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Abstract

Neutron stars (NSs) are compact stellar objects with a mass of 1-2 M� and a radius of ∼ 10

km. They are mainly formed in a gravitational collapse of a massive star with an initial mass

of & 10M� and an iron core. Young isolated NSs in the Galaxy can be divided into three

categories primarily depending on the energy source for the emission: rotation-powered pulsars

(RPPs) that are mainly powered by rotational energy, magnetars that are mainly powered

by magnetic field energy, and central compact objects (CCOs) that are mainly powered by

latent heat. The most significant difference among them is the surface magnetic field B∗; it

is considered to be ∼ 1012−13 G, & 1014 G, and . 1011 G for RPPs, magnetars and CCOs,

respectively. The origin for this diversity is unsettled.

One process that may account for this diversity is the supernova fallback accretion. A tail part

of marginally bound matter ejected with the supernova explosion falls back to the newborn

NS after the neutrino luminosity significantly decreases. The fallback matter encounters with

an outflow from the nascent magnetosphere, which could induce the trifurcation of NSs into

RPPs, CCOs, and magnetars. If the outflow repels the fallback accretion, a RPPs with clean

magnetosphere may form. Otherwise the magnetosphere will be disturbed or even buried, which

leads to the formation of magnetars with synthesized multi-pole magnetic field and CCOs with

apparently weak magnetic field, respectively.

In this thesis, we numerically investigate the dynamics of a supernova fallback accretion con-

fronting with a relativistic wind from a newborn NS through one dimensional relativistic hy-

drodynamics simulation, and find that the time evolution of the accretion shock in the radial

direction is basically characterized by the encounter radius of the in- and outflow renc and a di-

mensionless parameter ζ ≡ L/Ṁfbc
2, where L is the NS wind luminosity and Ṁfb is the fallback

mass accretion rate. We find that the critical condition for the fallback matter to reach near

the NS surface can be simply described as ζ < ζmin ≡ GM∗/c
2renc independent of the outflow

Lorentz factor, with M∗ being the NS mass. With combining the condition for the fallback

matter to bury the surface magnetic field under the NS crust, we find that the trifurcation

of NSs into RPPs, CCOs, and magnetars occurs for the case with the surface magnetic field

B∗,tri ∼ a few 1013 G and rotation period Pi,tri ∼ O(10) ms. Since such a NS formation is con-

sidered to be typical, our scenario can naturally explain the observed fact that the formation

rate of RPPs is roughly comparable to those of CCOs and magnetars.
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Chapter 1

Introduction

Neutron stars are compact stellar remnants that mainly form at the center of a collapsing
massive star with zero-age main sequence (ZAMS) mass MZAMS & 10M� (Heger et al., 2003)
and iron cores at the last stage of the stellar evolution accompanied by a supernova (SN)
explosion 1. The mass ejected during this process forms an expanding shell named supernova
remnant (SNR), and a pulsar wind nebula (PWN) can be found inside the shell. Density of
NSs can be estimated by their typical mass M∗ ∼ 1.4M� and typical radius R∗ ∼ 12 km as
∼ 4 × 1014 g cm−3, which is even higher than the mass density of nucleon matter and the
general relativistic effects will be non-negligible especially in the inner region with high matter
energy density. Together with white dwarfs and black holes, they are called compact objects;
NSs serve as a unique laboratory to probe fundamental physics (e.g., general relativity and
nuclear matter physics) as a combination of the extreme gravity, magnetism and density. It
is also important to understand their astrophysical nature such as formation mechanism and
diversity.

In this chapter, we will briefly introduce the general characteristics of NSs in Sec. 1.1, while
presenting the unique properties of three subclasses among young NSs (rotation-powered pul-
sars, magnetars and central compact objects) in Sec. 1.2. Sec. 1.3 is devoted to consider
possible mechanisms that can induce the diversity of young NSs and how it motivates our work
done in the following part of this thesis.

1.1 Fundamental properties of neutron star

There are several physical quantities that can parameterize an NS: surface temperature T∗
given by spectra, and stellar rotation period Pi and period derivative Ṗi obtained from the
light curve. Temperature mainly provides the information of surface radiation, superfluidity,
interior composition and etc (e.g., Lattimer & Prakash, 2007; Tsuruta et al., 2009; Lattimer,
2012; Potekhin et al., 2015). The surface magnetic field strength B∗, which mainly controls
the motion of plasma and emission geometry, can be derived from the rotation period Pi and
its secular period derivative Ṗi in canonical pulsar models that proposes the NS as a rotating

1Note that there are alternative ways to form an NS other than this; e.g., binary NS mergers (e.g., Hotokezaka
et al., 2013) and accretion-induced collapse of a white dwarf (e.g., Nobili et al., 2008; Enoto et al., 2014); where
the latter one generally lead to the formation of Type Ia SN.

1



2 Chapter 1. Introduction

magnetic dipole supported by rotational energy (e.g., Goldreich & Julian, 1969). Given the
spin angular frequency as

Ωi = 2π/Pi, (1.1)

the rotation energy of a NS can be written as

Erot =
1

2
IΩ2

i (1.2)

where I stands for the moment of inertia of the NS, and can be written as follows if we consider
it to be spherically symmetric

I =
2M∗R

2
∗

5
, (1.3)

where the flux of rotational energy losing (i.e., the spin-down luminosity) can be written as

Lsd = −dErot

dt
=

4π2IṖi
P 3
i

. (1.4)

On the other hand, the Poynting flux from a rotating sphere with dipole magnetic field is shown
as

Ldp =
B2
∗Ω

4
iR

6
∗

6c3
. (1.5)

The dependence of dipole magnetic field strength B∗ on rotation period Pi and period derivative
Ṗi can be obtained while considering

Lsd = Ldp (1.6)

as

B∗ =

√
3c3I

2π2R6
∗
PiṖi = 1.0× 1014G

(
Pi
1 s

)1/2
(

Ṗi
10−11s s−1

)1/2

. (1.7)

Thus

PiṖi =
2π2R6

∗B
2
∗

3c3I
= const, (1.8)

and since ∫ τc

0

(PiṖi)dt =

∫ P

P0

PidPi, (1.9)

where P0 is the initial rotational period of the NS, we have

P 2 − P 2
0

2
= PṖ τc (1.10)

which gives the spin-down characteristic-age τc of the NS as

τc ∼
P

2Ṗ
. (1.11)

Eq.(1.11) can be used to estimate the age of NS tage at the limit of P 2
0 � P 2 2.

2The other way to measure the age, type, progenitors and birth environment of a NS is through the size
and expanding velocity of their associated SNRs, which are bright in x-ray band for . 10 kyr (i.e. this method
is only valid for young NSs). The kinematic age from the proper motion of the targets and energetics of their
associated pulsar wind nebulae (PWNe) can also used to determined the age of the NSs (Enoto et al., 2019).



1.1. Fundamental properties of neutron star 3

Figure 1.1: Repost from the fig.1 in Enoto et al. (2019): Pi-Ṗi (period and period deriva-
tive plane) diagram of known NSs: high-B pulsars with x-ray emission reported (HBP, purple
diamonds), x-ray isolated neutrons stars (XINSs, orange pentagons), pulsars (grey dots), mag-
netars (red filled circles), and compact central objects (CCOs, blue filled squares). Additional
marks are added if one is found in a binary system (blue open square) or associated with a
supernova remnant (SNR, see green open circle). The data are taken from the McGill magnetar
catalogue and Australia Telescope National Facility (ATNF) pulsar catalogue (version 1.60) for
magnetars and pulsars, respectively (e.g., Manchester et al., 2005; Olausen & Kaspi, 2014); and
the sources of HBPs, XINSs, and CCOs are mainly based on Zhu et al. (2011), Fesen et al.
(2012), Olausen et al. (2013) and the references therein. The surface magnetic fields B, char-
acteristic age τc and spin-down luminosity Lsd are overlaid in cyan, orange and purple dashed
lines, respectively. One of the theoretical death-lines (e.g., from Eq.(6) of Chen & Ruderman,
1993) and the critical field Bcr = 4.4× 1013 G and are shown in orange and cyan solid straight
lines, respectively.
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The spin-down characteristic age of different categories of NSs are shown as orange dashed
lines in Pi-Ṗi phase diagram (see Fig. 1.1); in which the one of pulsars are mainly estimated
from their radio band as . 100 Myr (see the grey solid points) except for a portion called
millisecond pulsars (MSPs) with ∼ 80% locating in the binary system (see the grey solid points
with blue open circle at the lower-left corner with Pi ∼ O(1) ms); they are considered to spin
down for ∼ 10 Myr and then spun up by accretion from their binary companion (e.g., Alpar
et al., 1982). Young magnetized NSs associated with PWNs and SNRs of ages tage . 1-10 kyr
were considered to be born at the upper-left corner and move right and downwards as they
age, where this moving direction is determined by the braking index n in the general spin-down
relation:

Ω̇i = −kΩn
i (1.12)

which is being taken as 3 here in the case of magnetic dipole radiation 3. The radio emission
of pulsars will cease at at the lower-right corner (see the orange solid straight line in Fig.
1.1 for reference), which defines the so-called death-lines of pulsars. Generally speaking, this
shall be related to the radiation processes around the magnetosphere of NSs (e.g., synclotron
radiation and absorption, two-photon pair creation and annihilation, Bremsstrahlung), with
the boundary defined as the light cylinder rlc by assuming the co-rotation velocity of particles
and magnetic field to be the speed of light c

rlc = c/Ωi ∼ 3.0× 108 cm Ωi,−2
−1, (1.13)

where the closed magnetic field line around the NS becomes open. The foot-points on the NS
surface of the open/close boundary defines the so-called polar cap, and the particles flowing
along them carry a bulk of Poynting flux and become the pulsar wind. Inside the light cylinder,
the strong electric fields generated by rotating dipole

E = −Ω× r

c
×B (1.14)

pulls charges out of the NS surface to fill the magnetosphere (e.g., Goldreich & Julian, 1969).
The scale for the current density to flow along the open field lines can be determined through
assuming that the charge density is large enough to screen the electric field along the magnetic
field lines

ρm ' −
Ω ·B
2πc

. (1.15)

However, if the charge density satisfied Eq. (1.15) in the entire region of magnetosphere, the
induced E · B̂ with B̂ to be the unit vector of magnetic field B will not accelerate the particles
to redistribute the charge density. In this sense, the theories accounting for the emission
mechanism are generally trying to address the problem of where and how the charge density
deviates from ρm. To the upper end, the charged particles can be accelerated by the maximum
electric potential drop for rotating dipole field (e.g., Ruderman & Sutherland, 1975)

∆Vmax ≈
B∗R

3
∗Ω

2
i

2c2
, (1.16)

3However one shall notice that this braking index is not observed to be 3 for most of the pulsars (2.8 > n > 1,
e.g., see Hamil et al., 2015), which may be explained through considering different emission mechanisms: e.g.,
n = 1 for particle wind braking, n=5 for a gravitational wave braking according to Shapiro & Teukolsky (1983);
superfluidity and superconductivity of the matter within pulsars (e.g., Sedrakian & Cordes, 1998) and so on.
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to the Lorentz factor

Γe =
e∆Vmax

mec2
(1.17)

with e and me to be the charge and mass of electron, which leads to the curvature radiation
with characteristic frequency of Γ3

ec/rc, where rc is the curvature radius of the magnetic field
line. In order to produce the electron-positron pairs as

γ +B → e− + e+ (1.18)

with B being the magnetic field (Sturrock, 1971),

Γ3
e

~c/rc
2mec2

B⊥
Bcr

&
1

15
(1.19)

shall be satisfied (Chen & Ruderman, 1993), with Bcr and B⊥ being the quantum critical field
(see Eq. (1.22)) and

B⊥ ≈
B∗
rc

√
R3
∗Ωi

c
. (1.20)

The death-line of pulsars is mainly considered to be achieved when the maximum electric
potential in the acceleration region is insufficient to accelerate the charged particles to the
threshold energy for the pair production to happen.

1.2 Diversity of young neutron star

In the phase diagram of NS rotation period Pi and surface magnetic field B∗ as shown in Fig.
1.2, young isolated NSs can be mainly categorized into three classes with different energy source
based on the multi-wavelength information: rotation-powered pulsars (RPPs) that are powered
by spin-down energy loss (see Sec. 1.2.1), magnetars that are powered by magnetic field energy
(see Sec. 1.2.2) and central compact objects (CCOs, see 1.2.3) that are powered by residual
heat (e.g., Woods & Thompson, 2006; Enoto et al., 2019) .

1.2.1 Rotation-powered pulsars

The first signal being detected from the NS came from RPPs, which has rotation periods
∼ 0.01-1 s. They mainly lose rotation energy through ejecting energetic particles to their
surrounding pulsar wind nebulae (PWN) and pulsates in a remarkably regular way (e.g., Hewish
et al., 1968). RPPs were primarily detected in radio band 4, while their energy spectrum broadly
extends to optical, x-ray and γ-ray band, in which the thermal blackbody emission lies between
optical and soft x-ray band, and non-thermal power-law emission can be observed in γ-ray or
radio band (e.g., incoherent component in infrared and γ-ray band and coherent component in
radio band). Regardless of the effect of NS atmosphere, the thermal emission spectrum mainly
produced by the residue cooling can potentially be used for constraining the equation of state
of RPPs by comparing their temperatures and luminosities with the theoretical cooling curves.

4This once gives their name as radio pulsars; however information from some band may get lost due to the
beaming direction, which makes it more scientifically reasonable to name RPPs with their energy source.
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Figure 1.2: Repost from the Fig. 5 in Enoto et al. (2019); the phase diagram of Pi and B∗
(rotation period and surface magnetic field) of different types of NSs. Accreting x-ray pulsars
and the x-ray spectra of which exhibit cyclotron resonance scattering feature (CRSFs) taken
from Staubert, R. et al. (2019) are also included. The magnetic white dwarfs (WDs) from
Ferrario et al. (2015) are shown for comparison.

On the other hand, the non-thermal radiation of RPPs, which serves as a probe for the particle
acceleration and pair-cascade mechanism in RPPs magnetosphere, is considered to come from
the particles that are accelerated by electric fields parallel to the magnetic fields near the polar
caps (e.g., Arons & Scharlemann, 1979), in the outer magnetosphere (e.g., Cheng et al., 1986)
or outside of the light cylinder through reconnection in the striped wind (e.g., Pétri & Kirk,
2005).

As the most well-studied RPPs, Crab pulsar is considered to be held in SN explosion recorded
in 1054 AD and surrounded by a well-known PWN named Crab Nebula. It has the rotation
period, surface dipole magnetic field and spin-down luminosity as Pi ∼ 33 ms, B∗ ∼ 1013 G
and Lsd ∼ 4.6 × 1038 erg s−1, respectively. Despite of the irregular timing behaviors (e.g.,
Backer, 1970b,a) and the variation in polarization properties (e.g., S lowikowska et al., 2009;
Chauvin et al., 2017), one of the unique points of Crab pulsar is that it has almost the same
double main peak pulse profile in all energy bands (e.g., Kuiper et al., 2003; Abdo et al., 2010),
which implies the overlap of the sites where coherent radio emission and incoherent high energy
emission occurs (i.e., around the light cylinder, see Lyubarskii, 1992).

Being represented by Crab pulsar, since the radiation spectrum of synchrotron nebula of RPPs
can be perfectly explained by canonical pulsar models, the energy source of RPPs is thought to
be rotational energy through magnetic dipole radiation. Their spin-down characteristic age and
magnetic field decay time scale are considered to be . 100 Myr and 1-100 Myr, respectively (e.g.,
Xie & Zhang, 2019); and the surface magnetic field are required to be within the 1011-1013 G in
order to account for their observed spin-down rate. For pulsars, this range has been broadened
in the binary system (e.g., accreting x-ray pulsars, see Harding & Lai, 2006) during the last
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half century, from the discovery of milliseconds pulsars that are spun-up by accretion from their
binary companion and has much lower surface magnetic field (108-1010 G, e.g., Backer et al.,
1982; Alpar et al., 1982) to the one with much higher period derivatives (∼ 1014 G, e.g., Morris
et al., 2002; Kaspi et al., 2003b).

1.2.2 Magnetars

Magnetar is a class of NSs that mainly being observed at x-ray and soft γ-ray band with
large period derivatives Ṗi ∼ 10−12-10−10 s s−1, and are relatively young given the information
provided by x-ray observations of their associated SNRs. In a conventional magnetar model,
they generally concentrate around the Galactic plane and are considered to have more mas-
sive progenitors (the zero-age main sequence mass here MZAMS & 30-40M�) and comparable
explosion energy compared to others (∼ 1050-1051 erg s−1; e.g., Vink & Kuiper, 2006). De-
spite the expectations that this kind of massive progenitors can evolve into Wolf-Rayet stars
and explode as stripped-envelope SNs, the magnetar-forming supernovae (SNe) have not been
identified yet (e.g., Enoto et al., 2019).

There mainly exists two types of magnetar: The anomalous x-ray pulsars (AXPs) and soft
Gamma-Ray repeaters (SGRs). AXPs are first observed by European X-ray Observatory Satel-
lite (EXOSAT) in the early 1980s as bright x-ray sources with the highest luminosity of ∼ 1035

erg s−1, relatively narrow range of rotation period ∼ 2-12 s and large period derivatives, which
initially made them candidates for accreting x-ray pulsars (e.g., Seward et al., 1986). However,
there is lack of evidence on detectable companions or accretion disks to support this hypothesis
especially considering that no doppler modulation of their x-ray pulses have been identified. On
the other hand, the first observation of SGRs can be traced back to 1979, which was detected
as a transient sources with repeated soft γ−ray bursts.

These two subclasses of magnetars are initially considered to be different but turned out to
be closely related based on several evidences. Firstly, both of them are discovered with large
period derivatives (e.g., B ∼ 1014-1015 G, Vasisht & Gotthelf, 1997) and relatively slow rotation
∼ 1-10 s. In addition, they are also identified with recurrent magnetic activities (e.g., sporadic
short bursts, see Enoto et al., 2019) and much lower spin-down luminosities (Lsd ∼ 1032-1034

erg s−1) compared to the detected x-ray luminosities (Lx ∼ 1034-1035 erg s−1). It was until the
quiescent x-ray pulsation periods in SGRs with a range of values very similar to those of AXPs
and SGR-like bursts from several AXPs are discovered (e.g., Kouveliotou et al., 1998; Kaspi
et al., 2003a), and the smaller bursts in this two kinds of sources are found to be similar as
well, these two categories are considered to be the same population of isolated NSs that are
strongly magnetized (B ∼ 1014-1015 G). The spin-down energy loss of magnetars is insufficient
to account for their x-ray luminosity (e.g., Enoto et al., 2017), and their thermal emission in
soft x-ray band is typically hotter than RPPs (kTmag ∼ 0.4 keV) so that the residual heat of
conventional cooling curve is insufficient to be their energy source neither. These observational
facts suggest the existence of an additional energy source, which has been considered to be
the decay of magnetic fields (e.g., Thompson & Duncan, 1993; Woods & Thompson, 2006).
Currently, the ultra-strong magnetic field of magnetars is considered to be generated through
dynamo in their nascent stage 5, which is greater than the quantum critical field Bcr (see the

5There are still alternative models for addressing this remarkably large magnetic field: e.g., quark star (e.g.,
Cea, 2006) and fast rotating massive white dwarf (e.g., Morini et al., 1988).
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cyan solid straight lines in Fig. 1.1)

~
eBcr

mec2
= mec

2, (1.21)

or

Bcr ≡
m2
ec

3

~e
= 4.414× 1013G. (1.22)

In this case, the cyclotron energy is comparable to the electron rest mass so that the nonlinear
effects becomes important, which introduces additional processes that do not take place in
field-free environments (e.g., photon splitting. See Harding & Lai, 2006).

Comparing to the rotation-powered pulsars, such kind of strong magnetic field leads to shorter
field decay time scale mainly due to the ambipolar diffusion (e.g., Heyl & Kulkarni, 1998)

τ ∼= 105

(
Bcore

1015G

)−2
yr, (1.23)

where Bcore stands for the magnetic field of the NS core. This kind of diffusion sets the
dynamical evolution of NS core magnetic field and suggests a yield strain exceeding the crustal
strength that is responsible for those small bursts observed both in SGRs and AXPs (e.g.,
Thompson & Duncan, 1996). In addition, the toroidal component developed under Bcore > 1015

G will be able to cause superflares through reconnection of twisting field lines (e.g., Thompson
& Duncan, 2001). The heat transport can also be enhanced under the strong external magnetic
field (e.g., Heyl & Kulkarni, 1998), which explains the high temperature of magnetars.

The field decay of magnetars estimates the age of them to be younger than their characteristic-
age (τc ∼ 1-100 kyr), which is broadly consistent with the one suggested by their associated
SNRs. This suggests a relatively high formation rate (e.g., ∼ 2 century−1 for AXPs, see Gill
& Heyl, 2007). So far there were only 23 magnetars being confirmed in the Galaxy, Large
Magellanic Cloud and Small Magellanic Cloud with respect to ∼ 2700 pulsars; where previous
studies estimates this percentage to be ∼ 1-10% (e.g., Kouveliotou et al., 1994; Heyl & Kulkarni,
1998), and Beniamini et al. (2019) further points out that the fraction of nascent NSs born as
magnetars can be constrained through combining their spin-down rates, associated SNRs and
magnetic activity as 0.4+0.6

−0.28.

1.2.3 Central Compact Objects

Central Compact Objects (CCOs) are isolated soft x-ray point sources at the center of SNRs
that are stable in x-ray and quiet in radio band 6. The emission is considered to be powered
by the residual heat; where the surface luminosity can be shown as

LCCO = 4πR2
∗σT

4
∗ ∼ 1.04× 1035erg s−1

(
R∗

10 km

)2(
kT∗

0.3 keV

)4

(1.24)

assuming isotropic radiation. This gives an order-of-magnitude estimates of the NS radius R∗
based on the surface temperature T∗ obtained from the spectra.

6Some of them do exhibit distinctive properties such as pulsating with the period of Pi ∼ 100 ms in x-ray
band with luminosities of ∼ 1033-1034 erg s−1. They have the thermal spectra with temperature ∼ 100 eV.
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Since CCOs are relatively dim compared to the pulsars and magnetars, only about 10 of them
who are close to the earth can be found (d ∼ 1-10 kpc, see e.g., Zavlin et al., 2000; Slane
et al., 2001; Gotthelf & Halpern, 2009); in addition, the age estimated from the size and the
expanding velocity of their associated SNRs is ∼ 1-10 kyr, which is much more shorter than
their spin-down characteristic age. These two observational facts imply a higher formation rate
of CCOs (∼ 1-2 century−1) compared to the one estimated from their spin-down rate.

The surface magnetic fields of three CCOs (i.e., Kes79, Pup-A, G296.5) have been measured to
be relatively low as B∗ ∼ 1010-1011 G, and their birth periods are close to their current value.
They are considered to be relatively young implied by their associated SNRs (i.e., ∼ 103-104

yr) and born with low surface magnetic field, which gives their name as “anti-magnetars” (e.g.,
Halpern & Gotthelf, 2010); although neither associated pulsar wind nebulae (PWNe) nor any
counterparts at the other wavelengths have been detected (e.g., Enoto et al., 2019)).

On the other hand, two antipodal hot spots of different temperatures and areas were discov-
ered from RX J0822-4300 in Puppis A (e.g., Gotthelf et al., 2010), which, together with a large
pulsed fraction (∼ 64%) from PSR J1852+0040 in Kes79 (e.g., Shabaltas & Lai, 2012), suggest
that a stronger magnetic field other than dipole may exist in CCOs. In the case of isolated
NS 1E 1207.4-5209 associated with SNR GG296.5+10.0, the absorption at 0.7, 1.4 and 2.1
keV in the x-ray energy spectrum also imply the existence of multi-polar magnetic fields since
this phenomenon can basically be explained by the atomic transitions under strong magnetic
fields (e.g., Hailey & Mori, 2002; Mori et al., 2013). In addition, there exist candidates that
either has CCO-like properties but locates near young radio pulsars in the Pi-Ṗi phase dia-
gram (e.g., 1RXS J141256.0+792204, or dubbed ‘Calvera’ with P = 59 ms, Lsd = 6× 1035 erg
s−1 and τc = 3× 105 yr, see Rutledge et al., 2008; Shevchuk et al., 2009) or has magnetar-like
activities (e.g., 1E 161348-5055 at the centre of SNR RCW103, see Tuohy & Garmire, 1980).

In order to connect these observations into one cohesive picture with a physical explanation,
one leading theory is that CCOs may born with relatively strong magnetic field B∗ ∼ 1012-1013

G buried under the prompt supernova fallback accretion, which will re-emerge after ∼ 1-10 kyr
to evolve into RPPs/magnetars-like objects (e.g., Muslimov & Page, 1995).

1.3 Important processes to determine the magnetic field

strength of NSs

In summary, one of the key parameters among RPPs, magnetars and CCOs is the magnetic
field strength: the strengths of the dipole field are estimated to be Bd ∼ 1012-13 G for rotation-
powered pulsars (e.g., Enoto et al., 2019), Bd & 1014 G for magnetars (e.g., Kaspi, 2007; Kaspi
& Beloborodov, 2017), and Bd . 1011 G for CCOs (e.g., Ho & Heinke, 2009; Pavlov & Luna,
2009), respectively. The origin of this diversity is still unsettled.

By the end of the stellar evolution, metals form in fusion stages after the hydrogen is depleted
in the stellar core, and eventually results in an nickel-iron core enshrouded by a shell of burning
material (e.g., a mixture of silicon, sulfur and etc.). Since iron absorb energy to enter the next
stage of fusion instead of providing energy, the core with the mass near the Chandrasekhar
limit M ∼ 1.4M� forms into an energy sink and begins to collapse under the gravity, which
produces high energy photons by significantly raising the temperature in the inner core. These
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γ-ray photons breaks the heavy nucleus through photo-disintegration. The protons are forced
to capture electrons to form neutrons

p+ + e− → n+ νe (1.25)

as called the inverse-β decay, with a vast amount of neutrinos trapped when core density ρcore &
1012 g cm−3, since their diffusion time scale due to coherent conservative scattering on nuclei
is essentially longer than the collapsing time scale (e.g., Bethe, 1990). This kind of neutrino
trapping typically happens at ∼ 0.1 s, and the core collapse then proceeds homogeneously (e.g.,
Goldreich & Weber, 1980) until reaching the nuclear density; since the gravity is extremely
difficult to further compress the core under the nuclear force, the innermost collapsing core
decelerates and eventually bounces, which drives an outgoing shock to the infalling outer core
at ∼ 0.11 s. Neutrinos will be released when the shock propagates, and is considered to be
important for reviving the shock after it stagnates and leads to a successful supernova explosion
at ∼ 0.2 s. Until the explosion sets in, a compact remnant, which is rapidly fed by the infalling
stellar material, will form at the center of the collapsing star after the core bounce. It evolves
into an NS if the progenitor mass M . 25M� (e.g., Janka et al., 2007).

The nascent NS is born to be proton-rich with containing a huge amounts of degenerate elec-
trons and trapped neutrinos with shorter mean free path comparing to the NS radius. Those
neutrinos diffuse out and cool the hot interior region of proto-NS mainly through converting
their degeneracy energy to thermal energy of the stellar medium (e.g., Burrows, 1990) in a
fraction of one second, which will lead to the early post-explosion wind dominated by neutrino.
The neutrino-driven wind catches up to the tail of the supernova ejecta and further pushes it
outward, in which a nascent magnetosphere will be formed inside the bubble produced by it.
However a tail part of the ejecta that is marginally bound falls back to the newborn NS either
when the neutrino luminosity from the NS significantly decreases in ∼ 10 s (e.g., Burrows, 1988;
Ugliano et al., 2012) or the supernova shock clashes into the thick outer envelope (Chevalier,
1989).

The magnetic field strength of a isolated NS born in the CCSN explosion should be determined
as a consequence of several processes, which can be basically categorized into

• fossil scenario where the magnetic field of the progenitor core of central NS can be ampli-
fied by the flux-freezing contraction (since their radius generally shrinks from ∼ 103-104

km to ∼ 10 km, e.g., Woltjer, 1964)

MR2Ω = const., (1.26)

BR2 = const., (1.27)

with the M , R, Ω and B to be the mass, radius, angular frequency and magnetic field of
the core; and

• dynamo scenario that generally considers the effects of turbulence. It mainly includes
the α-Ω dynamo (e.g., Duncan & Thompson, 1992; Thompson & Duncan, 1993); the
magnetorotational instability (e.g., Akiyama et al., 2003; Thompson et al., 2005) occurring
in the proto-NS, and/or stationary accretion shock instability (SASI) of the post-bounce
core-collapse supernova environment (e.g., Endeve et al., 2012).
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On the other hand, the magnetic field usually decay via the combination of the ambipolar
diffusion, the Hall drift, and the Ohmic diffusion (Goldreich & Reisenegger, 1992); and the
supernova fallback was also considered to be relevant for NS magnetic field strength, especially
for explaining the apparently weak magnetic field of the CCOs (e.g., Muslimov & Page, 1995;
Torres-Forné et al., 2016).

The fallback matter can be characterized by two physical quantities: the total fallback mass
Mfb and fallback timescale tfb, which shall be determined by the complex supernova explosion
dynamics and the core structure of the progenitor star (e.g., see Fig. 1.3 for reference). It will
proceed down to the near NS surface region if there is no repulsing force, and the magnetosphere
of the newborn neutron star can be strongly disturbed: the magnetic field lines that are initially
closed will be forced to open under such an accretion and thus enhance the spin-down torque of
the NS (e.g., Parfrey et al., 2016, see Fig. 1.4 for reference). In the extreme case, the magnetic
field can be buried under the non-convective crust with the fallback matter (e.g., Torres-Forné
et al., 2016, see Fig. 1.5 for reference).

Figure 1.3: Repost from the fig.1 in Ugliano et al. (2012): Total fallback mass for the progenitors
studied by Ugliano et al. (2012). The white histogram bars show the results of Ugliano et al.
(2012), the red bars display the simulation results given by Ertl et al. (2016a) with modeling
improvements in various aspects and incorrect fallback estimate of their Equation (1); the
blue histogram bars show the cases computed by Ertl et al. (2016a) with the correct fallback
determination according to their Equation (2). The vertical lines in the upper part indicate
non-exploding cases obtained by Ertl et al. (2016a).

On the other hand, the electromagnetic waves associated with the angular momentum loss of
the central NS is considered to be efficient for accelerating the charged particles being ejected to
the magnetosphere to relativistic energy scale (e.g., Pacini, 1967; Ostriker & Gunn, 1969). Such
kind of relativistic outflow powered by extracting rotation energy from the central NS through
unipolar induction becomes dominant after neutrino luminosity significantly decreases, where
its luminosity can be approximated by the canonical pulsar model as

Ld =
B∗

2Ωi
4R6
∗

4c3
(
1 + sinχ2

)
∼ 4.3× 1041ergs−1

(
1 + sinχ2

)
B∗,13

2P−4i,−2 (1.28)

with χ being the inclination angle between rotation and dipole axes; an oblique rotator is com-
monly found before the system reaches equilibrium through dissipating energy by stresses or
magneto-hydrodynamic waves at the NS surface (e.g., Tchekhovskoy et al., 2013). As pointed
out in Sec. 1.2, since the surface magnetic field B∗ and rotation period Pi of newborn NS range
from [1010, 1016] G and [1, 104] ms, respectively; the dynamical range of spin-down luminosity is
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outward again, leading to cyclical behavior (e.g., Parfrey
et al. 2012, 2013). In the case of accreting millisecond pulsars
the differential rotation rate between the star and most points in
the disk amounts to hundreds of Hz; the consequent rapid
twisting can delay the onset of reconnection (Parfrey
et al. 2013) and may lead to a long-term quasi-steady open
state.

An additional consideration is that, as field lines become
increasingly twisted, they are driven toward a final configura-
tion which is approximately radial in the poloidal plane. If the
field lines are nearly frozen into a conducting equatorial disk
they bulge outward at an angle of~60 to the vertical (Lynden-
Bell & Boily 1994)—the field lines are therefore pinched
radially inward where they enter the disk, and they will slip
outward, relative to the disk material, on a resistive timescale
(van Ballegooijen 1989; Bardou & Heyvaerts 1996; Agapitous
& Papaloizou 2000; Uzdensky et al. 2002). If the slippage
speed is smaller than the radial accretion velocity, the segments
of the opening field lines connected to the disk will move
inward; if the slippage speed is greater, the field lines will
diffuse outward and eventually beyond the light cylinder.

The accretion flow and magnetic field configuration are
shown in Figure 1. In Figure 1(a) a strong current layer is
forming between the two sides of an outwardly inflating field
line, and the opening field lines are bent forward (or pinched)
where they meet the disk; in Figure 1(b) a relaxed state has
been reached, as the open field lines which are now attached
solely to the disk have been pushed through the light cylinder;
the state in (a) may lead to that in (b) if the effective magnetic
diffusivity in the disk is high enough. We have implicitly
assumed that the disk’s own magnetic field is present only on
small scales, where it contributes to the turbulent magnetic
diffusivity by allowing the stellar field to move through the
disk via reconnection; the disk field may also mediate the
coupling between the stellar field and the disk.

Field lines that enter the disk very near the corotation radius
are only subjected to slow twisting, and may, in isolation, be
capable of slipping azimuthally fast enough to prevent the
accumulation of toroidal field. However, the magnetic pressure
will quickly increase on field lines entering well inside rco, as
these field lines experience rapid twisting; within a few radians
of differential rotation the pressure will be large enough to push
outward, and open, that small amount of magnetic flux
coupling near the corotation radius (see e.g., Parfrey
et al. 2013). For this reason, the field line crossing the equator
at the corotation radius is, in general, not the same field line
that would have done so in the disk’s absence. In this way the
disk-coupling field can be opened (and, depending on the
accretion velocity, expelled through the light cylinder) all the
way down to the magnetospheric radius.

There will be some flux trapped near corotation in the steady
state, as illustrated by the magenta field line in Figure 1(b); if
one considers a sequence of such states with decreasing disk
magnetic diffusivity, the amount of flux trapped in the disk will
become infinitesimal as the disk approaches a perfect
conductor. In this figure, the trapped field line entering the
disk near corotation will have come from near rm if the disk
were highly conducting, and much of the newly opened (red)
field lines would have initially closed inside rco.

We assume that the open field lines thread a tenuous but
highly conducting plasma, which, for the purpose of construct-
ing a simple model, we can take to be inertialess and

dissipationless (i.e., the ideal force-free approximation).
Charged particles on the open field lines will move radially
outward at the ´E B drift velocity, so the plasma must be
continuously supplied. Radio pulsars self-generate this plasma
via magnetospheric pair production, which may also operate
around accreting stars if the dense accreting plasma is not able
to cross field lines onto the open flux, allowing the formation of
electrostatic vacuum gaps and pair discharge. For a star of a
given magnetic moment, there is a minimal spin frequency
required for pair production; our sources of interest must satisfy
this condition, as radio millisecond pulsars are observed with
similar magnetic field strengths and rotation rates. In an
alternative scenario, some of the accreting plasma may diffuse
onto the open field lines, supplying the required charge carriers
without the need for pair creation.
The torque on the star and the power extracted from the star

are independent of the source of the wind plasma, and are
insensitive to its density as long as the open flux region is

Figure 1. Schematic magnetic field and accretion flow geometry for the
proposed model, showing the disk outside rm and the accretion funnel inside rm
(gold region). Most stellar flux which would otherwise couple to the disk is
forced to open (red lines), although a small amount of flux may be trapped near
the corotation radius (purple line). Field lines which would be open in the
magnetosphere of an isolated pulsar of the same spin frequency Ω are indicated
in blue. (a) Stellar field lines have opened, forming a current layer (cyan dashed
line); red arrows indicate the field’s poloidal direction on either side of the
layer. (b) Relaxed state, in which those parts of the open stellar fleld lines
which are rooted in the disk have been pushed beyond the light cylinder.

4

The Astrophysical Journal, 822:33 (13pp), 2016 May 1 Parfrey, Spitkovsky, & Beloborodov

Figure 1.4: Repost from the fig.1 in Parfrey et al. (2016): Schematic accretion flow and magnetic
field geometry for their proposed accretion model, which shows the disk outside rm (the inner
boundary of the Keplerian disk, or the magnetospheric radius) and the accretion funnel inside
rm (gold region). Most stellar flux that would otherwise couple to the disk is forced to open
(red lines) except for a small amount of flux trapped near the co-rotation radius (see the purple
lines). Open field lines in the magnetosphere of an isolated pulsar with angular frequency Ω
are indicated in blue lines. Figure (a) shows the stellar field lines that have opened and form
a current layer (see the cyan dashed line), where the red arrows indicate the poloidal direction
of the field on either side of the layer. Figure (b) shows the relaxed state, where parts of the
open stellar field lines that are rooted in the disk have been pushed beyond the light cylinder.
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3820 A. Torres-Forné et al.

Figure 5. Sketch of the representative stages of the accretion process. The upper panel shows the initial state of the process. The left column shows the
expected evolutionary path for a low magnetic field (B ! 1013 G), while the right column corresponds to a typical high magnetic field case (e.g. B " 1013 G).
A mass accretion rate of 10−5 M⊙ s−1 is assumed. The scale ratio of the different regions is not preserved. See the main text for details.
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Figure 1.5: Repost from the fig.5 in Torres-Forné et al. (2016): fallback accretion bury the

magnetic field of NS when Ṁ & 10−5M� s−1 (B∗/1013G)
3/2

(see the left panel) with B∗ being
the surface magnetic field strength of NS. The upper-most panel stands for the initial state,
the left column shows the expected evolution for NS with magnetic field B . 1013 G; while
the right column corresponds to the other end B & 1013 G. In which they assume the mass
accretion rate Ṁ = 10−5 M� s−1.
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relatively as broadly as the mass accretion rate of supernova fallback. We consider the interac-
tion between supernova fallback accretion and outflow from the newborn NS magnetosphere to
be responsible for three different types of magnetospheric structure, which may account for the
trifurcation of NSs. In this scenario, outflow from the nascent magnetosphere tends to repulse
the falling back matter: if it repels the fallback accretion, a pulsar with clean magnetosphere
may form; otherwise the magnetosphere will be disturbed or even buried, which lead to the
formation of magnetars with synthesized multipole magnetic field and CCOs with apparently
weak magnetic field (e.g., Shigeyama & Kashiyama, 2018).

In order to derive the trifurcation point, Shigeyama & Kashiyama (2018) constructed a self-
similar solution without scale dependence for a spherically symmetric fallback accretion con-
fronting with a relativistic pulsar wind, which is a one-parameter family of the out- to inflow
luminosity ratio. However there is still a long way to go in exploring the effect of other physical
quantities (e.g., where the in- and outflows collides, the Lorentz factor of the outflow and so on)
in numerical simulation. In this thesis, we follow the system and its self-similar solution given
by Shigeyama & Kashiyama (2018), and perform a suit of relativistic hydrodynamic simulations
to clarify the condition for the fallback matter invading down to the NS magnetosphere and
how it is affected by the parameter space we consider.

This thesis is organized as follows. We describe the problem setting in Sec. 2, and show the
results of the numerical simulation in Sec. 3. We consider the implications of the results for
the diversity in young NSs in Sec. 4. Sec. 5 is devoted to the summary, discussion and future
perspectives. The analytical model we built for explaining the simulation results is shown in
App. A, and the Rayleigh-Taylor instability analysis towards the shock interface existed in
the system is performed in App. B. We use the convention of Qx = Q/10x in cgs units unless
otherwise noted.



Chapter 2

Methods

In this thesis, we mainly consider the mass accretion that is induced when the neutrino luminos-
ity from the NS significantly decreases (e.g., Ugliano et al., 2012); while the rotation-powered
relativistic wind becomes the dominant outflow component. In order to find the critical con-
dition for the fallback matter to reach near the NS surface, we numerically investigate the
dynamics of the supernova fallback accretion confronting with the relativistic wind. The initial
condition (Sec. 2.1) and technical details (e.g., boundary conditions in Sec. 2.2, governing
equations and numerical scheme in Sec. 2.3) of our simulation will be shown as follows.

2.1 Initial condition

As shown in Fig. 2.1, we consider a fallback matter with mass accretion rate Ṁfb to be
encountered with a relativistic outflow with luminosity of L and terminal Lorentz factor of
Γ∞ at an encounter radius of r = renc. The system is characterized by three dimensionless
parameters (ζ, Renc, Γ∞), where

ζ =
L

Ṁfb,inic2
(2.1)

is a dimensionless parameter being the ratio between the outflow luminosity and the initial
fallback accretion rate Ṁfb,ini, and

Renc =
renc
rSch

(2.2)

with

rSch =
2GM∗
c2

(2.3)

to be the Schwarzschild radius of the central NS with mass M∗. In this paper, we consider
a spherically symmetric one-dimensional system in order to explore a wide range of these
parameters.

15
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Figure 2.1: An example of initial condition of our simulation. A relativistic outflow with a
terminal Lorentz factor Γ∞ = 100 collides with a fallback matter at the encounter radius
renc = 4.5× 108 cm. The dimensionless out- to inflow energy flux ratio (Eq. 2.1) is ζ = 0.001.
We take the absolute value of the velocity βΓ, energy and mass fluxes, while the sign should
be positive in the outflow region and negative in the inflow region.
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2.1.1 Fallback accretion

The fallback accretion typically sets in at tfb ∼ 10 s after the supernova explosion and the
total fallback mass ranges over Mfb ∼ 10−(2-4)M�, depending on the core structure of the
progenitor (e.g., Ugliano et al., 2012; Ertl et al., 2016b, see Sec. 1.3 and Fig. 1.3 for reference
as well), which leads to the fallback accretion rate of Ṁfb ∼ 10−3 − 10−6M� s−1.

Here we assume that the fallback accretion rate evolves with times as

Ṁfb = Ṁfb,ini ×
{

1 t ≤ tfb

(t/tfb)−l t > tfb
, (2.4)

where

Ṁfb,ini =
l − 1

l

Mfb

tfb
∼ 1× 10−5M� s−1

(
l − 1

l

)
Mfb,−4tfb,1

−1 (2.5)

with l > 1 to ensure the total fallback mass to be Mfb. Since that the fallback matter we
consider here is originated from the tail part of the supernova ejecta that were outflowing but
marginally bounded to the NS, it is set to have the free-fall velocity at radius r

vfb(r) = −
√

2GM∗
r

, (2.6)

where M∗ = 1.4M� is the neutron star mass; and the fiducial value of time dependence of
mass accretion rate l is set to be 5/3 in Eq.(2.4), which has been predicted by Chevalier (1989)
under this circumstance and was confirmed by numerical simulations of supernova explosion as
well (e.g., Janka et al., 2021). We here consider unshocked fallback matter to be sufficiently
cold so that its density profile can be determined with the inward mass flux (see Eq. 2.4) by
assuming that it is in a steady state as

ρfb(r) =
Ṁfb

4πr2 |vfb (r)| , (2.7)

and the pressure profile can be thus obtained through adiabatic equation of state with adiabatic
index γ = 4/3 as

pfb(r) = kfbρfb(r)γ. (2.8)

Where the coefficient kfb is given by fixing the sound velocity at the outer edge of the infalling
region as cs ∼ 10−3c.

2.1.2 Relativistic wind

As the dominant component of post supernova explosion outflow after the neutrino-wind ceases,
the wind powered by the spindown luminosity of young NS (e.g., Pacini, 1967; Ostriker &
Gunn, 1969) is considered here. It is being modeled as a relativistic hydrodynamic wind with a
terminal Lorentz factor Γ∞ (which mainly depends on the baryon loading and magnetization of
the embryonic magnetosphere) and luminosity L to study its impact on the fallback accretion
dynamics parametrically. In this case, the wind profile can be obtained by solving the following
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equations for a given set of (L,Γ∞);

4πr2βwΓw
2ρwhwc

3 = L, (2.9)

4πΓwβwρwr
2c3 =

L

Γ∞
, (2.10)

where

Γw =
1√

1− βw2
(2.11)

and
hw = 1 +

γ

(γ − 1)
× pw
ρwc2

(2.12)

are the Lorentz factor and the specific enthalpy with βw = vr/c and ρw being the dimensionless
velocity and proper mass density; Pressure profile in the outflow region can be determined by
adiabatic equation of state with γ = 4/3 being the adiabatic index:

pw = kwρw
γ. (2.13)

Here we assume that the matter is ejected with trans-relativistic velocity βw(R∗) = 0.7 1. The
constant kw is set to ensure the Lorentz factor of the wind at infinity to be Γ∞. Note that the
wind luminosity L is constant in the following calculations, since the spindown timescale tsd is
typically much longer than the dynamical timescale we are interested in (see Eq.(4.4)).

2.1.3 The encounter radius

The encounter radius renc is basically where the outflow and fallback matter encounters and
should corresponds to the fallback radius rfb that the fallback matter starts to fall back to the
central NS after the neutrino-driven wind ceases. Since the fallback timescale should be roughly
one free-fall timescale from rfb, it shall be given as

rfb = (GM∗tfb
2)1/3 ∼ 2.7× 109 cm tfb,1

2/3. (2.14)

Considering the case of a relativistic wind, in which the propagation timescale of the wind from
the NS surface to the fallback radius is negligible compared with the fallback timescale, the
fallback matter and the relativistic wind should practically encounter at 2

renc ≈ rfb ∼ 2.7× 109 cm tfb,1
2/3, (2.15)

which is in principle supposed to be derived by the complex supernova explosion dynamics and
sensitive to the core structure of the progenitor star. However here in one-dimensional spherical
hydrodynamics study, we define it as a model parameter of our simulation.

1This treatment enhances the numerical stability; in the case of setting a relativistic velocity at the inner
boundary, a numerical instability occurs when the reverse shock approaches the boundary.

2Note that the encounter radius is typically much larger than the light cylinder radius (see Eq.(1.13)).
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2.2 Boundary condition

The inner boundary in our simulations is fixed to be at R∗ = 12 km, while the outer boundary
rout is set to be sufficiently larger than the encounter radius of the in- and outflows. For a
given fallback rate Ṁfb shown in Eq.(2.4), we set the velocity, density and pressure profile at
the outer boundary rout following Eq.(2.16), (2.17) and (2.18), respectively.

vfb(rout) = −
√

2GM∗
rout

, (2.16)

ρfb(rout) =
Ṁfb

4πr2out |vfb (rout)|
, (2.17)

pfb(rout) = kfbρfb(rout)
γ. (2.18)

while the corresponding physical profiles in the ghost cell can be determined as follows:

vr
iu+i,j,k = vr

iu,j,k

(
riu
riu+i

) 1
2

, (2.19)

ρiu+i,j,k = ρiu,j,k
(
riu
riu+i

) 3
2
(l+1)

, (2.20)

piu+i,j,k = piu,j,k
(
ρiu+i,j,k

ρiu,j,k

)γ
(2.21)

with i loops from 1 to the number of ghost cells Nngh, and iu stands for the outer-most cell else
than the ghost cells at the outer boundary. On the other hand, for a given outflow luminosity
L, the density and pressure at the inner boundary (i.e. NS radius R∗) are determined from
Eq.(2.9), (2.10) as

v(R∗) = βw(R∗) = 0.7c, (2.22)

ρ(R∗) = ρw(R∗) =
L

4πΓ∞Γw(R∗)βw(R∗)R∗
2c3

, (2.23)

p(R∗) = pw(R∗) =

[(
Γ∞

Γw(R∗)
− 1

)
γ − 1

γ

]
ρw(R∗)c

2. (2.24)

with fixing corresponding physical profiles in the ghost cells:

vr
il−i,j,k = βw(R∗), (2.25)

ρil−i,j,k = ρw(R∗), (2.26)

pil−i,j,k = pw(R∗), (2.27)

where i loops from 1 to the number of ghost cells Nngh, and il stands for the inner most cell
else than the ghost cells at the inner boundary.
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2.3 Numerical simulation

Conservation laws under special relativity can be expressed as follows:

(ρuµ),µ = 0, (2.28)

T µν,ν = F µ, (2.29)

where F µ stands for source term that can be specified regarding physical settings, uµ and T µν

represents the velocity four-vector and stress-momentum tensor, respectively:

uµ =
(
1,Γvi

)
,Γ =

1√
1− ‖vi‖2

, (2.30)

with vi to be 3-velocity, and
T µν = ρhuµuν + pηµν , (2.31)

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2.32)

where ρ is proper mass density, p is gas pressure, and velocity of light c is taken as 1 here. h
stands for special enthalpy and can be expressed as:

h = 1 + ε+
p

ρ
, (2.33)

where ε is specific internal energy, and can be fixed by the equation of state (EoS). Here we
assume an adiabatic EoS with an adiabatic index of γ = 4/3, in which h can be specified as

h = 1 +
p

(γ − 1)ρ
+
p

ρ
. (2.34)

Based on the initial conditions and boundary conditions given in the previous section, if we
define the the mass, momentum, and energy densities as

D = Γρ, (2.35)

S = Γ2ρhβ (2.36)

and
E = Γ2ρh− p (2.37)

with β = vr being the radial velocity, the time evolution of the shock structure under the spher-
ical symmetry can obtained by numerically solving one-dimensional relativistic hydrodynamic
equations with a gravity source term derived from Eq. (2.28) and Eq. (2.29) as follows;

∂D

∂t
+

1

r2
∂

∂r

(
Dβr2

)
= 0, (2.38)
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∂S

∂t
+

1

r2
∂(r2Sβ)

∂r
+
∂p

∂r
= −GM∗

r2
D, (2.39)

∂E

∂t
+

1

r2
∂

∂r

(
r2S
)

= −GM∗
r2

S. (2.40)

Here we use Athena++ code (Stone et al., 2020) for the numerical integration with employing
the Harten-Lax-van Leer-Contact (HLLC) Riemann solver (Mignone & Bodo, 2005) and the
second-order piecewise linear reconstruction method (PLM) with van Leer slope limiter (Van
Leer, 1974). The time integration is carried out by the second order Runge-Kutta method
with a Courant-Friedrich-Lewy number of 0.1. The computational domain is resolved with the
mesh number of 1024 with a non-uniform mesh, where the fiducial value of the grid size ratio
∆r(i + 1)/∆r(i) is 1.009 (i.e., the radial grid size is positively correlated to the radius), and
the results convergence regarding the spatial resolution has been confirmed. Given the mesh
spacing, we numerically set the initial condition with the cubic B spline (Burkardt, 2020) based
on the wind profile obtained in the outflow region (see Eqs. (2.9) and (2.10)).

The parameter space shown in Table 2.1 will be investigated in this thesis (∼ 200 cases), where
four different encounter radii (renc = 4.5 × 107, 1.8 × 108, 4.5 × 108, 1.8 × 109 cm) and three
different terminal Lorentz factors (Γ∞ = 6, 10 and 100) are considered. For a given combination
of (renc,Γ∞), we try a few 10 different ζ values in the range of [10−5 : 10] through fixing the
fallback accretion rate at Ṁfb,i = 10−4M� s−1 and varying the wind luminosity L 3.

parameter notation range unit
out- to inflow luminosity ratio ζ [10−5 : 10]

outflow Lorentz factor at infinity Γ∞ [2 : 100]
normalized encounter radius Renc [100 : 10000]

Table 2.1: Run parameters

3We have confirmed that the same (ζ, Renc, Γ∞) but different (L,Ṁfb,i) cases give the same minimum
fallback radii, which coincides with the Bukcingham Pi theorem that states ALL theories must be able to be
written in terms of dimensionless parameters.
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Results

Here in this chapter, we will briefly show the results given the numerical settings shown in Sec.
2 and parameter space we considered in Tab. 2.1.

First of all, when the fallback inflow collides with the outflow, several discontinuities develop
(see Fig. 3.1), which evolve differently depending on the system’s outflow to inflow luminosity
ratio ζ (see Fig. 3.2 and Fig. 3.3). A forward shock separates the shocked and unshocked
fallback matter (see the blue vertical dotted line in Fig. 3.1); a reverse shock separates the
shocked and unshocked winds (see the red vertical dotted line in Fig. 3.1); and a contact surface
separates the shocked fallback matter and the shocked wind (see the green vertical dotted line
in Fig. 3, where the gas density reaches its maximum value). In this physical picture, the bulk
position of the fallback matter rfb , namely the fallback radius, can be regarded as the position
of the contact surface. There is also an interface where the flow velocity changes sign, i.e. the
instantaneous in- and outflow boundary, in addition to the three discontinuities (see the yellow
vertical dotted line in Fig. 3.1); when rfb is decreasing, it resides between the contact surface
and the reverse shock, otherwise it appears between the contact surface and the forward shock.

Figs. 3.2 summarizes the dynamical evolution of the velocity (top row), density (middle row)
and pressure profiles (bottom row) for the fallback-outflow systems encountering at renc =
4.5 × 108 cm with the same wind Lorentz factor of Γ∞ = 100 but different energy flux ratios
ζ = 0.00035 (left column), 0.001 (central column) and 0.03 (right column); in which the time
evolution of the shock structures (e.g., the forward shock, the reverse shock, and the contact
surface) can be extracted to Fig. 3.3: we mark the encounter radii, the minimum reverse shock
radii rrs,min and the minimum fallback radii rfb,min as the solid, dash and dotted-dash horizontal
lines so that the entire shocked regions will be red shaded. One relevant time scale t = tfb here
is indicated by the vertical dotted line.

What we can learn from Figs. 3.2 and 3.3 is that there generally exist three categories of shock
structure evolution regarding the energy flux ratio ζ. In the relatively large ζ limit, the fallback
radius rfb monotonically increases (see the right panels) with rfb,min = renc by definition 1; while
at the other end, the fallback matter starts from the encounter radius r = renc and reaches
down to the NS surface in about one free-fall time (t ∼ 600 ms) with rrs,min = rfb,min = R∗,
i.e., the shocked region monotonically contracts (see left panels). As for the cases in between,
the shocked region initially contracts to the minimum radius and expands afterward, in which

1We note that even in this case the reverse shock radius can decrease for a while after the encounter.
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Figure 3.1: Shock structure developed when relativistic outflow with a terminal Lorentz factor
of Γ∞ = 100 encounters with the fallback matter at a radius of renc = 4.5 × 108 cm (see the
dashed line) with energy flux ratio ζ = 0.001. The top, middle, and bottom panels show the
velocity, density, and pressure profiles at time t = 487.08 ms, respectively. The discontinuities
and the stellar surface are marked by the vertical dotted and solid lines, respectively.
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Figure 3.2: Time evolution of the hydrodynamic structure after a relativistic outflow with a
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inflow luminosity ratios are shown : ζ = 0.00035 (left), 0.001 (center) and 0.03 (right). The
velocity, density and pressure profiles are shown in top, middle and bottom panels, respectively.
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repell the fallback matter (see the right panel). The intermediate case with ζmin < ζ < ζcri
is shown in the the center panel, where the fallback matter initially invade into the outflow
but becomes overwhelmed before reaching the NS surface. Here the shocked region is bounded
by the forward shocks (red dashed lines) and reverse shocks (blue solid lines) as the shaded
regions; The thin grey and thick grey solid lines stand for the encounter radius and NS surface,
respectively.

both the minimum position of the fallback radius rfb,min and the reverse shock front rrs,min are
non-trivial: since the former one is especially important for characterizing the shock dynamics
and determining the fate of the central young NS, we carried out a series of simulations to
investigate its dependence on the parameter space we are interested in. Fig. 3.4 summarizes
the results for the fallback-outflow systems encounter at renc = 4.5 × 107 cm and 4.5 × 108 cm
with different energy flux ratios ζ, in which the upper and lower out- to inflow luminosity
bound for rfb,min to be non-trivial are found to be ζcri and ζmin, respectively. It is them who
separates the the accretion shock dynamics shown in Fig. 3.2 and 3.3 into three different types
as mentioned above.

Firstly, ζcri distinguishes the systems with monotonically expanding accretion shock (i.e., ζ >
ζcri) and the one that initially contrasts. As for the former cases, the ram pressure of the
relativistic wind should overwhelm that of the fallback inflow while encountering in order to
make the shock expanding. In other words, the critical value ζcri can be analytically derived
from the ram pressure balance at the encounter radius as

L

4πrenc2c
&
Ṁfb,inivfb(renc)

4πrenc2
, (3.1)

or

ζ & ζcri =

(
2GM∗
rencc2

)1/2

. (3.2)

Note that Eq. (3.2), as shown with dotted lines in Fig. 3.4, is consistent with our numerical
results.
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Figure 3.4: Dependence of the minimum fallback radius rfb,min on the energy flux ratio ζ. The
fallback-outflow systems encounter at renc = 4.5×107 cm (dashed data curve) and 4.5×108 cm
(solid data curve) with terminal Lorentz factor of outflow Γ∞ = 6 (wine triangle-up points),
10 (peach square points) and 100 (cobalt circle points) are shown. Two critical values that
separate the three different shock dynamics ζcri (Eq. 3.2) and ζmin (Eq. 3.3) are marked by the
vertical dotted and dashed lines, respectively.

For the cases with ζ < ζcri, the minimum fallback radius is proved to be positively related to the
energy ratio, and evolves exponentially regarding ζ around another critical value ζmin, where
the system with ζ < ζmin satisfies that rfb,min = rrs,min = R∗. This critical value serves as the
lower bound of the fallback-outflow system with the accretion shock to be initially contracting
but expanding later, and its dependence on the encounter radius and the terminal Lorentz
factor of the outflow are summarized in Fig. 3.5.

The numerical results indicate that ζmin should be inversely proportional to renc as

ζmin ≈
GM∗
c2renc

, (3.3)

which can be analytically explained by our simplified thin-shell model in Appendix A. We as-
sume that the shocked matter can be modeled as a thin shell at the contact surface rfb, in which
its dynamics is governed by the simplified hydrodynamics equations with taken account in the
central gravity. In that sense, the system with time-integrated outflow luminosity comparable
to the the gravitational work being exerted to the shocked matter at about one fallback time
scale corresponds to the critical situation that the fallback accretion is marginally repelled, i.e.,
ζ ≈ ζmin; below which the outflow will not be energetic enough to play against the fallback
matter at the time when gravity becomes increasingly significant. This result, which can be
both derived by analytical model and numerical studies (see Eq. (3.3)), is also broadly in agree-
ment with what given by self-similar study towards the expanding accretion shock to ensure
the existence of self-similar solutions 2.

From the cases with three different outflow Lorentz factors Γ∞ = 6, 10, and 100 shown in Figs.

2See Shigeyama & Kashiyama (2018) and their Eq. 31 and 32, where the dimensionless energy flux ratio is
defined as 4πDfs

√
ξs in their Eq. (27).
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3.4 and 3.5, we conclude that rfb,min and so as ζmin hardly vary with Γ∞
3. Since the minimum

fallback radius rfb,min is defined when the time-integrated outflow luminosity is marginally
comparable to the gravitational work exerted to the shocked matter, and neither of them is
affected by the outflow velocity in the relativistic regime, Eq. (3.3) can be safely applied to the
systems with a higher terminal Lorentz factor of outflow regardless of the upper bound of our
parameter space of exploring Γ∞ ≤ 100.

To the end, we shall note that the contact surface in the contracting phase is always subject
to the Rayleigh-Taylor (RT) instability given the velocity, density and pressure profiles we
set (Appendix B). The so-called RT fingers will be developed when the RT instability is being
induced, which breaks the spherical symmetry in both fallback accretion and relativistic outflow
region particularly in the cases around the critical condition ζ ≈ ζmin. This will be discussed
and further investigated in Sec. 4 and 5.

3We also confirm that the results hold for a mildly relativistic case with e.g., Γ∞ = 2
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Implications for the diversity in young
neutron stars

In Sec. 3, we obtain a necessary condition for supernova fallback confronting with a relativistic
outflow at the initial fallback radius renc (Eq. 2.15) to reach the near NS surface region as
ζ < ζmin (see Eq. 3.3), which will be our starting point to discuss the bifurcation into RPPs
with force-free magnetosphere and magnetars/CCOs with disturbed/buried magnetosphere.
Since

ζmin =
L

Ṁfb,critc2
, (4.1)

where Ṁfb,crit stands for the critical mass accretion rate for the fallback accretion to reach down
to the near NS surface region under the outflow luminosity L given by certain field configuration
, the total fallback mass in this critical situation can be described in terms of the fallback time
tfb and the outflow luminosity L as

Mfb,crit ≈
5

2
× (GM∗)

−2/3Ltfb
5/3. (4.2)

Considering the magnetosphere before fallback sets in to be a rotating dipole radiation (Gruzi-
nov, 2005; Spitkovsky, 2006; Tchekhovskoy et al., 2013), the outflow luminosity can be estimated
as

Ld =
B∗

2Ωi
4R6
∗

4c3
(1 + sinχ2) ∼ 4.3× 1041 erg s−1 (1 + sinχ2)B∗,13

2Pi,−2
−4, (4.3)

where B∗, R∗ and Ωi are the surface field strength, the radius and the initial angular frequency
of NSs, and χ stands for the inclination angle between the dipole and rotation axes. With
rotational energy of NSs Erot shown in Eq.(1.2), the spin-down time scale can be thus estimated
as

tsd ∼
Erot

Ld

= 23.5 yr (1 + sinχ2)−1B∗,13
−2Pi,−2

2, (4.4)

which is much more longer than the free-fall time scale we are interested in (see Sec. 2.1.3).
Under this circumstance, the critical fallback mass to reach the near NS surface region under
the undisturbed dipole field configuration can be obtained by substituting Eq. (4.3) to Eq.
(4.2) as

Mfb,crit ≈ 7.7× 10−8M� (1 + sinχ2)B∗,13
2Pi,−2

−4tfb,1
5/3 (dipole). (4.5)

28
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The fallback matter with the total mass Mfb . Mfb,crit will be repelled by the dipole spin-
down power (see the central and right panel of Fig. 3.2), in which the magnetosphere will be
force-free; otherwise it keeps invading in as shown in the left panel of Fig. 3.2. Note that this
kind of invasion will be mostly in an anisotropic manner (see Sec. 5.2.3), where there always
exists the most advanced flow that channels to the near NS surface region; the contact surface
that is subjected to the R-T instability (see Appendix B), in which the R-T finger will then
compress the magnetosphere at that direction down to the size in which magnetic pressure
becomes comparable with the ram pressure of the accreting matter, i.e. the Alfvén radius as

rA =

(
B∗

2R∗
6

Ṁfb

√
2GM∗

)2/7

∼ 1.1× 106 cmB∗,13
4/7Mfb,−4

−2/7tfb,1
2/7, (4.6)

which is generally smaller than the light cylinder (Eq. 1.13) and the co-rotation radius

rco =

(
GM∗
Ωi

2

)1/3

∼ 7.8× 106 cmPi,−2
2/3 (4.7)

in the cases of our interest. As mentioned in Sec. 1.3, this kind of anisotropic accretion will
enhance the spin-down torque of the NS mainly through expanding the polar cap region of
open magnetic field lines (e.g., Parfrey et al., 2016; Metzger et al., 2018); where the enhanced
outflow luminosity can be described as

Lm ≈
{

(B∗
2Ωi

4R6
∗/c

3)× (rlc/rA)2 ∼ 3.1× 1045 erg s−1B∗,13
6/7Pi,−2

−2Mfb,−4
4/7tfb,1

−4/7 rA > R∗

(B∗
2Ωi

4R6
∗/c

3)× (rlc/R∗)
2 ∼ 2.7× 1045 erg s−1B∗,13

2Pi,−2
−2 rA ≤ R∗

,

(4.8)
with the latter case corresponding to the split monopole configuration that yields the possible
maximum power for a given set of B∗ and Pi. The bulk of the fallback matter aside of those
accreted through the advanced channeled flows will confront with this enhanced outflow, which
leads to a new critical total fallback mass for the fallback accretion to reach down to the near
NS surface region and continuously disturb the magnetosphere as

Mfb,crit ≈
{

5.2× 10−3M�B∗,13
2Pi,−2

−14/3tfb,1
23/9 rA > R∗

4.8× 10−4M�B∗,13
2Pi,−2

−2tfb,1
5/3 rA ≤ R∗

. (4.9)

Similar to what is given by Eq. 4.5, the fallback matter with total mass smaller than Eq. (4.9)
will be repelled by the enhanced spin-down power and eventually leave a force-free magneto-
sphere; otherwise the newly formed magnetosphere is expected to be strongly disturbed and
polluted by the fallback accretion. In particular, the fallback matter can enshroud and bury
the surface magnetic fields if the total mass is greater than Eq. (4.9) with

rA ≤ R∗, (4.10)

or
Mfb > 8.2× 10−5M�B∗,13

2tfb,1. (4.11)

The above discussions are summarized in Fig. 4.1. The dotted and solid line indicate the two
critical condition given by ζmin under different field configuration corresponded to Eq. (4.5)
and Eq. (4.9), which together indicate the bifurcation into RPPs and magnetars/CCOs; and
the dashed line shows the boundary set by Eq. (4.11), which further clarifies the boundary
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between magnetars and CCOs. In detail, for the cases that reside

• below the solid line: either the dipole radiation or enhanced spin-down power sweeps out
the fallback accretion, though it may wait until the channel flow to the pole region ceases
to restore a force-free magnetosphere for the latter case. NSs with the surface magnetic
field and rotation period within this parameter regime naturally evolve into RPPs.

• above the dashed line: the fallback accretion is intense enough for burying the surface
magnetic fields under the outer crust, which results into significantly weak apparent mag-
netic field. NSs with the surface magnetic field and rotation period within this parameter
regime can potentially be observed as CCOs.

• above the solid line but below the dashed line: the fallback accretion can invade down
to the NS surface without completely burying the surface magnetic fields, which leads
to a strongly disturbed magnetosphere in a chaotic manner within a fallback timescale.
Although addressing the resultant magnetosphere structure in detail is beyond the scope
of one dimensional hydrodynamics study, we propose this kind of quasi-spherical com-
pression of the rotating magnetosphere to be potentially responsible of amplifying the
magnetic field strength through synthesizing multipolar magnetic fields, in addition to
the dynamo-like activities (see Sec. 1.3) in the core-collapse and the proto-NS phase.
Since this scenario does not require the central NS to be born with ultra-strong magnetic
fields (∼ 1014-1016 G), it would serves as a more natural option to form a magnetar.
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Figure 4.1: Possible consequences of the collision between rotation-powered wind from a new-
born neutron star with a surface magnetic fieldB∗ = 1013 G and an initial spin period Pi = 20 ms
and supernova fallback with total fallback mass Mfb and fallabck timescale tfb.

In the proposed scenario, the branching into three different NS populations occurs at the
intersection of the solid and dashed lines in Fig. 4.1 as marked by a black point with critical
magnetic field

B∗,tri ≈ 1.1× 1013 GMfb,−4
1/2tfb,1

−1/2 (4.12)

and initial rotation period
Pi,tri ≈ 24 ms t

1/3
fb,1; (4.13)
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Figure 4.2: Possible trifurcation in the types of neutron star caused by the interaction between
the rotation-powered wind and the supernova fallback in the newborn phase. The left, center,
right panels show the cases with fixed fallback time tfb = 10 s and fallback mass of Mfb =
10−3M�, 10−4M�, 10−5M�, respectively.

where Pi,tri does not depend on the fallback mass. Our proposed scenario gives several impli-
cations that can be tested by observational facts as follows:

1) For a typical range of the fallback accretion with Mfb ∼ 10−2-10−4M� and tfb ∼ 1-100 s,
Eq. (4.12) and (4.13) imply a trifurcation occurring at B∗ ∼ 1013 G and Pi = a few 10
ms (see Fig. 4.2). Such a magnetic field strength and rotation period at birth are not
only broadly consistent with those inferred as Galactic rotation-powered pulsars (see Sec.
1.2.1), i.e., a typical pulsar formation occurs at around the triple point; but also can
naturally explain the observed fact that the formation rate of rotation-powered pulsars
may roughly be comparable to those of CCOs and magnetars (∼ 1 century−1, e.g., Keane
& Kramer, 2008, see Sec. 1.2 for reference as well).

2) The boundary between CCOs and magnetars is relatively blur; the newborn NS with
magnetic field and rotation period around the grey dotted line in Fig. 4.2 can potentially
hold the properties from both of them (e.g., 1E 161348-5055 at the centre of SNR RCW103
that is categorized into CCO but has the magnetar-like activities, see Tuohy & Garmire,
1980). In this sense, our scenario prefers the foster formation scheme that magnetars are
born with mildly strong magnetic field (∼ 1012-1013 G) with amplifying by the prompt
fallback accretion rather than the ultra-strong magnetic field being observed so far (∼
1014-1016 G).

3) As implied by Fig. 4.2, the system with larger total fallback mass Mfb is more likely
to produce a CCO or magnetar. Since Mfb is considered to be positively correlated to
the progenitor mass, this suggests the progenitor of magnetars/CCOs to be possibly more
massive than that of pulsars, which is broadly consistent with the current observation: the
progenitor of a magnetar is considered to be a massive star with zero-age main sequence
mass MZAMS & 30-40M� in the conventional magnetar model (e.g., Enoto et al., 2019),
and the observational constraints suggest the main sequence progenitor mass of the CCO
associated with Cas A to be 15-20M� (e.g., Young et al., 2006); while the progenitor
mass of Crab-like pulsar is considered to be MZAMS ∼ 8-10M� (e.g., Nomoto et al.,
1982).



Chapter 5

Conclusion and Discussion

In this chapter, we will briefly summarize our work done in Sec. 3 and Sec. 4, and discuss
the problem left for the future study in Sec. 5.1; in which as a preparation, the first-stage
results given by 2-D RHD study are presented in 5.2: Sec. 5.2.1 shows the imprints of 1-D
RHD study in spherical 2-D RHD study; while Sec. 5.2.2 and Sec. 5.2.3 mainly investigates
the effect of non-spherical effects on the evolution of accretion shock structure. Finally, the
critical condition for the fallback accretion to invade down to the magnetosphere of young NS
under 2-D RHD study will be shown in Sec. 5.2.4.

5.1 Summary and discussion

In this work, in order to investigate the effect of fallback accretion together with the outflow
from the young NSs magnetosphere on their diversity, we perform a 1-D RHD simulations of
fallback accretion confronting with the relativistic outflow.

We firstly show how the colliding systems with different out- to inflow luminosity ratio ζ evolves
with time in Fig. 3.2: after simulation starts, multiple discontinuities including reverse shock,
forward shock and contact surface form into the accretion shock structure. We note that the
fallback radius can be regarded as the position of contact surface here, which is supposed to
be mostly subjected to Rayleigh-Taylor instability (see App. B, though can not be captured
by one dimensional study), and the dynamical evolution of fallback radius can be categorized
into three categories regarding the energy flux ratio of the system ζ: the fallback matter
monotonically expands for the systems with ζ > ζcri (e.g., see the right column of Fig. 3.3),
while monotonically contracts down to the stellar surface R∗ if ζ < ζmin (e.g., see the left column
of Fig. 3.3). Otherwise it initially contracts to the minimum fallback radius rfb,min and bounces
back in the intermediate regime ζmin . ζ . ζcri (e.g., see the central column of Fig. 3.3),
where the ζcri that separates the monotonically-expanding cases from the intermediate cases
can be analytically obtained through the initial momentum balance at the encounter radius in
Eq.(3.1).

Since the minimum fallback radius rfb,min would only be non-trivial for the systems with
ζmin . ζ . ζcri (rfb,min = renc and R∗ while ζ > ζcri and ζ < ζmin according to the defini-
tion, respectively), we showed its dependence on out- to inflow luminosity ratio ζ and Lorentz

32
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factor of outflow at infinity Γ∞ for two different encounter radius renc in Fig. 3.4. Simulation
results imply the minimum fallback radius rfb,min to be positively correlated to ζ while just
moderately depends on Γ∞; and the ζmin where rfb,min begins to decrease exponentially with ζ
marks the situation for the fallback matter to successfully invade down to the stellar surface.
Numerically we find that ζmin can be inverse-proportionally fitted regarding the encounter ra-
dius renc (see Fig. 3.5) as ζmin ∝ r−1enc, which can be analytically explained as the equilibrium
between the time-integrated outflow luminosity the gravitational work exerted to the flows (see
App. A). This energy points of view also evidence the fact that the minimum fallback radius
rfb,min barely changes with the terminal outflow Lorentz factor Γ∞, which mainly serves as a
baryon loading parameter.

Combining with the outflow luminosity under different field configuration and the condition
for the fallback matter to bury the NS surface magnetic field, the criterion for the fallback
matter to reach down to the near stellar surface region (see Eq.(4.2)) gives the physical picture
of NSs to trifurcate into RPPs, magnetars and CCOs, as schematically shown in Fig. 5.1.
In this proposed scenario, the trifurcation point of rotation-powered pulsars, magnetars and

1

10�3 10�2 10�1 100

Pi [s]
1011

1012

1013

1014

1015

B
⇤

[G
]

Mfb = 10�3 M�, tfb = 10 s

10�3 10�2 10�1 100

Pi [s]
1011

1012

1013

1014

1015

B
⇤

[G
] Rota

tio
n-p

ow
ere

d pu
lsa

r

CCO

Magnetar?

Mfb = 10�4 M�, tfb = 10 s

10�3 10�2 10�1 100

Pi [s]
1011

1012

1013

1014

1015

B
⇤

[G
]

Mfb = 10�5 M�, tfb = 10 s

!

!

!

!
(a)

(b)

(c)

(d)

Figure 5.1: Schematic picture of possible trifurcation of neutron star caused by the interaction
between the rotation-powered wind and the supernova fallback in the newborn phase, followed
the fallback accretion parameter shown in the central panel of Fig. 4.2 (tfb = 10 s, Mfb =
10−4M�). Where block (a) and (b) shows the situation with the fallback accretion being
repelled either by the non-disturbed dipole radiation or a monopole-like radiation of the field
that is maximumly-opened by the anisotropic invasion of fallback accretion; which all lead to
the formation of RPPs with force-free magnetosphere eventually. On the other hand, the newly
formed magnetosphere would be strongly disturbed or even buried under the prompt fallback
crust if the enhanced torque due to the anisotropic accretion still fail to repel the fallback
matter, which potentially leads to the formation of magnetars and CCOs as shown in block (c)
and (d), respectively.

CCOs (see the black solid dot in Fig. 4.2) roughly lies in the regime where magnetic field
strength B∗ ∼ 1013 G and rotation period Pi ∼ O(10) ms at birth assuming typical range of
fallback accretion, which is broadly consistent with the Galactic rotation-powered pulsars (e.g.,
Crab-like Pulsar), and can naturally leads to a potentially comparable formation rate among
rotation-powered pulsar, CCOs and magnetars. In addition, a more massive progenitor for
magnetar may also be implied.

Finally, we shall notice that since we mainly carried out the simulation under spherical sym-
metry, multi-dimensional studies are desirable for taking varies important processes (e.g., the
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RT instability developed at the contact surface, the anisotropic way of proceeding for fallback
accretion and outflow from the NS magnetosphere) into account. Furthermore, magnetohydro-
dynamics simulations are also of great importance especially for the cases where the fallback
matter successfully proceed down to the near stellar surface region and compress the magneto-
sphere of NS: how the field lines are expanded by this kind of accretion, whether the multi-polar
magnetic field will be synthesized and thus amplify the apparent magnetic field strength when
it is strongly disturbed still remain as open questions. Numerical simulations as well as the ana-
lytical work within this parameter regime shall be especially helpful for us to test our formation
scheme of both magnetars and CCOs.

5.2 Future Work

As noted in Sec. 5.1, our numerical results are obtained by spherically symmetric RHD sim-
ulations. However the fallback accretion and the relativistic outflow from the nascent NS
magnetosphere are in general anisotropic, and the contact surface between the in- and outflows
will be subjected to the RT instability, which the consequences cannot be captured by our
one-dimensional study. Multi-dimensional simulations are desirable for quantifying the effects
of these factors on the NS diversity, and some results at the first stage are presented as follows.

5.2.1 Spherical 2-D relativistic hydrodynamics correspondence

We first checked the consistency between the results given by 1-D and 2-D spherical simulations
under renc = 4.5× 107 cm.

From Eq.(2.28)-(2.29), we can firstly write down the governing equations for 2-D RHD study
as:

∂tD +
1

r2
∂r
(
r2Dvr

)
+

1

r sin θ
∂θ
(
Dvθ sin θ

)
= 0 (5.1)

∂tSr +
1

r2
∂r
{
r2 (vrSr)

}
+ ∂rp+

1

r sin θ
∂θ
{(
vθSr

)
sin θ

}
− vθSθ

2r
= −GM∗

r2
D (5.2)

∂tSθ +
1

r2
∂r
{
r2 (vrSθ)

}
+

1

r sin θ
∂θ
{(
vθSθ

)
sin θ

}
+

1

r
∂θp+

vrSθ
2r

= 0 (5.3)

∂tE +
1

r2
∂r
{
r2Sr

}
+

1

r sin θ
∂θ {Sθ sin θ} = −GM∗

r2
Sr (5.4)

Where
D = Γρ, (5.5)

Sr = Γ2ρhβr = Γ2ρhvr, (5.6)

Sθ = Γ2ρhβθ = Γ2ρhvθ, (5.7)

E = Γ2ρh− p, (5.8)
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with ρ, βr, βθ, p being proper mass density, velocity at radius direction, velocity at θ direction,
and gas pressure, respectively; while Γ and h stand for the Lorentz factor and special enthalpy
shown in Eq.(2.30) and (2.33). Here we take light speed c = 1.

The numerical set-ups for 2-D spherical simulation are basically the same as 1-D except for the
mesh number on the θ direction (see Fig. 5.2). In 2-D testing cases, we set its fiducial value
as 64 here. In order to avoid the carbuncle instability (e.g., Pandolfi & D’Ambrosio, 2001)
that mainly occurs due to the lack of consideration on the shear viscosity (in this case, terms
related to ∂θvr) of Riemann solvers, we employ the HLLE solver instead of HLLC solver in 1-D
simulation.
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Figure 5.2: Comparison between numerical set-ups for 2-D (see the bottom row) and 1-D (see
the top row) spherical simulations with out- to inflow luminosity ratio ζ = 0.01 and terminal
Lorentz factor of outflow Γ∞ = 100 under renc = 4.5×107 cm: The left, central and right panel
show the velocity, density and pressure profile, respectively.
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As for the boundary condition, We set it to be so-called polar-wedge in the θ direction (as
shown in Eq.(5.9)-(5.16)), where j loops from 1 to the number of ghost cells Nngh, jl and ju
stand for the inner and outer most cell else than the ghost cells at inner and outer boundary
of calculation domain, respectively.

vi,jl−j,kr = vi,jl+j−1,kr , (5.9)

vi,jl−j,kθ = −vi,jl+j−1,kθ , (5.10)

ρi,jl−j,k = ρi,jl+j−1,k, (5.11)

pi,jl−j,k = pi,jl+j−1,k, (5.12)

vi,ju+j,kr = vi,ju−j+1,k
r , (5.13)

vi,ju+j,kθ = −vi,ju−j+1,k
θ , (5.14)

ρi,ju+j,k = ρi,ju−j+1,k, (5.15)

pi,ju+j,k = pi,ju−j+1,k. (5.16)

while the boundary condition for radius direction shown in Eq.(2.16)-(2.27) shall include the
velocity at θ direction vθ as follows:

vθ(R∗, θ) = 0, (5.17)

vil−i,j,kθ = 0, (5.18)

vθ(rout, θ) = 0, (5.19)

viu+i,j,kθ = 0. (5.20)

Given the mesh spacing, initial condition and boundary conditions shown as above, we found
that the dynamical evolution of the accretion shock, together with the two critical values ζcri
and ζmin, make no difference if one only set non-trivial mesh number on the θ direction without
introducing any perturbation on the interface (or θ dependence of any physical parameters), as
shown in Fig. 5.3.

5.2.2 2-D relativistic hydrodynamics study with non-spherical rela-
tivistic wind

In this section, we mainly investigate how the non-spherical relativistic outflow effects the
dynamical evolution of the accretion shock. According to Tchekhovskoy et al. (2013), the
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Figure 5.3: Comparison of dynamical evolution of accretion shock between 2-D (see the bottom
row) and 1-D (see the top row) spherical simulations with out- to inflow luminosity ratio
ζ = 0.004, 0.01, 0.08 and terminal Lorentz factor of outflow Γ∞ = 100 under renc = 4.5 × 107

cm: the shaded regions indicate the shocked region bounded by the forward shocks (red dashed
lines) and reverse shocks (blue solid lines). The encounter radius and NS surface are marked
by thin grey and thick grey solid line, respectively.
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outflow luminosity Lnph shall be dependent on θ as

d2Ltot

sin θdθdϕ
= L′ sin4 θ (5.21)

where L
′

here stands for the wind luminosity at the equatorial plane. We manually add a
parameter δ in order to prevent any physical profiles from being 0 1:

d2Ltot

sin θdθdϕ
= L′(δ + sin4 θ), (5.22)

where the fiducial value of δ is taken to be 0.1 in testing cases shown in this chapter. The total
luminosity can be accordingly drafted as:

Ltot = 2πL′
∫ π

0

(
0.1 + sin4 θ

)
sin θdθ. (5.23)

Recalling that the total outflow luminosity Ltot, sph in the spherically symmetric cases (see
Eq.(2.1)) can be written as:

Ltot, sph = L (5.24)

In order to maintain the out- to inflow luminosity ratio ζ, the total injected luminosity in both
spherical and non-spherical simulations shall be set as equal:

Ltot = Ltot, sph, (5.25)

or
L′

L
=

1

2π
∫ π
0

(
0.1 + sin4 θ

)
sin θdθ

= 0.13. (5.26)

The equations to be solved for determining the initial wind profile can be written as follows:

4πr2βwΓw
2ρwhwc

3 = 1.58L(0.1 + sin4 θ), (5.27)

4πΓwβwρwr
2c3 =

1.58L(0.1 + sin4 θ)

Γ∞
, (5.28)

For each θ given by the mesh spacing, there exists an equivalent outflow luminosity Lnph at the
RHS of Eq.(5.27) and (5.28):

Lnph =
4π

2π
∫ π
0

(
0.1 + sin4 θ

)
sin θdθ

L(0.1 + sin4 θ), (5.29)

which can be used to determine the radii dependence of physical profiles at each θ direction.

Under this initial setting, the boundary conditions (see Eq.(5.9)-(5.16) for both the outer and
inner boundary on θ direction, and Eq.(2.16)-(2.21) and (5.19)-(5.20) for the outer boundary
condition on radius direction) should remain unchanged except for the inner boundary condition
in radius direction:

vr(R∗, θ) = 0.7c, (5.30)

1It is generally to employ a floor value instead of setting physical profiles to be 0 since this is risky for
numerical simulations.
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vθ(R∗, θ) = 0, (5.31)

ρ(R∗, θ) = ρw(R∗, θ) =
Lnph

4πΓ∞Γw(R∗, θ)βw(R∗, θ)R∗
2c3

, (5.32)

p(R∗, θ) = pw(R∗, θ) =

[(
Γ∞

Γw(R∗, θ)
− 1

)
γ − 1

γ

]
ρw(R∗, θ)c

2, (5.33)

with corresponding physical profiles fixed in the ghost cells:

vr
il−i,j,k = 0.7c, (5.34)

vil−i,j,kθ = 0, (5.35)

ρil−i,j,k = ρw(R∗, θ), (5.36)

pil−i,j,k = pw(R∗, θ). (5.37)

Where i loops from 1 to the number of ghost cells Nngh, and il stands for the inner most cell
else than the ghost cells at the inner boundary.

As one may imagine, the shock produced under this physical setting will be anisotropic and
can be especially strong among certain direction. In order to avoid the numerical crush while
treating such a strong shock in 2-D study, we employ the HLLD Riemann solver with van-
ishing magnetic field in the whole computational regime (Mignone et al., 2009) and use the
second-order piecewise linear reconstruction method (PLM) with minmod limiter (Roe, 1986)
hereafter. The time integration is still carried out by the second order Runge-Kutta method
with a Courant-Friedrich-Lewy number of 0.1. The computational domain is resolved with a
non-uniform mesh 2 in radius direction and the mesh number of 256 that is uniformly spaced
in θ direction in testing cases. Given the mesh spacing, we numerically set the initial profile
with the cubic B spline (Burkardt, 2020) in the outflow region.

parameter notation range unit
out- to inflow luminosity ratio ζ [0.004, 0.05, 1]

outflow Lorentz factor at infinity Γ∞ 100
encounter radius renc 4.5× 107 cm

Table 5.1: Run parameters in 2-D testing cases with non-spherical pulsar wind

We investigate the range of the parameters shown in Table 5.1. By detail, we choose the
encounter radii as renc = 4.5 × 107 cm and terminal Lorentz factor as Γ∞ = 100. For a given
combination of (renc,Γ∞), we try three different ζ values that belong to different categories as
shown in one-dimensional and spherical two-dimensional study (see Fig. 3.3 and 5.3). We fix
the fallback accretion rate at Ṁfb,i = 10−4M� s−1 and vary the wind luminosity Lnph to change
out- to inflow luminosity ratio ζ.

The results are shown in Fig. 5.4, Fig. 5.5 and Fig. 5.6. As one may notice, regardless of

2the fiducial value of the mesh number and grid size ratio ∆r(i+ 1)/∆r(i) is 512 and 1.007, respectively.
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the fine structures forming in the shocked region, the final fate for the fallback accretion to
be repelled or not has not changed. This is mainly due to the fact that the out- to inflow
luminosity ratio ζ remains unchanged from the case with spherically symmetric outflow to the
one with anisotropic outflow.

(a) L = const (b) L ∝ (0.1 + sin4 θ)

Figure 5.4: Comparison between dynamical evolution of physical profiles assuming spherical
and non-spherical wind of the same total injected wind luminosity encountering with spherical
fallback accretion at t = 0, 8.86 and 19.31 ms. Here the out- to inflow luminosity ratio ζ = 0.004.
The top, middle and bottom panel show the velocity, density and pressure profile, respectively.

5.2.3 2-D relativistic hydrodynamics study with quasi-spherical fall-
back accretion

In this section, we fix the wind luminosity to be isotropic and constant, while putting an
perturbation to the fallback accretion, which is characterized by its amplitude ∆ and periodicity
N :

Ṁfb,θ = kṀfb(1 + ∆ sin(Nθ)) (5.38)
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(a) L = const (b) L ∝ (0.1 + sin4 θ)

Figure 5.5: Comparison between dynamical evolution of physical profiles assuming spherical
and non-spherical wind of the same total injected wind luminosity encountering with spherical
fallback accretion at t = 0, 8.86 and 19.31 ms. Here the out- to inflow luminosity ratio ζ = 0.05.
The top, middle and bottom panel show the velocity, density and pressure profile, respectively.
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(a) L = const (b) L ∝ (0.1 + sin4 θ)

Figure 5.6: Comparison between dynamical evolution of physical profiles assuming spherical
and non-spherical wind of the same total injected wind luminosity encountering with spherical
fallback accretion at t = 0, 8.86 and 19.31 ms. Here the out- to inflow luminosity ratio ζ = 1.
The top, middle and bottom panel show the velocity, density and pressure profile, respectively.
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where Ṁfb stands for the total mass accretion rate shown in Eq.(2.4), and k is the coefficient
for maintaining the total mass accretion rate

k =
1

2π
∫ π
0

(1 + ∆ sin(Nθ) sin θdθ
, (5.39)

which is ∼ 1/4π with N increasing. Here we set the fiducial value of ∆ and N in the testing
cases as shown in Table. 5.2.

parameter notation value
amplitude of perturbation ∆ 0.01, 0.1, 0.5
periodicity of perturbation N 10

Table 5.2: Run parameters in 2-D testing cases with quasi-spherical fallback accretion

Under this initial setting, the boundary conditions (see Eqs.(5.9)-(5.16) the one both for the
inner and outer boundary condition on θ direction and Eqs.(2.22)-(2.27) and (5.17)-(5.18) for
the inner boundary condition on radius direction) shall remain unchanged except the outer
boundary condition on radius direction :

vfb(rout, θ) = −
√

2GM∗
rout

, (5.40)

vθ(rout, θ) = 0, (5.41)

ρfb(rout, θ) =
Ṁfb,θ

r2out |vfb (rout, θ)|
, (5.42)

pfb(rout, θ) = kfbρfb(rout, θ)
γ. (5.43)

where the coefficient kfb is given by fixing the sound velocity at the outer edge of the unshocked
fallback region as cs ∼ 10−3c. The corresponding physical profiles in the ghost cell can be
determined as follows:

vr
iu+i,j,k = vr

iu,j,k

(
riu
riu+i

) 1
2

, (5.44)

vθ
iu+i,j,k = 0, (5.45)

ρiu+i,j,k = ρiu,j,k
(
riu
riu+i

) 3
2
(l+1)

, (5.46)

piu+i,j,k = piu,j,k
(
ρiu+i,j,k

ρiu,j,k

)γ
. (5.47)

Where i loops from 1 to the number of ghost cells Nngh, and iu stands for the outer most cell
else than the ghost cells at the outer boundary.

Given the same numerical scheme described in Chap. 5.2.2, we investigate the range of the
parameters shown in Table 5.1 and 5.2. The results are shown in Fig. 5.7, 5.8 and 5.9.
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(a) ζ = 0.004 (b) ζ = 0.05 (c) ζ = 1

Figure 5.7: Dynamical evolution of physical profiles with out- to inflow luminosity ratio ζ =
0.004 (see the left panel), 0.05 (see the central panel) and 1 (see the right panel) assuming
quasi-spherical fallback accretion with perturbation amplitude ∆ = 0.01. The snapshot are
taken at t = 0, 8.86 and 19.31 ms. The top, middle and bottom panel show the velocity,
density and pressure profile, respectively.

(a) ζ = 0.004 (b) ζ = 0.05 (c) ζ = 1

Figure 5.8: Dynamical evolution of physical profiles with out- to inflow luminosity ratio ζ =
0.004 (see the left panel), 0.05 (see the central panel) and 1 (see the right panel) assuming quasi-
spherical fallback accretion with perturbation amplitude ∆ = 0.1. The snapshot are taken at
t = 0, 8.86 and 19.31 ms. The top, middle and bottom panel show the velocity, density and
pressure profile, respectively.
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(a) ζ = 0.004 (b) ζ = 0.05 (c) ζ = 1

Figure 5.9: Dynamical evolution of physical profiles with out- to inflow luminosity ratio ζ =
0.004 (see the left panel), 0.05 (see the central panel) and 1 (see the right panel) assuming quasi-
spherical fallback accretion with perturbation amplitude ∆ = 0.5. The snapshot are taken at
t = 0, 8.86 and 19.31 ms. The top, middle and bottom panel show the velocity, density and
pressure profile, respectively.

5.2.4 How much supernova fallback can invade down to the newborn
pulsar wind?

In the 2-D RHD simulations, we found that the condition for the fallback accretion to invade
down to the near NS surface region can be marked as the significantly changing of mass enclosed
between NS radius R∗ and light cylinder radii rlc (see Eq.(1.13)) instead of rfb,min ∼ R∗ in one-
dimensional cases, since the minimum fallback radius rfb,min cannot be defined after introducing
the non-spherical effects. The enclosed mass between rlc and R∗ in cases mentioned in Secs.
5.2.2 and 5.2.3 can be crafted in Fig. 5.10 with fixing the rotation period of central NS Pi. The
results are briefly summarized as follows:

1) The shocked fallback matter successfully invades down to the magnetosphere marked by
light cylinder radii rlc either when the out- to inflow luminosity ratio ζ decreases (which
is also a conclusion from our 1-D study) or the non-spherical perturbation is introduced
in either outflow or inflow region.

2) The time where the invading mass peaks can be roughly estimated as the fallback time
scale tfb (see Eq.(2.15)).

3) The time where the enclosed mass drop down to its initial value thd can be estimated as
∼ 10tfb regardless of the choice of light cylinder radii rlc in the intense fallback limit (see
the left column of 5.10). Comparing it to the intermediate case with thd ∼ tfb (see the
central column of 5.10), one can see that the reason behind these two kinds of situation
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are basically different: as for the former cases, it is due to the decreasing of mass accretion
rate with respect to time (see Eq.(2.4)); while for the latter one, it is because that the
fallback inflow is repulsed by the outflow before reaching the surface. Through which
we can state a new criterion to determine the ζmin and ζcri mainly based on the time
evolution of enclosed mass Menclose(t): cases with the decaying time scale thd ∼ 10tfb
stand for successfully invading ones (ζ < ζmin), thd ∼ tfb for the invading-then-expanding
ones (ζmin < ζ < ζcri), while constant Menclose(t) (or thd = 0) stands for the monotonically
expanding ones (ζ > ζcri).
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Figure 5.10: Time evolution of enclosed mass between NS radius R∗ and light cylinder radii
rlc for the central NS with non-spherically injected outflow & spherical fallback inflow (see
the red lines in both rows for different light cylinder radii rlc), spherical injected outflow &
quasi-spherical fallback inflow (see the blue (∆ = 0.1) and green (∆ = 0.5) solid lines in both
rows for different light cylinder radii rlc), and spherical injected outflow & fallback inflow (see
the grey solid line) of the same out- to inflow luminosity ratio ζ. The cases with terminal
Lorentz factor of outflow Γ∞ = 100 and out- to inflow luminosity ratio ζ = 0.004, 0.05, 1 under
renc = 4.5 × 107 cm are shown in the left, central and right panel, respectively. The enclosed
mass and simulation time are normalized with total fallback mass Mfb and fallback time scale
tfb, respectively.

For future perspectives, we will first enlarge the 2-D RHD simulation domain with increasing
the resolution to ensure the convergence of the results, and carefully investigate the parameter
dependence of ζmin and ζcri (e.g., the encounter radius renc) as well as what we have done for
1-D RHD study; we will be especially interested in whether their parameter dependence still
remain unchanged, which basically means that the condition for the fallback accretion to reach
down to the near NS surface region is sorely determined by the energy equilibrium of the out-
and inflow system, regardless of the multi-dimensional effects. Afterwards we will move on to
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the 2-D RMHD studies, where a sanity check for the outflow luminosity numerically generated
by the rotating dipole radiation in the form given by Tchekhovskoy et al. (2013) will be carried
out before the long-term simulations that run until the system settles down and reaches the end
stage. Eventually we want to extend the results to 3-D RMHD simulations, and make the whole
physical picture more realistic through connecting the initial condition for our simulations with
the post supernova explosion stage. The results will be compared with observational facts such
as the birth rate, progenitor mass, the supernova and early pulsar wind nebula emission of each
category of NSs.



Appendix A

Thin shell model for the shocked
fallback matter

To explain the dependence of the minimum fallback radius on the out- to inflow energy flux
ratio (see Fig. 3.4 and Fig. 3.5) shown in Sec. 3, a simplified thin-shell model describing the
dynamics of supernova fallback confronting with an energy injection from the central source
will be constructed in this chapter.

Considering that the shocked fallback matter can be modeled as a shell with a velocity of vfb
and a mass of Mfb at r = rfb, the governing equations including mass, momentum, and energy
conservation can be described as

dMfb

dt
= −4πr2fbρ(v − vfb), (A.1)

d(Mfbvfb)

dt
= 4πr2fbp− Ṁfb,ini (v − vfb)− GM∗Mfb

r2fb
, (A.2)

and

3
d

dt
(pV ) + p

dV

dt
= L (A.3)

with
v =

√
2GM∗/rfb, (A.4)

ρ = Ṁfb,ini/
(
4πr2fbv

)
(A.5)

and
V = 4πr3fb/3. (A.6)

Note that we take the non-relativistic form of hydrodynamics equations here for describing the
dynamics of the shocked fallback shell, since the velocity of the shocked region is well below the
speed of light; and the outflow luminosity and mass fallback rate are considered to be constant
during the evolution.

48
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A.1 Asymptotic solutions for small t

First we will consider the asymptotic solutions for small t. The velocity, mass, and pressure of
the thin shell can be expressed as

vfb(t) = vfb,0 + at, (A.7)

Mfb(t) = Ṁst+ M̈st
2/2, (A.8)

p(t) = L/(4πr2encc) + ṗt+ p̈t2/2, (A.9)

respectively, with a being the acceleration of the fallback shell. The initial conditions are set as
rfb,0 = renc, vfb(t) = vfb,0, Mfb,0 = 0, and 4πr2encp0 = L/c; where vfb,0, Ṁs and a can be obtained
by substituting Eq. (A.7), (A.8), and (A.9) into Eq. (A.1), (A.2), and (A.3) as

vfb,0 =

√
2GM

renc

(√
ζ/ζcri − 1

)
, (A.10)

Ṁs = Ṁfb, i

√
ζ/ζcri, (A.11)

a =
c4
(

5(1− ζ/ζcri) + 7
√
ζ/ζcri − 7 + 2

√
yζ/ζcri

)
12GMy2

, (A.12)

with

y =
c2renc
2GM

. (A.13)

What we can learn from Eq. (A.10) is that the shocked matter shell initially expands (vfb,0 > 0)
while the factor ζ/ζcri is greater than unity, which is consistent with the numerical result shown
in Eq. 3.1; otherwise the shell reaches the minimum fallback radii rfb,min at time t = tmin =
−vfb,0/a as long as ζ/ζcri is not significantly smaller than unity. In this case, the minimum
fallback radius can be estimated as

rfb,min(x, y) =
2GMy

c2
×
[

8 (ζ/ζcri − 1)− 13
√
ζ/ζcri + 13− 2

√
yζ/ζcri

5 (ζ/ζcri − 1)− 7
√
ζ/ζcri + 7− 2

√
yζ/ζcri

]
, (A.14)

which is also consistent with the numerically obtained minimum fallback radius rfb,min for
ζ/ζcri ∼ 1.

A.2 Long-term behavior

Here we derive the solution that can be applied to a relatively large t. In the cases with out-
to inflow luminosity ratio ζ < ζcri, the thin shell initially contracts (vfb,0 < 0) and reaches the
innermost radius rfb,min at t = tmin, vfb = 0. The critical condition is achieved where the thin
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shell marginally becomes gravitationally unbound, i.e.,

dvfb/dt = 0 at t = tmin, (A.15)

which, by substituting these conditions into Eq. (A.1) and (A.2), leads to

4πr2fb,minp = Ṁfb,i

√
2GM/rfb,min +

GM∗Mfb

r2fb,min

. (A.16)

Where the pressure term in the left hand side of the equation can be evaluated by integrating
Eq. (A.3) over time as

r4fb,minp = r4encp0 +
L

4π

∫ tmin

0

dt′rfb(t′). (A.17)

The minimum fallback radius can be thus obtained by substituting Eq. (A.17) to Eq. (A.16)
as

rfb,min = renc[ζf(tmin)− g(tmin)]2/3
(
c2renc
2GM

)1/3

, (A.18)

with

f(tmin) = 1 +
c
∫ tmin

0
dt′rfb(t′)

r2enc
, (A.19)

g(tmin) =
GM∗Mfb(tmin)

cr2encṀfb,i

(A.20)

Regardless of the fact that the exact values of f(tmin), g(tmin), and rfb,min shall be obtained by
directly solving Eq. (A.1), (A.2), and (A.3), they can be approximated as

f(tmin) ≈ ctfb/renc (A.21)

and
g(tmin) ≈ GM∗tfb/crenc

2 (A.22)

as long as tmin . tfb. The critical out- to inflow luminosity ratio that gives rfb,min → 0 can be
roughly estimated as ζmin ≈ g(tmin)/f(tmin) ≈ GM∗/c

2renc from Eq. (A.18), which is consistent
with the numerical results and can be interpreted as follows; ζf(t) and g(t) represent the time-
integrated outflow luminosity injected to the thin shell and the work exerted by the gravitational
force to the thin shell, respectively. The critical out- to inflow luminosity ratio ζmin marks the
fallback matter to invade down to the near NS surface corresponds to the case where these two
energy components become comparable at t ≈ tfb.

This thin-shell model can well describe the dependence of the minimum fallback radius on the
out- to inflow energy flux ratio shown in Sec. 3 mainly due to the validity of non-relativistic
form of hydrodynamics equations (especially the momentum and energy conservation laws) in
the thin shocked region, where its velocity is non-relativistic during the early stage of the in-
and outflow encounter regardless of the relativistic outflow velocity. A breakdown of this point
can lead to the deviation between the one predicted by the analytical model and numerical
simulation; for example, if we consider extra source term in the energy equation (e.g., neutrino
cooling), the effects of magnetic field especially in the near NS surface region where the plasma
β is well below the unity, or a larger simulation box in which the accretion shock may not be
regarded as a thin shell any more.



Appendix B

Rayleigh-Taylor instability on the
inflow-outflow boundary

As introduced in Sec. 3, our physical set-ups at the encounter radius can be locally simplified
as Fig. B.1, where Γ, ρ and h stand for the Lorentz factor, density and enthalpy at both sides
of renc (see the black dashed line), respectively; and the parameters with prim represent the
property of the fallback matter.

2 ξ(x) x

y

g

Γ’ ρ’ h’

Γ ρ h

Figure B.1: Simplified local physical setups at the encounter radius

Here we consider a small perturbation ξ(x) at the encounter radius renc (see Fig. B.1) with the
form of simple harmonics

ξ(x) ∝ exp(i(k̂r̂ − ωt)) (B.1)

where the governing equations of this system can be written as:

Γ
∂δρ

∂t
+ δvy

∂(Γρ)

∂y
= 0, (B.2)

∂δvx
∂x

+
∂δvy
∂y

= 0, (B.3)
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Γ2ρh
∂δvx
∂t

= −∂δp
∂x

, (B.4)

Γ2ρh
∂δvy
∂t

= −∂δp
∂y
− Γ2

(
δρ+

γ

γ − 1

δp

c2

)
g, (B.5)

1

p

(
∂δp

∂t
+ δvy

∂p

∂y

)
− γ

ρ

(
∂δρ

∂t
+ δvy

∂ρ

∂y

)
= 0, (B.6)

which gives the oscillation frequency ω in Eq.(B.1) through following assumptions

1) Both the inflow and outflow can be regarded as incompressible:

∂

∂t
(Γρ) + v∇(Γρ) = 0 (B.7)

2) The system is initially in hydrostatic equilibrium on this plane:

∇p+ Γ2ρhg = 0 (B.8)

3) Only a thin layer of flow at both sides of encounter radius are considered, thus the Lorentz
factor Γ and density ρ profiles are uniform for inflow and outflow.

4) Angular frequency of oscillation ω is constant

5) Every physical quantity Q together with its derivative towards time/space (∂tQ and ∂iQ)
vanish at r →∞

as

ω2 = −gkΓ′2ρ′h′0 − Γ2ρh0
Γ′2ρ′h′0 + Γ2ρh0

(B.9)

where k is the wave number of the perturbation, g is the local gravitational acceleration; and

h′0 = 1 +
γ2p′0

(γ − 1)ρ′c2
, (B.10)

h0 = 1 +
γ2p0

(γ − 1)ρc2
, (B.11)

with p′0 and p0 to be the pressure of the inflow and outflow at their interface, which initially
will be the encounter radius renc. Instability happens when ω2 < 0, or

Γ′2ρ′h′0 > Γ2ρh0 (B.12)

which has been satisfied especially for the contracting phase in parameter space with ζ . ζcri
that we are most interested in.
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