is essentially identical to that of Fang et al.
(2009), except the fact that they interpreted the difference between Mtot and Mtherm +Mrot +
Mstream as “turbulent gas motion” while we call it the acceleration termMaccel as directly implied
from equation (5.1), and evaluate it from the residual, Maccel = Mtot−Mtherm−Mrot−Mstream.

We are not sure why they ascribed the term to the turbulent motion. It is true that part of
the gas acceleration would be due to the turbulent gas motion, but not entirely. Furthermore the
numerical simulation does not include any physical processes directly related to the turbulent
motion. Even if the turbulent motion might be important for real clusters, it should come
from some physics below the subgrid scales that cannot be properly resolved in the numerical
simulation. Effects of gas random motion above the resolved scales should be included in Mrot

and Mstream. We note, however, that the different interpretation of Maccel does not affect at all
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the conclusion of Fang et al. (2009) that gas rotation is the most important term to describe
the origin of departure from HSE in their simulated clusters. As we will show below, this is not
consistent with our result.

In previous literature, the Jeans equations are sometimes used in analyzing the gas motion
in simulated clusters. For that purpose, a thermal pressure gradient term is added by hand to
the basic equations (e.g., Rasia et al., 2004; Lau et al., 2009). Assuming the steady state, i.e.,
∂v/∂t = 0, the Jeans equations in r-direction (B.20) is now replaced by the following equation:[
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(5.9)

where σ2
ij denotes the ij-component of the velocity dispersion tensor. Lau et al. (2009) converted

each term of equation (5.9) to mass term; see equations (6) to (11) of Lau et al. (2009). Then
they interpreted that the first two terms in the right hand side of the above equation originate
from “random gas motion”. It is, however, difficult to justify such a treatment in analysing
simulated clusters for the following reason.

Equation (5.9) implicitly assumes that the ICM consists of two distict components; the
ordinary thermalized component described by the Euler equations, and the unthermalized com-
ponent described by the Jeans Equations (D. Nagai, private communication). As shown in
Appendix B, diagonal components of the velocity dispersion tensor in the Jeans equations cor-
respond to thermal pressure in the Euler equations. Hence a pressure gradient term is included
in the Jeans equations, resulting in Equation (5.9).

It is certainly true that actual clusters would contain the unthermalized gas component such
as the cold gas accreting along with galaxies into clusters, and therefore the Jeans equations
may provide better descriptions for that component. It has not been proved that the multi-
component gas obeys Equation (5.9). Equation (5.9) assumes that the two kinds of gases have
the same density, but it is not always the case. Nor is there reason that the multi-component
gas obeys a single dynamical equation.

Even if a real gas obeys Equation (5.9) or some dynamical equation, all the gases in current
numerical simulations obey the Euler equations. The equality Mtot = Mtherm+Mrot+Mstream+
Maccel holds and there is no room for other terms to contribute, apart from numerical artifacts.
Therefore the analysis of the simulated clusters should use the Euler equations. It is of course
important to consider the proper treatment of the unthermalized gas in numerical simulations,
but is beyond the scope of the present paper.

5.3 Results

First we evaluate the effective mass terms defined in Section 5.1 for the cluster from the AMR
simulation (hereafter the AMR cluster), which is plotted in Figure 5.1; the left panel shows
the mass profiles, while the right panel indicates their fractional contribution to the total mass
within the radius.

The total mass Mtot(r) is computed by directly summing up all the dark matter and star
particles and gas of grids within the sphere of r. The other terms, Mtherm, Mrot and Mstream,
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require the pressure and velocity fields evaluated at r. For that purpose, we use the density,
velocity and temperature of gas defined at 5203 original grid points, and first bin the cluster
into 50 logarithmically equal radial intervals between 90–1900 h−1 kpc, 10 × 10 linearly equal
angular intervals.

Integrands of equations (5.5), (5.6) and (5.7) are calculated in each bin. Derivatives of
the physical variables such as ∂p/∂r are calculated as follows; first ∂/∂x, ∂/∂y and ∂/∂z are
computed from the difference of the adjacent the original Cartesian grid points. Then ∂/∂r,
∂/∂θ and ∂/∂φ in our spherical coordinates are calculated applying the chain rule.

In this way, Mtherm(r), Mrot(r) and Mstream(r) are computed by integrating the corre-
sponding integrands evaluated above. Finally we estimate Maccel simply from the residual of
Maccel = Mtot −Mtherm −Mrot −Mstream, since we have the cluster data at z = 0 alone. This
estimate for Maccel may be different from the original defintion, i.e., equation (5.8). Indeed when
we attempted to compute Maccel directly from the box mentioned in Section 4.1, it turned out
to be too small to obtain a correct gravitational potential for the entire cluster. Thus we go
back to a larger simulation box of a side of 22.5 h−1 Mpc and the grid length of 29.34 h−1 kpc
that encloses our cluster. Then we compute the gravitational potential using FFT to obtain the
gas acceleration at each grid point. This enables us to directly calculate Maccel. Figure 5.2 is
a comparison of Maccel ’s calculated by two methods. The directly calculated Maccel (magenta
line) is in good agreement with Mtot − Mtherm − Mrot − Mstream (black line), although there
is a large difference between the two within 200 h−1 kpc. Also, we make sure that the sum
Mtherm+Mrot+Mstream+Maccel reproduces Mtot within ∼ 2 % except for the innermost region
(r < 200h−1 kpc), where it deviates from Mtot by up to ∼ 9 %. Thus the estimation of Maccel

by Mtot −Mtherm −Mrot −Mstream is sufficiently good given the quoted errors of our conclusion
below. Although it seems better to use Maccel directly calculated from equation (5.8), the grid
size of the larger box is so coarse that we cannot take advantage of the high resolution of the
simulations in this study. Therefore, we decided to use the smaller box explained in Section 4.1
and Maccel is calculated by Mtot −Mtherm −Mrot −Mstream in the following analysis.

The left panel of Figure 5.1 implies that Mtherm agrees with Mtot reasonably well. Each of
the other three terms contributes less than 10 % of the total mass (the dotted curves correspond
to the case in which each term becomes negative and its absolute value is plotted instead).

In order to consider the validity of HSE more quantitatively, we plot the fractional contri-
bution of each mass term in the right panel of Figure 5.1. The rotation term, Mrot, is always
positive (by definition) and contributes approximately 10 % almost independently of radius. In
contrast, the streaming velocity term, Mstream, is mostly negative, and varies a lot at different
radial bins. As a result, the difference of the total mass Mtot and the HSE mass Mtherm is mostly
explained by the acceleration term Maccel alone; compare the black and magenta curves in the
right panel of Figure 5.1. At r = r500 and r200, the deviation from HSE in terms of the mass
difference (Mtherm − Mtot)/Mtot is about 10 %. Nevertheless the value significantly varies at
different radii and it is safe to conclude that (Mtherm −Mtot)/Mtot ranges approximately 10-20
% at r < r200. Also there is no systematic trend of the validity of the HSE assumption as a
function of radius. Even though the reliability of the simulation is suspicious for r < 200h−1kpc
due to the excessive stellar concentration (Section 4.1), (Mtherm−Mtot)/Mtot fluctuates between
−10 % and +25 % for 300h−1kpc < r < r500. Thus there is no guarantee that HSE becomes a
better approximation toward the inner central region.

The sum Mrot + Mstream + Maccel(= Mtot − Mtherm) corresponds to the term intergrating
the Lagrangian derivative of the gas velocity over the sphere. Therefore the fact that it is small
compared with Mtherm and Mtot is simply translated into the condition of HSE that the gas
acceleration from a Lagrangian point of view is negligible compared with the pressure gradient
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and the total gravity.
Next we divide the AMR cluster into two regions; upper and lower hemispheres with respect

to the x-y plane. Then we duplicate each hemisphere into one cluster. We call the synthetic
cluster constructed from the z > 0 (z < 0) hemisphere “z+” (“z-”). Although these clusters
are of course not independent of the original cluster and we cannot make a statistical argument
on their properties, we can briefly look at the effects of substructures or inhomogeneity of
temperature and velocity field.

We repeat the same analysis on these two synthetic clusters, and the results are plotted in
Figure 5.4. The amplitudes of the different terms vary significantly between the two clusters,
and the degree of the validity of HSE is also very different. Nevertheless the generic trend is
clear; the relation of Maccel ≈ Mtot −Mtherm holds almost independently of r.

It is not clear, however, why the two hemispheres have so different values of (Mtot −
Mtherm)/Mtot; HSE holds very well for “z+”, while it is not the case for “z-”. The visual
inspection of Figure 4.1 does not reveal any significant difference between the two. It may be
because some local concentrations of dark matter enhance the acceleration/deceleration of gas,
and influence the overall non-sphericity of the gas density. Thus the analysis taking account of
the ellipticity may provide a deeper insight on the validity of HSE, but is beyond the scope of
this thesis.

So far we have shown the results for a single cluster. In order to statistically discuss the
validity of HSE, we analyze other simulated clusters. Since the AMR simulation contains only
a single cluster, we use ones taken from the SPH simulations explained in Section 4.2. For these
clusters, we calculate Maccel directly from the gas acceleration data. We also assume spherical
symmetry and do not divide the spherical surface at a given radius just for simplicity. Figures
5.5 to 5.10 show the results.

These figures showMtherm deviates fromMtot by up to 30 %. The large deviation occurs both
inside outside r500. The figures also show |Maccel| is larger than Mrot and |Mstream| especially
where Mtherm deviates from Mtot. There are, however, cases where Maccel almost vanishes while
Mrot explains the difference between Mtot and Mtherm (e.g. inside r500 of g3344a). The above
results are basically the same for the AMR cluster.

For all the clusters, the sum Mtherm+Mrot+Mstream+Maccel approximately reproduces Mtot

within ∼ 5 % for most regions. This indicates that the estimate of Maccel by Mtot −Mtherm −
Mrot −Mstream is justified, as confirmed for the AMR cluster.

The analysis so far is precise in that it shows the values of the mass terms at each radius,
but it does not clarify the overall behavior of the mass terms. Hence we perform the same
analysis with much coarser radial bins and compare Mtot and Mtherm. We use only the AMR
cluster and the central cluster (labeled “a”) of each SPH simulation box in order to see the
difference between substructure-rich/poor clusters. Figure (5.11) shows the result. With the
exception of the cluster g72a (magenta), Mtherm is smaller than Mtot by 10 – 15 % inside r500
and the difference becomes larger by up to 20 – 30 % at larger radii. Therefore the HSE mass
systematically underestimates the total mass by 10 – 15 % inside r500 and by 20 – 30 % outside
r500. Again, the main reason for the deviation is the gas acceleration toward the center.

Figure (5.11) also indicates that there is no difference between substructure-rich and substructure-
poor clusters, or AMR and SPH clusters. Although the number of the analyzed clusters is yet
small, the underestimation of Mtot by Mtherm is probably common to simulated clusters.
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Figure 5.1: The effective mass terms in Equation (5.4) for the gas in the simulated cluster are
shown in the top panel: Mtot (black), Mtherm (red), Mrot (green), Mstream (blue) and Maccel

(magenta). Dotted line means that its sign is inverted. Ratios of mass terms to Mtot are shown
in the bottom panel. The black line shows (Mtot−Mtherm)/Mtot and colored lines represent the
same things as the left panel. The analysis is performed on the 50 logarithmically equal radial
bins and 10 linearly equal bins both in polar and azimuthal angles.
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Figure 5.2: s.
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Figure 5.3: Same as Figure 5.1, but for the clusters “z+”.
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Figure 5.4: Same as Figure 5.1, but for the clusters “z-”.
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Figure 5.5: The effective mass terms in Equation (5.4) for the gas in the simulated cluster g1a
(left) and g1b (right) are shown in the top panel: Mtot (black), Mtherm (red), Mrot (green),
Mstream (blue) and Maccel (cyan). The sum Mtherm +Mrot +Mstream +Maccel is also shown in
orange. Dotted line means that its sign is inverted. Ratios of mass terms to Mtot are shown in
the bottom panel. The colored lines represent the same things as the left panel. The analysis is
performed on the 25 logarithmically equal radial bins.
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Figure 5.6: Same as Figure 5.5, but for the clusters g1c (left) and g1d (right).

Figure 5.7: Same as Figure 5.5, but for the clusters g1e (left) and g1f (right).
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Figure 5.8: Same as Figure 5.5, but for the clusters g72a (left) and g72b (right).
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Figure 5.9: Same as Figure 5.5, but for the clusters g1542a (left) and g3344a (right).
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Figure 5.10: Same as Figure 5.5, but for the cluster g914a.
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Figure 5.11: The ratio of Mtherm to Mtot for the six simulated clusters: g1a (red), g72a (ma-
genta), g1542a (green), g3344a (blue), g914a (cyan). To see the overall behavior, the radial
bins are coarsely provided. The result for a cluster with/without big substructures is shown in
solid/dashed line.





Chapter 6

BIASES IN MASS
RECONSTRUCTION FROM 2D
OBSERVABLES

In the previous chapter, we discussed the validity of the hydrostatic assumption in three-
dimensional space. In real observations, however, we can obtain two-dimensional observables
alone. The difference between the true mass and the HSE mass estimated from two dimensional
observables can be larger (or smaller) than that in three dimensional analyses due to the projec-
tion effect, fitting procedures, etc. In this section, we investigate such effects using the same set
of simulated clusters in the previous chapter. Throughout this chapter, we do not consider the
influences of noises of specific observational instruments, since we are interested in the remaining
biases even when such influences are removed.

6.1 Method

6.1.1 Simulated Observables

In real observations, the primary observables are the surface brightness IX and the spectroscopic
temperature Tspec. We calculate the two observables from the simulation data. We use six
simulated clusters: one from the AMR simulation in Section 4.1 (the AMR cluster) and five
central clusters from SPH simulation in Section 4.2, namely, the clusters g1a, g72a, g1542a,
g3344a, g914a.

The surface brightness IX is defined as the energy loss rate integrated along the line of sight:

IX =
1

4π

∫
dl neniΛ(T ), (6.1)

where Λ(T ) is the cooling function and ne and ni are the electron and ion densities (In simula-
tions, ne = ni). The line of sight is chosen as the z-axis in the simulations. We use the cooling
function calculated using SPEX in the X-ray energy band (0.5 - 10 keV) under the assumption
of the collisional ionization equilibrium. Figure 6.1 illustrates the bolometric and X-ray cooling
curves as a function of temperature. The figure shows that low temperature gases (T . 0.1 keV)
do not contribute to the X-ray cooling curve.

The temperature Tspec is determined spectroscopically in real observations. Although it is
more faithful to real observations if we make mock spectra and estimate the temperature by

53
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Figure 6.1: Bolometric and X-ray (0.5-10 keV) cooling functions calculated using SPEX. The
metallicity is set to 0.3 Z⊙.

spectral fitting, this procedure necessarily becomes dependent on specific observational tele-
scopes and detectors, which we do not take into account in this study. Instead, we use the
spectroscopic-like temperature Tsl proposed by Mazzotta et al. (2004):

Tsl =

∫
dl n2T 1/4∫
dl n2T−3/4

. (6.2)

Mazzotta et al. (2004) have shown that Tsl reproduces Tspec within a few percent for simulated
clusters. The approximation is valid for higher temperatures larger than a few keV. Also, low
temperature gases probably not contribute to the X-ray spectroscopic temperature, similarly to
the surface brightness. Therefore, we remove by hand gases with temperatures lower than 0.1
keV.

Figure 6.2 is a density-temperature plot for gas particles around the cluster g1. The figure
supports the validity of the removal of low-temperature gases since most of the particles have
temperatures lower than 0.1 keV. Note that a little change of the fiducial temperature of 0.1
keV to, for example, 0.5 keV only slightly affect values of the simulated observables.

6.1.2 Fitting Formulae

Next, we find three-dimensional profiles which reproduce two-dimensional simulated observables.
We determine a set of the best-fit parameters for simulated clusters assuming the following
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Figure 6.2: A density-temperature plot for SPH particles around the cluster g1a. The red and
blue points represent unphysical particles, which are removed before analysis.

spherical profiles:

n2(r) = n2
0

(r/rc)
−α

(1 + r2/r2c )
3β−α/2

, (6.3)

T (r) = T0
(r/rt)

−a

(1 + (r/rt)b)c/b
. (6.4)

These are simplified versions of the models used by Vikhlinin et al. (2006). The total number of
parameters is nine. We prepare 25 logarithmically equal bins and calculate the circular averages
of the simulated observables for each bin. In real observations, the number of radial bins depends
on resolution of observational instruments, which we do not consider as mentioned above. Also,
errors in values of observables depend on performance of instruments, thus we define them as
ten percent for each value just for simplicity, since there is no error in simulated observables.

We have assumed the squared density profile (Equation (6.3)) since the observables depend
on density only in the form n2. The observables include fluctuations in density and hence easily
affected by substructures. Therefore the radial density profile n(r) can be significantly different
from the square root of n2(r).

After the best-fit density and temperature profiles are found, we calculate mass of the cluster
from the profiles assuming hydrostatic equilibrium. In this chapter, we call the mass obtained
from this process Mfit. If the three-dimensional density and temperature are correctly estimated
by fitting, the mass reproduces the three-dimensional HSE mass Mtherm. Hence the differ-
ence between Mfit and Mtherm indicates the bias in mass estimation from the two-dimensional
observables. On the other hand, the difference between Mfit and Mtot means the bias in obser-
vationally estimated mass as a combination of the intrinsic violation of HSE and the effects of
the two-dimensionality of the observables.
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6.2 Results

Figures 6.3 – 6.8 demonstrate the results of the analysis for six simulated clusters. As the
contour maps of the surface brightness indicate, the AMR, g1a, g72a and g914a clusters have
big substructures, which appear as peaks in the radial profiles of the surface brightness. The
density and temperature profiles are, however, well fitted by Equations (6.3) and (6.4). Hence,
the mass constructed from the best-fit profiles (the blue line in the bottom-left panel) reproduces
the three-dimensional HSE mass (the red line in the bottom-left panel). From these figures,
it seems that the mass Mfit well reproduces the three-dimensional HSE mass Mtherm, i. e.,
there is little biases in mass reconstruction from the two-dimensional observables. To see more
quantitatively, we compare Mfit with Mtherm or Mtot using coarse radial bins.

Figure 6.9 shows the ratio of Mfit to Mtherm. This figure reveals a significant difference be-
tween substructure-rich/poor clusters which is not seen in three-dimensional analysis in Chap-
ter 5. For substructure-poor clusters, Mfit/Mtherm lies between 0.95 – 1.05 at all radii. This
means that there is little biases in mass construction from the two-dimensional observables for
substructure-poor clusters. On the other hand, Mfit/Mtherm deviates from unity especially at
large radii for substructure-rich clusters. Since it is shown in Chapter 5 that Mtherm underesti-
mates Mtot, this results in the further underestimation of mass at large radii as shown in Figure
6.10.

This difference can be qualitatively explained as follows. If there is a substructure with high
temperature and density, the surface brightness around the substructure becomes significantly
larger than that without the substructure. This leads to overestimate of the density profile
in the outermost regions, and hence underestimate of the pressure gradient and temperature
(If the density is higher, the temperature must be lower to reproduce the same value of the
spectroscopic-like temperature). Hence the HSE mass is underestimated.

To confirm the effect of substructures, we calculate radial profiles of the surface brightness
and spectroscopic-like temperature for the cluster g72a only from the domain x < 0, y < 0 which
has no big substructures and the domain x > 0, y < 0 which has big substructures. We call
these domains “SE” (south-east), “SW” (south-west), respectively. Using these radial profiles,
we estimate the mass by the same method as above. The results are shown in Figures 6.11
to 6.13. The ratios of Mfit to the three-dimensional HSE mass and total mass for “SW” are
similar to those of the entire cluster. Meanwhile, the ratio of Mfit to Mtot for “SE” is closer
to unity. This behavior is similar to the clusters with no substructures in Figure 6.10. The
ratio of Mfit to Mtherm for “SE” is larger than that of the entire cluster at large radii (& r500).
Although there are still large deviations from unity (> 50%) around 3r500, the overall behavior
is similar to the clusters with no substructures in that it exhibits up-and-down behavior around
unity. These results indicate that the large deviations of Mfit from the three-dimensional HSE
mass and total mass at large radii are due to substructures. It is not, however, that the domain
“SW” exhibits larger deviations than the entire cluster. Although this method to investigate
the effect of substructures is simple, the result indicates the tendency of substructures to lead
underestimation of mass.

The above results indicate that we have to pay attention to substructures when we observa-
tionally estimate mass of clusters. Note that conventional observations of clusters is limited to
inside the radius r500, so the effect of substructures discussed above would not appear in mass
estimates in previous literature (e.g. Vikhlinin et al., 2006).
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Figure 6.3: Results of the analysis in Chapter 6 for the AMR cluster. Contours for the surface
bright ness and the spectroscopic-like temperature are shown at the top-left and the top-right,
respectively. The line of sight is chosen as the z-axis of the simulation box. The middle left panel
shows the result of fitting. The open diamonds and filled circles represent the circular average
values of the surface brightness and spectroscopic-like temperature, respectively. The solid and
dashed lines are the best-fit profiles. The density (solid) and temperature (dashed) profiles with
the best-fit parameters are shown in blue lines in the middle-right panel. For comparison, the
three-dimensional density (solid) and temperature (dashed) profiles are shown in black lines.
The HSE mass obtained from the best-fit parameters is the blue line in the bottom-left panel.
The bottom-left panel also illustrates the true mass (black) and HSE mass (red) calculated from
the three-dimensional data. The bottom-right panel is a comparison of the total density profile
with best-fit parameters (blue) with the true profile (black).



58 CHAPTER 6. BIASES IN MASS RECONSTRUCTION FROM 2D OBSERVABLES

Figure 6.4: Same as Figure 6.3, but for the cluster g1a.



6.2. RESULTS 59

Figure 6.5: Same as Figure 6.3, but for the cluster g72a.
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Figure 6.6: Same as Figure 6.3, but for the cluster g1542a.
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Figure 6.7: Same as Figure 6.3, but for the cluster g3344a.
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Figure 6.8: Same as Figure 6.3, but for the cluster g914a.
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Figure 6.9: The ratio of the mass Mfit constructed from the best-fit density and temperature
profiles to the HSE mass Mtherm directly calculated from the three-dimensional data: g1a (red),
g72a (magenta), g1542a (green), g3344a (blue), g914a (cyan) and the AMR cluster (orange).
The horizontal axis represents radius normalized by r500 of each cluster. The solid lines are for
substructure-rich clusters, and the dashed lines are for substructure-poor clusters.

Figure 6.10: The ratio of the mass Mfit constructed from the best-fit density and temperature
profiles to the total mass Mtot directly calculated from the three-dimensional density data:
g1a (red), g72a (magenta), g1542a (green), g3344a (blue), g914a (cyan) and the AMR cluster
(orange). The horizontal axis represents radius normalized by r500 of each cluster. The solid
lines are for substructure-rich clusters, and the dashed lines are for substructure-poor clusters.
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Figure 6.11: The same as the middle-left and bottom-left panels of Figure 6.3, but for the radial
profiles calculated from the domains “SE” (left) and “SW” (right) of the cluster g72a.
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Figure 6.12: The ratio of the mass constructed from the best-fit density and temperature profiles
to the HSE mass directly calculated from the three-dimensional data. The black line is for the
entire cluster the g72a. The red and blue lines are for the domains “SE” and “SW”, respectively.

Figure 6.13: The ratio of the mass constructed from the best-fit density and temperature profiles
to the total mass directly calculated from the three-dimensional data. The black line is for the
entire cluster the g72a. The red and blue lines are for the domains “SE” and “SW”, respectively.





Chapter 7

SUMMARY AND CONCLUSION

We have examined the validity of HSE that has been conventionally assumed in estimating mass
of galaxy clusters from X-ray observations.

In Chapter 5 we investigated the intrinsic difference between the true and HSE mass using
three-dimensional simulation data. We used 12 simulated clusters and evaluate several mass
terms directly corresponding to the Euler equations that govern the gas dynamics in numerical
simulations. We found that the mass estimated under the HSE assumption, Mtherm in the
present study, deviates from the true mass Mtot fractionally by up to 30 %. The deviation can
become large both in the inner and outer regions of the clusters. On average (when coarser
radial bins are used), Mtherm is smaller than Mtot by ∼ (10−−15) % on average within r500 and
by ∼ (20−−30) % at larger radii. Therefore the the HSE mass obtained in X-ray observations
systematically underestimates the true mass even if the density and temperature are correctly
estimated.

More importantly, we found that Mtot−Mtherm is nearly identical to Maccel, in other words,
the validity of HSE is controlled by the amount of gas acceleration. We also showed that the
estimate of Maccel by Mtot−Mtherm−Mrot−Mstream is a good approximation of Maccel calculated
directly from gas acceleration data. There are cases where Mtot −Mtherm is explained by Mrot,
i.e., the rotation of the gas, but Mtot−Mtherm is relatively small (. 10 %) there. In other words,
the large deviations of Mtherm from Mtot is generally attributed to Maccel.

The overall conclusion that the HSE mass agrees with the total mass within (10 – 20)%
is consistent with previous results by Fang et al. (2009) and Lau et al. (2009). Nevertheless
the interpretation of the origin of the departure from HSE is very different. Fang et al. (2009)
concluded that the gas rotation term Mrot makes a significant contribution and that Mtherm +
Mrot well reproduces the total mass, especially for relaxed clusters. It is not the case, however,
for our simulated cluster at least. Similarly Lau et al. (2009) found the similar degree of the
departure from HSE, but they ascribed the discrepancy to the random gas motion. Their
analysis, however, is based on the modification of the Jeans equations, which does not appear to
be justified for the analysis of the gas dynamics, and thus their conclusion should be interpreted
with caution.

Although we tested the roles of the velocity and acceleration of gases, they are not measured
in current observations. Some future satellites, such as ASTRO-H, are expected to be able to
obtain information on gas velocity. It is not clear, however, how accurately we can estimate the
velocity and how to apply it in mass estimates, which will be discussed somewhere.

In Chapter 6, we investigated biases in the HSE mass estimated from two-dimensional ob-
servables. We showed that there is only a little influence of projection and fitting procedure. If
a cluster has some significant substructures in outermost regions, the mass at large radii will be
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underestimated since the larger surface brightness due to the substructures leads an underesti-
mate of pressure gradient. This would not, however affect mass estimations in previous work
because current observations are limited to inside the radius r500. In other words, in future
work which includes observations of outer regions of clusters, substructures should be carefully
treated.

The analysis using only south-east and south-west parts of the cluster g72a indicates that the
use of the substructure-poor region or removal of substructures will provide better estimation of
mass. However, whether substructures can be identified and removed depends on the resolution
of observational instruments, especially for distant clusters. The discussion including limitations
from observational instruments remains as future work.

A relatively small systematic error of the HSE mass inferred from current numerical sim-
ulations may be partly ascribed to the assumptions inherent in the Euler equations, i.e., local
thermal equilibrium and negligible viscosity (Appendix B). This is supported by the fact that the
error in the mass estimated from the random motion of collisionless particles tends to be much
greater at large radii (Appendix C) because the relaxation time scale for collisionless particles
are appreciably longer than that for collisional gas. We should also note that the HSE mass can
be influenced by other physical precesses that are not included in the numerical simulations, such
as pressure support from micro-turbulence, the magnetic field, and accelerated particles (e.g.,
Laganá et al., 2010). The neglected components mentioned above are closely linked with one
another (e.g., viscosity can play a role in generating turbulence and the magnetic field can affect
both thermalization and acceleration of gas particles) and will be investigated in the near future
by X-ray missions such as NuSTAR1 and ASTRO-H as well as by radio telescopes including
EVLA2 and LOFAR3.

1http://www.nustar.caltech.edu
2http://www.aoc.nrao.edu/evla
3http://www.lofar.org



Appendix A

SPHERICAL COLLAPSE MODEL
IN NON-EINSTEIN-DE SITTER
UNIVERSES

In this appendix, we show δlinearc in the spherical collapse model (Section 2.5) has only a weak
dependence on the model of the universe. The following discussion is based on Nakamura &
Suto (1997).

A.1 Open Universe

We consider an open universe, i.e., Ωm + ΩK = 1, Ωm < 1. For simplicity, we set the scale
factor a(tv) = av = 1 at the time tv when the system settles into virial equilibrium. We use
in this section Ω as Ωm, then ΩK = 1 − Ω. The time-dependence of the scale factor can be
parametrically written as

Hvt =
Ωv

2(1− Ωv)3/2
(sinh η − η),

a =
Ωv

2(1− Ωv)
(cosh η − 1),

(A.1)

where the subscript v denotes the values at the time tv. Since av = 1,

Ωv =
2

cosh ηv + 1
, 1− Ωv =

cosh ηv − 1

cosh ηv + 1
. (A.2)

It can also be easily shown that

Ht =
sinh η(sinh η − η)

(cosh η − 1)2
. (A.3)

A sphere of mass M and radius r(t) follows the following equation of motion:

d2r

dt2
= −GM

r2
. (A.4)

The curvature of the universe does not change the equation of motion and we include it in the
energy of the system. The energy equation is

1

2

(
dr

dt

)2

− GM

r
= E, (A.5)
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where the energy E is defined at the turn-around time tt:

E = −GM

rt
. (A.6)

Integrating the energy equation, one obtains

Ht =
H√
2GM

∫ r

0
dr′

(
1

r′
− 1

rt

)−1/2

= ξ1/2
∫ y

0
dx

√
x

1− x
, (A.7)

where

y =
r

rt
, ξ =

r3tH
2

2GM
. (A.8)

Note that ξ has a time-dependence through H. The density contrast δ is given by

δ =
ρ

ρ̄
− 1 =

3M

4πρ̄r3
− 1

= (Ωy3ξ)−1 − 1 =
cosh η + 1

2

1

y3ξ
− 1.

(A.9)

The collapse time is given by

Hvtv = 2ξ1/2v

∫ 1

0
dx

√
x

1− x
= πξ1/2v . (A.10)

Using Equation (A.3), one obtains

ξv =
1

π2

sinh2 ηv(sinh ηv − ηv)
2

(cosh ηv − 1)4
. (A.11)

From the virial theorem, yv = 1/2, hence

δc = 4π2 (cosh ηv − 1)3

(sinh ηv − ηv)2
− 1. (A.12)

This is the density contrast at the collapse time in the non-linear theory.
Next we calculate δc in the linear regime. In the early stages, y ≪ 1 and η ≪ 1, then

Equations (A.3) and (A.7) give

Ht ≃ 2

3

(
1 +

1

20
η2
)

(A.13)

and

Ht ≃ 2

3
ξ1/2y3/2

(
1 +

3

10
y

)
. (A.14)

Equating (A.13) with (A.14) gives y iteratively:

y ≃ ξ−1/3

(
1− 1

5
ξ−1/3 +

1

30
η2
)
. (A.15)

Combining all the above results, the initial density contrast δi is given by

δi ≃
(
1 +

1

4
η2
)

1

y3ξ
− 1 ≃ 3

5

(
ξ−1/3 +

1

4
η2
)
. (A.16)
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Since η2/4 ≃ (Ω−1
v − 1)a and ξ ∝ H2,

δi ≃
3

10
a(cosh ηv − 1)

[
1 +

(
2π

sinh ηv − ηv

)2/3
]
, (A.17)

showing that δi ∝ a as predicted by the linear theory. Since the linear growth rate D+ in an
open universe is given by

D+ =
5

2

aΩ

1− Ω

[
1 + 2Ω

1− Ω
− 3Ω

(1− Ω)3/2
tanh−1

√
1− Ω

]
=

5a

cosh η − 1

[
3 sinh η(sinh η − η)

(cosh η − 1)2
− 2

]
,

(A.18)

the density contrast δlinearc at the collapse time is given by

δlinearc =
3

2

[
3 sinh ηv(sinh ηv − ηv)

(cosh ηv − 1)2
− 2

] [
1 +

(
2π

sinh ηv − ηv

)2/3
]
. (A.19)

A.2 Flat Universe

Next we consider a flat universe, i.e., Ωm + ΩΛ = 1, Ωm < 1. For simplicity, we set the scale
factor a(tv) = av = 1 at the time tv when the system settles into virial equilibrium. We use
in this section Ω as Ωm, then ΩΛ = 1 − Ω. The time-dependence of the scale factor can be
parametrically written as

Hvt =
1

3
(1− Ωv)

−1/2 cosh−1(1 + 2χ),

a =

(
Ωv

1− Ωv

)1/3

χ1/3,

(A.20)

where the subscript v denotes the values at the time tv. Since av = 1,

Ωv =
1

1 + χv
, 1− Ωv =

χv

1 + χv
. (A.21)

It can also be easily shown that

Ht =
1

3

(
1 + χ

χ

)1/2

cosh−1(1 + 2χ). (A.22)

A sphere of mass M and radius r(t) follows the following equation of motion:

d2r

dt2
= −GM

r2
+

Λ

3
r. (A.23)

Integrating Equation (A.23) gives the energy equation:

1

2

(
dr

dt

)2

− GM

r
− Λ

6
r2 = E, (A.24)

where the energy E is defined at the turn-around time tt:

E = −GM

rt
− Λ

6
r2t . (A.25)
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Integrating the energy equation, one obtains

Ht = ζ1/2
(
1 + χ

χ

)∫ y

0
dx

[
1

x
− (1 + ζ) + ζx2

]−1/2

, (A.26)

where

y =
r

rt
, ζ =

r3tΛ

6GM
. (A.27)

Note that ζ is time-independent. In order for the sphere to turn around, i.e., the integrand of
Equation (A.26) does not diverge in the range 0 < x < 1, ζ must satisfy 0 < ζ < 1/2. The
density contrast δ is given by

δ =
ρ

ρ̄
− 1 =

3M

4πρ̄r3
− 1 =

χ

y3ζ
− 1. (A.28)

The collapse time is given by

Hvtv = 2ζ1/2
(
1 + χv

χv

)∫ 1

0
dx

[
1

x
− (1 + ζ) + ζx2

]−1/2

. (A.29)

Now we replacing the variable x by

x =
(2− ζ − λ)t2

2[1 + 2ζ − (3ζ + λ− 1)t2]
, (A.30)

where
λ =

√
4ζ + ζ2. (A.31)

Then Hvtv can be expressed as

Hvtv =
4(ζ + λ)√

(λ+ 3ζ)(λ− ζ)
[Π(ν, k)−K(k)] , (A.32)

where K(k) and Π(ν, k) are the elliptic integrals of the first and third kinds characterized by

k2 =
4λζ

(λ+ 3ζ)(λ− ζ)
, ν =

2ζ

λ+ 3ζ
. (A.33)

Using Equation (A.22), one obtains

χv =
1

2

[
cosh

(
12(ζ + λ)√

(λ+ 3ζ)(λ− ζ)
[Π(ν, k)−K(k)]

)
− 1

]
. (A.34)

From the virial theorem,

⟨Um⟩t + ⟨UΛ⟩t =
1

2
⟨Um⟩v + 2⟨UΛ⟩v, (A.35)

which gives
4ζy3v − 2(1 + ζ)yv + 1 = 0. (A.36)

Equation (A.36) has a solution in the range 0 < yv < 1:

yv =

(
2 + 2ζ

3ζ

)1/2

cos

[
2

3
π − 1

3
cos−1

{
−1

ζ

(
3ζ

2 + 2ζ

)3/2
}]

. (A.37)
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Combining all the above results,

δc =
χv

y3vζ
− 1, (A.38)

where wv and yv are given by Equations (A.34) and (A.37), respectively. This is considered to
be the density contrast at the collapse time in the non-linear theory.

Next we calculate δc in the linear regime. In the early stages, y ≪ 1 and η ≪ 1, then
Equations (A.22) and (A.26) give

Ht ≃ 2

3
(1 + χ)1/2 (A.39)

and

Ht ≃ 2

3
ζ1/2

(
1 + χ

χ

)1/2

y3/2
[
1 +

3

10
(1 + ζ)y

]
. (A.40)

Equating (A.39) with (A.40) gives y iteratively:

y ≃
(
χ

ζ

)1/3
[
1− 1

5
(1 + ζ)

(
χ

ζ

)1/3
]
. (A.41)

Combining all the above results, the initial density contrast δi is given by

δi ≃
3

5
(1 + ζ)

(
χ

ζ

)1/3

=
3

5
a(1 + ζ)

(
χv

ζ

)1/3

, (A.42)

showing that δi ∝ a as predicted by the linear theory. Since the linear growth rate D+ in an
open universe is given by

D+ = a2F1

(
1,

1

3
,
11

6
;−χ

)
, (A.43)

the density contrast δlinearc at the collapse time is given by

δlinearc =
3

5
2F1

(
1,

1

3
,
11

6
;−χv

)
(1 + ζ)

(
χv

ζ

)1/3

. (A.44)

Figures A.1 and A.2 illustrate δc and δlinearc as functions of the current density parameters.
Figure A.2 shows that δlinearc is insensitive to cosmology models.
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Figure A.1: The density contrast when the system gets into virial equilibrium for three sets of
cosmological parameters: (Ωm,0, ΩΛ,0)=(0.3, 0.7) (solid), (0.3, 0) (dashed) and (1, 0) (dotted).
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Figure A.2: The density contrast when the sphere collapses in the linear theory for three sets of
cosmological parameters: (Ωm,0, ΩΛ,0)=(0.3, 0.7) (solid), (0.3, 0) (dashed) and (1, 0) (dotted).



Appendix B

RELATION BETWEEN THE
EULER EQUATIONS AND JEANS
EQUATIONS

From a microscopic point of view, both the Euler equations and the Jeans equations can be
derived from the Boltzmann equation under different assumptions. In the following, we explicitly
compare the two sets of equations in both Cartesian and spherical coordinates.

B.1 Cartesian Coordinates

We define the distribution function f such that f(x,v, t)d3xd3v is the probability that a ran-
domly chosen particle in the system lies in the phase space volume d3xd3v at position (x,v)
and time t. The motion of such particles under the gravitational potential ϕ is described by the
Boltzmann equation:

∂f

∂t
+ vi

∂f

∂xi
− ∂ϕ

∂xi

∂f

∂vi
=

(
δf

δt

)
coll

, (B.1)

where the collision term on the right hand side takes account of collisions between particles.
Note that vi (i = 1, 2, 3) represents a coordinate in the phase space and should not be confused
with the velocity field at the spatial point xi. For simplicity, we assume that all particles have
the same mass m in the following.

First, we consider a collisionless case with (δf/δt)coll = 0. Multiplying equation (B.1) by m
and integrating it over the velocity space yield the continuity equation:

∂ρ

∂t
+

∂(ρv̄i)

∂xi
= 0, (B.2)

where

ρ(x, t) =

∫
d3v mf(x,v, t) (B.3)

and we introduce the average over the velocity space:

q̄(x, t) =
1

ρ(x, t)

∫
d3v mq(x,v, t)f(x,v, t) (B.4)
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for an arbitrary variable q such as vi. Multiplying equation (B.1) by mvj and integrating over
the velocity space give the momentum equations:

∂(ρv̄i)

∂t
+

∂τ ijJ
∂xj

= −ρ
∂ϕ

∂xi
, (B.5)

where

τ ijJ = ρvivj = ρσ2,ij + ρv̄iv̄j (B.6)

and σ2,ij is the velocity dispersion tensor. Equations (B.2) and (B.5) reduce to the Jeans
equations:

∂v̄i

∂t
+ v̄j

∂v̄i

∂xj
= −1

ρ

∂(ρσ2,ij)

∂xj
− ∂ϕ

∂xi
(B.7)

Next, we consider a collisional case. Rigorous handling of the collisional term is rather
complicated and simplified models are often used. A conventional one is the Bhartnagar-Gross-
Krock (BGK) equation, which employs a linearized collisional term:

∂f

∂t
+ vi

∂f

∂xi
− ∂ϕ

∂xi

∂f

∂vi
= −f − f0

τ
, (B.8)

where τ is the relaxation time of the system considered, f0 is the Maxwellian distribution function
characterized by the local temperature T (x, t):

f0(x,v, t) =

[
m

2πkBT (x, t)

]3/2
exp

[
−m(v − v̄(x, t))2

2kBT (x, t)

]
, (B.9)

and kB is the Boltzmann constant. If we assume that mean values of conservatives such as mass
and momentum are the same as those in local thermal equilibrium, the collision term vanishes
in the continuity and momentum equations. In local thermal equilibrium, pressure is defined
from the diagonal components of σ2

ij by pδij ≡ ρσ2
ij and the dispersion tensor can be written as

τ ijE = pδij + ρv̄iv̄j . (B.10)

If we replace τJ in equation (B.5) with τE and combine them with equation (B.2), we obtain the
Euler equations:

∂v̄i

∂t
+ v̄j

∂v̄i

∂xj
= −1

ρ

∂p

∂xi
− ∂ϕ

∂xi
. (B.11)

The difference between the Euler and the Jeans equations resides only in the form of the dis-
persion tensor.

If we retain the off-diagonal components of the dispersion tensor, they can be interpreted as
viscosity, and the equations reduce to the Navier-Stokes equations (Choudhuri, 1998; Chapman
& Cowling, 1970).

B.2 Spherical coordinates

One can rewrite the continuity and momentum equations in the previous section in general
coordinates:

∂ρ

∂t
+∇i(ρv̄

i) = 0 (B.12)
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and
∂(ρv̄i)

∂t
+∇jτ

ij = −ρgij∇jϕ, (B.13)

by using the covariant derivative operator ∇i . For spherical coordinates (x1 = r, x2 = θ, x3 =
φ), non-zero components of the metric tensor gij are

g11 = 1, g22 = r2, g33 = r2 sin2 θ (B.14)

and the corresponding non-zero connection coefficients are

Γ1
22 = −r, Γ1

33 = −r sin2 θ, Γ2
12 = Γ2

21 =
1

r
,

Γ2
33 = − sin θ cos θ, Γ3

13 = Γ3
31 =

1

r
, Γ3

23 = Γ3
32 = cot θ.

(B.15)

The velocity vector is now given by v̄i = (v̄r, v̄θ/r, v̄φ/r sin θ).
In spherical coordinates, the continuity equation leads

∂ρ

∂t
+

1

r2
∂(r2ρv̄r)

∂r
+

1

r sin θ

∂(sin θρv̄θ)

∂θ
+

1

r sin θ

∂(ρv̄φ)

∂φ
= 0. (B.16)

Setting τ ij = τ ijE = ρv̄iv̄j + pgij gives the Euler equations:[
∂

∂t
+ v̄r

∂

∂r
+

v̄θ
r

∂

∂θ
+

v̄φ
r sin θ

∂

∂φ

]
v̄r −

v̄2θ + v̄2φ
r

= −1

ρ

∂p

∂r
− ∂ϕ

∂r
(B.17)

[
∂

∂t
+ v̄r

∂

∂r
+

v̄θ
r

∂

∂θ
+

v̄φ
r sin θ

∂

∂φ

]
v̄θ +

v̄rv̄θ − v̄2φ cot θ

r
= − 1

ρr

∂p

∂θ
− 1

r

∂ϕ

∂θ
, (B.18)[

∂

∂t
+ v̄r

∂

∂r
+

v̄θ
r

∂

∂θ
+

v̄φ
r sin θ

∂

∂φ

]
v̄φ +

v̄rv̄φ + v̄θv̄φ cot θ

r

= − 1

ρr sin θ

∂p

∂φ
− 1

r sin θ

∂ϕ

∂φ
.

(B.19)

On the other hand, putting τ ij = τ ijJ = ρvivj leads to the Jeans equations:[
∂

∂t
+ v̄r

∂

∂r
+

v̄θ
r

∂

∂θ
+

v̄φ
r sin θ

∂

∂φ

]
v̄r +

1

ρ

[
∂(ρσ2

rr)

∂r
+

1

r

∂(ρσ2
rθ)

∂θ
+

1

r sin θ

∂(ρσ2
rφ)

∂φ

]

+
1

r

(
2σ2

rr − σ2
θθ − σ2

φφ − v̄2θ − v̄2φ + σ2
rθ cot θ

)
= −∂ϕ

∂r

(B.20)

[
∂

∂t
+ v̄r

∂

∂r
+

v̄θ
r

∂

∂θ
+

v̄φ
r sin θ

∂

∂φ

]
v̄θ +

1

ρ

[
∂(ρσ2

rθ)

∂r
+

1

r

∂(ρσ2
θθ)

∂θ
+

1

r sin θ

∂(ρσ2
θφ)

∂φ

]

+
1

r

(
3σ2

rθ − σ2
φφ cot θ + v̄rv̄θ − v̄2φ cot θ + σ2

θθ cot θ
)
= −1

r

∂ϕ

∂θ

(B.21)

[
∂

∂t
+ v̄r

∂

∂r
+

v̄θ
r

∂

∂θ
+

v̄φ
r sin θ

∂

∂φ

]
v̄φ +

1

ρ

[
∂(ρσ2

rφ)

∂r
+

1

r

∂(ρσ2
θφ)

∂θ
+

1

r sin θ

∂(ρσ2
φφ)

∂φ

]

+
1

r

(
3σ2

rφ + v̄rv̄φ + v̄θv̄φ cot θ + 2σ2
θφ cot θ

)
= − 1

r sin θ

∂ϕ

∂φ
.

(B.22)





Appendix C

SYSTEMATIC ERRORS IN MASS
ESTIMATES FOR
COLLISIONLESS SYSTEMS

In a similar fashion to Section 5.1, we can compute the gravitational mass using the Jeans
equations:

∂v

∂t
+ (v · ∇)v = − 1

ρdm
∇(ρdmσ

2)−∇ϕ, (C.1)

Mtot =
1

4πG

∫
∂V

dS ·
[
− 1

ρdm
∇(ρdmσ

2)− (v · ∇)v − ∂v

∂t

]
, (C.2)

where v and σ2 are the velocity field of particles and the velocity dispersion tensor, respectively.
We here represent the collisionless component by dark matter, but the same formulation is
readily applicable to galaxies. We decompose the right hand side of equation (C.2) into the
following terms by means of equation (B.20):

Mtot = Mrand +Maniso +Mrot +Mstream +Mcross +Maccel. (C.3)

Mrand = − 1

4πG

∫
∂V

dS
1

ρdm

∂(ρdmσ
2
rr)

∂r
, (C.4)

Maniso = − 1

4πG

∫
∂V

dS
2σ2

rr − σ2
θθ − σ2

φφ

r
, (C.5)

Mrot =
1

4πG

∫
∂V

dS
v2θ + v2φ

r
, (C.6)

Mstream = − 1

4πG

∫
∂V

dS

[
vr

∂vr
∂r

+
vθ
r

∂vr
∂θ

+
vφ

r sin θ

∂vr
∂φ

]
, (C.7)

Mcross = − 1

4πG

∫
∂V

dS

[
1

ρdm

∂(ρdmσ
2
rθ)

r∂θ
+

1

ρdm

∂(ρdmσ
2
rφ)

r sin θ∂φ
+

σ2
rθ cot θ

r

]
. (C.8)

Maccel = − 1

4πG

∫
∂V

dS
∂vr
∂t

. (C.9)

Physical interpretation of each mass term is as follows. The term Mrand comes from the gradient
of velocity dispersion in the r-direction and corresponds to Mtherm for a collisional gas. The
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meaning of Mrot, Mstream and Maccel are similar to the corresponding terms for the collisional gas
(Equations (5.6) to (5.8)). The terms that have no counterpart in the Euler equations are Maniso

and Mcross; the former represents anisotropy of the velocity dispersion whereas the latter arises
from the off-diagonal components of the velocity dispersion tenser and vanishes if velocities of
different directions are uncorrelated.

We apply the above formulation to dark matter particles in the simulated cluster described
in Section 4.1 to quantify intrinsic systematic errors of the mass estimation using collisionless
particles. Note that one can apply the same method to galaxies but with much larger impact of
statistical errors. Therefore, we do not do so here because we are interested in intrinsic systematic
errors independent of observational complexities. Each term is computed in a similar manner
to the case of collisional gas described in Section 5.1.

Figure C.1 shows that the difference between Mtot and Mrand increases toward the outer
envelope mainly owing to the presence of Maniso. This is because the relaxation timescale of
collisionless particles is much longer than that of the collisional gas. Once this term is subtracted,
Mtot−Mrand−Maniso closely matches Maccel whose absolute value is limited to within ∼ 0.3Mtot.
The amount of Maccel is similar to that for the collisional gas (Figure 5.1). The other mass terms
such as Mcross are less important.

The above results imply that proper account of velocity anisotropies is essential for the
mass reconstruction using a collisionless component. We stress that Maniso is irrelevant to the
collisional fluid as long as local thermal equilibrium is established (Appendix B).
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Figure C.1: The effective mass terms in Equation (C.3) for the dark matter in the simulated
cluster are shown in the left panel: Mtot (black), Mrand (red), Mrot (green), Mstream (blue),
Maniso (cyan), Mcross (orange) and Maccel (magenta). Here Maccel is calculated by Maccel =
Mtot − Mtherm − Mrot − Mstream. Dotted line means that its sign is inverted. Ratios of mass
terms to Mtot are shown in the right panel; The black line shows (Mtot−Mrand)/Mtot and other
mass terms are colored in the same colors as the left panel.
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