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Abstract

The core-collapse supernova (CCSN) is an explosive death of a massive star. The ex-

plosion mechanism of the CCSN is so complicated that the numerical simulations are

required to investigate it. The main problem in the CCSN explosion mechanism is how

to revive the bounce shock which is launched after the stellar core-collapse and stalls

eventually. In this dissertation, the neutrino heating and the acoustic mechanisms are

investigated to revive the shock. The central proto-neutron star (PNS) emits energetic

neutrinos, and they provide the energy for the shock revival in the neutrino heating mech-

anism. Multi-dimensional effects such as turbulence are indispensable for the mechanism

to work, but still some physical processes are missed to obtain explosions with observed

energies. Besides, all groups employ approximate neutrino transport methods for the

multi-dimensional simulations, but their accuracy is unknown. After the neutrino heating

mechanism fails, intense acoustic waves are emitted from the PNS and energize the shock

in the acoustic mechanism. Since this mechanism is difficult to reproduce, other groups

focus on the power of the emitted acoustic waves, but the conclusion is not yet achieved.

The stellar rotation may be the missing physical process. In order to check it with-

out the approximation mothod of the neutrino transport whose accuracy is unknown, the

core-collapse of the progenitor rotating as fast as possible is simulated with the Boltzmann-

radiation-hydrodynamics code which solves the Boltzmann equation directly for the neu-

trino transport. The evolution of the shock radii, neutrino luminosities, mean energies

of neutrinos, and heating timescale imply that the model adopted here does not explode.

Thus the rotation alone does not lead to the successful shock revival. Incidentally, the

investigations on the momentum space distributions of neutrinos reveal that the distri-

bution is determined by the complex combinations of the neutrino flux, reaction rates,

and matter velocity. The accuracy of the M1-closure method, one of the approximation

methods, is also examined. It is found that the error of this method is ∼ 20%.

Next, the acoustic mechanism is investigated as another possibility for the shock revival.

Here, the acoustic power Ėaco required for the shock revival is examined. A steady-state

flow with a stalled shock is constructed with a given mass accretion rate Ṁ and neutrino

luminosity Lν , and spherically and axially symmetric simulations with the acoustic waves

injected from the PNS surface are performed. The acoustic power is estimated from

the extended Myers’ theory. Then the critical surface is drawn as the boundary of the

parameter sets which lead the successful shock revival or not in the space spanned by

(Ṁ, Lν , Ėaco). The spherically symmetric simulations illustrate that the shock revives

when the sum of the acoustic power and neutrino heating rate exceeds a threshold value
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and that not all of the acoustic power is consumed for the shock revival since the acoustic

waves raise the temperature and enhance the neutrino cooling. Axisymmetric simulations

show that the acoustic power found in the discovery work of the acoustic mechanism is

large enough for the shock revival, and hence it is concluded that the acoustic mechanism

is certainly a candidate mechanism for the shock revival.
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Chapter 1

Introduction

1.1 Exploring the explosion mechanism

Core-collapse supernova (CCSN) is an explosive death of a massive star which forms an

iron core. It is first proposed by Baade & Zwicky (1934). Its maximum luminosity is

∼ 1010L⊙, and it shines for about a few months. Its explosion energy is ∼ 1051 erg.

Origin of its energy is gravitational energy released when the stellar core collapses into

a neutron star (NS), and a CCSN leaves a compact remnant. Indeed, Baade & Zwicky

(1934) suggested that a CCSN is a birthplace of an NS.

The main focus of this dissertation is on explosion mechanisms of CCSN. The explo-

sion mechanism is a long-lasting and intriguing puzzle in astrophysics. By accumulating

many observational and theoretical examinations including the most crucial observation

of SN1987A (the first supernova observed in 1987) in the Large Magellanic Cloud by neu-

trino observatories (Hirata et al., 1987; Bionta et al., 1987), an overview of the explosion

mechanism as follows is obtained. The stellar iron core collapses at the end of its evo-

lution. The gravitational collapse continues until the central density reaches the nuclear

density. At that time, the infalling matter bounces due to the strong nuclear force and so-

called bounce shock is launched. This process is called the core bounce. The shock wave

propagates outward with losing its energy, and finally, it stalls. Then energetic neutrinos

emitted from a central object called proto-neutron star (PNS) heat matter just behind the

shock. If matter gets enough energy, the shock revives and starts to propagate outward

again. When the shock reaches the stellar surface, a successful explosion is observed. This

mechanism is called the neutrino heating mechanism. If the matter does not get enough

energy, then acoustic waves are emitted from PNS and revive the shock. This mechanism

for shock revival is called the acoustic mechanism. What mechanism is the most realistic

is not yet concluded.

A large variety of physical processes are involved in the CCSN explosion. A CCSN

produces an NS, and hence general relativistic strong gravity should be considered. Since

matter is compressed to the nuclear density, the strong interaction or nuclear force should

be treated appropriately, though it is difficult to model due to its self-interacting and

multi-body nature. Neutrinos play a crucial role in the CCSN thus the weak interaction

is indispensable to describe the CCSN. The weak interaction is described by the Weinberg-
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Salam theory, but its behavior in a matter is not fully understood. All these fundamental

processes combined with the hydrodynamics and neutrino transport determine how the

CCSN explodes. Such an extreme environment is not realized in terrestrial experiments.

Thus the CCSN is a useful probe of not-yet-understood fundamental physics in an extreme

environment.

The problem of the explosion mechanism is very complicated, and hence people rely

on numerical simulations in order to address it. It has been investigated for more than

50 years from early numerical works by Colgate & Johnson (1960), Colgate et al. (1961),

Colgate & White (1966), and so on. In order to examine the explosion mechanism, one

may think that all we have to do is to perform simulations which include all relevant

physics exactly with sufficient resolution and various realistic progenitor models. So far,

the limited computational resources had forced supernova modelers to rely on some ap-

proximations instead of such perfect simulations in order to model the CCSN. Much effort

has been paid for the improvement of the numerical modeling including approximations.

The methods and accuracy of approximations are different from group to group. Because

of the lack of reference simulations, the accuracy of some approximations is still unclear.

Besides, successful shock revival which reproduces observational features like the ex-

plosion energy has not been obtained by any groups. The spherically symmetric one-

dimensional (1D) simulations do not explode except for the lightest progenitor. Some

of the axially symmetric two-dimensional (2D) simulations show shock revivals, but their

explosion energy is not enough to explain the observations. Supernova modelers are trying

to reproduce the observational results by including various physical processes called miss-

ing physics: the three-dimensional (3D) effects, rotation, progenitor asphericity, updated

neutrino reactions, general relativistic gravity, and so on.

Although other supernova modelers are examining the effects of the physical processes

listed above by simulations with approximate neutrino transport, I take another way: a

direct simulation. Recently the development of numerical resources allows us to perform

much more sophisticated code than previous codes. In this dissertation, one of the most

sophisticated code is used to simulate the CCSN explosion. The most distinctive feature

of the code here is to solve the Boltzmann equation for radiation transfer of neutrinos

in multi-dimensions by directly discretizing the distribution function. Therefore the code

is called the Boltzmann-radiation-hydrodynamics code. Using the code, the effects of

rotation, one of the missing physical processes, are reported in this dissertation.

On the other hand, it should be remarked that there is a chance for the acoustic mech-

anism to work after the failure of the neutrino heating mechanism. Since the neutrino

heating mechanism is not a unique possibility of the explosion mechanism, the acoustic

mechanism should also be investigated. The Boltzmann-radiation-hydrodynamics code is,

however, not appropriate to examine the acoustic mechanism since it requires enormous

computational cost and cannot follow the evolution at late phase. Instead, the shock re-

vival by the acoustic mechanism is investigated with another approach in this dissertation.

In order to elucidate the explosion mechanism, investigations from several viewpoints are

indispensable.
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Examining the explosion mechanism of CCSN has other possible applications, though it

is not the scope of this dissertation. One application is multi-messenger astronomy. The

detection of neutrinos from SN1987A (Hirata et al., 1987; Bionta et al., 1987) referred to

above proves the ability of the neutrino detector in the astrophysics. In 2015, the gravita-

tional waves (GWs) from a binary black hole merger is detected (Abbott et al., 2016) and

in 2017 the GWs from a binary neutron star merger is detected (Abbott et al., 2017a) and

the macronova associated with the merger is observed by several telescopes (Abbott et al.,

2017b). With these novel detectors, we can now use not only the electromagnetic waves

but also neutrinos and GWs as messengers from astrophysical processes. Astronomy using

non-electromagnetic signals is called multi-messenger astronomy.

In order to fully exploit the observational data, theoretical models are necessary. Such

models for the electromagnetic signals have been made intensively so far. On the other

hand, the modelings for the neutrinos and GWs are relatively poor. The CCSN is a

good target for the multi-messenger observation since it emits photons, neutrinos, and

GWs. The neutrinos and GWs are emitted from the core of CCSN and closely related

to the explosion mechanism. Therefore investigation on the explosion mechanism also

provides theoretical models for neutrinos and GWs as by-products. Offering the models

facilitates the multi-messenger observations, and multi-messenger observations help us to

understand the CCSN explosion mechanism.

1.2 The structure of this dissertation

This dissertation is organized as follows. In chapter 2, I review fundamentals related to

the theory of the CCSNe. The results of numerical simulations of the neutrino heating

mechanism is presented in chapter 3 and those of the acoustic mechanism is in chapter 4.

Finally, in chapter 5, I summarize and conclude this dissertation.

I review the basic scenario, important physical processes, and problems to be addressed

in chapter 2. This chapter is composed of two parts: the physical scenario during the

core-collapse (section 2.1) and that after the core bounce and explosion mechanism hy-

potheses (section 2.2). Relevant physical processes are also included. In section 2.1.1

the gravitational stability of the stellar iron core and the onset of the core-collapse is

described. Several important concepts such as neutrino trapping during the core-collapse

are discussed in section 2.1.2. The section 2.1.3 explains the formation of the bounce

shock and PNS. The importance and models of the nuclear equation of state (EOS) are

also shown there. In section 2.2.1 the basic scenario, the current status and problems of

the neutrino heating mechanism, and description of numerical code employed in chapter 3

are displayed. This includes the hydrodynamical instabilities and the neutrino reactions.

Finally, those related to the acoustic mechanism are shown in section 2.2.2.

In chapter 3 a numerical simulation with the Boltzmann-radiation-hydrodynamics code

in 2D is presented in order to investigate the neutrino heating mechanism. Since a simula-

tion with non-rotating progenitor does not explode, the possibility that the rotation helps

explosion is pursued in this dissertation. This goal is described at the beginning of chapter
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3. The numerical modelings of progenitors and the numerical grid are explained in section

3.1. In section 3.2 the main results related to the dynamics of CCSN are presented. The

shock does not revive in the simulation with rotating progenitor. Subsequently in section

3.3, I digress from the main subject to discuss the neutrino distributions in the momentum

space. This is because one of the novel features of the code used here is solving the Boltz-

mann equation directly. Only this code can assess the momentum space distribution and

hence it is worth presenting and discussing quantities related to the neutrino distributions.

Finally, in section 3.4, summary and conclusions of this chapter is presented.

Since the shock does not revive even with one of the most sophisticated numerical

code in chapter 3, another possibility should be pursued. The Boltzmann-radiation-

hydrodynamics code employed in chapter 3 can track only several hundreds of milliseconds

after the core bounce and the shock revival by the acoustic mechanism may occur after

that. In order to consider this possibility, the validation of the acoustic mechanism through

the critical surface is discussed in chapter 4. The critical surface is a surface drawn in

a three-parameter space spanned by the mass accretion rate, neutrino luminosity, and

acoustic power and divide the parameter sets into those lead to the successful explosion

and not. The details are explained in chapters 2 and 4. In section 4.1 I describe the

numerical modeling and method to obtain the critical surface. Although the acoustic

mechanism does not work under spherical symmetry as discussed in section 2.2.2, the

critical surface with spherically symmetric simulations is useful to understand the physi-

cal picture of the acoustic waves in CCSN. Therefore in section 4.2, I discuss the critical

surface with spherically symmetric simulations. Then in section 4.3 the results with ax-

isymmetric simulations are presented. This is because the acoustic mechanism is originally

proposed with axisymemtric simulaions. The conclusions of this chapter are presented in

section 4.4.

Finally, in chapter 5, I give the summary, conclusions, and future prospects of this

dissertation.

Throughout this dissertation, I use the unit with c = G = h̄ = 1 in equations unless

otherwise stated, with c, G, and h̄ being the light speed, gravitational constant, and

reduced Planck constant, respectively. The spacetime metric signature is −+++. Greek

and Latin indices run over 0-3 (spacetime) and 1-3 (space), respectively.
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Chapter 2

Explosion Mechanisms of

Core-Collapse Supernovae

I first overview the basic scenario of the CCSN explosion mechanism and fundamental

processes. First, I describe the physical processes and phenomena during the core collapse

and bounce in section 2.1. This is relatively well understood compared with the dynamics

after the core bounce and shock revival. Neutrino reactions important in this phase and

some models of nuclear EOS are discussed here. The EOSs explained here are used in

chapter 3 and 4. Next, the possible mechanisms and their problems are presented in

section 2.2. First, the neutrino heating mechanism is discussed in section 2.2.1. The basic

picture of the mechanism is reviewed first, and then the history from the first simulation in

which the neutrino heating mechanism works, the problems in the mechanism, and recent

effort trying to address them are explained. The critical curve, the most basic, important,

and intuitive concept of the neutrino heating mechanisms, is described there. In the final

part of this section, a first principle simulation of the CCSN explosion is proposed, and

the current status of the code is discussed. This part describes the motivation and novel

numerical technique used in chapter 3. Second, the acoustic mechanism is illustrated in

section 2.2.2. The first work which proposed the acoustic mechanism, the scenario of the

mechanism, and some important quantities of the work are explained. Then some works

to test the validity of the acoustic mechanism and criticism to them are discussed in the

following. This motivates the investigation presented in chapter 4.

2.1 Core collapse and bounce of massive stars

A massive star heavier than 8M⊙ at the zero-age-main-sequence experiences the core-

collapse. The O-Ne-Mg and iron core are formed in a star of 8–10M⊙ and in that more

massive than 10M⊙, respectively, at the end of its evolution. The former starts to collapse

by electron-capture reactions, while the latter begins to collapse by iron photodissocia-

tion reactions. In the following how these reactions cause the gravitational collapse is

explained, and then the structure of the collapsing core and an important concept of the

neutrino trapping is described.
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2.1.1 The onset of the collapse

The mass of the iron and O-Ne-Mg core is close to the Chandrasekhar limit, and it is

supported against the self-gravity by mainly the electron degenerate pressure and the

additional thermal pressure. Therefore, the adiabatic index γ of the iron core is slightly

larger than 4/3, the value for the relativistic electron degenerate pressure. If this γ

becomes less than 4/3, the core starts to collapse gravitationally. This is described by the

linear analysis of the gravitational stability (Shapiro & Teukolsky, 1983). In the following,

the instability criterion is reviewed.

Suppose that a gas sphere is in the hydrostatic equilibrium, obeying the equations

dP

dr
= −ρdΦ

dr
(Euler equation), (2.1)

1

r2
d

dr

(
r2

dΦ

dr

)
= 4πGρ (Poisson equation), (2.2)

where r is the radial coordinate and P , ρ, Φ, and G are the pressure, density, gravitational

potential, and gravitational constant, respectively. Then, fluid elements are perturbed in

a spherically symmetric mannar. By letting ξ the displacement by perturbation, the radial

coordinate of the element is changed from r to r′ = r+ ξ. Since the perturbation depends

on both the time and radius, perturbed Euler and Poisson equations are satisfied,

∂ρ∆v

∂t
+
∂∆P

∂r
+ ρ

∂∆Φ

∂r
+∆ρ

∂Φ

∂ρ
= 0, (2.3)

1

r2
∂

∂r

(
r2
∂δΦ

∂r

)
= 4πGδρ, (2.4)

where t and v are the time and fluid velocity, respectively. Here ∆ and δ indicate the

Lagrangian and Eulerian perturbations,

∆X(r) = X ′(r′)−X(r) = X ′(r + ξ)−X(r) (2.5)

δX(r) = X ′(r)−X(r), (2.6)

where X and X ′ are an arbitrary physical quantity as a function of the radius and its

perturbed counterpart, respectively. These two ways of perturbation are related by a

formula

∆X = δX + ξ
∂X

∂r
. (2.7)

The perturbed density is expressed by the divergence of the displacement,

∆ρ = −ρ 1

r2
∂

∂r
(r2ξ), (2.8)

and the perturbed velocity is the time differentiation of the displacement,

∆v =
∂ξ

∂t
. (2.9)
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By integrating equation (2.4) from 0 to some radius r,

∂δΦ

∂r
=

4πG

r2

∫ r

0

δρ(r′)r′2dr. (2.10)

By using equations (2.7) and (2.8), this equation is cast into

∂δΦ

∂r
= −4πGρξ. (2.11)

Next, equation (2.3) is cast into

ρ
∂2ξ

∂t2
+
∂∆P

∂r
+

4ξ

r

∂P

∂r
= 0, (2.12)

by using equations (2.1–2.2), (2.7–2.9), and (2.11). By introducing the adiabatic index

γ =
∂ lnP

∂ ln ρ

∣∣∣∣∣
s

, (2.13)

the perturbed pressure is expressed as

∆P =
γP

ρ
∆ρ = −γP

r2
∂

∂r
(r2ξ) (2.14)

with equation (2.8). Then the equation finally takes the form

ρ
∂2ξ

∂t2
− ∂

∂r

(
γP

r2
∂

∂r
(r2ξ)

)
+

4ξ

r

∂P

∂r
= 0. (2.15)

By focusing on a single mode of the Fourier modes in time, the displacement ξ is pro-

portional to exp(iωt) where ω is the eigenmode frequency. Then the governing equation

is
d

dr

(
γP

1

r2
d

dr
(r2ξ)

)
− 4

r

dP

dr
ξ + ω2ρξ = 0. (2.16)

This equation is cast into the following form:

ω2 =

∫ R
0

dr
{
γP 1

r2

[
d
dr (r

2ξ)
]2

+ 4rξ2 dP
dr

}
∫ R
0

drρξ2r2
=
|W |
I

3γ̄ − 4

(̃
ξ

r

)2

/

(
ξ

r

)2
 . (2.17)

The definitions of the symbols are as follows:

I :=

∫ M

0

r2dm,

(
ξ

r

)2

:=
1

I

∫ M

0

ξ2dm,

(̃
ξ

r

)2

:=
1

|W |

∫ M

0

(
ξ

r

)2
Gm

r
dm

|W | :=
∫ M

0

Gm

r
dm, γ̄ :=

(∇ · ξ)2γ
(ξ/r)2

, (∇ · ξ)2γ :=

∫ R
0
(∇ · ξ)2γP4πr2dr∫ R

0
P4πr2dr

.

(2.18)

Here γ̄ is the pressure-weighted average of γ. When γ → 4/3, the squared eigenfrequency

approaches to the form of

ω2 ≃ |W |
I

(3γ̄ − 4), (2.19)
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therefore if γ̄ < 4/3, the eigenfrequency is purely imaginary, and the perturbation develops

exponentially.

As discussed above, γ is slightly larger than 4/3 for the stellar core. As the core evolves,

electron capture and iron-photodissociation process reduce γ below the critical value. In

the stellar core, the pressure consists of the degenerate pressure of the relativistic electrons

Pe, the radiation pressure of the photons Pγ , and the thermal pressure of the nuclei PA:

P = Pe + Pγ + PA =
1

3

(
3

8π

ρYe
mu

)4/3

+
1

3
aT 4 +

3

2

ρ

Amu
kBT, (2.20)

where Ye := ne/nb, ne, nb, mu, a, T , A, and kB are the electron fraction, electron num-

ber density, baryon number density, atomic mass unit, radiation constant, temperature,

(mean) mass number of nuclei, and Boltzmann constant, respectively. Here, Pe ≫ Pγ , PA,

thus the adiabatic index is dominated by Pe.

If the density is high enough, the electron capture process occurs. Since the iron core

is mainly composed of iron nuclei, the electron capture reaction is, for example,

56Fe + e− → 56Mn+ νe. (2.21)

The mass of manganese is larger than that of iron. In order to enable the electron capture

on nuclei, there should be electrons whose energy is larger than the mass difference of these

nuclei, several MeV typically. The electron degeneracy realizes such high energy electrons:

if the electrons are relativistic and completely degenerate with zero temperature, the Fermi

energy of electrons is

µe ≃ 11MeV

(
ρYe

1010 g cm−3

)1/3

. (2.22)

At the center of the iron core of a massive star at the onset of the collapse, the density is

∼ 1010 g cm−3, and the temperature is ≤ 1MeV. Therefore the assumption of relativistic

and complete degeneracy is valid, and the electrons have enough energy to be captured

by iron nuclei. When the electron fraction does not change with the density, the adiabatic

index for the electron degenerate pressure is 4/3 as seen in equation (2.20). On the other

hand, when the electron capture reduces the electron fraction with increasing density,

the pressure does not rise as high as the case without electron captures, and hence the

adiabatic index effectively becomes smaller than 4/3.

For the low-temperature environment, the iron nuclei, whose binding energy is the

lowest, tend to be formed since the free energy F = U − TS is dominated by the internal

energy U , with S being the entropy. As the core contracts, the temperature gets higher,

and the influence of the second term of the free energy increases, and the matter tends

to increase the entropy by breaking up iron nuclei into nucleons. In this reaction, high

energy photons produced by the high-temperature environment dissociate iron nuclei.

These reactions are endothermic:

56Fe↔ 134He + 4n− 125MeV, (2.23)

4He↔ 2p + 2n− 28.3MeV. (2.24)



2.1 Core collapse and bounce of massive stars 9

This energy loss reduces the temperature with the increasing density, and hence the

thermal pressure decreases. Although the contribution to γ from the degenerate pressure

alone is 4/3, this reduction of the thermal pressure further contribute to γ, and by this

effect, γ gets smaller than 4/3.

2.1.2 The physical processes in the collapsing core

Once the stellar core becomes unstable, the gravitational collapse begins. The collapse is

adiabatic (Bethe et al., 1979), and hence the equation of state is expressed as P = κργ .

Since the dimensional quantities present in the system are only κ and G, the gravitational

constant, the system is self-similar. The self-similar solution of the collapse is developed

by Yahil (1983) and well describes the result of numerical simulations. That solution re-

vealed that the collapsing core is divided into two parts: a subsonically and homologously

collapsing inner core and a supersonically and freely falling outer core. Moreover, Yahil

(1983) found that the mass of the inner core approximately coincides with the Chan-

drasekhar mass. Note that the Chandrasekhar mass in this argument is defined by the

mass coordinate in which the total energy is zero. If γ = 4/3, the Chandrasekhar mass of

this definition coincides with that of the usual definition.

The collapse continues until the adiabatic index of the inner core becomes γ > 4/3.

This occurs when the central density reaches the nuclear density and the strong inter-

action between nucleons dominates the pressure. However, some physical processes may

increase the adiabatic index before the density reaches the nuclear density, and hence

enough gravitational energy may not be released. Although these processes are actually

suppressed, it is worth mentioning what processes have such possibilities.

During the collapse, as the density increase, the Fermi energy of the electrons increases,

and hence the electron capture reactions continue, and neutrinos are emitted not only

in the O-Ne-Mg core but also in the iron core. The electron capture reactions produce

neutrons and entropy since this is an irreversible process going to the β-equilibrium. If

the entropy in the core is high, not only heavy nuclei such as iron but also free nucleons

exist as a consequence of the thermal equilibrium. The free nucleons are heavy enough to

behave as non-relativistic gas, whose adiabatic index is 5/3. Thus, these free nucleons can

stop the collapse before the central density reaches nuclear density. However, the entropy

produced by the electron capture reaction is taken away by the escaping neutrinos, and

hence the entropy of the core keeps low value during the collapse (Bethe, 1990). Therefore,

such free nucleons are not produced actually.

The produced neutrons can also affect the collapse. The electron capture considered

here is the capture on a heavy nucleus, thus after the reaction neutron number increases.

By repeating the capture, the nucleus becomes neutron-rich (neutronization). Although

the neutron number of stable heavy nuclei is slightly larger than the proton number

because of the Coulomb energy, nuclei with too many neutrons are unstable due to the

symmetry energy. As a consequence, neutrons escape from the nuclei. This phenomenon

is called the “neutron drip.” If the neutron drip occurred, again free neutrons would

increase the adiabatic index.
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If the electron capture process continues, the neutron drip would stop the collapse. How-

ever, the neutrino trapping prevents it. As the density increases, the neutrinos produced

by the electron capture scatter off nuclei via coherent scattering process (Freedman, 1974).

For the coherent scattering, the scattering cross section is proportional to the square of

the mass number of the nuclei. This is understood as follows: Consider the wave function

of a neutrino. If a single nucleon scatters the neutrino, a scattered wave function is gener-

ated. On the other hand, if several nucleons gather narrower than the wavelength of the

neutrino like a nucleus, the waves scattered by each nucleon are superimposed coherently,

then the total amplitude of the scattered wave is enhanced. Actually, superimposing oc-

curs each pair of nucleons, and hence the total amplitude is proportional to the number

of pairs of the nucleon, approximately the squared mass number of the nucleus.

The neutrino trapping proposed by Sato (1975) occurs when the diffusion timescale

of the neutrinos exceeds the dynamical timescale of the collapse. First, the diffusion

timescale is evaluated as follows. The cross section of the coherent scattering is

dσ

dΩ
=

σ0
64π

(
ϵ

me

)2

A2

{
1− 2Z

A
(1− 2 sin2 θW)

}2

C2
FF(1 + cos θ), (2.25)

where

σ0 :=
4G2

Fm
2
e

π
≃ 1.7× 10−44 cm2, (2.26)

GF, me, ϵ, Z, θW, and CFF are the Fermi coupling constant, mass of the electron, energy

of the neutrinos, atomic number, Weinberg angle, and form factor of the nucleus. Since

the neutrinos are mainly produced by the capture of degenerate electrons and the recoil of

the nuclei is negligible due to the large mass compared to the electron energy, the energy

of the neutrinos is approximately equal to the Fermi energy of the electrons:

ϵ ≃
(
3π2 ρYe

mu

)1/3

. (2.27)

Thus the mean free path is

ℓmfp :=
1

σAnA
≃ 5× 107 cm

(
ρ

1010 g cm−3

)−5/3(
Ye

26/56

)−2/3(
A

56

)−1

, (2.28)

where σA is the total cross section of the coherent scattering and nA = ρ/(muA) is the

number density of nuclei. For the above estimation, I approximate that A ≃ 2Z. Since

the core mass is approximately the Chandrasekhar mass

Mcore ≃ 1.26M⊙

(
Ye

26/56

)2

, (2.29)

the size of the core is

Rcore =

(
3Mcore

4πρ

)1/3

∼ 107 cm

(
ρ

1010g cm−3

)−1/3(
Ye

26/56

)2/3

. (2.30)
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Therefore the neutrinos start to be scattered when the density exceeds ∼ 1010 g cm−3. By

using the mean free path, the diffusion timescale is

tdiff :=
3R2

core

ℓmfpc
≃ 30ms

(
ρ

1011 g cm−3

)(
Ye

26/56

)2(
A

56

)
. (2.31)

On the other hand, the dynamical timescale of the collapse is

tdyn :=

√
1

Gρ
≃ 10ms

(
ρ

1011 g cm−3

)−1/2

, (2.32)

thus when the density exceeds 1011 g cm−3, the diffusion timescale exceeds the dynamical

timescale and the neutrinos no longer diffuse out from the core. Once the neutrinos are

trapped, the Pauli blocking prevents the further production of neutrinos, and hence the

neutronization is also stopped.

The neutrino trapping has two positive feedback processes (Sato, 1975). The trapped

neutrinos achieve the β-equilibrium with matter and degenerate. As the density increases,

the Fermi energy of the neutrinos rises. Then the cross section of the coherent scattering

also increase as ∝ ϵ2, and the neutrino opacity rises further. Due to the higher opacity,

the more strongly the neutrinos are trapped. Not only the increase of the cross section but

also the suppression of the neutronization plays a role in another feedback process. The

suppression of the neutron drip also suppresses the melting of nuclei due to the neutron

drip. This process makes the coherent scattering efficient since the cross section ∝ A2.

Thanks to these feedback processes, the neutrino trapping proceeds automatically.

The surface of the region where neutrinos are trapped is called the “neutrinosphere”,

which is an analogy of the photosphere for photons. For practical definition, the neutri-

nosphere is defined sometimes as the isodensity surface of ρ = 1011 g cm−3 or at other

times the surface where the optical depth for neutrinos is 2/3. The neutrinosphere is

formed in the outer core, i.e., the part of the collapsing stellar core whose velocity is

supersonic.

2.1.3 The core bounce

Formation of the bounce shock, proto-neutron star, and neutronization burst

When the central part of the core reaches the nuclear density, the strong interaction be-

tween nucleons rapidly increases the pressure, the adiabatic index, and hence the collapse

stops. The information of the braking is communicated only inside the subsonic inner

core, while the supersonic outer core does not know that inner core is braking. Therefore,

at the interface of the inner and outer cores, the shock wave is formed. This shock is

called the bounce shock, and the formation of the bounce shock is called the core bounce.

After the core bounce, the central part of the shocked core settles down to be in the

hydrostatic equilibrium. This object is called the proto-neutron star (PNS). The PNS

still has a lot of protons (Ye ∼ 0.3) and high temperature and evolves to be the neutron

star by losing the internal energy and leptons via the neutrino emission.

At the bounce, the shock lies inside the neutrinosphere. The entropy between the

central PNS and the shock is high due to the shock heating, and hence the heavy nuclei are
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dissolved. Since the coherent scattering is not efficient, the mean free path is large there.

However, the matter between the shock and the neutrinosphere is composed of heavy

nuclei and opaque enough to confine the neutrinos. After a while, the shock propagates

and crosses the neutrinosphere. At that time, heavy nuclei that contribute to the large

opacity are disintegrated by the shock, and hence the neutrinosphere rapidly shrinks

to the surface of the PNS. Therefore, a large part of the matter instantaneously becomes

optically thin and the neutrinos trapped until the crossing time are liberated promptly. As

a consequence, many neutrinos are emitted from the stellar core. Note that the neutrinos

confined in the neutrinosphere are mainly the electron-type neutrinos since during the

collapse the electrons are degenerate and there are little positrons, and hence the electron

capture reactions, which produces the electron-type neutrinos, are dominant. Besides,

inside the shock, the heavy nuclei are dissociated into nucleons whose electron capture

rate is large, thus again the electron-type neutrinos are mainly produced. Since the many

electron-type neutrinos are emitted, the electron fraction of the remnant core rapidly

decrease, and hence this is called the “neutronization burst”.

The energy released by the bounce is evaluated as

Ebounce =

(
−GM

2
IC

Rini

)
−
(
−GM

2
IC

Rfin

)
≃ 1.3× 1053 erg, (2.33)

where Rini = 1000 km, Rfin = 10 km, and MIC = 0.7M⊙ are the initial and final core

radius and the inner core mass, respectively. The hydrostatic object, which is nothing but

the PNS, is formed at the center, and hence the virial theorem

|W | = 3(γ − 1)U, (2.34)

where W and U are the gravitational energy and the internal energy, respectively, can be

applied. Since γ ≃ 4/3 averagely,*1 the internal energy of the core is almost the same as

the released gravitational energy, and the energy of the shock is ∼ 1051 erg, only a few

per cent of W (Brown et al., 1982). The energy released at the bounce depends on the

electron fraction Ye through the inner core mass MIC and the details of the nuclear EOS

through the final core radius Rfin.

Nuclear equations of state

The energy of the bounce shock and the postbounce dynamics depend on the nuclear EOS.

However, the knowledge about the nuclear force is limited, since the dense nuclear matter

such as that in the CCSN cannot be realized on the Earth. Therefore, in order to simulate

the dense and hot celestial phenomena such as CCSNe, several model nuclear EOSs are

proposed. Here, I introduce two often-used EOS models: the Lattimer-Swesty (LS) EOS

(Lattimer & Swesty, 1991) and the Shen (Shen-Toki-Oyamatsu-Sumiyoshi: STOS) EOS

(Shen et al., 1998). Subsequently, an extension of the STOS EOS is introduced.

*1 Although the adiabatic index of the central part of the core is ≃ 2 due to the nuclear force, the

other part of the core is supported by the relativistic particles and photons, and hence the adiabatic

index there is 4/3. As a result, the average adiabatic index is similar to 4/3.
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symbol ns B K Sv

meaning saturation density binding energy incompressibility symmetry energy

value 0.155 fm−3 16.0MeV 375, 220, 180MeV 29.3MeV

Table 2.1. Experimental parameters to determine the model parameters in equation

(2.35).

The LS EOS is based on the liquid-drop model of the nuclei. Consider that the heavy

nuclei exist in the atmosphere of the nucleons, leptons, and photons. Lattimer & Swesty

(1991) estimated the free energy by modeling the bulk and surface energy and so on.

Then the configuration is determined to minimize the free energy, and the thermodynamic

quantities are calculated.

The bulk energy proposed in Lattimer & Swesty (1991) is

Ebulk,LS =
∑
t

τt
2m∗

t

+ {a+ 4bYe(1− Ye)}n2 + cn1+δ − Yen∆, (2.35)

where t is the isospin of the nucleon. The first term is the kinetic energy density, where

m∗
t is the effective mass of the nucleon t; the second term is the two-body potential, which

contributes to the attractive force, where a and b are the model parameters and n is the

number density of the nucleon; the third term is the three- or many-body potential, which

contributes to the repulsive force, where c and δ are the model parameters; the fourth

term is the symmetric energy, where ∆ = mn − mp is the mass difference between the

neutron and proton. In this expression, by using the electrical charge neutrality, the proton

fraction is replaced by Ye. The model parameters a, b, c, and δ are determined to match

several experimental parameters indicated in table 2.1. These experimental parameters

are defined as the expansion coefficients of the bulk energy around the saturation density

and the symmetric matter:

Ebulk ≃ −B − Ye∆+
1

18
K

(
1− n

ns

)2

+ Sv(1− 2Ye)
2 + · · · , (2.36)

again the proton fraction is replaced by Ye.

For the high-density matter, the heavy nuclei suspended in the nucleon atmosphere

forms so-called nuclear pasta, where the nuclei deformed into rods, sheets, bubbles, and

so on. This nuclear pasta phase contributes to the surface and Coulomb energy. In

Lattimer & Swesty (1991), only drop phase (the nuclei is spheres) and bubble phase (the

atmosphere of nucleons is confined in spherical regions). Other phases of the nuclear pasta

are expressed by interpolating these two phases.

On the other hand, the STOS EOS is based on the relativistic mean field (RMF) theory.
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The Lagrangian of the nuclear matter is expressed as

LRMF = ψ̄[iγµ∂µ −M − gσσ − gωγµωµ − gργµτaρaµ]ψ (2.37)

+
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 − 1

3
g2σ

3 − 1

4
g3σ

4 (2.38)

−1

4
WµνW

µν +
1

2
m2
ωωµω

µ +
1

4
c3(ωµω

µ)2 (2.39)

−1

4
RaµνR

aµν +
1

2
m2
ρρ
a
µρ
aµ, (2.40)

Wµν := ∂µων − ∂νωµ, (2.41)

Raµν := ∂µρ
a
ν − ∂νρaµ + gρϵ

abcρbµρ
c
ν , (2.42)

where ψ is the spinor of the nucleon doublet; σ, ω, and ρ are meson fields which mimic

the nuclear force whose spin and isospin is (0, 0), (1, 0), and (1, 1), respectively; W and

R are the field strength of ω and ρ, respectively; gσ, gω, gρ, g2, g3, and c3, are coupling

constants, and M , mσ, mω, and mρ are the masses of each field; γµ and τa are Dirac’s

gamma matrices and the isospin operator, respectively. The coupling constants and the

masses are determined according to the TM1 parameter set (Sugahara & Toki, 1994). In

the RMF theory, the equations of motion are derived from the Lagrangian, and the meson

fields are regarded as the steady and homogeneous classical mean fields. Let us denote

the mean field values with subscript 0. Finally, the bulk energy in the RMF theory is

calculated as

Ebulk,RMF =
∑
t

1

π2

∫ ∞

0

dpp2
√
p2 + (M∗)2ft(p) + gωω0(np + nn) + gρρ0(np − nn)

+(masses and self energies of meson fields), (2.43)

where

ft(p) =
1

1 + exp[(
√
p2 + (M∗)2 − νt)/kBT ]

(2.44)

is the distribution functions of nucleon and M∗ :=M +gσσ0 and νt := µt−gωω0−gρτ3ρ0
are the effective mass of the nucleon and the effective chemical potential of the nucleon

with µt being the chemical potential, respectively.

In addition to the bulk energy, we should consider the surface and the Coulomb energies

when the nuclei exist. In the STOS EOS, the nucleon number density distribution inside

and outside the nucleus is analytically modeled, and the total energy is evaluated by the

Thomas-Fermi approximation, i.e., the local energy density is determined via equation

(2.43) with local number densities of nucleons.

Lattimer & Swesty (1991) provides subroutines which calculate the EOS. They offer

three kinds of EOSs whose incompressibility parameter K is 375, 220, and 180MeV as

shown in table 2.1. The K = 375MeV is referred to as unrealistically high in their paper,

but they consider the value for comparison with older papers. They proposed that K =

220, 180MeV EOSs are more realistic. However, the EOS with K = 220MeV is mainly

used these days since the EOS with K = 180MeV cannot support the most massive, i.e.,

∼ 2M⊙ neutron star discovered by Demorest et al. (2010). Table 2.2 shows the maximum
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EOS LS STOS

K [MeV] 375 220 180 281

The maximum NS mass [M⊙] 2.72 2.04 1.83 2.24

Table 2.2. The maximum gravitational mass of the neutron star supported by each EOS

calculated in O’Connor & Ott (2011).

gravitational mass of the neutron star supported by each EOS, above which the neutron

star collapse to the black hole. Except for unrealistic LS EOS with K = 375MeV, the

table indicates that the STOS EOS is stiffer than the LS EOS.

There are a lot of nuclear species in the sub-nuclear matter phase. However, a single nu-

clear species represents such an ensemble of nuclei in both the LS and STOS EOSs. This

treatment is called the single nuclear approximation. Recently, instead of the single nu-

clear approximation, EOSs based on the multi-nuclear species with the nuclear statistical

equilibrium (NSE) are constructed. In this dissertation, an EOS proposed by Furusawa

et al. (2011, 2013) is considered as an example of such an NSE EOS. This EOS is based

on STOS EOS and called Furusawa-Shen (FS) EOS.

In the context of CCSNe, a soft EOS leads to more compact PNS. The compact PNS

has high temperature and emits high energy neutrinos. Since the neutrino reaction rates

are proportional to the squared energy, the neutrino opacity and the heating rate are

large for high energy neutrinos. Therefore, it is said that the models with soft EOSs are

easier to explode than those with stiff EOSs. The comparison between LS and FS EOSs

is discussed in Nagakura et al. (2018) and will be briefly reviewed in section 3.

2.2 Mechanisms for shock revival

After the core bounce, the launched shock propagates the still-collapsing outer core. If

the shock propagates further to reach the surface of the star, the successful explosion is

observed, and this scenario is called the prompt shock mechanism. However, the prompt

shock mechanism does not work well. When the heavy nuclei pass the shock wave, the

photodissociation of nuclei consumes the energy of the shock (see the discussion in section

2.1.1). The iron nuclei, which is the main component of the iron core, requires 8.8MeV

per a nucleon to dissociate. There is a shock radius in which all the iron nuclei are

dissociated into the nucleons. This radius is called the dissociation radius Rdiss (Janka,

2012). When the shock radius is R, the kinetic energy of the infalling matter at just

upstream of the shock is GMPNSmu/R per a nucleon. The kinetic energy of the infalling

matter is converted into the internal energy at the downstream of the shock, and hence

GMPNSmu/R ≥ 8.8MeV is satisfied for the photodissociation to occur. The dissociation

radius is derived by equating both sides of this inequality. By setting the PNS mass as

1.5M⊙, the dissociation radius is ∼ 240 km. Therefore when the shock is smaller than

this radius, all the nuclei are dissolved into the nucleons and consume the shock energy.

Although the photodissociation of the nuclei is the primary source of the energy loss of
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the shock (Mazurek, 1982), neutrino emission additionally loses the energy. The electron

capture rate of the nucleon inside the shock is larger than that of the nuclei outside of the

shock, and hence many electrons are converted to neutrinos and escape out.

By these processes, the bounce shock stalls finally. This shock is called the stalled shock,

or sometimes the standing accretion shock (SAS). The central question of the CCSNe

mechanism is how to revive the stalled shock. So far, several mechanisms to explain the

shock revival is proposed, and in this dissertation I discuss two of these mechanisms: the

neutrino heating mechanism and the acoustic mechanism.

In the following, I describe these mechanisms. Section 2.2.1 presents the outline of the

neutrino heating mechanism, brief history of numerical simulations for the mechanism,

current status of this research field, and numerical techniques used in chapter 3. Some

useful concept to understand the mechanism is also explained. In section 2.2.2 the propo-

sition of the acoustic mechanism and some criticisms to the mechanism are discussed.

2.2.1 The neutrino heating mechanism

The basic scenario of the neutrino heating mechanism

As discussed in section 2.1.3, only a few portions of the released gravitational energy

(∼ 1053 erg in total) is imparted to the shock, and the left energy is contained in the PNS

as the internal energy. The PNS evolves to be the neutron star by losing its energy and

the electron number, which equals the proton number, via the neutrino emission. The

neutrinos diffuse out from the PNS with the timescale of

tdiff =
3R2

PNS

ℓmfpc
= 4 s

(
RPNS

10 km

)2(
ρ

1014 g cm−3

)( ϵ

10MeV

)2
, (2.45)

where RPNS is the radius of the PNS and assumed to be 10 km. Since the internal energy

of the PNS is lost by the emission of the six species of the neutrinos with this timescale,

the neutrino luminosity of each species is ∼ 1052 erg s−1. Note that this timescale and

the luminosity are consistent with the duration and the flux of the neutrino burst from

SN1987A (Hirata et al., 1987; Bionta et al., 1987).

Since the explosion energy observed is ∼ 1051 erg, if only ∼ 1% of the energy in the

PNS is absorbed by the shock, it is enough for successful shock revival. The mechanism

in which the neutrinos emitted from the PNS heat and revive the shock is called the

neutrino heating mechanism. Since the shock revival occurs after the shock stagnation

in this mechanism, the mechanism is also called the delayed shock mechanism. Wilson

(1985) first argued that his spherically symmetric simulation of the stellar collapse shows

successful shock revival by this mechanism. Since his work, much effort is paid for this

mechanism, and it is revealed that his simulation itself assumes some artificial, unrealistic

processes and may not be robust. However, at the same time, the potential success of this

mechanism is also widely accepted, and the neutrino heating mechanism is the leading

hypothesis for the shock revival these days.

In the neutrino heating mechanism, the most important processes are the neutrino
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absorption/emission by the free nucleon:

νe + n↔ p + e−, (2.46)

ν̄e + p↔ n + e+. (2.47)

The cross sections for the absorption reactions of the electron-type neutrinos and the

electron-type anti-neutrinos are

σνen = σ0

(
1 + 3g2A

4

)(
ϵ+∆

me

)2
√
1− m2

e

(ϵ+∆)2
, (2.48)

σν̄ep = σ0

(
1 + 3g2A

4

)(
ϵ−∆

me

)2
√
1− m2

e

(ϵ−∆)2
Θ(ϵ−∆−me), (2.49)

respectively (Bruenn, 1985). Here, again ∆ = mn − mp is the mass difference between

nucleons, Θ is the Heaviside’s step function, and gA ≃ −1.26 is the axial vector coupling

constant. Since the energy scale of the CCSNe (∼ 10MeV) is much smaller than the

mass of weak bosons (∼ 100GeV), the effective Lagrangian with Fermi-type four-point

interaction is used to derive the formulae. In addition, the weak magnetism and the recoil

of the nucleon are neglected. Among all neutrino reactions, these two kinds of charged

current reactions have the largest cross sections per nucleon. The neutrino absorption via

this reaction mainly heats the shock in the mechanism.

The gain radius in the stalled shock phase

A useful concept in the neutrino heating mechanism is the gain radius. Let us consider

the structure of the CCSNe in order to define the gain radius based on the discussion

in Janka (2001). The temperature of the post-shock region is so high that electrons are

relativistic, thus the adiabatic index of the post-shock gas is 4/3: P = kρ4/3 where k

is some constant. In the stalled shock phase, the structure of the gas is determined by

the hydrostatic equilibrium. Assuming that the gravity is dominated by the point-mass

gravity of the PNS,
dP

dr
= −GMPNSρ

r2
. (2.50)

Since the gas is relativistic, this equation leads to ρ ∝ r−3. On the other hand, the

pressure is dominated by the relativistic particles, i.e., photons and electrons:

P = Pγ + Pe± =
1

3
aT 4 +

7

12
aT 4 =

11

12
aT 4. (2.51)

These expressions for the pressure imply ρ4/3 ∝ T 4. Combining with ρ ∝ r−3, the

temperature structure of the post-shock gas is that T ∝ r−1.

Now consider that the neutrino heating and cooling. The neutrino heating rate is

determined by the local neutrino flux. Since the central PNS is the primary source of the

neutrino emission, the flux is proportional to r−2 similarly to the light from a light-bulb.

On the other hand, the neutrino cooling rate is determined by the local temperature,
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proportional to T 6. This is understood as follows: the cooling rate Q− is calculated as

Q− =

∫
dp3σνen/ν̄epϵ(npfe− + nnfe+), (2.52)

where, np/n and fe± are the number densities of the protons/neutrons and the distribution

function of the electrons/positrons. The cross section is presented in equation (2.48–2.49).

The distribution functions are fe± = 1/(1 + exp((ϵ − µe±)/T )). By performing the mo-

mentum integral, equation (2.52) is revealed to be ∝ T 6. Combining the temperature

structure discussed in the previous paragraph, the neutrino cooling rate is ∝ r−6. There-

fore, the neutrino cooling rate drops faster than the neutrino heating rate as going out,

and there is a point where the neutrino heating and cooling balance. This point is the gain

radius, outside and inside which the neutrino heating and cooling dominate, respectively.

The region where the neutrino heating dominates is called the gain region or the gain

layer, and the region where cooling dominates is the cooling layer.

The critical condition for the shock revival

Another useful concept is the critical curve suggested by Burrows & Goshy (1993), which

provides a basic picture of the neutrino heating mechanism. The (quasi-)hydrostatic

equilibrium is established in the stalled shock phase. Burrows & Goshy (1993) numerically

modeled this phase as the steady-state solution of hydrodynamic equations with the mass

accretion and neutrino heating.

The detailed construction is as follows. Although Burrows & Goshy (1993) are the first

people to construct the steady-state solution to model the stalled shock in the CCSN, some

other groups also utilize the steady-state solution in order to investigate the properties

of the stalled shock (Yamasaki & Yamada, 2007; Ohnishi et al., 2006; Fernández, 2012;

Pejcha & Thompson, 2012). Here, the more modern prescription adopted in chapter 4

is presented. Basic equations are the time-independent hydrodynamic equations under

spherical symmetry with the point-mass gravity:

1

r2
d

dr
(r2ρv) = 0, (2.53)

1

r2
d

dr
(r2ρv2) +

dP

dr
= −ρdΦ

dr
, (2.54)

1

r2
d

dr

{
r2ρv

(
e+

1

2
v2 +

P

ρ

)}
= −ρvdΦ

dr
+Q, (2.55)

1

r2
d

dr
(r2ρvYe) = ρΓ, (2.56)

Φ = −GMPNS

r
, (2.57)

where e, Q, Γ, G, and MPNS are the specific internal energy, net neutrino heating rate

per unit volume, change rate in the electron fraction, gravitational constant, and the PNS

mass, respectively. The outer boundary is set to the sufficiently distant radius from the

PNS center, and the mass accretion rate through the outer boundary is set by hand. The

central PNS is excised, and the region from the PNS surface to the outer boundary is

considered. How to determine the PNS radius is described later.
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The neutrino reactions Q and Γ are treated with so-called light-bulb method, in which

the neutrino heating and cooling rates are calculated locally with given neutrino luminosity

and temperature. Here, I employ the light-bulb method described in Ohnishi et al. (2006).

For simplicity, let me call Γ the reaction rate. Only the reactions of absorption and

emission by free nucleons, νe+n↔ e−+p and ν̄e+p↔ e++n, are considered. Considering

the Pauli blocking of neutrinos, the neutrino heating rate Qi and reaction rate Γi of each

reaction (i = νe for the former reaction and i = ν̄e for the latter reaction) are calculated

as

Qi = −
4π

(2π)3

∫ ∞

0

dϵϵ3{(1− fi(r, ϵ))ji(ϵ)− κi(ϵ)fi(r, ϵ)} (2.58)

and

Γi = s
mu

ρ

4π

(2π)3

∫ ∞

0

dϵϵ2{(1− fi(r, ϵ))ji(ϵ)− κi(ϵ)fi(r, ϵ)}, (2.59)

respectively, where

s =

{
−1 (for νe)

1 (for ν̄e)
. (2.60)

With these heating and reaction rates, Q = Qνe +Qν̄e and Γ = Γνe + Γν̄e . The neutrino

absorptivity κi and emissivity ji are defined by

κνe(ϵ) = σνe,n[1− F−
e (ϵ+∆)]× 2

∫
d3p

(2π)3
Fn(ϵ)[1− Fp(ϵ)], (2.61)

jνe(ϵ) = exp

{
−ϵ− (µp − µn + µe)

T

}
κνe(ϵ), (2.62)

κν̄e(ϵ) = σν̄e,p[1− Fe+(ϵ−∆)]× 2

∫
d3p

(2π)3
Fp(ϵ)[1− Fn(ϵ)], (2.63)

and

jν̄e(ϵ) = exp

{
−ϵ− (µn − µp − µe)

T

}
κν̄e(ϵ), (2.64)

respectively, where Fj and µj are the Fermi-Dirac distribution function and chemical

potential of particle j, respectively, σνe,n and σν̄e,p are the cross sections of reactions

defined in equations (2.48) and (2.49), respectively, ∆ is the mass difference between the

neutron and proton. The Pauli blocking of nucleons, electrons, and protons are considered

contrary to equation (2.52). The distribution function of νe and ν̄e is defined as

fνe/ν̄e =
1

1 + exp(ϵ/Tνe/ν̄e)

1−
√

1− (rνe/ν̄e/r)
2

2
, (2.65)

the black body radiation from the neutrinosphere. The temperatures of neutrinos from

neutrinosphere are set to be Tνe = 4MeV for νe and Tν̄e = 5MeV for ν̄e, respectively.

The neutrinospheric radius rν is determined by the condition Lνe/ν̄e = 7
16πr

2
νe/ν̄e

σT 4
νe/ν̄e

,

and then the radius of the PNS surface is set to rν .

With this preparation, now let me describe the construction of the steady-state solu-

tion. First, the stalled shock radius rs is assumed. Since the upstream matter freely

infalls, its velocity is given by the free-fall velocity at the shock v =
√
GMPNS/rs. With
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the given mass accretion rate, the density is determined through Ṁ = 4πr2s ρv. Other

thermodynamical quantities such as the specific entropy and electron fraction are also

assumed appropriately. These conditions give the upstream values, and downstream val-

ues are determined by the Rankine-Hugoniot condition. Equations (2.53―2.56) is solved

from just downstream of the shock to the PNS surface, i.e., the neutrinospheric radius rν .

In general, this procedure leads inconsistency at the neutrinosphere: the density other

than 1011 g cm−3. Then, this procedure is repeated by changing the stalled shock radius

rs, until the density at the neutrinosphere becomes 1011 g cm−3. Finally, the steady-state

solution is obtained.

What Burrows & Goshy (1993) found is that the steady-state solution cannot be con-

structed for large neutrino luminosity. They interpreted it as the shock revival since the

large neutrino luminosity is the key in the absence of the steady-state. Moreover, for a

given mass accretion rate, there is a critical value of the neutrino luminosity above which

the steady-state solution does not exist. The critical curve is the curve drawn in a pa-

rameter plane spanned by the mass accretion rate and neutrino luminosity and connects

the critical neutrino luminosities of each mass accretion rate. This critical curve separates

the models which succeed in the shock revival or not. Their results provide us a useful

insight that whether the neutrino heating mechanism works or not is determined by the

balance between the ram pressure of the accretion flow, which suppresses the shock, and

the thermal pressure of the post-shock matter heated by the neutrinos, which pushes the

shock.

The diagnostics for the shock revival

There are several diagnostics to predict the shock revival. The timescale ratio is one

of the useful diagnostics for the shock revival and first pointed out by Thompson et al.

(2005). It is defined by the advection timescale of the gain layer divided by the heating

timescale of the gain layer. Although there are some definitions of the advection and

heating timescales, they are essentially defined by

τadv :=
Mgain

Ṁ
(2.66)

and

τheat :=
Egain

Q
, (2.67)

respectively, where Ṁ , Egain, and Q are the mass accretion rate, the total energy includ-

ing the gravitational binding energy, and the heating rate by the neutrino absorption,

respectively. Therefore the timescale ratio is

τadv
τheat

=
MgainQ

EgainṀ
. (2.68)

If this ratio exceeds unity, the fluid element gets enough amount of energy to be unbound

from the gravitational potential well before going through the gain layer completely to

sink into the cooling layer and hence the shock revives.
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Another useful diagnostic is the antesonic condition suggested by Pejcha & Thompson

(2012). The antesonic factor is defined by them as a2/v2esc, where a and vesc are the

sound speed and escape velocity, respectively. From the spherically symmetric isothermal

accretion flow and the steady flow with the stalled shock and neutrino heating, they found

that when the maximum value of the antesonic factor with respect to the radius exceeds

a certain value, the steady-state solution no longer exists. For the flows with the neutrino

heating, the critical value is ∼ 0.2. This is called the antesonic condition.

Numerical simulations in multi-dimensions

The discussion about the gain radius and the critical curve is understood by rather simple

models, but whether this mechanism works successfully or not is only accessible by nu-

merical simulations. However, the numerical simulations of CCSNe are very tough works.

One reason is that the computational cost of the neutrino transfer is very expensive. Since

the neutrinos interact with matter only via the weak force, they are in equilibrium with

matter only deep inside the PNS. For the post-shock region, where the heating by the

neutrinos is crucially important for the mechanism, the matter is neither optically thick

nor thin for the neutrinos. For such semi-transparent neutrinos, we should consider the

behavior of the neutrinos in the six-dimensional (6D) phase space (three in the config-

uration and three in the momentum), that is, we should solve the Boltzmann equation

for the neutrinos. Since solving this 6D equation requires very high computational cost,

even the most sophisticated supercomputers in the world cannot fully treat this problem.

Another reason for the difficulty in the CCSNe simulations is the treatment of gravity.

The PNS is a compact object whose Schwarzschild radius is a few–ten percent of the PNS

radius. Therefore, the general relativistic effects are non-negligible. However, the general

relativistic simulation is complicated, and only a few works consider it.

Although Wilson (1985) discovered successful explosion under spherical symmetry, the

failure of the CCSNe under spherical symmetry is the consensus of recent CCSNe re-

searchers. After Wilson (1985), many supernova modelers tried to reproduce the shock

revival in their simulations. All of them except for Kitaura et al. (2006) failed. Ki-

taura et al. (2006) found a successful shock revival under the spherical symmetry, but the

progenitor of their simulation is the almost light end of massive stars whose fate is the

core-collapse. Therefore, for the main population of the CCSNe progenitors, the explo-

sion fails in 1D. The deterministic simulations under spherical symmetry are performed

by Liebendörfer et al. (2001); Sumiyoshi et al. (2005). Contrary to other works, they

included the Boltzmann neutrino transport and the general relativistic gravity to their

spherically symmetric code. Since these full Boltzmann simulations show the failure of the

shock revival, it is known that the spherically symmetric CCSNe do not explode except

for the light progenitors.

After the consensus that the CCSN does not explode in 1D is obtained, multi-

dimensional CCSNe simulations have been performed. From the early 1990s, a lot of

2D axisymmetric simulations have been reported (Herant et al., 1994; Burrows et al.,

1995; Buras et al., 2003b, 2006; Marek & Janka, 2009; Müller et al., 2012; Bruenn et al.,
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2013; Dolence et al., 2015; Summa et al., 2016; Bruenn et al., 2016; O’Connor & Couch,

2018). Thanks to these simulations, it is realized that the multi-dimensional effect such

as fluid instability is crucial for the neutrino heating mechanism to work. Indeed, some

simulations obtain successful shock revivals with the help of the multi-dimensional effect.

There are two classes of fluid instability: the convection and the standing accretion shock

instability (SASI).

According to the Schwarzschild’s criterion, the convection occurs when the negative

entropy gradient emerges. This is easily achieved in CCSNe: since the accreting matter

flows inward with being heated by neutrinos, the matter at the more inner part is heated

for a longer time and has higher entropy. Thus it may seem natural for the convection to

occur, but sometimes it fails due to the advection. Qualitatively speaking, if the timescale

of the advection, which is defined by the timescale for the matter to flow across the gain

layer, is smaller than the growth timescale of the convection, the convection does not grow

before the matter is swallowed by the cooling layer, where the entropy gradient is positive.

This is investigated by Foglizzo et al. (2006) in the linear regime of the perturbation. In

their paper, the ratio of the advection timescale to the convection timescale is denoted

by χ and called (Foglizzo’s) χ parameter. Quantitatively, when this χ parameter exceeds

three, the convective instability develops.

In addition to the neutrino-driven convection, there exists convection at an earlier stage

of the CCSNe. Soon after the bounce, the bounce shock propagates with losing its energy

as discussed at the beginning of section 2.2. Since the strength of the shock is also

weakened with the propagation, the negative entropy gradient is formed, and the matter

is unstable to the convection. This convection is called the prompt convection because

it immediately follows the core bounce (e.g., Bruenn & Mezzacappa, 1994). Note that

this convection finally settles down due to the absence of the energy source to persist the

instability, but in turn, it serves as a perturbation seed for the neutrino-driven convection

at the later stage.

As for convection, there is another criterion, called Ledoux’s criterion. In this criterion,

not only the entropy gradient but also the composition gradient is also considered. Of

course, this criterion is a generalization of the Schwarzschild’s criterion. In the situations

discussed above, the composition gradient plays a minor role compared to the entropy

gradient. However, inside the PNS, the convection originated from this criterion develops,

called the PNS convection (Keil et al., 1996). The concrete form of the Ledoux’s criterion

is that when (
∂ρ

∂s

)
P,Ye

(
ds

dr

)
+

(
∂ρ

∂Ye

)
P,s

(
dYe
dr

)
> 0, (2.69)

the matter is unstable for the convection. Usually, the derivatives with respect to the

thermodynamic variables are(
∂ρ

∂s

)
P,Ye

< 0,

(
∂ρ

∂Ye

)
P,s

< 0. (2.70)

On the surface of the PNS, the entropy gradient is positive, but the composition gradient

is negative. The positive entropy gradient is formed at the core bounce. The negative
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composition gradient is originated from the neutrino diffusion. Since inside the PNS the

matter is optically thick to neutrinos, the neutrinos escape only from the surface of the

PNS. When the neutrinos escape, the Pauli blocking of the electron capture process is

relaxed, and the electrons are converted to the neutrinos. As a consequence, the electron

fraction at the surface of the PNS is less than that inside the PNS. This forms the negative

composition gradient, and thanks to this, the PNS is convectively unstable. The PNS

convection dredges up the neutrino-rich matter inside the PNS and enhances the neutrino

luminosity. Therefore, the PNS convection has a positive role for the neutrino heating

mechanism.

When the χ parameter is less than three, the convection does not develop. Instead,

another class of fluid instability, SASI, develops. The SASI is the large-scale oscillatory

or rotational deformation of the shock. It is characterized by the oscillation in the ex-

pansion coefficient aℓm(t) of the angle-dependent shock radius rsh(t, θ, ϕ) by the spherical

harmonics Yℓm with ℓ = 1–2: rsh(t, θ, ϕ) =
∑
ℓ,m aℓm(t)Yℓm(θ, ϕ). When all three coeffi-

cients of ℓ = 1 spherical harmonics with different m oscillate in phase, the shock presents

just a back-and-forth motion called the sloshing mode; when the coefficients oscillate out

of phase, the shock shows rotation-like motion called the spiral mode. The SASI itself is

found in the context of the black hole accretion by Foglizzo (2002), and then Blondin et al.

(2003) suggested that the SASI occurs in the context of CCSNe. The mechanism of the

SASI is not fully understood, but the leading hypothesis is the advective-acoustic cycle

(Foglizzo et al., 2007). If the spherical shock is deformed slightly, the radially accreting

shock is refracted, and then the vorticity is produced. This vortex advects to the PNS

surface, where the background density and so on sharply change, and is dissipated there.

At that time, the acoustic wave is launched from there to the shock. When this acoustic

wave reaches the shock, the shock is deformed further.

Whichever fluid instability develops, it eventually grows to the turbulence. At the

first stage of the fluid instability the perturbations are in the linear regime. After that

the perturbations become non-linear and complex turbulence. It is this turbulence that

plays the vital role for the neutrino heating mechanism. There are several ways for the

turbulence to help the mechanism: the turbulent mixing, turbulent pressure, and extension

of the gain layer.

First, the turbulence induces the large-scale mixing. For a similar reason to the for-

mation of the negative entropy gradient which drives the neutrino-driven convection, the

deeper matter is hotter. The turbulent mixing dredges up the hot deep matter to the

region just behind the shock. Therefore the internal energy and hence the pressure just

behind the shock gets higher, which results in further expansion of the shock (Yamasaki

& Yamada, 2006).

Second, the turbulence itself has a kind of pressure called the Reynolds stress (Murphy

& Meakin, 2011; Murphy et al., 2013). The turbulent flow is analyzed by the Reynolds

decomposition. Noting that the turbulence can be regarded as a collection of eddies, the

Reynolds averaging is defined by the averaging of a fluid quantity over the eddy spatial

scale and the eddy turnover timescale. Then, a fluid quantity q with turbulence can be
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decomposed into q = q0 + q′, where q0 = ⟨q⟩ with ⟨·⟩ being the Reynolds average of

the quantity ·. The quantity with the prime symbol is the fluctuation whose Reynolds

average is zero. With this decomposition in mind, the Reynolds stress tensor is defined

by the tensor product of the two velocity fluctuations,
←→
R =

−→
v′ ⊗

−→
v′ . The shock radius

can be estimated from the Rankine-Hugoniot condition and the extrapolations of the

fluid profiles. For the angle averaged shock radius, Murphy et al. (2013) found that

the estimated shock radius without the Reynolds stress is smaller than the actual shock

radius, but by including the Reynolds stress, the estimated shock radius expands and

successfully reproduces the actual shock radius. This result indicates that the turbulent

pressure pushes the shock outward and helps the shock revival.

Finally, as Takiwaki et al. (2012) visually indicated, the lateral motion induced by the

turbulence increases the dwell time in the gain region. Due to this increase, the total

amount of the neutrino heating per fluid element before sinking into the cooling layer

is enhanced, helping the shock revival by the neutrino heating mechanism. From the

viewpoint of the diagnostic, the advantageous effect of this lateral motion is realized in

the timescale ratio discussed above. The dwell time is related to the mass in the gain layer

(gain mass) Mgain, which emerges in the timescale ratio (equation (2.68)). The increase

of the dwell time results in the increase of the gain mass and hence the increase in the

timescale ratio, which leads to the successful explosion.

In addition to the turbulent effect discussed above, multi-dimensionality has another

positive role for the shock revival. Not only the internal energy which the PNS gets at the

core bounce but also the accretion of the matter into the PNS during the stalled shock

phase is the energy source of the neutrinos. If the spherical symmetry is imposed, once the

shock starts to expand, the accretion luminosity, i.e., the energy released with the matter

accretion per unit time becomes zero since no matter accretes to the PNS. Therefore the

neutrino luminosity drops significantly, and the shock is no longer heated. On the other

hand in multi-dimensional flow, both shock expansion to one direction and the matter

accretion from the other direction are simultaneously realized, and hence the expanding

shock can be heated further by the continual neutrino luminosity.

Supernova modelers report not only 2D but also 3D simulations recently (Fryer & War-

ren, 2002; Takiwaki et al., 2012; Hanke et al., 2013; Takiwaki et al., 2014; Tamborra et al.,

2014; Lentz et al., 2015; Melson et al., 2015; Müller, 2015; Kuroda et al., 2016b; Ott et al.,

2017; Vartanyan et al., 2019). Nature is, of course, 3D and there are several qualitative

differences between 2D and 3D. First, the scale of the turbulence is different. In 3D tur-

bulence, energy cascade from large to small scales is realized according to Kolmogorov’s

theory Kolmogorov (1941a,b). On the other hand, inverse energy cascade from small to

large scales occurs instead in 2D (Kraichnan, 1967). As a consequence, small-scale ed-

dies are dominant in 3D whereas large-scale eddies are dominant in 2D. Second, only the

sloshing mode of SASI activity arises in 2D flow due to the presence of symmetry axis,

while both sloshing and spiral modes emerge in 3D. How the difference between 2D and

3D affects the explosion properties, for example, shock evolution and explosion energy is

not concluded yet.



2.2 Mechanisms for shock revival 25

Although some of the multi-dimensional simulations show shock revival, there still are

some puzzles. First, there are simulations whose progenitor model is the same but whether

the shock revives or not is different. Second, even though the model successfully explodes,

the explosion energy is only ∼ 10% of the observed energy (1051 erg). Bruenn et al.

(2013, 2016) suggested that by performing the long-term simulations exceeding 1 s, the

explosion energy increase to reach the observed explosion energy. Since almost all of these

multi-dimensional simulations are truncated at several hundreds of millisecond, they all

may reproduce enough energy if the simulation time is extended. On the other hand,

recently Suwa et al. (2017) suggested that not enough amount of 56Ni, which illuminate

the supernova itself by radioactive decay, for the observed photon luminosity is produced

with the multi-dimensional CCSNe simulations. Therefore it is now considered that the

current CCSNe simulations lack other important physical processes. It is often called the

missing physics.

Current status and updates in simulations

One possible missing physics is the stellar rotation. Observations imply that massive stars

are rotating (Maeder & Meynet, 2012, for a review). Many NSs are observed as pulsars.

The origin of pulsar spin is mainly the rotation of progenitor core. Thus it is natural to

consider the collapse of rotating stellar core. Although progenitor models of rotating stars

are proposed, a common way to consider rotating CCSNe is to impose rotational velocity

artificially on non-rotating progenitor models at the onset of collapse. The rotational law

is taken from Eriguchi & Müller (1984); Zwerger & Mueller (1997); Ott et al. (2004): it

is a cylindrical rotation profile

Ω =
Ω0

1 + (r sin θ/r0)2
, (2.71)

where Ω0 is the rotational velocity at center and r0 is the radius of the rigidly rotating

core, and r and θ are the coordinates of spherical coordinates. On the other hand, some

supernova modelers employ shellular profile

Ω =
Ω0

1 + (r/r0)2
, (2.72)

which is resulted from turbulence. The size of the rigid core r0 can be freely chosen but is

commonly set to r0 = 1000 km. The central rotational velocity Ω0 is also free to choose,

but according to Heger et al. (2000), it is O(1) rad s−1 at most. In addition, if the stellar

magnetic field is considered (Heger et al., 2005), the rotational velocity is much smaller

(O(10−1–10−2) rad s−1).

Stellar rotation affects the dynamics of CCSN in both positive and negative ways. Ram

pressure along the equatorial plane is reduced due to centrifugal force, and hence the

critical neutrino luminosity is also reduced (Yamasaki & Yamada, 2005; Iwakami et al.,

2014). Again due to centrifugal force, the released gravitational energy is reduced, and the

explosion becomes difficult (Yamada & Sato, 1994). PNS is extended due to centrifugal

force. The neutrino energy is hence reduced, and the heating rate is reduced (Summa
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reaction name reaction formula

electron capture on nucleon νe + n↔ e− + p

anti-electron capture on nucleon ν̄e + p↔ e+ + n

electron capture on nuclei νe +A↔ e− +A′

nucleon scattering ν +N ↔ ν +N

coherent scattering ν +A↔ ν +A

electron scattering ν + e− ↔ ν + e−

pair annihilation ν + ν̄ ↔ e− + e+

Table 2.3. The standard set in Bruenn (1985). Symbols A, A′, N , ν, and ν̄ are a nucleus,

another kind of nucleus, nucleon, some type of neutrinos, and some type of

anti-neutrinos, respectively. For the three scattering reactions, the symbol ν

includes both neutrinos and anti-neutrinos, while for the pair annihilation ν

and ν̄ only represent neutrinos and anti-neutrinos, respectively.

et al., 2018). Centrifugal force makes PNS oblate, and the temperature on the equator

is lower than that of the north/south-poles. This results in anisotropic neutrino heating:

neutrino heating rate is lower on the equatorial plane because of lower temperature on

the equator of PNS and smaller solid angle of oblate PNS (Kotake et al., 2003). This

anisotropic heating leads to a jet-like explosion. On the other hand, Walder et al. (2005)

suggested that the anisotropy of neutrino heating is less prominent since the collection

of neutrinos originating from various points reduces anisotropy. In 3D, a bar-like mode

instability called ”low-T/|W | instability” (Shibata et al., 2002, 2003) develops to help

neutrino heating and transfer the energy from deep inside (Takiwaki et al., 2016). Since

centrifugal force both enhances and suppresses shock revival, how rotation affects CCSN

should be investigated further.

Another possible missing physics is the progenitor asphericity. The standard assumption

of the stellar evolution model is that the star is quasi-static: the hydrostatic equilibrium

is achieved at a given time. The convection sometimes occurs due to the large energy

production by the nuclear reactions in the stellar evolution. Since the convection is a dy-

namical process, hydrostatic equilibrium is broken, but by exploiting the so-called mixing

length theory (MLT), the dynamical transfer of the matter is treated in the framework of

the quasi-static evolution. However, for the last stage of the stellar evolution, the violent

convection emerges, and the MLT does not work well. Such violent convection imprints

an aspherical fluctuation on the stellar core (Arnett & Meakin, 2011). If the core with

such fluctuation collapses, the fluctuation works as the perturbation seed for the turbu-

lence (Couch & Ott, 2015; Müller & Janka, 2015). In short, by considering the violent

convection at the last phase of the stellar evolution, the turbulence in the shock may be

enhanced.

Microphysics like neutrino reactions is also one of possible missing physics. Modifi-

cations to the neutrino reaction rates may play crucial roles for the neutrino heating

mechanism. So far, the so-called standard set of neutrino reactions are mainly consid-
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ered. The standard set is the neutrino reaction sets considered in Bruenn (1985). The

list of reactions is presented in table 2.3. In addition, several reaction processes are con-

sidered; the nucleon-nucleon bremsstrahlung (Friman & Maxwell, 1979; Maxwell, 1987):

N +N ↔ N +N +ν+ ν̄; the neutrino pair-annihilation into another neutrino pair (Buras

et al., 2003a): νe + ν̄e ↔ νµ/τ + ¯νµ/τ ; and the neutrino scattering (Buras et al., 2003a):

νe(ν̄e) + νµ/τ ↔ νe(ν̄e) + νµ/τ .

Besides, the reaction rates in Bruenn (1985) utilize some approximations. The elec-

tron capture rate on a nucleus is only considered for limited kinds of nuclei. Langanke

& Mart́ınez-Pinedo (2000); Langanke et al. (2003); Juodagalvis et al. (2010) updated the

capture rate on a broader range of nuclei. For the electron/anti-electron capture on the

nucleon, the nucleon is assumed to be heavy enough, and its recoil is neglected. Horowitz

(2002) included the recoil into the reaction rate. They also incorporated the weak mag-

netism contribution to the reaction. Finally, Bruenn (1985) only considered the reaction

of the free neutrinos and the free particles, while in the real situations the nucleons are

interacting with other particles. Such in-medium effects are also considered partially so

far: Mart́ınez-Pinedo et al. (2012) included the mean field potential of the nucleons, which

results in the enhancement in the νe absorption and the suppression in the ν̄e absorption;

Fischer et al. (2016) suggested that the axial coupling constant is changed due to interac-

tion with other particles; Horowitz et al. (2016) considered the many-body correction with

which the spin-flip reaction is suppressed due to the formation of spin-triplet of nucleons.

The reactions discussed above does not distinguish the reactions of the µ-type neutrinos

and the τ -type neutrinos because the temperature in CCSNe is thought to be too low

to produce the µ particles. However, the high energy tail of the thermal distributions

may produce the µ particles as discussed in Bollig et al. (2017). By considering the µ

particle production, the EOS effectively gets softer since the thermal energy is consumed

by the particle production. When the µ particle production is considered, the reaction

rates around µ-type neutrinos should be individually considered.

These modifications to the neutrino reaction rates are minor. For example, Kotake

et al. (2018) considered almost all of the modifications discussed above (not all and a

few reactions which are not discussed above is also included) and performed spherically

symmetric simulations. It results in the enhancement of the heating rate by several tens

of percent. The enhancement may change the failed model into the successful model if

the failed model is about to explode, e.g., according to the timescale ratio. However, this

enhancement may not resolve the puzzle around the 56Ni.

The general relativistic (GR) gravity is another important physics for the CCSNe. The

numerical simulation of the spacetime metric is called the numerical relativity. The nu-

merical relativity is developed and widely utilized (Shibata & Nakamura, 1995; Baumgarte

& Shapiro, 1999), producing amazing results especially of the binary compact star merger

(Shibata & Taniguchi, 2006, for example). The numerical relativity widely used is based

on the 3 + 1 decomposition of the spacetime, in which the spacetime is described as the

collection of 3D hypersurface with different times. The 3+1 decomposed metric is written
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as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (2.73)

where α, βi, and γij are the lapse function, the shift vector, and the spatial metric,

respectively. The lapse function describes the interval of adjacent hypersurfaces. The

shift vector indicates the drift of spatial coordinates. A timelike unit normal vector nα

perpendicular to a hypersurface is written as

nα =

(
1

α
,
βi

α

)
. (2.74)

The spatial metric measures the distance on a hypersurface. In numerical relativity, these

quantities are evolved with given gauge conditions.

Although the fully GR simulation is desirable for the CCSNe simulations, the difficulty

in the numerical relativity technique prevents the supernova modelers from exploiting

them. In addition, roughly speaking, the CCSNe are spherical systems, and hence the

spherical coordinate is suitable for the CCSNe simulations. However, the spherical coordi-

nate has the coordinate singularities at the center and along the polar axis. These singular-

ities are harmful to the numerical relativity. In order to avoid them, only the Japan-Basel

group developed a fully GR CCSNe code in the Cartesian coordinates (Kuroda et al.,

2012, 2014, 2016a,b).

Recently Baumgarte et al. (2013) suggested a scheme of numerical relativity in the

spherical coordinates. The coordinate singularity arises from the difference between the

coordinate bases and local orthonormal bases. Consider a spherical coordinate in a flat

spacetime. Then, the coordinate bases are ∂r, ∂θ, and ∂ϕ and the orthonormal bases

are er = ∂r, eθ = ∂θ/r, and eϕ = ∂ϕ/r sin θ. Then if a tensor component of a physical

quantity is regular with respect to the orthonormal basis, the component with respect

to the coordinate basis is not necessarily regular. This is the origin of the coordinate

singularity. In Baumgarte et al. (2013), dependent variables to be solved is expressed

with the orthonormal basis. With this treatment, the singular factors 1/r and 1/r sin θ

are explicitly present in equations, and they are analytically treated. Thanks to this

analytical differentiation, Singular behavior is suppressed, and numerical relativity in

spherical coordinates successfully works. Although this scheme is developing gradually

(Montero et al., 2014; Baumgarte et al., 2015; Ruchlin et al., 2018; Mewes et al., 2018),

CCSN simulations with this scheme have not been performed yet.

Instead of the full GR approach, several approximate methods are suggested. The sim-

plest and widely-used one is to replace the monopole component of the Newtonian gravity

by the solution of the Tolman-Oppenheimer-Volkoff equation (Case A in Marek et al.,

2006). More complicated but realistic one is the conformal flat approximation (Wilson

et al., 1996; Isenberg, 2008), where the spatial part of the metric tensor is proportional to

the flat space metric. The biquadratic root of the proportionality coefficient is called the

conformal factor. The application to the CCSNe simulation is developed by Dimmelmeier

et al. (2005); Müller et al. (2010).

One of the reasons why simulation results are different from group to group is possibly

they use different approximation method in their codes. The most significant difference
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is in the neutrino transport. Neutrinos rarely interact with matter and hence not in the

equilibrium state. It is required to solve neutrino transport with the Boltzmann equation.

The Boltzmann equation for neutrinos written in the covariant form in 4D spacetime is

(Lindquist, 1966)

dxα

dτ

∂f

∂xα

∣∣∣∣∣
pi

+
dpi

dτ

∂f

∂pi

∣∣∣∣∣
xα

= (−pαûα)Srad, (2.75)

where xα = (t, xi), pi, τ , f , ûα, and Srad are coordinates in the spacetime, those in the

momentum space, affine parameter of neutrino, distribution function of neutrinos, a time-

like vector (e.g., the four-velocity of matter or normal vector to the spatial hypersurface of

3+1 decomposed spacetime), and collision term. A numerical scheme in which the Boltz-

mann equation is directly discretized is called the SN scheme. This seven-dimensional

equation requires a significant amount of computational cost. Due to limited comput-

ing resources, supernova modelers approximate the Boltzmann equation. There are two

classes of approximation: one is related to the momentum space distribution, and the

other is related to the configuration space distribution.

For the approximation of the momentum space distribution, a common way is to solve

the moment equations. By taking the angular moments of the Boltzmann equation,

the equations for the energy density, energy flux, and stress tensor (Eddington tensor),

and so on are obtained. By assuming some closure relations, these moment equations

are solved. A scheme to solve only first order moment equation with closure relation

between the energy density and flux is called flux-limited diffusion scheme (e.g., Burrows

et al., 2006, 2007b). A scheme to evolve both the energy density and flux by solving

up to first order moment equations with analytic closure relation among the Eddington

tensor and energy density and flux is often called M1-closure scheme (e.g., Kuroda et al.,

2012; Just et al., 2015). Some researchers use a simplified Boltzmann equation to obtain

the numerical closure relation for the Eddington factor. This scheme is called variable

Eddington factor scheme (e.g., Rampp & Janka, 2002). Another way to approximate

the Boltzmann equation is isotropic diffusion source approximation (IDSA; Liebendörfer

et al., 2009). In this approximation, the distribution function is decomposed into the free-

streaming part and matter-trapped part. They are evolved individually, and exchange of

neutrinos between two parts are described by diffusion source term.

Since I pay particular attention to the M1-closure method in chapter 3, I describe the

M1-closure method in detail here. The M1-closure method is first proposed by Levermore

(1984), and he employs two assumptions. The first assumption is that the neutrino dis-

tributions are axisymmetric with respect to the flux direction. The second assumption is

related to the Eddington factor. The Eddington factor is defined as the largest eigenvalue

of the second angular moment of the distribution function called the Eddington tensor,

but it is assumed to be given by an approximate formula in the M1-closure method. Al-

though approximation formulae with these assumptions are derived in Levermore (1984),

the modern prescription presented in Shibata et al. (2011) is reviewed in the following.

The latter is represented in the 3 + 1 decomposed spacetime discussed above. Especially,

how the Eddington tensor is determined is the focus of the following discussion.
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The Eddington tensor is defined by

kij(ϵ) :=
P ij(ϵ)

E(ϵ)
, (2.76)

where

P ij(ϵ) := γiσγ
j
ρM

σρ(ϵ), (2.77)

E(ϵ) := nσnρM
σρ(ϵ). (2.78)

Here, γiσ is the projection tensor onto the spatial hypersurface in the 3 + 1 decomposed

spacetime, and Mσρ(ϵ) is the second angular moment of the distribution function,

Mσρ(ϵ) :=

∫
fδ (ϵ− ϵ′) p′σp′ρϵ′dϵ′dΩ′

p. (2.79)

In this definition, Ω′
p is the solid angle in the momentum space measured in the fluid-rest

frame and ϵ′dϵ′dΩ′
p = dV ′

p is the volume element in the momentum space. Note that the

neutrino energy ϵ is measured in the fluid-rest frame.

On the other hand, the Eddington tensor in the M1-closure method

kijM1(ϵ) :=
P ijM1(ϵ)

E(ϵ)
(2.80)

is calculated by using the formula

P ijM1 :=
3ζ(ϵ)− 1

2
P ijthin(ϵ) +

3(1− ζ(ϵ))
2

P ijthick(ϵ). (2.81)

Here, ζ(ϵ) is the Eddington factor and approximated by Levermore (1984) as

ζ(ϵ) =
3 + 4F̄ (ϵ)2

5 + 2
√

4− 3F̄ (ϵ)2
, (2.82)

where F̄ (ϵ) is the flux factor. The flux factor is defined in the fluid-rest frame by

F̄ (ϵ) =

√
hσρHσ(ϵ)Hρ(ϵ)

J(ϵ)2
, (2.83)

where

hσρ := gσρ + uσuρ, (2.84)

J(ϵ) := uσuρM
σρ(ϵ), (2.85)

and

Hσ(ϵ) := −hσρuλMσλ(ϵ) (2.86)

are the spatial metric projected onto the fluid-rest frame, the energy density in the fluid-

rest frame, and the energy flux in the fluid rest frame, respectively, with uσ being the

4-velocity of the matter. In the M1-closure method, the optically thin limit value P ijthin
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and thick limit P ijthick are smoothly connected as in equation (2.81). The thin and thick

limits are defined by

P ijthin(ϵ) = E(ϵ)
F i(ϵ)F j(ϵ)

F (ϵ)2
, (2.87)

and

P ijthick(ϵ) = J(ϵ)
γij + 4V iV j

3
+Hi(ϵ)V j + V iHj(ϵ), (2.88)

respectively, where

F i(ϵ) := −γiσnρMσρ(ϵ), (2.89)

and V i := ui/ut are the energy flux in the laboratory frame and the 3D vector of the

fluid velocity, respectively. Note that in equation (2.88), some correction terms whose

order with respect to the local mean free path is higher than zero-th are neglected. In

this dissertation, the kij and kijM1 are called “the Boltzmann-Eddington tensor” and “the

M1-Eddington tensor”, respectively.

In the above discussion, the approximation of the momentum space distribution is

presented, while there is another class of approximation related to the configuration space

distribution. The ray-by-ray(-plus) (RbR(+)) approximation (Buras et al., 2006) is often

used in multi-dimensional simulations. In RbR approximation, neutrino transport under

spherical symmetry is solved along each radial ray (Rampp & Janka, 2002). In RbR+,

the advection of neutrinos due to the neutrino trapping phenomena at high densities is

also incorporated (Buras et al., 2006).

Although these approximations are widely used, the accuracy of them is not well under-

stood. The problem in explosion energy may result from inaccuracy of the approximation.

To estimate the accuracy is hence one of the essential issues in CCSN explosion mecha-

nism. In order to assess the accuracy, some groups start a collaboration to compare their

numerical codes (O’Connor et al., 2018; Cabezón et al., 2018; Pan et al., 2019; Just et al.,

2018; Glas et al., 2018). They compared the results of different neutrino transport scheme,

the effect of RbR+, in 1D, 2D, and 3D. Although the differences among the codes are

presented, the accuracy of each code is not yet obtained. A reference code which utilizes

the SN method without RbR+ in multi-dimension is required. Ott et al. (2008) devel-

oped a code with the SN method. They solved, however, the Boltzmann equation only

outside the PNS and applied the flux-limited diffusion scheme inside the PNS, and it is

not satisfactory.

First principle simulations of CCSN

So far, recent progress in CCSN code is discussed. It is summarized in figure 2.1. By

simulations with the full-Boltzmann neutrino transport (the SN scheme) and full GR

gravity, it is concluded that the shock revival fails under spherical symmetry (the upper left

panel of figure 2.1). Next, supernova modelers moved on 2D, axisymmetric simulations.

At that time some groups use Newtonian gravity, and some use approximate GR gravity

such as Case A in Marek & Janka (2009) and conformal flat approximation (the upper

right panel). After that, supernova modelers moved on 3D simulations without spatial
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Figure 2.1. Recent progress in CCSN simulations. Each arrow shows how sophisticated

physical processes are in CCSN simulations. Processes whose improvement

is nontrivial are not shown here. The upper left panel indicates the most

sophisticated 1D simulations. The upper right and middle left panels show

recent 2D and 3D simulations, respectively. The middle right panel displays

the first principle simulation, which is as sophisticated as possible. The lower

left panel shows the first principle simulation in 2D and lower right indicates

the current status of such 2D simulation.
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symmetry. In this stage treatments of gravity ranges from Newtonian to full GR (the

middle left panel). All of 2D and 3D simulations employ approximate neutrino transport.

Ultimately, a code with sophisticated microphysics, general relativistic gravity, and the

SN method neutrino transport for 3D simulations is ideal (the middle right panel). In

this dissertation let us call it the first principle code. Recent computational resources

allows the first principle simulation in 2D to run, and it has been developed (the lower

left panel).

Updating microphysics requires a deep understanding of nuclear force, and hence it is

now underway. Currently, the best way is to collect the simulation results with various

models of microphysics and to consider that the common results are robust. Contrary

to microphysics, how to improve gravity and neutrino transport is clear since the basic

equations are already well known. Indeed, the development of the first principle code has

started with improving neutrino transport. Since the developing version of this code is

used in this dissertation (the lower right panel), I review the code in detail.

First Sumiyoshi & Yamada (2012) developed a solver of multi-dimensional Boltzmann

equation. They adopted spherical coordinates in order to impose spatial symmetry eas-

ily. They considered the flat spacetime with the fixed origin, and hence the Boltzmann

equation (2.91) takes the form

∂f

∂t
+

1

r2
∂

∂r
(r2 cos θνf) +

1

r sin θ

∂

∂θ
(sin θ sin θν cosϕνf) +

1

r sin θ

∂

∂ϕ
(sin θν sinϕνf)

− 1

r sin θν

∂

∂θν
(sin2 θνf)−

∂

∂ϕν

(
cos θ

r sin θ
sin θν sinϕνf

)
= Srad, (2.90)

where θν and ϕν are the angles of the flight direction of the neutrino, in the labora-

tory frame. If axisymmetry is imposed, the fourth term in equation (2.90) automatically

vanishes. If spherical symmetry is imposed, the third and sixth terms in the equation

cancel. In order to guarantee this cancellation, the Boltzmann equation is carefully dis-

cretized. The differential terms are discretized by interpolation of the central and upwind

differencing according to the local mean free path of neutrinos. Integration in time is

performed implicitly, by using the Bi-CGSTAB method (Saad, 2003) with the point-

Jacobi-preconditioner is used for the matrix inversion.

Second Nagakura et al. (2014) included special relativistic (SR) effect. This is indis-

pensable to treat the neutrino trapping correctly. Consider neutrinos trapped by moving

matter. In the fluid-rest frame, the neutrinos interact with matter frequently and are

isotropically distributed. On the other hand in the laboratory frame, the neutrinos co-

move with matter and the distribution is not isotropic but peaked into the direction of

matter motion. This is realized by relativistic aberration or beaming effect. The CCSN

codes except for this code included the SR effect up to only first order in fluid velocity.

This is because they solve the neutrino transport in the fluid-rest frame in order to sim-

plify the collision terms. Since the expression of the advection terms (the left-hand side of

equation (2.90)) in the fluid-rest frame is too complicated to implement, they truncated

the velocity dependent terms higher than the first-order. Nagakura et al. (2014) included

the effect up to full order by exploiting two-grid approach. They used a uniform grid in
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the laboratory frame to evaluate the advection terms, whereas an essentially uniform grid

in the fluid-rest frame to evaluate the collision terms.

Finally, Nagakura et al. (2017) implemented the moving-mesh technique. It is observed

that some NSs have large proper motions. When the CCSNe explode anisotropically, NSs

left should be kicked out due to momentum conservation. This is called the NS kick (e.g.,

Bray & Eldridge, 2016). Since the shock revival itself occurs anisotropically, the proper

motion arises from the PNS phase. Since it is numerically difficult to treat PNS whose

center deviates from the origin of the spherical coordinates, PNS center is artificially fixed

on the coordinate center in almost all simulations (Marek & Janka, 2009). In the code

reported in Nagakura et al. (2017), however, such artificial fixing is avoided. Instead, not

an inertial frame but an acceleration frame is utilized to track the proper motion of PNS.

Inertial force terms are added to hydrodynamics equations. The Boltzmann equation is,

on the other hand, expressed in general spacetime and then drifting coordinates in the

flat spacetime is employed.

The Boltzmann equation in general spacetime is equation (2.75). For numerical simu-

lations, the conservative form of the equation is appropriate and it in 3 + 1 decomposed

spacetime is proposed by Shibata et al. (2014):

1√
−g

∂

∂xα

∣∣∣∣∣
qi

[(
eα(0) +

3∑
i=1

ℓ(i)e
α
i

)
√
−gf

]
− 1

ϵ2
∂

∂ϵ
(ϵ3fω(0))

+
1

sin θν

∂

∂θν
(sin θνfω(θν)) +

1

sin2 θν

∂

∂ϕν
(fω(ϕν)) = Srad, (2.91)

where xα, ϵ, θν and ϕν are the coordinates of the spacetime and momentum space, respec-

tively, and g, eα(µ) (µ = 0, 1, 2, 3), and ℓ(i) are the determinant of the spacetime metric,

a set of the tetrad bases for a local orthonormal frame, and directional cosines for the

neutrino-propagation-direction with respect to eα(i), respectively. The directional cosines

are expressed as ℓ(1) = cos θν , ℓ(2) = sin θν cosϕν , and ℓ(3) = sin θν sinϕν . By using the

tetrad bases, the neutrino energy is expressed as ϵ := −pαeα(0) with the four-momentum

of the neutrino pα. There is some degree of freedom to choose the tetrad bases, and the

normal vector of the spatial hypersurface nα (see equation (2.74)) is chosen as eα(0) in the

code. Other spatial tetrad bases are set to be

eα(1) = γ−1/2
rr ∂r, (2.92)

eα(2) = −
γrθ√

γrr(γrrγθθ − γ2rθ)
∂r +

√
γrr

γrrγθθ − γ2rθ
∂θ, (2.93)

eα(3) =
γrϕ√
γϕϕ

∂r +
γθϕ√
γϕϕ

∂θ +
√
γϕϕ∂ϕ, (2.94)

where γij is the spatial metric in the 3 + 1 decomposition of the spacetime (see equation

(2.73)). The polar coordinate (r, θ, ϕ) is adopted for space. The coordinate bases ∂r, ∂θ,

and ∂ϕ are expressed as usual. In this code, neutrinos are assumed to be massless. The
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factors ω(0), ω(θν), and ω(ϕν) are given as

ω(0) := ϵ−2pαpβ∇αeβ(0), (2.95)

ω(θν) :=

3∑
i=1

ωi
∂ℓ(i)

∂θν
, (2.96)

ω(ϕν) :=

3∑
i=2

ωi
∂ℓ(i)

∂ϕν
, (2.97)

with

ωi := ϵ−2pαpβ∇αeβ(i). (2.98)

If the coordinates are spherical coordinates in an inertial frame with flat spacetime,

equation (2.90) is recovered. Although this general relativistic expression for the

Boltzmann equation is used, the spatial hypersurface is assumed to be flat, i.e.,

γij = diag(1, r2, r2 sin2 θ). The lapse function α is set to be unity, and the shift vector

coincides with the velocity of the PNS center. These gauge conditions affect the equation

through eα(0) = nα. This is referred to as the moving-mesh. Note that in this condition
√
−g = r2 sin θ.

In order to utilize the special discretization for the possible symmetry, equation (2.91)

is cast into the form

V

{
∂

∂t
(Ktf) +

1

r2
∂

∂r
(Krr2 cos θνf) +

1

r sin θ

∂

∂θ
(Kθ sin θν cosϕν sin θf)

+
1

r sin θ

∂

∂ϕ
(Kϕ sin θν sinϕνf)

}
− 1

r sin θν

∂

∂θν
(sin2 θνf)−

∂

∂ϕν

(
cos θ

r sin θ
sin θν sinϕνf

)
− 1

ϵ2
∂

∂ϵ
(ϵ3fω(0)) +

1

sin θν

∂

∂θν
(sin θνf∆ω(θν)) +

1

sin2 θν

∂

∂ϕν
(f∆ω(ϕν)) = Srad. (2.99)

Several GR corrections are presented in the equation:

V :=
r2 sin θ√
−g

, (2.100)

Kt :=

√
−g

r2 sin θ

(
et(0) +

3∑
i=1

ℓie
t
(i)

)
, (2.101)

Kr :=

√
−g

r2 sin θ cos θν

(
er(0) +

3∑
i=1

ℓie
r
(i)

)
, (2.102)

Kθ :=

√
−g

r sin θ sin θν cosϕν

(
eθ(0) +

3∑
i=1

ℓie
θ
(i)

)
, (2.103)

Kϕ :=

√
−g

r sin θν sinϕν

(
eϕ(0) +

3∑
i=1

ℓie
ϕ
(i)

)
, (2.104)

∆ω(θν) := ω(θν) +
sin θν
r

, (2.105)

∆ω(ϕν) := ω(ϕν) +
cos θ

r sin θ
sin3 θν sinϕν . (2.106)



36 Chapter 2 Explosion Mechanisms of Core-Collapse Supernovae

Note that V , Kα (α = 0, 1, 2, 3) are unity and ∆ω(ψ) (ψ = θν , ϕν) are zero in the flat

spacetime with fixed spherical coordinate.

Implementing general relativistic gravity is currently underway. Instead, Newtonian

limit hydrodynamics and gravity in the spherical coordinates are employed in the code.

For the hydrodynamics, the basic equations are

∂t(
√
−gρ) + ∂i(

√
−gρvi) = 0, (2.107)

∂t(
√
−gρvr) + ∂i

(√
−g(ρvrvi + pδir)

)
=

√
−gρ

(
−∂rΦ+ r(vθ)2 + r sin2 θ(vϕ)2 +

2p

rρ

)
−
√
−gGr +

√
−gρβ̇r, (2.108)

∂t(
√
−gρvθ) + ∂i

(√
−g(ρvθvi + pδiθ)

)
=

√
−gρ

(
−r2∂θΦ+ sin θ cos θ(vϕ)2 +

p cos θ

ρ sin θ

)
−
√
−gGθ +

√
−gρβ̇θ, (2.109)

∂t(
√
−gρvϕ) + ∂i

(√
−g(ρvϕvi + pδiϕ)

)
= −
√
−gρ∂ϕΦ−

√
−gGϕ +

√
−gρβ̇ϕ, (2.110)

∂t

(√
−g(e+ 1

2
ρv2)

)
+∂i

(√
−g(e+ p+

1

2
ρv2)vi

)
= −
√
−gρvj∂jΦ−

√
−gGt+

√
−gρvj β̇j ,

(2.111)

and

∂t(
√
−gρYe) + ∂i(

√
−gρYevi) = −

√
−g(Γνe − Γν̄e). (2.112)

Here, ρ, vi, p, e, Ye, Φ, and βi are the density, the velocity, the pressure, the internal

energy, the electron fraction, the gravitational potential, and the shift vector, respectively.

The dotted symbols represent the time derivatives of non-dotted quantities. The energy-

momentum transfer between neutrinos and the matter is defined by

Gµ =

∫
pµνSraddVp, (2.113)

where dVp is the invariant volume element in the momentum space. The neutrino reaction

rate for neutrino species i (i = νe for electron-type neutrinos and i = ν̄e for anti-electron-

type neutrinos) is

Γi = mu

∫
νSrad,idVp, (2.114)

with mu and Srad,i being the atomic mass unit and the collision term for neutrino species

i, respectively. The numerical flux is calculated by the Harten-Lax-van Leer scheme

(Harten et al., 1983) with piecewise-parabolic interpolation (Colella & Woodward, 1984),

and the time integration is performed by the second-order Runge-Kutta method. For the

gravitational potential Φ, the Poisson equation

∆Φ = 4πρ (2.115)
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is solved by the MICCG method (Nagakura et al., 2011).*2

This code is one of the most sophisticated simulation code in the field. In section 3, I

present the simulation result by using this code. The validation of the code is summarized

in Appendix A.

2.2.2 The acoustic mechanism

In the neutrino heating mechanism, the energy stored in the PNS is transferred to the

shock by the neutrinos. It is possible that another energy transfer process is responsible

to the shock revival. By Burrows et al. (2006, 2007a,b), the shock revival whose energy

transfer is mediated by the acoustic waves is discovered. This explosion mechanism is

called the acoustic mechanism.

The details of the acoustic mechanism are as follows: until the stalled shock phase, the

scenario is the same as the neutrino heating mechanism discussed in section 2.2.1. At the

stalled shock phase, the neutrino luminosity is not large enough for the shock to revive,

and hence the matter accretion and the turbulence continues. In their simulations, the

class of the developed fluid instability is the SASI. Then the turbulence beats the central

PNS. As a consequence, the PNS starts to oscillate with ℓ = 1− 2 mode. The oscillation

mode is the so-called g-mode, whose restoring force is the buoyancy. In Burrows et al.

(2006, 2007a,b), the oscillation energy is estimated as 1050–1051 erg and the period of the

most pronounced mode is ∼ 3ms. Then, the oscillating PNS starts to emit the acoustic

waves outward. Since the power of acoustic waves increases while the neutrino luminosity

decreases, the acoustic power dominates the heating rate after ∼ 400ms after the core

bounce. Finally, the shock starts to expand at around 500ms after the core bounce. An

important feature is that the shock expansion is unipolar, i.e., the shock only expands in

the northern direction. In the southern direction, the matter still accretes and beats the

PNS, feeding the energy for the oscillation.

Burrows et al. (2006, 2007a,b) suggested that the acoustic mechanism is a self-regulating

mechanism for the following reason. The matter accretion continues until the shock revival

to any direction is achieved. It is probable that the ominidirectional shock expansion is

achieved when enough gravitational energy is released by the accretion flow. Therefore

soon after enough energy is released, the energy supply by the accretion is terminated and

the explosion energy tends to be uniform independent of the progenitor. This is consistent

with the fact that the explosion energies of CCSNe are very similar, ∼ 1051 erg. Another

merit of the acoustic mechanism is that the acoustic waves do not escape from the shock,

and thus whole energy released by the accretion is eventually used for the shock revival. It

means that the efficiency of the energy transfer is much higher compared to the neutrino

heating mechanism.

Unfortunately, only Burrows et al. (2006, 2007a,b) found the acoustic mechanism ex-

plosion and other groups do not reproduce it (Marek & Janka, 2009, for example). It

*2 In the real calculation, an inverse matrix of the discretized Laplacian is first generated by the

MICCG method, and it is directly multiplied to the right-hand side during the time evolution.
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may be because the acoustic mechanism works only after the neutrino heating mecha-

nism fails. Therefore, it requires a long time simulation exceeding ∼ 1 s after the core

bounce to reproduce the explosion by the acoustic mechanism. Since other groups obtain

the shock revival by the neutrino heating mechanism or terminate the simulations before

the acoustic mechanism works, the explosion by the acoustic mechanism has not been

reproduced.

Since the acoustic mechanism is difficult to reproduce in self-consistent simulations as

discussed above, other approaches than the fully self-consistent CCSNe simulations are

desirable. So far for such a phenomenological approach, whether the PNS oscillation

can store and emit such large energy or not is questioned. In order to examine that,

Yoshida et al. (2007) applied the linear perturbation analysis to the PNS oscillation. They

considered the forced oscillations of PNS by the pressure fluctuations which mimics the

beating by the accreting matter. Since Burrows et al. (2006, 2007a,b) found the turbulence

originated from the SASI, Yoshida et al. (2007) also tried to include the SASI fluctuation

by imposing the numerical model of the SASI by Ohnishi et al. (2006), who simulated the

behavior of the SASI itself, to the boundary condition on the PNS surface. As a result,

they found that the energies of the excited g-modes are <∼ 1050 erg and estimated that the

emitted acoustic power is ∼ 1051 erg s−1, which is comparable with the results in Burrows

et al. (2006).

On the other hand, Weinberg & Quataert (2008) utilized the nonlinear three-mode

couplings among g-modes to investigate the energy of each mode of the PNS oscillations.

Due to the three-mode couplings, the “mother” mode decays into two “daughter” modes

with lower frequencies and the energy is transferred from higher frequencies to lower fre-

quencies. If the daughter mode has low enough frequency, the energy contained in the

mode is dissipated to the heat and converted into the neutrinos. If this mechanism works,

the PNS should have little energy in the form of oscillations. According to their calcu-

lations, the ℓ = 1 mode, which is the dominant mode in Burrows et al. (2006), has only

∼ 1047–48 erg with steady energy injection of 1050–51 erg. Note that the energy injection

from the turbulent beating is impulsive, but Weinberg & Quataert (2008) approximate

that the averaged energy injection is steadily fed. By assuming that the damping rate is

10Hz, the emitted acoustic power is ∼ 1048–49 erg s−1, which is much smaller than that

in Burrows et al. (2006).

Weinberg & Quataert (2008) claimed that the reason why Burrows et al. (2006) have

very intense oscillations is that their numerical simulation does not have enough resolu-

tion to capture the small-scale daughter modes of relevance. Since Yoshida et al. (2007)

considers the linear perturbation and hence neglects the mode couplings, it is likely that

the energy in Yoshida et al. (2007) is larger than that in Weinberg & Quataert (2008).

However, whether the assumptions used in Weinberg & Quataert (2008) are valid or not

is also unknown, and hence further investigation in the PNS oscillation energy or another

approach is needed to verify the acoustic mechanism.
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Chapter 3

The Neutrino Heating

Mechanisms with Boltzmann

Neutrino Transport

In the last subsection of section 2.2.1, the Boltzmann-radiation-hydrodynamics code is

described. Since it is the most sophisticated in neutrino transport, whether the inaccuracy

of the approximations in neutrino transport is the cause of the failure in reproducing the

explosion energy or not may be judged by performing simulations with the Boltzmann-

radiation-hydrodynamics code. The simulation requires substantial computational cost,

but K-computer in Institute of Physical and Chemical Research (RIKEN) in Japan can

provide sufficient resources.

Nagakura et al. (2018) presented simulation results using the Boltzmann-radiation-

hydrodynamics code. They conducted two simulations with different EOSs: LS EOS and

FS EOS introduced in section 2.1.3. They found that the simulation with LS EOS seemed

to explode, while that with FS EOS failed. Although the maximum shock radius in LS

model is quite large and increasing at the end of the simulation, its mean shock radius

is not so large, and it is uncertain that whether the shock will recede or not finally. The

larger shock radius in the LS model compared to the FS model is ultimately originated

from the difference in nuclear composition. Since single nuclear approximation utilized

in LS EOS is the unphysical approximation, the apparent shock revival in the LS model

itself may be unphysical. Since FS EOS is more realistic, despite its stiff nature of nuclear

force may be an artifact of modeling, explosion of non-rotating progenitor may not be

obtained.

Then, in this chapter, whether rotation plays a vital role in the explosion or not is

investigated. In section 2.2.1, it is discussed that the rotation may be a missing physics,

and subsequently the effects of rotation on CCSN are also discussed. Since all of them

are performed in approximate neutrino transport, how rotation affects on CCSN with

Boltzmann transport is the focus here.

This chapter is organized as follows: In section 3.1, I describe the numerical setup.

Next, in section 3.2, the simulation results are presented, and the effects of rotation on
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the post-bounce dynamics are discussed. Since exploiting the Boltzmann solver is one

of the novel features of the code, I show some features related to the momentum space

of neutrino distributions next in section 3.3. Finally, in section 3.4, I summarize and

conclude this chapter.

3.1 Numerical Modeling

The progenitor model employed in this chapter is the non-rotating 11.2M⊙ model taken

from Woosley et al. (2002). This is the same progenitor with those in Nagakura et al.

(2018). Employing the prescription described in section 2.2.1, I added the rotational

velocity artificially at the onset of the collapse. The functional form of the rotational

velocity is the shellular rotation profile (equation (2.72)). The central angular velocity is

Ω0 = 1 rad/s and the size of the rigid core is r0 = 103 km. Note that this is almost the

fastest end according to the current stellar evolution theory (Heger et al., 2000).

The Boltzmann-radiation-hydrodynamics code described at the end of section 2.2.1 is

used for the simulation. This is validated in Appendix A. FS EOS discussed in section

2.1.3, which is based on the RMF theory and NSE, is employed. The neutrino reactions

are based on Bruenn (1985) (see table 2.3) and the non-elastic electron scattering, the

updated electron capture on heavy nuclei (Juodagalvis et al., 2010; Langanke & Mart́ınez-

Pinedo, 2000; Langanke et al., 2003), and the nucleon-nucleon bremsstrahlung (Friman &

Maxwell, 1979; Maxwell, 1987) are also included. Since the neutrino reactions involving

νµ, ν̄µ, ντ , and ν̄τ are almost the same (but see Bollig et al., 2017), these heavy-lepton-

type neutrinos are treated together and denoted as νx. Therefore, three neutrino species

of νe, ν̄e, and νx are evolved in the simulation.

I run the 2D axisymmetric simulation from the onset of collapse. The radial coordinate

is set from center to outer 5000 km and divided into 384 bins. The θ-coordinate is spanned

from 0 to π and initially divided into 64 bins. When the negative entropy gradient starts

to develop after the core bounce, the θ-grid number increases to 128, and the radial

velocity is perturbed randomly by 0.1% in 30 ≤ r ≤ 50 km artificially as the seeds of

fluid instabilities. The way to perturb is the same as in Nagakura et al. (2018). For the

momentum space, the neutrino energy ϵ is considered up to 300MeV and divided into 20

bins. The angular coordinates in the momentum space cover the full solid angle of 4π.

The zenith θν and the azimuthal ϕν angles are divided into 10 and 6, respectively.

3.2 The Time Evolution

In this section, I discuss the dynamics of simulated CCSN and several key diagnostics

regarding the pre- and post-bounce dynamics. First, I show a T/|W | parameter from the

onset of collapse to a time slightly after core bounce in figure 3.1. The T/|W | parameter

measures how rapidly the stellar core rotates. Here,

T :=

∫
1

2
ρ(r sin θvϕ)2dVx, (3.1)
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Figure 3.1. The time evolution of the T/|W | parameter from the onset of collapse to a

time slightly after the core bounce.

where dVx is the invariant volume element in the configuration space, is the rotational

kinetic energy (note that the vϕ is the ϕ-component of the velocity with respect to the

coordinate basis), and

W := −1

2

∫
ρ(r)ρ(r′)

|r − r′|
dVxdV

′
x (3.2)

is the gravitational energy. The T/|W | is ∼ 2.5 × 10−4 at the onset of collapse and ∼
3×10−3 at the core bounce, and after the bounce it reduces. This behavior is qualitatively

similar to other groups (Ott et al., 2008; Kuroda et al., 2014; Abdikamalov et al., 2014).

Although the adopted rotational velocity is very high, the T/|W | is rather low. It is much

smaller than the value required to cause instabilities (Shibata et al., 2002, 2003).

Since the moving mesh method illustrated in section 2.2.1 is employed in the code,

the trajectory of the center of PNS can be followed. The laboratory frame, or center-of-

mass frame, is distinguished from the acceleration frame, or PNS-rest frame. In order to

measure how different these two frames are, I show in figure 3.2 the proper motion of PNS

for both the rotating model calculated here and the non-rotating counterpart presented

in Nagakura et al. (2018). The kick velocities read from the figure is very small (at most

v/c ∼ 10−4), and hence the difference between the laboratory frame and the acceleration

frame is small. Therefore, hereafter in this chapter, the difference is neglected and only

the term “the laboratory frame” is used even for the acceleration frame.

Before discussing the difference of proper motions of PNSs between the rotating and
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Figure 3.2. The comparison of proper motions of PNSs between the rotating (the red

line) and non-rotating (the blue line) models. The offset is measured in the

laboratory frame.

non-rotating models, let me focus on the dynamics of the post-bounce flow. This is because

it describes the origin of the difference.

I show the snapshots of the entropy distributions in figure 3.3. Immediately after the

core bounce, the shock expands to take an oblate form (the upper left panel) by the

centrifugal force. Accretion flow is directed to the center and hence refracted by the

oblate shock to the northern and southern poles. Then the refracted flow converges at

both poles due to the imposed axisymmetry. Next, the flow pushes the shock at both

poles, and hence the shock takes a prolate form (the lower left panel). At that time the

radial accretion flow is refracted to the equator by the prolate shock and converges there.

Then the shock takes the oblate form again. The shock increases its average radius with

repeating this oblate-prolate oscillation (the upper and lower middle panels, respectively),

and finally, it stalls. During the stalled-shock phase, developed convective bubbles break

this oscillation. The scale of these bubbles is so large that only two bubbles develop (the

upper right panel). Finally, these bubbles are mixed, torn up, and complex turbulent

pattern arises (the lower right panel).

The difference shown in figure 3.2 is now explained. Figure 3.3 shows symmetric dis-

tributions of the entropy with respect to the equator until the stalled shock phase. The
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Figure 3.3. The color maps of specific entropy distributions in the meridional section

at the post-bounce times of tpb = 9 (upper left), 12 (lower left), 54 (upper

middle), 62 (lower middle), 150 (upper right), and 210 (lower right) ms. The

color scale of the entropy is displayed on the right of each panel. The position

of the shock is the boundary of the cold and warm colors. Since the shock

expands, the range of x and z coordinates are different as presented in each

figure.

kick motion of the PNS is determined by the force balance between the matter in the

northern and southern halves. Since the matter distribution is symmetric in the rotating

model, the force is almost balanced and little kick is achieved. However, this symmetry is

a result of the centrifugal force and does not exist in the non-rotating model. Thus in the

non-rotating model, the force imbalance between the north and south leads to the strong

PNS kick.

Next, evolutions of several important quantities related to the explosion dynamics are

compared between the rotating and non-rotating models in figure 3.4. The displayed

quantities are the shock radii rshock, the PNS radii rPNS, the neutrino luminosities Lν , and

the mean energy of the neutrinos Eν . Here, the shock radius is defined by the outermost

radius where the velocity is slower than 30% of the free-fall velocity. The PNS radius

is chosen as the radius where the angle-averaged density is 1011 g cm−3. The neutrino

luminosities and the mean energies are measured at the 500 km from the center.

Although the morphology of the shock in the rotating model is affected by the centrifugal

force as in figure 3.3, the evolution of the average shock radius resembles that in the non-

rotating model. The neutrino luminosities and the mean energies of neutrinos also show

very similar evolutions. The νe luminosities and νe and ν̄e mean energies in the rotating

model are slightly smaller than those in the non-rotating model. This trend is consistent
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Figure 3.4. The evolutions of some radii and neutrino quantities. For all panels, red and

blue lines represent the rotating and non-rotating model, respectively. (Top

panel: the shock radii and the PNS radii) The thick solid and thin dotted

lines show the average and maximum (minimum) shock radii, respectively.

The thick dashed lines indicate the PNS radii whose angular averaged density

is 1011 g cm−3. The running average over 5ms smoothes the evolution of the

PNS radii. (Middle panel: the neutrino luminosities) The solid, dashed, and

dotted lines correspond to the luminosities of νe, ν̄e, and νx, respectively. In

order to indicate the peak luminosities at the neutronization bursts and to

compare the luminosities of each species at later times, the vertical scales of

the upper and lower halves of the panel are different. (Bottom panel: the

mean energies of neutrinos) The line types are the same for those in the

middle panel.
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with Summa et al. (2018). Remembering that the non-rotating model with FS EOS in

Nagakura et al. (2018) fails to revive the shock within ∼ 300ms after the core bounce,

the rotating model also seems to be unsuccessful. Thus, I terminated the simulation at

∼ 200ms after the core bounce.
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Figure 3.5. The time evolution of the time-scale ratio τadv/τheat.

The failure is also indicated by the time-scale ratio. Figure 3.5 shows the time-scale

ratio τadv/τheat discussed in equation (2.68). The energy in the gain layer Egain here is

defined as

Egain =

∫ rshock

rgain

(
eth +

1

2
ρv2 + ρΦ

)
dV, (3.3)

where eth and Φ are thermal energy and gravitational potential, respectively. According

to appendix A in Bruenn et al. (2016), thermal energy should be defined by

eth =
3

2

ρ

Āmu
kT + aT 4 +

(
ee∓ − Yemec

2 ρ

mu

)
, (3.4)

where ee∓ , Ā, and a are the internal energy density of the electron-positron gas, the mean

mass number, and the radiation constant, respectively. From figure 3.5, the ratio of our

model exceeds unity only limited period and has decreasing trends, indicating the failure

of shock revival.

The similarities in neutrino luminosities and mean energies between the rotating and

non-rotating models are originated from the PNS radius in the top panel of figure 3.4. If
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the centrifugal force were strong enough, the PNS radius could be extended, but actually,

the model here has too weak rotation to have such large force and shows the similar

evolution of the PNS radius as that in the non-rotating model. By weak centrifugal force

in the model, the radius along the equator is only ∼ 5% larger than that along the pole.

It is too small to influence the shock evolution.
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Figure 3.6. The specific angular momentum of each mass shell as a function of the enclose

mass. Different colors represent the specific angular momentum profiles at

different times: at the onset of the collapse (red) and∼ 10ms (blue), ∼ 150ms

(green), and ∼ 210ms (magenta) after the core bounce. The spikes in the

profiles correspond to the positions of the shock at each time.

Figure 3.6 shows the evolution of the specific angular momentum

jz :=

∫
shell

ρr2 sin2 θvϕdVx∫
shell

ρdVx
(3.5)

on each mass shell, where the integration is carried out over each radial bins. Note that

the specific angular momentum inside the shock decreases with time. This is because

neutrinos carry the angular momentum out (for a detailed discussion, see section 3.3). In

the outer part the angular momentum conserves, since the neutrino reactions rarely occur.

Summa et al. (2018) computed two models with different rotational velocities. Although

the rotational velocity itself in our model is faster than those of both model in Summa

et al. (2018), the specific angular momentum of our model lies between their two models

(∼ 1014 cm2 s−1 for the slower model named “rot” and ∼ 1016 cm2 s−1 for the faster model
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named “artrot”) because of the different progenitor model. Considering that their “rot”

model has no effect on the PNS radius and “artrot” model extends it, the border in the

angular momentum which divides whether rotation extends the PNS radius or not might

lie between 1015 cm2 s−1 and 1016 cm2 s−1.

The discussion above indicates that the rotation imposed in this chapter is not fast

enough to change the non-exploding model into exploding model. Considering that the

rotation of 1 rad s−1 at the center is almost the fastest end of the range indicated by

the stellar evolution theory, another physical ingredient such as microphysics or another

mechanism such as the acoustic mechanism should be considered.

3.3 Neutrino distribution

Investigations on hydrodynamic features and explosion diagnostics in the previous section

shows the failure of the shock revival. On the other hand, the neutrino distributions in the

phase space are worth examining since one of the novel aspects of the code is to treat the

distribution functions of the neutrinos directly. In the following sections, I provide detailed

analyses of the neutrino distributions though this is a digression from the explodability

(the capability of the explosion) itself. The contents of sections 3.3.1, 3.3.2, 3.3.3, and

3.3.4 are the Ye prescription in the rotating core-collapse, the angular distributions of

neutrinos in the momentum space, the rotational component of the neutrino flux, and the

Eddington tensor of the neutrinos, respectively.

3.3.1 Ye Prescription

First, let me focus on the pre-collapse phase. Since I solve the Boltzmann equation directly,

the lepton distribution during the collapsing phase can be correctly followed. Liebendörfer

(2005) performed 1D general relativistic Boltzmann-radiation-hydrodynamics simulation

and suggested the distribution of the electron fraction Ye as a function of density, whose

functional form is fitted from the simulation. However, only 1D results are presented in his

work and the effect of rotation on this “Ye prescription” has not been examined, which can

be examined by the Boltzmann solver here. Figure 3.7 shows the comparison between the

rotating model and the non-rotating model. Note that contrary to Liebendörfer (2005),

the electron fraction cannot be fitted by a function of the density only. This is not

unexpected since the updated electron capture rate and the Newtonian gravity are used.

There is almost no difference between the two models in the figure. The more rapid

rotation might have some influence, but it is not in the scope of this dissertation since

such a rapid rotation may not be realized as a result of the stellar evolution.

3.3.2 Angular Distribution

Figures 3.8, 3.9, and 3.10 show the angular distributions in the momentum space of νe for

several neutrino energies at 12ms after the core bounce in the laboratory frame. They

are distributions at the points in the optically thick region (figure 3.8), semi-transparent
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Figure 3.8. Angular distributions in the momentum space of νe at 12ms after the core

bounce in the laboratory frame. The spatial point is r = 10 km (the optically

thick region) on the equator. Surfaces with different colors represent the

angular distributions of different neutrino energies measured in the laboratory

frame: red–1MeV, green–4MeV, blue–19MeV. Arrows with er, eθ, and eϕ

represent the spatial part of the tetrad bases (equations (2.92–2.94)). All

distributions are normalized so that the maximum value is the same. In

order to obtain the smooth surface, angular interpolation is applied in this

and the following figures.
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Figure 3.9. The same as figure 3.8, except that the spatial point is r = 57 km (the

semi-transparent region). The middle and bottom rows of figures are the

distributions seen from different angles, projected to er–eθ and er–eϕ planes,

respectively.

region (figure 3.9), and the optically-thin region (figure 3.10), and all points are on the

equator (θ = π/2).

The neutrinos and matter are in equilibrium in the optically thick region, and hence

the neutrinos are isotropically distributed in the fluid-rest frame. Since the velocity at

the point is negligible (v/c ∼ 2× 10−2), the angular distributions shown in figure 3.8 are

almost isotropic independent of the neutrino energy, even though the figure is shown in

the laboratory frame.

On the other hand, the distributions in the semi-transparent region (figure 3.9) are not

isotropic and are different among the energies. The lowest energy neutrinos are forward-

peaked, and middle energy neutrinos are blunter than the lowest energy. For the highest

energy neutrinos, the distribution is more or less isotropic but slightly dragged to the



50 Chapter 3 The Neutrino Heating Mechanism with Boltzmann Neutrino Transport

er

eφ

eθ

167 km

1MeV

er

eφ

eθ

167 km

4MeV

er

eφ

eθ

167 km

19MeV

er

eφ
eθ

167 km

1MeV

er

eφ
eθ

167 km

4MeV

er

eφ
eθ

167 km

19MeV

er

eφeθ

167 km

1MeV

er

eφeθ

167 km

4MeV

er

eφeθ

167 km

19MeV

Figure 3.10. The same as figures 3.8 and 3.9, except that the spatial point is r = 167 km

(the optically thin region).

ϕ-direction because of the Lorentz transformation, or the relativistic beaming. The lower

the neutrino energy is, the smaller the reaction rates are. Thus lower energy neutrinos

couple with the matter more loosely compared to higher energy neutrinos. Therefore, the

lower the neutrino energy is, the more the distribution gets forward-peaked.

Then in the optically thin region (figure 3.10), neutrinos with all energies show the

forward-peaked distributions. This is because all neutrinos are decoupled from the matter

and streaming freely. Although such behavior is common for all energies, the streaming

directions are slightly different. The lowest and middle energy neutrinos direct along the

radial direction (er), while for the highest energy neutrinos, the distribution gets slightly

tilted to the rotational direction (eϕ). This is again due to the dependence of the reaction

rates on the neutrino energies.

The situation is illustrated in figure 3.11. During the neutrinos are trapped by matter,

the neutrino distributions are dragged by matter via the relativistic beaming as shown

by the blue surface in figure 3.9. This dragging is imprinted even when the neutrinos are

decoupled from matter, thus the free-streaming direction is not exactly radial but slightly

tilted to the ϕ-direction like the dashed lines in figure 3.11. Once the neutrinos start to

stream freely and go far away, the angle between the radial and the propagation directions

θ̄ gets smaller and smaller as sin θ̄ = b/r, where b is the impact parameter of the neutrino
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θ

Figure 3.11. A schematic picture for the neutrino distributions in figure 3.10. The col-

ored circles represent the neutrinospheres of each energy of neutrinos on the

equator. The colors correspond to those of figure 3.10. The black circular

arrow at the center indicates the rotation of the PNS. The dashed lines and

solid arrows are the trajectory of neutrinos and propagating directions, re-

spectively, of each energy. The black dotted lines are radial lines. The angle

θ̄ defined in the text is also indicated as the angle between the dashed and

dotted lines.

with respect to the center. Since the neutrinosphere for the higher energy neutrinos (blue

circle in figure 3.11) are larger than that for the lower energy neutrinos (red circle in figure

3.11) as discussed by Kotake et al. (2006), the impact parameter is larger for the higher

energy neutrinos. As a consequence, the higher the neutrino energies are, the more the

distributions are tilted to the ϕ-direction like the straight arrows in figure 3.11.

3.3.3 Rotational Flux

Since rotation makes the neutrino distributions asymmetric with respect to the plane

spanned by er and eθ, the ϕ-component of the neutrino flux is non-zero in general. The

“rotational” component of the electron-type neutrino number flux at 100ms after the core
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Figure 3.12. The rotational component of the number flux of νe at 100ms after the core

bounce. The left panel shows the ϕ-component measured in the laboratory

frame. The color bar is shown with the log-scale. The right panel displays

the flux measured in the fluid-rest frame. The color bar is shown with the

linear scale.

bounce is illustrated in figure 3.12. The rotational component measured in the laboratory

frame is shown in the left panel. Since the ϕ-component is positive (the same direction with

the rotation) everywhere, the color bar is shown with the log-scale. This figure indicates

that the ϕ-component decreases rapidly with the radius. This tendency is consistent with

the above discussion on θ̄.

The ϕ-component of the flux in the fluid-rest frame is shown in the right panel. Contrary

to the left panel, the color bar is indicated with the linear scale, and the flux is not

necessarily positive. Now let me define the “rotational velocity” of the neutrinos by the

number flux divided by the number density of neutrinos. The rotational velocity of the

neutrinos in the laboratory frame is slower than that of matter after the neutrinos decouple

with the matter. This fact is described in figure 3.13. The radial profiles of the rotational

component of the number flux and the rotational velocities of matter and neutrinos along

the equatorial direction are shown in the figure. The rotational components in the fluid-
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rest frame and laboratory frame are negative and positive, respectively. The ϕ-components

of the velocity of matter and neutrinos in the laboratory frame are almost the same at

r < 50 km and the matter velocity exceeds the neutrino velocity at larger radii. Since the

matter overtakes neutrinos, the ϕ-component of the neutrino flux in the fluid-rest frame is

negative. This neutrino trapping and the overtaking show that the simulation successfully

captures the neutrino transport on the moving matter.

3.3.4 Eddington Tensor

Recall that the spherically symmetric neutrino transport is solved in the RbR(+) approx-

imation (Buras et al., 2006) discussed in section 2.2.1, and hence the neutrino distribu-

tions are assumed to be axisymmetric with respect to the radial direction. Therefore,

the lateral component of the flux discussed in the previous section is artificially set to

zero with RbR(+). On the other hand, if RbR(+) is not employed, one can treat the

non-radially directed flux. Among the non-RbR(+) approximate schemes, the M1-closure

method without RbR(+) (Levermore (1984); Shibata et al. (2011), and for example of the

application to the CCSNe, see Kuroda et al. (2012); Just et al. (2015)) is the most so-

phisticated currently. As discussed in section 2.2.1, two assumptions are employed in the

M1-closure method: the axisymmetric distribution of neutrinos and the formula for the

Eddington factor. Since the Boltzmann solver employed in this chapter does not impose

such assumptions, the validity of these assumptions can be evaluated quantitatively.

In order to evaluate the accuracy of the M1-closure method, I compare the Boltzmann-

and M1-Eddington tensors defined in section 2.2.1. First, the second angular moment

Mσρ(ϵ) is calculated from equation (2.79). Then, the Boltzmann-Eddington tensor kij(ϵ)

is evaluated by using equation (2.76) with spatial-spatial (equation (2.77)) and time-time

(equation (2.78)) projections ofMσρ(ϵ)*1. For the M1-Eddington tensor kijM1(ϵ), however,

the energy fluxes and energy densities are obtained from equations (2.78), (2.85), (2.86),

and (2.89), and then equation (2.80) is evaluated from equations (2.81), (2.82), (2.83),

(2.87), and (2.88). Although one can think the energy-integrated version of the Eddington

tensor, the energy-dependent version of the Eddington tensor is adopted in this chapter.

The neutrino energy is always chosen as the mean energies at each spatial point.

The M1-closure prescription described in section 2.2.1 is the same as Kuroda et al.

(2016b) except that they employ the Eddington factor formula different from equation

(2.82). Variations of the Eddington factor formulae are presented in Just et al. (2015),

and they use the Eddington tensor defined in the fluid-rest frame.

*1 Actually a modified version of equation (2.79) where the argument of the delta function ϵ − ϵ′ is

replaced by ϵ3/3 − ϵ′3/3 is employed. Since the original version of Shibata et al. (2011) considers

the neutrino-radiation field in an intensity-like way, the independent variables are the energy and

flight direction. On the other hand, the neutrino-radiation field in this chapter is considered as an

ensemble of particles, and hence the independent variables are three components of momentum.

Thus the energy ϵ itself is a natural choice in Shibata et al. (2011) while the volume element in

the momentum space ϵ3/3 is natural here. This difference results in an extra factor of ϵ2, but have

no effects on the discussions below, since the extra factors are canceled in the calculation of the

Eddington tensors.
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Physical Interpretation of the Eddington Tensor

In figure 3.14, I compare the spatial distributions of each component of the Boltzmann-

and M1-Eddington tensors at the 12ms in the laboratory frame. They are the Eddington

tensors of electron-type neutrinos with mean energies. The oval shapes seen in each figure

roughly correspond to the shock (see the lower left panel of figure 3.3). For diagonal

components, the central value is 1/3 both for the Boltzmann- and M1-Eddington tensors.

This is consistent with the optically thick limit. Then, the rr-components increase (θθ-

and ϕϕ-components decrease) with the radius to the optically thin limit. The transition

from the optically thick to thin limits occurs in the vicinity of the shock for both Edding-

ton factors, but it occurs at the slightly smaller radius for the M1-Eddington tensor as

illustrated in the left panels of top two and middle left figures.

The off-diagonal components are ∼ 10–100 times smaller than the diagonal components,

but their presence indicates that the principal axes of the Eddington tensor differ from r-,

θ-, and ϕ-directions. The off-diagonal components are determined by complex interplays

of the matter velocities and neutrino reactions. In order to see the physical origin of the

pattern of the off-diagonal component, radial profiles of several quantities along selected

direction are shown in figures 3.15, 3.16, and 3.17. Here, I focus on the rθ-component krθ

since the difference between krθ and krθM1 is even qualitative level and discussed later.

The Eddington tensor is the second angular moment of the distribution functions, that

is, the ℓ = 2 mode amplitudes in the words of spherical harmonics expansion. On the

other hand, the flux is the first angular moment and ℓ = 1 mode amplitudes. In principle,

the ℓ = 2 modes and ℓ = 1 modes are independent. However, for example, if a bunch of

neutrinos flies toward a single direction, the signs of the Eddington tensor itself and the

product of the components of flux is the same. Consider that the neutrinos fly toward

the direction where both r- and θ-components are positive, then the rθ-component of the

Eddington tensor is also positive. If several bunches of neutrinos fly, on the other hand,

the sings are not necessarily the same. Keep this fact in mind, let me show the details of

these figures.

In the optically thick region, the neutrinos move with the fluid elements due to neutrino

trapping. The relativistic beaming distorts the neutrino distributions toward the fluid

velocity, then the neutrino flux and the matter velocity have the same direction. The

signs of the neutrino flux and the matter velocity is the same in the optically thick (optical

depth, say, τ >∼ 50) regions as indicated by the second and fourth (r-component), and the

third and fifth (θ-component) panels. Since the sign of the krθ and the product of vrvθ or

F rF θ are the same there, the Eddington tensor is entirely determined by the fluid motion

via the relativistic aberration in the optically thick region.

In the semi-transparent (optical depth 50 >∼ τ >∼ 2/3) region, the sign of the tensor

component krθ and the product F rF θ are still the same. Thus it is implied that the

Eddington tensor is determined by a bunch of neutrinos. The signs of r-components

of the neutrino flux and the fluid velocity are opposite since the neutrinos are escaping

from the optically thick regions. On the other hand, the θ-components of them are the
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Figure 3.14. The comparison of each component of the Boltzmann- and M1-Eddington

tensors at 12ms in the laboratory frame. The neutrino species is the

electron-type and the energy is chosen to be mean energies. The range

of 0 km ≤ x ≤ 150 km and −150 km ≤ z ≤ 150 km is displayed. Each

panel represents each component of the Eddington tensors (rr: top left,

θθ: top right, ϕϕ: middle left, rθ: middle right, rϕ: bottom left, θϕ: bot-

tom right). In each figure, the left and middle parts show the Boltzmann-

and M1-Eddington tensors, respectively. The right parts are the difference

of the M1- and Boltzmann-Eddington tensors, kij
M1 − kij . For off-diagonal

components, the indicated values are multiplied by 10 or 100 as written in

the bottom of each figures, in order to show them in similar color scales.

However, note that the color scales itself are different among figures.
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Figure 3.15. Radial profiles of several quantities related to the rθ-component of the

Eddington tensor krθ along the green solid line in the middle right

panel of figure 3.14. From top to bottom, the r-component F r
40 :=

(F r/1040 erg cm−2 s−1), θ-component F θ
41 := (F θ/1041 erg cm−2 s−1) of the

energy flux of νe , r-component vr9 := (vr/109 cm s−1) and θ-component

vθ3 := (vθ/103 rad s−1) of the matter velocity are displayed. For each panel,

parts of lines whose values are positive are colored red, while those negative

is blue. The vertical dash-dotted lines correspond to the radii where the

optical depths τ along the radial ray are 50 and 2/3 as indicated near the

lines.
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Figure 3.16. The same as figure 3.15 but along with the black dashed line.
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Figure 3.17. The same as figure 3.15 but along with the yellow dotted line.
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same. This is because, in the semi-transparent regions, interactions between neutrinos

and matter are so weak that the matter cannot reverse the radial flow of neutrinos, but

strong enough to bend the direction of neutrinos.

er

eθ

normal

mirrored

Figure 3.18. The solid red curve shows a section of the angular distribution function of

the electron-type neutrinos spanned by er-eθ. The spatial point is r = 82 km

along the yellow dotted line in figure 3.14, and the neutrino energy is the

mean energy (∼ 11MeV) there. The blue dashed curve is a mirror image of

the red curve with respect to the er axis.

In the optically thin (optical depth τ <∼ 2/3) region, the flux and the Eddington tensor

does not necessarily correlate. For the three rays in figures 3.15, 3.16, and 3.17, there are

regions where the signs of the krθ and the product F rF θ are different. This implies that

there are multiple bunches of neutrinos. The angular distribution of νe at a point in the

optically thick region (r = 82 km on the yellow dotted line in figure 3.14) shown in figure

3.18 describes the situation. Not only the angular distribution itself but also the mirror

image of it are displayed, in order to emphasize the distortion of the distribution.

It is indicated that the neutrinos mainly fly toward the upper right direction of the

figure. Besides, some neutrinos are flying toward the lower right direction. The upper

right component is neutrinos coming from the PNS, bent by the matter in the semi-

transparent regions. On the other hand, the lower right component is originated from the



3.3 Neutrino distribution 61

neighborhood: the matter inside the shock is dense and hot enough to emit neutrinos even

at just downstream of the shock, and the neutrinos emitted from there is beamed by the

matter velocity. At the spatial point considered in figure 3.18, the fluid velocity directs

lower right: figure 3.17 implies vr < 0 and vθ > 0 at r = 82 km. Thus the neutrinos

emitted from the neighborhood matter contributes to the lower right component of the

distribution. Hereafter the upper right and lower right components are called the PNS

and neighborhood components, respectively.

The Eddington tensor in the optically thin region is determined by the competition

of the PNS and neighborhood components. Along the yellow line, the neighborhood

component determines the krθ. The sign of the krθ changes from the semi-transparent

region in the vicinity of the shock due to the neighborhood contribution, and the sign

recovers outside the shock. On the other hand, on the green line, the sign of krθ is

determined by the PNS component. Although the neighborhood component has a positive

contribution to krθ (the fluid velocity in the optically thin region is vr > 0 and vθ > 0 as

seen in figure 3.15), the krθ is negative, indicating that the PNS component dominates it.

Along the black dashed line, another case is observed. Both the PNS and neighborhood

components have negative contributions on the krθ, although the product of F rF θ is

positive. In detail, the PNS component has large positive and small negative contributions

to F r and F θ, respectively, while the local component has small negative and large positive

contributions to F r and F θ, respectively. Therefore the krθ < 0 and F rF θ > 0 are realized

simultaneously.

Comparison Between Boltzmann- and M1-Eddington Tensors

Here, let me move on the comparison between the Boltzmann- and M1-Eddington ten-

sors. Between the off-diagonal components of Boltzmann- and M1-Eddington tensors,

the similarity in both optically thick and thin limits is seen. This is because only one

bunch of neutrinos (trapped by and moving with the matter in the optically thick limit

and streaming freely in the optically thin limit) determines both the flux and Eddington

tensor. On the other hand, the behaviors are different in the semi-transparent regions.

Even the signature is different in the vicinity of the shock for the rθ-component, while the

values of the M1-Eddington tensor are twice as large as that of the Boltzmann-Eddington

tensor there for the rϕ- and θϕ-components.

In order to see the qualitative difference in the rθ-components of the Eddington tensors,

the radial profiles of the Eddington tensors are shown in figure 3.19: the Boltzmann-

Eddington tensor krθ (equation (2.77)), the M1-Eddington tensor krθM1 (equation (2.81)),

the optically thin Eddington tensor krθthin := P rθthin/E (equation (2.87)), and the optically

thick Eddington tensor krθthick := P rθthick/E (equation (2.88)). The krθM1 and krθthick are

positive at r >∼ 85 km, while the krθthin is positive at r >∼ 87 km. As indicated in figure 3.16,

F r is always positive in 80 km ≤ r ≤ 100 km, and F θ is negative at r >∼ 87 km. Thus the

optically thin Eddington tensor mistakenly takes positive values at r >∼ 87 km. Besides,

although the krθthin is negative at r <∼ 87 km, the krθthick, which determines the krθM1, takes

positive values. This is because the terms HrV θ + V rHθ in equation (2.88) take positive



62 Chapter 3 The Neutrino Heating Mechanism with Boltzmann Neutrino Transport

-0.1

-0.05

0

0.05

0.1

80 85 90 95 100

E
d
d
in
gt
on

te
n
so
rs

k
r
θ

radius r [km]

rsh
Boltzmann

M1
thick
thin

Figure 3.19. Radial profiles of the rθ-components the Eddington tensors krθ(ϵ), krθ
M1(ϵ),

krθ
thin(ϵ), and krθ

thick(ϵ) along the black dashed line in figure 3.14. The neu-

trino energy ϵ is chosen as the mean energy. The vertical dash-dotted line

indicates the position of the shock.

values. These terms are the higher than zero-th order terms with respect to the mean free

path. Since some correction terms higher than zero-th order are neglected in equation

(2.88) as discussed in section 2.2.1, such corrections may be required. Instead, the M1-

closure method tries to correct by interpolating the optically thick and thin limits. The

figure describes that such correction fails. The differences in the off-diagonal components

of the Eddington tensors may have non-negligible effects on the lateral component of the

neutrino flux as discussed in Nagakura et al. (2018).

The Eddington tensor can be diagonalized thanks to its symmetric property, and its

eigenvalues illustrate the shape of the angular distribution of neutrinos. The largest

eigenvalue is called the Eddington factor, and it represents how sharp the distribution in

one direction is. Other two eigenvalues describe the flatness of the angular distribution

along the perpendicular directions. The eigenvalues of the Boltzmann- and M1-Eddington

tensors are shown in figure 3.20. Again, the figure implies that the Eddington factor takes

optically thick limit values of 1/3 deep inside the shock, starts to increase in the vicinity

of the shock, and reaches the free-streaming value outside. Two eigenvalues, which are

named “lateral 1, 2”, other than the Eddington factor decrease with the radius since the

sum of three eigenvalues is unity (c.f. equation (14) in Levermore (1984)).

As discussed in section 2.2.1, the axisymmetric distribution with respect to the flux
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Figure 3.20. The radial profiles of eigenvalues of the Boltzmann- and M1-Eddington ten-

sors for νe with the mean energies along three radial rays. They are mea-

sured at 12ms after the core bounce in the laboratory frame. The red,

blue, and green lines indicate the largest eigenvalue (the Eddington factor),

other two eigenvalues named “lateral 1”, and “lateral 2”, respectively. The

solid and dashed lines correspond to the eigenvalues of the Boltzmann- and

M1-Eddington tensors, respectively. The chosen rays are on the equatorial

direction (the left panels), the north-east direction (the middle panels), and

the north-pole direction (the right panels). The vertical dash-dotted lines

indicate the shock radii in each direction. From top to bottom rows, the

eigenvalues, the relative difference between lateral 1 and 2, and the frac-

tional errors of the M1-Eddington tensor are illustrated. The black small

circle and triangle in the top middle panel are the points where the angular

distributions are compared (see the discussion about figure 3.21).

direction is assumed in the M1-closure method. As a consequence, lateral 1 and lateral 2

for the M1-Eddington tensor are degenerate in figure 3.20. On the other hand, the lateral

eigenvalues of the Boltzmann-Eddington tensor are slightly different, since no artificial

symmetry in the distributions is imposed. However, the relative difference between lateral

1 and 2 is only a few percents as shown in the middle panels of figure 3.20. Here, the

lateral difference is defined as (κlat2−κlat1)/κlat1, where κlat1 and κlat2 are the eigenvalues

of lateral 1, 2, respectively. The small difference implies that the almost axisymmetric

distribution with respect to the flux direction is nearly achieved as a consequence of the

evolution. It may seem that the assumption of the symmetry in the M1-closure method

is accurate up to a few percents, but such a small deviation from the axisymmetry leads

to the complicated relationships among the Eddington tensor, the flux, and the matter

velocity.

The M1-closure method is not so accurate to estimate the Eddington factor. In order



64 Chapter 3 The Neutrino Heating Mechanism with Boltzmann Neutrino Transport

to discuss the accuracy, let me define the fractional errors between the eigenvalues of

the Boltzmann- and M1-Eddington tensors as (κM − κB)/κB where κB and κM are some

eigenvalues of the Boltzmann- and M1-Eddington tensors, respectively. The fractional

errors are shown in the bottom panels of figure 3.20 and reach ∼ 20% at most in the

vicinity of the shock. There are other choices than equation (2.82) to determine the

Eddington factor analytically (e.g., Just et al., 2015), though they also have at least

∼ 10% errors.

Consider two points indicated by the black circle and triangle in the top middle panel

of figure 3.20. The M1-Eddington factor is larger for the point with the black triangle

than that with the black circle, while the Boltzmann-Eddington factor is almost the same.

For the left and right panels, the Boltzmann-Eddington factors even decrease with radius

in some regions close to the shock. According to equation (2.82), the Eddington factor

is a monotonically increasing function of the flux factor. Therefore, in these regions, the

flux factors increase while the Eddington factors do not. This different behavior is again

illustrated by examining the shape of the distribution function.

In figure 3.21, two angular distributions of νe are shown. These two distributions are

taken from the points with the small black circle and triangle in the top middle panel

of figure 3.20. Let me define the “flux direction” as the direction where the distribution

function is the maximum, although this definition might not coincide with the direction

of the flux F i. This is because the latter is determined by the angular average of the unit

vector. Figure 3.21 shows the flux direction by the green arrow in the middle panel. From

the figure, the distribution function in the opposite side of the flux direction is smaller for

the point of the triangle. Roughly speaking, the flux factor is the average value ⟨cos θ̃⟩
and the Eddington factor is ⟨cos2 θ̃⟩, where θ̃ is the angle measured from the flux direction

and ⟨·⟩ :=
∫
f ·dVp/

∫
fdVp is the angle average with respect to the distribution function.

Therefore, when the distribution around cos θ̃ ∼ −1, i.e., the opposite side of the flux

direction, reduces with the radius, the flux factor increases while the Eddington factor

decreases. Note that the reduction of the distribution in the opposite side leads to a

decrease in the denominator of the angle average defined above and hence to an increase

in the average value. In summary, the reduction of the distribution around cos θ̃ ∼ −1
necessarily leads to an increase in the flux factor, but the Eddington factor is not changed

so much due to the decrease in both the numerator and denominator. This is what

happens in the vicinity of the shock.

From the viewpoint of the physical situation, the reduction discussed above means that

the backward propagating neutrinos decrease with getting closer to the shock. Since the

shocked matter is hot and dense, it emits neutrinos not only outward, but also inward.

As getting closer to the shock, the region of such inwardly neutrino-emitting matter gets

smaller. The code here can treat this situation appropriately since the forward and back-

ward propagating neutrinos are treated individually. The M1-closure method, however,

only treat the energy density and the flux, and cannot distinguish the increase in outward

propagating neutrinos and the decrease in backward propagating neutrinos. As discussed

above, the physical situation is relatively clear. If information from the neighborhood



3.3 Neutrino distribution 65

er

eφ
eθ

er

eφ

er

eθ

Figure 3.21. Angular distributions of νe in the laboratory frame at the two points shown

as the black circle and triangle in the top middle panel of figure 3.20. The

neutrino energy is again the mean energy at each point. The distributions

are normalized so that the maximum values are the same. Red surface

and lines show the angular distribution at the small black circle in figure

3.20, while blue surface and lines represent that at the small black triangle.

The top panel shows the full angular distribution, whereas the middle and

bottom panels indicate the sections spanned by er-eθ and er-eϕ planes,

respectively. The green arrow in the middle panel shows the flux direction.



66 Chapter 3 The Neutrino Heating Mechanism with Boltzmann Neutrino Transport

is considered, the approximate formula like equation (2.82) may be calibrated, and the

M1-closure method may be improved, while this is beyond the scope of this dissertation.
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for electron-type neutrinos with the high- (solid) and low- (dashed) reso-

lutions. The neutrino energies are the mean energies at individual points.

Shown in the lower panel is the fractional error between high- and low-

resolution results.

The angular grid number in the momentum space is not large because of the limited

computational resources. For the detailed investigations on the resolution and conver-

gence, see Richers et al. (2017). The neutrino distributions are almost isotropic in the

optically thick region, and hence the grid number employed in this chapter is enough to

resolve them. The forward-peaked distribution of neutrinos in the optically-thin region, on

the other hand, requires higher resolution than that employed in the code here. Therefore

one may think that the differences shown in figure 3.20 are artifacts of low resolutions.

In order to check the effects of numerical resolutions on the errors indicated in figure

3.20, I run additional simulations with low and high resolutions. In these simulations,

the steady-state solutions of the Boltzmann equation with the background matter fixed

at 12ms after the core bounce are constructed. The computational domain is limited

from ∼ 40 km to ∼ 300 km in order to reduce the computational cost. The angular grid

numbers in momentum space are (θν , ϕν) = (10, 6) for low resolution and (14, 10) for

high resolution.

Results of the high- and low-resolution simulations are shown in figure 3.22. I plot the

Boltzmann- and M1-Eddington factors of high- and low-resolution simulations and the

error between the high- and low-resolutions in the figure. Note that contrary to figure

3.20, the error between the Boltzmann- and M1-Eddington factors are not presented.

In the figure, the errors of both the Boltzmann- and M1-Eddington tensors are small

in the optically thick region, especially where the Boltzmann-Eddington factor itself is

≤ 0.4. The errors are, however, ∼ 5% in the semi-transparent and optically thin regions.

Therefore the numerical convergence is achieved only in the inner, optically thick region

in the low-resolution simulation. Note that this is compatible with the results in Richers

et al. (2017). Since the large error shown in figure 3.20 can also be seen as the difference

of red and blue lines in figure 3.22, the error between the Boltzmann- and M1-Eddington
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factors is not an artifact due to the limited resolution employed in this chapter.

3.3.5 Angular Momentum Transport

At the end of this section, I discuss the angular momentum transport by neutrinos. The

neutrinos carry the angular momentum of matter away as shown in figure 3.6. The

angular momentum loss is evaluated from the distribution function directly. The energy-

momentum tensor of the neutrinos is defined as

Tσρ(ν) :=

∫
fpσpρdVp. (3.6)

From this definition and the Boltzmann equation, the energy-momentum conservation

with matter interactions is derived (Cercignani & Kremer, 2002)

∇σTσρ(ν) = Gρ, (3.7)

where Gρ is the same term defined in equation (2.113). The energy-momentum tensor

is calculated by using the second angular moment tensor (equation (2.79)) as Tσρ(ν) =∫
Mσρ(ϵ)d(ϵ3/3). Considering that there exists the Killing vector ξ = ∂ϕ under axisym-

metry, the angular momentum 4-current is defined by jρ := ξσT
σρ, which obeys

∇ρjρ = ξρG
ρ, (3.8)

according to equation (3.7). By defining the total angular momentum of neutrinos enclosed

by the sphere of radius r as J(ν)(r) :=
∫ r
0
jtdVx, the conservation law is rewritten in the

integral form,

˙J(ν)(r) +

∫
S(r)

jrds =

∫
ξρG

ρdVx, (3.9)

where ds and S(r) are the surface element and sphere of radius r, respectively. The

angular momentum exchange between the neutrinos and matter is described by the right-

hand side. Assuming that the angular momentum transport of the matter by advection

is negligible, the angular momentum of the matter is transferred to the neutrinos via

the term
∫
ξρG

ρdVx, and lost by neutrino emission via the term
∫
jrds. Therefore this

angular momentum loss by neutrinos is

J̇(r) := −
∫
S(r)

jrds = −
∫
S(r)

r2 sin2 θTϕr(ν)ds

= −
∫

ds

∫
dVpr

2 sin2 θfpϕpr. (3.10)

The surface of the integral S(r) can be chosen freely, and I chose it with r = 100 km in the

discussions below. This is because this radius is the largest radius where the numerical

convergence is achieved by the resolution test in section 3.3.4. Besides, a sum over all

neutrino flavors should be taken.

On the other hand, an analytic estimation of the angular momentum loss is proposed

in Epstein (1978). In his paper but in terms of the natural unit, the angular momentum
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loss by neutrinos J̇ is evaluated as

J̇ = −
∫ (

Lν
4πr2

)
ωr2⊥ds, (3.11)

where Lν and r⊥ are the neutrino luminosity and the distance from the rotational axis,

respectively, and the surface of the integral is the “stellar surface” where neutrinos are

emitted. In the context of the CCSN, it is the neutrinosphere. In the derivation, he

assumes the isotropic neutrino distributions in the fluid-rest frame, and hence its angular

momentum in the laboratory frame is achieved by the relativistic beaming by the matter

rotation. In order to exploit this equation, the neutrino luminosity is also needed. For

simplicity, I adopt the black body formula,

Lν = 4πr2 × 7

16
σSBT

4, (3.12)

for each neutrino flavor at the neutrinosphere, where σSB and T are the Stefan-Boltzmann

constant and the matter temperature at the neutrinosphere, respectively. Here the neu-

trinosphere is defined at the radius where the density is ρ = 1011 g cm−3. The expression

is finally multiplied by six, in order to account for the six neutrino flavors.
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Figure 3.23. The time evolution of the angular momentum loss by the neutrino emission.

The red and blue lines show the evaluation from equations (3.11) and (3.10),

respectively.

In figure 3.23, I compare the angular momentum losses estimated from equations (3.11)

and (3.10). Since equation (3.10) is evaluated at r = 100 km, I only plot the time when
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the minimum shock radius exceeds that radius. Although the evaluation by equation

(3.10) shows a gradual increase, the analytic evaluation (equation (3.11) shows a steep

rise and a gradual decrease. The errors between them are ∼ 30% around 100ms after the

core bounce. Although the analytic estimation (equation (3.11)) is simple, this is accurate

enough to know the order of magnitude of the angular momentum loss. Therefore Epstein

(1978) correctly described the basic picture of the angular momentum loss by neutrino

emission.

3.4 Summary and discussion

In order to examine the effects of rotation on the CCSN, the core-collapse simulation with

the rotating progenitor is performed with the Boltzmann-radiation-hydrodynamics code.

Although the morphology of the shock is different from the non-rotating and non-exploding

model in Nagakura et al. (2018), the average shock radii, the neutrino luminosities, and

the neutrino mean energies are similar. Besides, the time-scale ratio diagnostic is less

than unity except for only a limited period. These facts indicate that the rotating model

employed in this chapter can not revive the shock successfully. Recalling that the rotation

velocity adopted here is almost the fastest end according to the stellar evolution theory,

other physical processes than rotation is required for the successful explosion.

Although the failure in the shock revival is observed in the simulation, yet other in-

teresting features related to the momentum space distributions of neutrinos are worth

investigating since the Boltzmann equation is solved directly. In this chapter, the angular

distributions of neutrinos, rotational component of the neutrino flux, and the Eddington

tensor are discussed. Neutrinos are dragged by matter via the relativistic beaming and

hence have rotational velocities. This is indicated from the angular distributions and the

rotational flux. Then, it is demonstrated that the Eddington tensor is determined by

the complicated interactions among the matter velocity, neutrino reactions, and neutrino

flux. The accuracy of the M1-closure method is discussed. The off-diagonal components

of the M1-Eddington tensor are quantitatively and even qualitatively different from that

of the Boltzmann-Eddington tensor. The error of M1-Eddington tensor is ∼ 20% at most.

The reason is that the flux factor solely determines the Eddington factor. Finally, the

angular momentum loss by neutrinos is evaluated from the distribution function and com-

pared with the analytic formula by Epstein (1978). The latter can evaluate the order of

magnitude of the angular momentum loss.

The stellar rotation of 1 rad s−1 at the center is too slow for shock to revive under

axisymmetry. On the other hand, Takiwaki et al. (2016) reported that the low-T/|W | in-
stability helps the neutrino heating to revive the shock as discussed in section 2.2.1. Such

instability may develop if 3D simulations with the Boltzmann-radiation-hydrodynamics

code is performed, and the results may change qualitatively. The T/|W | parameter ob-

tained in section 3.2 may be too small to develop the low-T/|W | instability. Even faster

rotation of, say, Ω0 = 2 rad s−1, however, can develop the instability according to Takiwaki

et al. (2016). Although the rotation employed in this chapter is almost the fastest end, the
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rotation of 2 rad s−1 is still possible. Once after the 3D version of the code is completed

and enough computational resources are acquired, I will perform the 3D simulations.

In order to revive the shock, one of the possible physical processes to consider is the emis-

sion of acoustic waves. This acoustic mechanism, however, works with a longer timescale

∼ 1 s after the core bounce. The Boltzmann-radiation-hydrodynamics code employed in

this chapter requires significant computational cost and hence can not follow such a long

timescale. Therefore an approach with a simplified model is adopted in the next chapter.
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Chapter 4

The Critical Condition for the

Shock Revival by the Acoustic

Mechanism

In chapter 3, I performed the rotating stellar collapse simulation with the Boltzmann-

radiation-hydrodynamics code. Since the explosion failed in the simulation, other physical

processes are required. Among a large number of possibilities discussed in section 2.2, I

resort to the emission of acoustic waves. This is because the acoustic mechanism is

less understood compared with the neutrino heating mechanism, and hence the more

investigations are required.

In order to investigate the acoustic mechanism, I ask how large acoustic power is needed

to revive the stalled shock. The reason is as follows. The later phase than several hun-

dreds of milliseconds after the core bounce, when the acoustic mechanism works, cannot

be examined by the Boltzmann-radiation-hydrodynamics code in chapter 3. Instead of

performing such self-consistent simulations, modeling approaches are useful. As discussed

in section 2.2.2, the emission of the acoustic waves is examined, but the conclusion is

not yet achieved. Therefore I change the point of view from the acoustic emission to the

acoustic heating.

In this chapter, I extend the concept of the critical curve theory described in section

2.2.1. Although only the two-dimensional parameter plane (the neutrino luminosity and

the mass accretion rate) is considered in the original theory, I add another dimension

and discuss the critical “surface”. Such attempts have been made in the context of the

neutrino heating mechanism: Murphy & Dolence (2017) investigated the dependence of

the critical curve on the parameters (e.g., the mass of the central PNS) which are fixed

in Burrows & Goshy (1993), and Iwakami et al. (2014) introduced the rotation. In this

section, the new axis I add is the intensity of the acoustic waves. The critical surface

discussed here will allow us to assess how intense acoustic waves are required for the

CCSNe to explode and estimate the robustness of the acoustic mechanism explosions by

realistic simulations. Note that in this approach the acoustic power and neutrino heating

are treated equally, though Burrows et al. (2006) originally proposed that the acoustic
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power is dominant over the neutrino heating. From this viewpoint, the model considered

in this chapter may be called the “hybrid model”.

In addition, I perform simulations in 1D spherical symmetry and 2D axisymmetry. The

acoustic mechanism only works in multi-dimension since the g-modes are excited, and

hence 1D simulations are not realistic. The 1D flow, however, is much simpler than the

2D flow. I can analyze and capture the essential features of the acoustic waves of the 1D

flow deeper than those in the 2D flow. Thus, analysis of the 1D flow helps to understand

the 2D flow.

This chapter is organized as follows: In section 4.1, the numerical methods are described.

Subsequently, simulation results are shown. First, I show simulations of spherically sym-

metric 1D results in order to get some insight into the acoustic mechanism in section 4.2.

Second, axially symmetric 2D results are shown in section 4.3. In section 4.4, I give some

discussions and conclusions.

4.1 Numerical modelings

In this chapter, the steady accretion flow with constant mass accretion rate Ṁ and con-

stant neutrino luminosity Lν is disturbed by acoustic waves emitted from the central PNS.

For models with various Ṁ and Lν , critical amplitudes of acoustic waves are investigated.

Here, the critical amplitude is defined as the minimum amplitude needed for the shock

to revive, i.e., for the minimum shock radius to reach 500 km within 500ms from the

time when the acoustic waves emission starts. By collecting the critical amplitudes, the

critical surface is drawn in the parameter space spanned by Ṁ , Lν , and critical acoustic

amplitudes.

Basic equations in this chapter are the inviscid hydrodynamics equations with the neu-

trino heating by the light-bulb prescription and Newtonian point-mass gravity:

∂ρ

∂t
+∇·(ρv) = 0, (4.1)

∂ρv

∂t
+∇·(ρvv + PI) = −ρ∇Φ, (4.2)

∂ρ(e+ 1
2v

2)

∂t
+ ∇·

{
ρv

(
e+

1

2
v2 +

P

ρ

)}
= −ρv·∇Φ+Q, (4.3)

∂ρYe
∂t

+∇·(ρvYe) = ρΓ, (4.4)

Φ = −GMPNS

r
, (4.5)

where ρ, v, e, P , Q, Ye, Γ, Φ, G, MPNS, and r are the density, velocity, specific internal

energy, pressure, net neutrino heating rate, electron fraction, neutrino reaction rate, gravi-

tational potential by the PNS, gravitational constant, mass of the PNS, and distance from

the central object. The net neutrino heating rate Q and reaction rate Γ are the sums of

equations (2.58) and (2.59) over i = νe and ν̄e, respectively. Here, the light-bulb method

for the neutrino heating and reaction rates are utilized, and it is validated in Appendix
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A.3. In order to express in vector-invariant form, the unit tensor I and dyadic tensor vv

are used. In this chapter, the PNS mass is fixed toMPNS = 1.4M⊙. The equation of state

(EOS) is the STOS EOS (Shen et al., 1998) introduced in section 2.1.3 for simplicity.

The spherical coordinates are employed, and the 1D spherical symmetry and 2D ax-

isymmetry are imposed. The width of the radial mesh ∆ri at the i-th radial grid point

ri is set to ∆ri = 0.01ri. The inner boundary r0 is fixed to the neutrinosphere rν . In

this chapter, the neutrinosphere is defined as the radius where the density is 1011 g cm−3.

The number of the radial grid is basically 256, but if the outermost radius is smaller than

500 km, the radial grid number is increased to 320. For 2D models, the cell centers and

widths of the zenith angle θ mesh are set to the Gaussian quadrature points and weights,

respectively, in the same way as Sumiyoshi & Yamada (2012). The number of the θ-grid

is 128.

Initial condition is the steady-state solution of equations (4.1)–(4.5) with the stalled

shock. The mass accretion rate and the neutrino luminosity are constant with respect

to the time and model parameters. The construction of the steady-state is described

in section 2.2.1. I further give the quantities at the upstream of the standing shock: the

specific entropy s = 3 in units of the Boltzmann constant kB per nucleon, electron fraction

Ye = 0.5, and radial velocity vr =
√
GMPNS/r.

The hydrodynamical code adopted in this chapter is basically the same one described

in section 2.2.1, but there are several differences: not the self-gravity but the point-mass

gravity is adopted; the acceleration β̇i and the momentum transfer from neutrinos Gi are

neglected; the central part of the computational domain is excised.

The values at the outer boundary are fixed to the steady-state values. In order to inject

acoustic waves from the PNS surface, the time-dependent inner boundary conditions are

imposed. The sinusoidal oscillation around the steady-state value is imposed on the

density as ρ = ρ0(1 + δPℓ(µ) sin(ωt − kr), where ρ0, δ, Pℓ(µ), ω, and k are the steady-

state density at the inner boundary, the normalized dimensionless amplitude, the Legendre

polynomial of ℓ-th order with µ = cos θ, the frequency, and the wave number of the acoustic

wave, respectively. Note that the ω and k are given later. Although the g-mode oscillations

observed in Burrows et al. (2006) are non-spherical, the spherical ℓ = 0 mode is considered

in the 1D simulations in order to understand the acoustic energy transport in CCSNe. On

the other hand, the ℓ = 1 mode, which is the most dominant mode in Burrows et al. (2006),

is adopted in 2D simulations. The specific entropy and the electron fraction at the inner

boundary are fixed at the steady-state values since the perturbations by the acoustic waves

are adiabatic. The EOS determines other thermodynamic quantities such as temperature

and pressure. The velocity at the inner boundary is set to vr = v0 + aPℓδ sin(ωt − kr),
where v0 and a =

√
(∂P/∂ρ)s,Ye

are the steady-state velocity at the inner boundary and

the sound speed there, respectively. By setting k = ω/(v0 + a), the boundary condition

for the velocity is consistent with the outgoing sound waves. The frequency ω is set so

that the oscillation period is 3ms, which is the period of the most prominent g-mode

oscillation in Burrows et al. (2006).

For given parameters of Ṁ , Lν , and δ, simulations are performed 500ms. If the mean
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shock radius goes to larger radii than 500 km within 500ms, the shock is interpreted as

revived. The criterion of 500 km is the same as that employed in Iwakami et al. (2014) and

slightly larger than that of Nordhaus et al. (2010) and Hanke et al. (2012), who adopted

400 km. The shock radius in this chapter is defined as the radius where not the velocity is

a particular value but the specific entropy is s = 6, twice as large as the pre-shock value.

The critical δ for the shock revival is determined as a function of Ṁ and Lν , and then

the critical surface is drawn. For 1D and 2D simulations, the critical values are searched

with intervals of 0.005 and 0.01, respectively.

Before going to the results, let me discuss the robustness of the critical surface. Es-

pecially I measured how much the numerical resolution and initial phase of acoustic

waves affect the critical amplitudes. First, in order to check the effects of the resolu-

tion, I performed additional high-resolution simulations with ∆r = 0.005r at any grid

points. The mass accretion rate and the neutrino luminosity are Ṁ = 0.6M⊙ s−1 and

Lν = 4.0 × 1052 erg s−1. It results in the rise of the critical amplitude by 0.01–0.015.

Second, the effects of the initial phase are examined. I performed four additional simu-

lations. Their numerical resolutions are the same as original simulations, but the initial

phases of the acoustic waves are 0, π/2, π, and 3π/2. The critical amplitude is shifted by

0.005. These two results demonstrated that the critical surface with 1D simulations is de-

termined fairly robustly. I also checked the resolution and initial phase dependence of 2D

simulations. With the doubled number of the radial (angular) grid points, the critical am-

plitude is lowered by ∼ 0.02 (∼ 0.01) at Ṁ = 1.0M⊙ s−1 and Lν = 4.5× 1052 erg s−1. By

changing the initial phase in the same way as 1D, the critical amplitude for 2D simulation

is shifted by ∼ 0.01. Therefore the 2D critical surface is also well determined.

4.2 1D result

4.2.1 critical surface

The critical surface for the 1D simulations is shown in figure 4.1. The models with

parameters on or above the critical surface successfully explode, while those below the

surface fail. For visualization, the sections of the surface by planes with constant Ṁ are

also shown in the lower panel of the figure. In the following of this section, an overview

of a typical simulation is presented, and then the properties of the models on the critical

surface are examined in detail.

Shown in figure 4.2 is the time evolution of the radial velocities of the model with

Ṁ = 0.6M⊙ s−1, Lν = 4.0×1052 erg s−1, and δ = 0.105 as an example of the successful 1D

simulation on the critical surface. The acoustic waves are emitted into the computational

domain from the PNS surface. If the amplitude is large enough, the waves become the

secondary shock waves. Although these secondary shocks are weak (typical Mach number

is ∼ 1.3), the velocity jumps by them are seen as the boundaries between the light and

dark orange colors going to upper right for every 3ms in the top panel of figure 4.2, which

is a zoom-in of the lower panel. The primary shock (the outermost shock) indicated by



4.2 1D result 75

0.2
0.4

0.6
0.8

1 1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
o

u
st

ic
 a

m
p

li
tu

d
e 
δ

mass accretion rate M [�
☉s -1

] neutrino luminosity
 L�

[10
52 erg s

-1 ]

.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

ac
ou

st
ic

 a
m

pl
itu

de
 δ

neutrino luminosity Lν [1052 erg s-1]

1.0 M
⊙

 s-1

0.6 M
⊙

 s-1

0.2 M
⊙

 s-1

Figure 4.1. The critical surface for the 1D simulations (upper panel) and the sections of

the surface by planes of constant mass accretion rates (lower panel). The blue

lines dropped from the surface to the bottom plane in the upper panel indicate

the Ṁ and Lν of the models. The red, green, and black lines correspond to

the sections by the plane with Ṁ = 1.0M⊙ s−1, 0.6M⊙ s−1, and 0.2M⊙ s−1,

respectively. The blue lines in the lower panel are the same as those in

the upper panel. This figure is reproduced from Harada et al. (2017) by

permission of the AAS.
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the boundary of the violet and orange colors in the figure shows tremble motion caused

by the repeating collision of the primary and the secondary shock waves.

The primary shock shows not only the tremble motions apparent in the top panel

of figure 4.2 but also an oscillatory motion with the longer timescale and the growing

amplitude illustrated in the bottom panel of the figure. The period of the latter oscillation

is ∼ 70ms, and the timescale of the advection from the shock to the maximum cooling

point is ∼ 24ms. Since the latter is between 1/4–1/2 of the former as discussed in

Fernández (2012), the oscillatory motion with growing amplitude observed in the figure

is originated from the oscillatory instability found by Fernández (2012).

The oscillatory instability commonly develops in the 1D simulations. Figure 4.3 shows

the comparison of the trajectory of the primary shocks with different δ. The mass accre-

tion rate and the neutrino luminosity are Ṁ = 0.6M⊙ s−1 and Lν = 4.0 × 1052 erg s−1,

respectively. The oscillatory instability of the primary shock is seen for all models pre-

sented in the figure, with the tremble motions caused by the secondary shocks shown in

the inset. The oscillatory motions finally change into runaway shock revivals. This tran-

sition occurs later for the model with smaller δ, and for sufficiently small δ the transition

no longer occurs until 500ms. This behavior demonstrates that there is a threshold value

of δ for the shock revival. Therefore by collecting the critical δ with different Ṁ and Lν ,

the critical surface shown in figure 4.1 is drawn.

Although the acoustic amplitude is employed in figure 4.1, the acoustic power Ėaco,

the heating rate of the matter by the acoustic waves, is more useful in interpreting the

physical picture and comparing with the previous works (Burrows et al., 2006; Yoshida

et al., 2007; Weinberg & Quataert, 2008). Since the acoustic waves are confined within

the primary shock, all of the energy is probably used to revive the shock and the acoustic

power Ėaco should coincide with the acoustic luminosity Laco at the inner boundary. Here,

the acoustic luminosity is defined as the angle-integrated acoustic energy flux. One may

think that the acoustic energy flux is easily calculated from the squared amplitude. Such

a formula is derived with the assumption that the amplitude is small enough for third and

higher order terms to be neglected. The amplitude considered in this chapter, however,

is not necessarily small, and hence the formula for the small amplitudes is inappropriate.

In order to estimate the energy flux of the large-amplitude acoustic waves, I utilized an

extended version of Myers’ theory (Myers, 1986, 1991).

Myers (1986) derived the corollary of the energy conservation theorem for the pertur-

bations in the flow with uniform entropies, i.e., acoustic waves, and then Myers (1991)

derived that in the flow with non-uniform entropies. While he considered the continu-

ity, Euler, and the entropy equations to derive the corollary, the basic equations in this

chapter also include another one, the electron fraction equation (4.4). Here, I extend the

discussion of Myers (1991) in order to derive the corollary that reflects the change of the

electron fraction. The detailed derivations and discussions are presented in appendix B.

According to appendix B, the extension of Myers’ corollary is

∂Edis

∂t
+∇·F dis = −Ddis, (4.6)
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Figure 4.2. The time evolution of the radial velocity profiles. The model with Ṁ =

0.6M⊙ s−1, Lν = 4.0× 1052 erg s−1, and δ = 0.105, on the critical surface, is

presented. The boundaries of colors show shock waves. The upper panel is a

zoom-in figure of the region enclosed by the black rectangle in the lower panel.

The lower panel shows the entire distributions of the velocity profiles. The

lower boundary of the figure is the PNS surface. This figure is reproduced

from Harada et al. (2017) by permission of the AAS.
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Figure 4.3. The evolutions of the primary shock radii of models with Ṁ = 0.6M⊙/s,

Lν = 4.0×1052 erg/s, and different δ indicated in the legend. Both successful

(red and green) and failed (blue and magenta) models are shown. The model

with δ = 0.105 is on the critical surface, and the model with δ = 0.100 is just

below the surface. Note that lines for the successful models are truncated

when the shock reaches the outer boundary. The inset is the zoom-in figure

of the region enclosed by the black rectangle. This figure is reproduced from

Harada et al. (2017) by permission of the AAS.

where

Edis := ρ

(
H −H0 − T0(s− s0)−

µ0

mu
(Ye − Ye0)

)
− m0·(u− u0)− (P − P0) (4.7)

F dis := (m−m0)

(
H −H0 − T0(s− s0)−

µ0

mu
(Ye − Ye0)

)
+ m0

(
(T − T0)(s− s0) +

µ− µ0

mu
(Ye − Ye0)

)
(4.8)

Ddis := −(s− s0)m0·∇(T − T0)− (Ye − Ye0)m0·∇
µ− µ0

mu

+ (m−m0)·
(
ζ − ζ0 + (s− s0)∇T0 + (Ye − Ye0)∇

µ0

mu

)
− (T − T0)

(
Q

T
− Q0

T0

)
+
µµ0

mu

(
T

µ
− T0
µ0

)(
ρΓ

T
− ρ0Γ0

T0

)
.

(4.9)
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Here, mu, H := e + P/ρ + 1
2v

2, m := ρv, T , and s are the atomic mass unit, specific

stagnation enthalpy (the Bernoulli function), mass flux, temperature, and specific entropy,

respectively. By using the chemical potentials of electrons, protons, and neutrons, µe,p,n,

µ is the chemical potential of the electron-type neutrinos defined by µ = µe + µp − µn.

The symbol ζ is defined as ζ := ω×v with ω := ∇×v being the vorticity. The quantities

with and without subscript 0 stand for the unperturbed and perturbed quantities of the

flow, respectively. If s, T , Ye, and µ is the same as those with subscript 0, or equivalently

the neutrino reaction is neglected, and taking the limit of disturbance is weak, we can

reproduce the well-known acoustic energy that is proportional to the squared amplitude

from above expression. Although these expressions are complicated, Edis, F dis, and Ddis

are interpreted as the energy density, the energy flux, and the dissipation, respectively.

This is because the corollary is written in a conservative form with these quantities,

and these quantities reduce to the well-known formulae for the energy density, flux, and

dissipation, in an appropriate limit. For more detailed justification, see appendix B.

Figure 4.4 shows the radial profiles of the acoustic luminosities defined as Laco(r) =

4πr2Faco,r(r) for models on the critical surface. In this figure, acoustic luminosities are

averaged over the first 3ms from the time when the perturbations from the inner boundary

reach a given radius. Although Ėaco should coincide with Laco at the inner boundary,

peculiar behavior is seen on the first two points from the inner boundary in figure 4.4.

This is because the injected acoustic waves are partially reflected in the vicinity of the

inner boundary. Therefore, I choose the acoustic luminosity at the third grid point from

the inner boundary as the acoustic power Ėaco in order to exclude the energy flux of the

reflected waves. Fernández (2012) also observed a similar transient and concluded that

the influence at the third grid point is small. Note that the acoustic luminosities Laco

decrease with radius. This reduction is more significant for larger δ. This is because the

dissipation term Ddis is positive.

Let me estimate the order-of-magnitude of the acoustic power here. Since the 1D simu-

lations are considered in this section, only the radial components of vectors are considered.

The typical values of relevant quantities at r ≃ 50 km are listed as follows: the temperature

kBT0 ∼ MeV; the specific entropy s0 ∼ 10 kB nucleon−1; the electron fraction Ye0 ∼ 0.1;

the chemical potential µ0 ∼ MeV; the specific stagnation enthalpy H0 ∼ 1019 erg g−1; the

mass flux m0r ∼ −1018–19 g cm−2. The typical amplitudes are ∼ 10% of the unperturbed

quantities, except that the mass flux is mr−m0r ∼ (1–10)× |m0r|. Note that m0r is neg-

ative since the unperturbed flow is the accretion flow, and the perturbed flow sometimes

go outward. From these values,

(mr −m0r)(H −H0) ∼ 1036–38 erg cm−2 s−1, (4.10)

(mr −m0r)T0(s− s0) ∼ 1036–38 erg cm−2 s−1, (4.11)

m0r(T − T0)(s− s0) ∼ 1035–36 erg cm−2 s−1, (4.12)

(mr −m0r)
µ0

mu
(Ye − Ye0) ∼ 1034–36 erg cm−2 s−1, (4.13)

m0r
µ− µ0

mu
(Ye − Ye0) ∼ 1033–34 erg cm−2 s−1. (4.14)
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Figure 4.4. The radial profiles of the acoustic luminosity Laco. The model parameters

are on the critical surface, and the mass accretion rate is commonly chosen as

Ṁ = 0.6M⊙ s−1. The luminosities are averaged over 3ms from the time of

the arrival of the acoustic waves from the PNS surface. The “+” symbols rep-

resent the on-grid values. The neutrino luminosity Lν, 52 = Lν/(10
52 erg s−1)

and amplitude δ are indicated in the legend. Note that since the models on

the critical surface are employed, different amplitudes correspond to different

neutrino luminosities. This figure is reproduced from Harada et al. (2017) by

permission of the AAS.

Combining them,

Fdis,r ∼ 1036−38 erg cm−2 s−1 (4.15)

is obtained. With 4πr2 ∼ 1014 cm2 being multiplied, the estimated acoustic power is

Ėaco ∼ 1050–52 erg s−1. (4.16)

By measuring the acoustic power Ėaco from the acoustic luminosity Laco, the critical

surface in the parameter space spanned by Ṁ , Lν , and Ėaco is drawn in figure 4.5. In the

lower panel of the figure, again the sections of the critical surface are shown. The lower

the neutrino luminosity Lν is, the higher the required acoustic power is. This is consistent

with the picture that acoustic power injection causes the explosion.
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Figure 4.5. The same as figure 4.1 except that the vertical axes measures the acoustic

power. This figure is reproduced from Harada et al. (2017) by permission of

the AAS.
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4.2.2 energetics

In order to understand the physical picture, the energetics is investigated deeply in this

section. The acoustic power, the net neutrino heating rate, and the sum of these two

(total heating rate) of the models on the critical surface are displayed in figure 4.6. The

net neutrino heating rate is defined by the integrated Q in equation (4.3), the sum of the

heating and cooling rates, of the initial steady-state over the gain region. For models in

which the neutrino heating rate exceeds the acoustic power, the total heating rate is almost

constant. This is because the decreased net neutrino heating rate is almost compensated

for by the increased acoustic power. This consideration implies that the shock revives

when the total heating rate exceeds a certain threshold value. Since the values of the total

heating rates are different among models with different Ṁ , the threshold may depend on

the mass accretion rate. On the other hand, for the models with the acoustic powers

larger than the net neutrino heating rate, the total heating rates not are constant but

increase with the acoustic powers. Since the required total heating rates are larger than

the threshold value for these models, the heating efficiency of the acoustic waves with

large power may be low.

A candidate origin of the inefficiency is the neutrino cooling. The secondary shock

raises the temperature as indicated in figures 4.7 and 4.9. The higher the temperature

is, the larger the neutrino cooling is, since the neutrino cooling rate is proportional to T 6

where T is the temperature. This neutrino cooling reduces the efficiency of the acoustic

heating. Indeed, −(T − T0)(Q/T −Q0/T0) in Ddis (equation (4.9)) illustrates the energy

loss of the acoustic waves by the neutrino emissions as discussed in appendix B. The larger

the acoustic power is, the less efficient the acoustic power is, since the stronger secondary

shock makes the post-shock temperature higher and the neutrino cooling rate larger.

In figures 4.7, 4.8, and 4.9, the radial profiles of the velocity, temperature, and entropy

at different times are indicated in order to illustrate this effect. The cooling and heating

layers are painted with bluish and reddish colors, respectively. The cooling region initially

resides in the vicinity of the inner boundary. This is because the temperature is high there

at the beginning of the simulations as shown in panels (a) of figures 4.7. As indicated

in panel (b) of figure 4.7, the cooling layer follows the propagating secondary shock.

The reason is that the temperature of the shocked matter rises, and hence the neutrino

cooling rate is enhanced. This enhancement in cooling reduces the efficiency of the acoustic

heating. One of the merits of the acoustic mechanism proposed in Burrows et al. (2006)

is that the acoustic heating is much more efficient than the neutrino heating since all the

energy is confined in the primary shock. It does not mean, however, that all of them are

not necessarily used for the shock revival, according to the results presented here.

The cooling layer is sometimes detached from that in the vicinity of the inner boundary,

and the gap becomes the heating layer as shown in panels (b) of figures 4.7 and 4.8, and

in figure 4.9. This “gap heating layer” is located at the troughs in the temperature. The

compressed matter by the secondary shock is then rarefied subsequently, and hence the

temperature is lowered. This results in the suppression of the cooling and the emergence
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Figure 4.6. The acoustic power (dash-dotted lines), the net neutrino heating rate (dashed

lines), and the total heating rate (solid lines) of the models on the critical

surface. The top, middle, and bottom panels show the models with Ṁ =

1.0M⊙ s−1, 0.6M⊙ s−1, and 0.2M⊙ s−1, respectively. The dotted vertical

lines indicate the points where the acoustic powers and the net neutrino

heating rates are the same. This figure is reproduced from Harada et al.

(2017) by permission of the AAS.
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of the gap heating layer. The heating in this gap is small, however, and the secondary

shock enhances the cooling as a whole.

Although the acoustic heating enhances the neutrino cooling, not all the heating is

consumed by the cooling, either. Figure 4.8 indicates the entropy distributions at the

initial time and the time when the secondary shock collides with the primary shock. This

time of collision is slightly later than the time indicated in panel (b) of figure 4.7. The

entropy production by the merging shocks is seen as a spike in panel (b) of figure 4.8.

Although the entropy production raises the temperature, it is not enough to convert the

heating layer into the cooling layer. This is because the primary shock is far from the

gain radius and the temperature there is initially low. Therefore the deposited energy is

not entirely consumed by the neutrino emission.

If the primary shock advances to the large radii, the cooling layer no longer catches up

with the secondary shock before the primary and secondary shocks collide as illustrated in

figure 4.9. This is because the temperature gets lower with larger radii and the rise of the

temperature by the secondary shock is not enough for the neutrino cooling to dominate

over the heating. Although some of the energy provided by the secondary shock is lost

via neutrino emissions, most of them are still available for the explosion.

Not only the neutrino cooling discussed above but also the reflection of the secondary

shocks may make the acoustic heating inefficient. When the secondary shock collides with

the primary shock, the rarefaction wave or reverse shock is formed according to the shock

tube theory. In the models discussed here, only the rarefaction wave is observed. An

example of the rarefaction wave is seen at r ∼ 100 km in panel (b) of figure 4.8. Due to

the reflection, the primary shock does not get all the power of the secondary shock, and

hence the efficiency of the acoustic heating is lowered. Note that the reflection may not

reduce the efficiency in the realistic simulations where the Dirichlet-type inner boundary

is not imposed unlike the simulations in this chapter since the reflected waves may collide

with the PNS and be re-emitted, and finally the whole power may be provided to the

primary shock.

4.2.3 explosion diagnostics

In section 2.2.1, the timescale ratio and the antesonic condition are described as the

diagnostics to predict the shock revival. Although they are suggested in the context of

the neutrino heating mechanism, they may be applicable since the model examined in

this chapter can be seen as the hybrid mechanism as discussed at the beginning of this

chapter.

As discussed in sections 2.2.1 and 3.2, the shock successfully revives when the timescale

ratio exceeds unity. Instead of the ratio used in section 3.2, the advection and the heating

timescales are evaluated as

τadv :=

∫ rs

rg

dr

|vr|
(4.17)
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Figure 4.7. The radial profiles of the temperature (green solid line) and the velocity (black

dashed line) at t = 0.25ms (panel (a), shortly after the onset of the simu-

lation) and 1.75ms (panel (b), the time when the secondary shock slightly

propagate outward). Note that the secondary shock in panel (b) is seen as the

jump in the radial velocity at r ∼ 90 km. The reddish and bluish regions are

the gain and cooling layers, respectively. The adopted model is on the critical

surface and the parameters are Ṁ = 0.6M⊙ s−1, Lν = 3.0×1052 erg s−1, and

δ = 0.280. This figure is reproduced from Harada et al. (2017) by permission

of the AAS.
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Figure 4.8. The same as figure 4.7, except that the entropy profiles instead of the tem-

perature profiles are shown with violet solid lines, and t = 2.50ms, when

the secondary shock collides with the primary shock, is employed for panel

(b). This figure is reproduced from Harada et al. (2017) by permission of the

AAS.
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Figure 4.9. Identical to Figure 4.7 except that the time is much later, t = 8.75ms. This

figure is reproduced from Harada et al. (2017) by permission of the AAS.

and

τheat :=

∫ rs
rg

dV ρ|Φ|∫
dV Q

, (4.18)

respectively, where rg, rs, and dV are the gain radius, the shock radius, and the volume

element, respectively. Shown in figure 4.10 is the timescale ratios with models on and

below the critical surface, i.e., the successful and failed models, respectively. The differ-

ences between the successful and failed models are small. Even the ratio in failed models

exceeds unity at some time, and the shock revival of successful model does not necessarily

occur soon after the ratio exceeds unity. Therefore, this diagnostic is not sensitive enough

to distinguish the explosion or failure.

According to the antesonic condition discussed in section 2.2.1, an explosion occurs when

the maximum antesonic factor max(a2/v2esc) exceeds the critical value, ∼ 0.2. Figure 4.11

shows the maximum antesonic factor of models just on (successful models) and below

(failed models) the critical surface. In this section, I searched the maximum value of the

antesonic factor in a space-time domain below the shock and before the explosion. The

beginning of the explosion is identified with the time when the shock radius reaches its

minimum because the shock radius undergoes rapid expansion just after its minimum is

achieved as shown in figure 4.3. For the failed models, the maximum antesonic factor is

searched until 500ms.

Contrary to the original discussion in Pejcha & Thompson (2012), almost all of the

successful models have smaller max(a2/v2esc) compared to the failed models. Although
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Figure 4.10. Timescale ratios of selected models on and below the critical surface. Red

and blue lines show the ratios of successful and failed models, respectively.

Different panels show the models with different Ṁ and Lν,52 as shown at

the top left of each panel in units of M⊙ s−1 and 1052 erg s−1, respectively.

Note that the timescales τadv and τheat are averaged over 3ms before taking

the ratio. This figure is reproduced from Harada et al. (2017) by permission

of the AAS.
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Figure 4.11. The maximum antesonic factors max(a2/v2esc) for different neutrino lumi-

nosities and mass accretion rates. Solid lines stand for the successful models

on the critical surface, while dashed lines are the failed models just below

the critical surface. The top, middle, and bottom panels show the models

with Ṁ = 1.0M⊙ s−1, 0.6M⊙ s−1, and 0.2M⊙ s−1, respectively. This figure

is reproduced from Harada et al. (2017) by permission of the AAS.
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Figure 4.12. Entropy distributions for the 2D model with Ṁ = 0.6M⊙/s, Lν = 4.0 ×
1052 erg/s, and δ = 0.07, on the critical surface. Each panel corresponds

to the different time from the onset of the injection of the acoustic waves

as indicated in the panels. The horizontal and vertical lengths are also

displayed in the figure with arrows. The central white regions are PNSs

and excised from the computational domain. The symmetry axis is the left

end of each panel. This figure is reproduced from Harada et al. (2017) by

permission of the AAS.

the antesonic condition is interpreted as the condition for the shock revival, it originally

means the condition for the non-existence of the steady-state solution. Therefore it is not

surprising that the antesonic condition cannot distinguish the successful and failed models

in which the dynamical processes play crucial roles.

Conditions discussed above are suggested in the context of the neutrino heating mecha-

nism. With this in mind, it is natural that these conditions cannot explain the explosions

by the acoustic models. Conversely, if a model fails to explode by the neutrino heating

mechanism and does not satisfy these conditions, one cannot conclude that the model also

does not explode by the acoustic (or hybrid) mechanism.

4.3 2D result

Although the 1D simulations are simple enough to understand the relevant physical pro-

cesses, the acoustic mechanism works in multi-dimensions intrinsically since the g-mode

which is the origin of the acoustic waves are non-spherical mode. In this section, the 2D

simulation results are presented. Numerical settings are already explained in section 4.1.

Before going to the critical surface, let me illustrate the typical evolution of the 2D

models. Shown in figure 4.12 is the entropy distributions in the meridional section at

the chosen times indicated in each panel. The model parameters are Ṁ = 0.6M⊙ s−1,

Lν = 4.0× 1052 erg s−1, and δ = 0.07. This model is on the critical surface, and hence the
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Figure 4.13. The trajectory of the primary shock for the successful (failed) model on (just

below) the critical surface indicated with red (blue) lines. The mass accre-

tion rate and the neutrino luminosities are 0.6M⊙ s−1 and 4.0×1052 erg s−1,

respectively. The solid lines represent the mean shock radii, and the dashed

lines indicate the maximum and minimum shock radii. The red lines are

truncated at the time when the maximum shock radius reaches the outer

boundary. This figure is reproduced from Harada et al. (2017) by permission

of the AAS.

shock successfully revives. The shock is almost spherical initially (t = 30ms), then takes

prolate shape by large bubbles which are created by the dipolar acoustic waves emitted

from the PNS surface, which oscillates in ℓ = 1 angular mode (t = 110, 230ms). The

shape of the shock changes with time and the shock revives finally (t = 408ms).

Figure 4.13 shows the time evolution of the primary shock for both successful and failed

models. In the early phases, the shock evolutions are similar. Both shocks expand for

the first ∼ 100ms and are stalled for the next ∼ 100ms. The differences appear in the

late phase. For the failed model, the mean shock radius is almost constant until 500ms.

For the successful model, on the other hand, the mean shock radius rapidly expands and

reaches 500 km at ∼ 410ms. The difference in δ between these models is only 0.01.

By collecting the successful models like that indicated in figures 4.12 and 4.13, the

critical surface for the 2D models is drawn in figure 4.14. It is in the space spanned by

Ṁ , Lν , and δ. It should be noted that the critical surface for 2D models has some ambi-

guity contrary to the 1D models. Table 4.1 describes the success or failure of the shock
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Figure 4.14. The same as figure 4.1 except that they are for the 2D models and the 1D

counterparts are also illustrated in the lower panel. This figure is reproduced

from Harada et al. (2017) by permission of the AAS.
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Table 4.1. Success/Failure Score-sheet of the acoustic mechanism for the 2D models. This

table is reproduced from Harada et al. (2017) by permission of the AAS.

Ṁ = 1.0M⊙ s−1

Lν = 4.5× 1052 erg s−1 Lν = 4.0× 1052 erg s−1

δ = 0.40 successful δ = 0.24 successful

δ = 0.39 successful δ = 0.23 successful

δ = 0.38 failed δ = 0.22 failed

δ = 0.37 successful δ = 0.21 successful

δ = 0.36 failed δ = 0.20 failed

δ = 0.35 successful δ = 0.19 failed

δ = 0.34 failed

δ = 0.33 failed

revival for models with Ṁ = 1.0M⊙ s−1, Lν = 4.5 × 1052 erg s−1 and 4.0 × 1052 erg s−1,

and several δ’s. As δ for models with both Lν ’s increases from some low value, a suc-

cessful model appears. Above that model, failed models appear again. If δ increases

further, only successful models appear finally. Since the turbulence develops in the 2D

models due to the convection and/or SASI, its stochastic nature affects whether the

shock revives or not. Taking the ambiguity into account, the definition of the criti-

cal surface can be either the surface below which all models fail or that above which

all models succeed: the points (Ṁ, Lν , δ) = (1.0M⊙ s−1, 4.5 × 1052 erg s−1, 0.35)

and (1.0M⊙ s−1, 4.0 × 1052 erg s−1, 0.21) are on the critical surface with the former

definition, while the points (Ṁ, Lν , δ) = (1.0M⊙ s−1, 4.5 × 1052 erg s−1, 0.39) and

(1.0M⊙ s−1, 4.0× 1052 erg s−1, 0.23) are on the surface with the latter definition. In this

chapter, the former definition is employed.

For the comparison between the critical surfaces for different dimensional models, the

sections of the critical surfaces for both 1D and 2D models by planes with constant Ṁ are

shown in the lower panel of figure 4.14. The critical amplitudes for both the 1D and 2D

models are similar, but those for the 2D models with large Lν are smaller than those for

the 1D models, and vice versa for models with small Lν . This similarity is not essential,

however, since the ℓ = 0 mode amplitude for the 1D models and the ℓ = 1 mode amplitude

for the 2D models are compared. For the comparison between the 1D and 2D models, not

the amplitude but the acoustic power is the appropriate quantity.

In order to estimate the acoustic power, the Myers’ flux is again utilized. The radial

component of Myers’ flux is shown in figure 4.15. The lateral component is not shown

since it is negligible compared with the radial component. The outer black semi-circles

in each panel are the shock radii of the initial condition. As seen from the figure, the

radial component of the Myers’ flux is positive for almost whole regions inside the shock,

indicating that the outward directed acoustic waves indeed transfer the energy outward.

The Myers’ flux is intense in the vicinity of the symmetry axis and weak on the equator

since the acoustic waves are emitted in a dipolar way. Note that the negative Myers’ flux
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Figure 4.15. The distributions of the radial component of the Myers’ flux. Two models on

the critical surface are adopted: left panel–Lν, 52 = Lν/(10
52 erg s−1) = 4.0,

δ = 0.07 and right–Lν,52 = 3.5, δ = 0.22. Blue colors indicate the positive

radial flux, while red colors are the negative one. The central black regions

are the PNSs and excised from the simulation. The outer black thin circles

are the positions of the initial shock radii. Note that the Myers’ flux outside

the black thin circle is not shown. This is because the unperturbed flows

are quite different from the perturbed flow after the passage of the primary

shock, and hence Myers’ flux does not purely describe the energy transport

by the acoustic waves to the primary shock. This figure is reproduced from

Harada et al. (2017) by permission of the AAS.

appears in the southern region close to the PNS in the right panel. Since the background

density gradient is steep in the vicinity of the PNS surface, the acoustic waves are reflected

inward there.

Since the Myers’ flux is positive almost everywhere, the acoustic luminosity can be

estimated by the surface integral and employed as the acoustic power. In figure 4.16, the

acoustic luminosities for several models are shown. The acoustic luminosity at a radius r

is defined by the 3ms average of the angular integrated Myers’ flux from the instant when
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Figure 4.16. The radial profiles of the periodic averaged acoustic luminosities for the 2D

models with Ṁ = 0.6M⊙/s. Line colors and legends are the same as in

figure 4.4. The “+” symbols are again the on-grid values. This figure is

reproduced from Harada et al. (2017) by permission of the AAS.

the mean radius of the front of the acoustic waves reaches the radius r. This is a similar

procedure to the 1D case once after the Myers’ flux is surface-integrated. The peculiar

behaviors on the first two grid points are also seen like those in figure 4.4, and hence the

values at the third grid points are employed as the acoustic power.

The critical surface using the acoustic power explained above is shown in figure 4.17.

The acoustic-power-critical-surface for the 2D models is systematically below the surface

for the 1D models, although the amplitude-critical surface is similar as shown in figure 4.14.

This is because the amplitudes of the different modes are compared as already discussed.

When the amplitude is so small that the linear theory is applicable, the acoustic power is

proportional to the squared amplitude. Since the perturbation employed in this chapter

is proportional to the Legendre polynomial Pℓ(µ), the acoustic power is proportional to

the angular integrals of the Legendre polynomial
∫ 1

−1
Pℓ(µ)dµ = 2 for ℓ = 0 (1D) and 2/3

for ℓ = 1 (2D). The acoustic power is hence larger for the 1D models than the 2D models

even if the dimensionless amplitude δ is the same.

In order to investigate the energetics in more detail, the total heating rates for both

the 1D and 2D models on the critical surfaces (see figure 4.6) and the neutrino heating

rates are illustrated in figure 4.18. Again the energy required for the shock revival for the
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Figure 4.17. The same as figure 4.14 except that acoustic power is used instead of the

amplitude. This figure is reproduced from Harada et al. (2017) by permission

of the AAS.
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2D models are lower than those for the 1D models. For the circled models in the figure,

the critical acoustic power is negligibly small, and the shock revives essentially only by

the neutrino heating. The acoustic wave is the driver of hydrodynamic instability, which

supports the neutrino heating, rather than the energy source of the shock revival. As

indicators of the turbulent effects induced by the instability, the turbulent kinetic energy,

the gain mass (the mass in the gain layer), and the neutrino heating rate are shown in

figure 4.19. The turbulent kinetic energy Eturb shown in the top panel of the figure is

defined as

Eturb =
1

2

∫
gain

dV ρ
(
v2θ + (vr − ⟨vr⟩)2

)
, (4.19)

where ⟨vr⟩ is the spherically averaged radial velocity. The domain of integration is the

gain layer. The immediate increase in the turbulent kinetic energy Eturb indicates the

development of the turbulence owing to the injected acoustic waves. The developed tur-

bulence induces the increase in the gain mass as seen in the middle panel of the figure,

indicating the increase in the dwell time as discussed in section 2.2.1. The longer the dwell

time is, the higher the neutrino heating rate in the gain region is, as shown in the bot-

tom panel of the figure. This enhancement in the neutrino heating rate does not appear

in the model without the acoustic wave injection, and hence the acoustic waves are still

indispensable for the shock revival even if the amplitudes are small. The shock revivals in

these models are, however, essentially not by the acoustic mechanism but by the neutrino

heating mechanism.

For the models with small Lν , the injection of the acoustic power plays a crucial role,

i.e., the shocks of these models revive by the acoustic mechanism. The required total

heating rates of the 2D models are again smaller than those of the 1D models as expected

from figure 4.17. A probable reason for the lower total heating rate of the 2D models

on the critical surface is the enhancement of the neutrino heating by the fluid instability

again. The neutrino heating, however, plays only a minor role in these models. Similar

to figure 4.6, the total heating rate increases with decreasing neutrino heating rate for

the 2D models, implying that the acoustic heating is inefficient. The through analysis

like what is conducted for the 1D models in section 4.2 cannot be performed for the 2D

models since the 2D flows are complicated. It is probable, however, that the reason is the

same as the 1D cases: the enhancement of the neutrino cooling by secondary shocks and

the partial reflection of acoustic waves are the origins of the reduction of the efficiency of

the acoustic heating.

4.4 discussion and conclusion

The shock revival in the supernova core by the acoustic wave injection from the central

PNS is simulated under 1D spherical and 2D axial symmetry in a phenomenological way.

Although the original acoustic mechanism only works in multi-dimensions, the 1D sim-

ulations are first performed in order to understand the energy transport and deposition

by the acoustic waves. By performing simulations with various mass accretion rates Ṁ ,

neutrino luminosities Lν , and the amplitudes of the injected acoustic waves δ, I draw
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Figure 4.18. The neutrino heating rates (dotted lines) and the total heating rate (the

sum of the acoustic power and the neutrino heating rate) for the 1D (dashed

lines) and 2D (solid lines) models on the critical surfaces. The top, middle,

and bottom panels represent the models with Ṁ = 1.0M⊙ s−1, 0.6M⊙ s−1,

and 0.2M⊙ s−1, respectively. The models whose critical acoustic powers are

negligible compared to the neutrino heating rates are marked with circles.

This figure is reproduced from Harada et al. (2017) by permission of the

AAS.
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Figure 4.19. Comparisons of the turbulent effects on the models with (red) and with-

out (blue) acoustic waves. The top, middle, and bottom panels display the

turbulent kinetic energy, the gain mass, and the neutrino heating rate, re-

spectively. The mass accretion rate and the neutrino luminosity for both

models are 1.0M⊙ s−1 and 5.0× 1052 erg s−1, respectively. The model with

acoustic waves employed here is one of the models with circles in figure

4.18. This figure is reproduced from Harada et al. (2017) by permission of

the AAS.
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the critical surface which divides the successful and failed model parameters in the space

spanned by Ṁ , Lν , and δ. The secondary shocks, into which the acoustic waves steepen,

repeatedly collides with the primary shock. As a consequence, the primary shock oscillates

with growing amplitude, and eventually shows the runaway expansion for the successful

models. The shock revival in this chapter occurs due to a combination of the neutrino

and acoustic heating, however, and the mechanism considered in this chapter might be

called the hybrid mechanism.

The Myers corollary of the energy conservation theorem is extended in order to consider

the energy flux of the finite-amplitude acoustic waves with the neutrino reactions. Thanks

to this extension, the acoustic power Ėaco instead of the amplitude is estimated, and

the critical surface is re-drawn in the space spanned by Ṁ , Lν , and Ėaco. With this

critical surface, the energetics is discussed. For the models on the critical surface with

large Lν , the total heating rates of the acoustic power and the neutrino heating almost

only depend on the mass accretion rate. The decrease in the neutrino heating rate is

nearly compensated for by the increase in the acoustic power, and hence there may be a

threshold value of the total heating rate for the shock revival. For the models with small

Lν , however, the total heating rates increase with the decreasing Lν . This is because the

acoustic waves with large amplitude form the strong secondary shocks. It results in the

higher temperatures, and the neutrino cooling is enhanced. Due to this enhancement,

more energy than the threshold in the total heating rate should be injected, and hence

the more acoustic power is required. In addition, the timescale ratio and the antesonic

condition are applied in order to check whether these diagnostics for the shock revival by

the neutrino heating mechanism are also useful in the present mechanism or not. Both of

them cannot distinguish the successful models from the failed models.

Next, the 2D axisymmetric simulations are conducted. First, the critical surface for

the 2D simulations is drawn in the space spanned by Ṁ , Lν , and δ. Subsequently, the

acoustic power is estimated by using the extended Myers’ theory again, and the critical

surface with Ṁ , Lν , and Ėaco is drawn. The comparison between the 1D and 2D models

demonstrates that the critical acoustic powers for the 2D models are always smaller than

those for the 1D models. The reason is that the acoustic waves induce fluid instability

and hence the turbulence, which then enhance the neutrino heating.

From the viewpoint of the energy, let me discuss the results reported in Burrows et al.

(2006) with the critical surface obtained in figure 4.17. Burrows et al. (2006) conducted the

numerical simulation in a self-consistent manner, and hence the mass accretion rate and

the neutrino luminosity depend on time. A representative combination of parameters is

needed for the comparison with the critical surface, and I detected that Ṁ ∼ 0.1M⊙ s−1

and Lν ∼ 2.0 × 1052 erg s−1 are the representative values from their simulation. The

acoustic power estimated in Burrows et al. (2006) is ∼ 4 × 1051 erg s−1. It is likely that

this power is much larger than the critical acoustic power obtained. The critical acoustic

power for the shock revival of the model with Ṁ ∼ 0.2M⊙ s−1 and Lν ∼ 2.0×1052 erg s−1

is Ėaco ∼ 9×1050 erg s−1 in this chapter. Because the critical acoustic power decreases with

the mass accretion rate according to figure 4.17, the critical acoustic power for the model
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with (Ṁ, Lν) = (0.1M⊙ s−1, 2.0× 1052 erg s−1) is likely smaller than ∼ 9× 1050 erg s−1.

Therefore the estimated acoustic power by Burrows et al. (2006) is large enough for the

shock to revive via the acoustic mechanism. Incidentally, the acoustic power suggested

by Yoshida et al. (2007) is slightly above the critical surface, and the shock can revive via

the acoustic mechanism. The acoustic power estimated by Weinberg & Quataert (2008)

is, on the other hand, much smaller than the critical value, and the shock revival likely

fails.

There may be another interesting constraint for the acoustic mechanism. The maximum

possible value for the acoustic amplitude δ is unity since δ > 1 results in the negative

density at the PNS surface. With a linear extrapolation of the critical surface in figure

4.14 to δ = 1, the section of the critical surface by the plane with δ = 1 passes through

the points (Ṁ, Lν) = (1.0M⊙ s−1,∼ 2 × 1052 erg s−1), (0.6M⊙ s−1,∼ 1 × 1052 erg s−1),

and (0.2M⊙ s−1,∼ 1× 1052 erg s−1). This section is a kind of the critical curve: for given

mass accretion rates, the models with neutrino luminosities lower than these values do

not explode whatever intense acoustic waves are injected. It is worth noting that only

sinusoidal perturbations with the period of 3ms are imposed at the inner boundary in

this chapter, and hence other types of perturbations (different angular modes, oscillation

periods, and so on) may result in other estimations of the critical values. The resultant

critical values probably do not change by the order of magnitude since the condition

that the density is positive limits the maximum fluctuation amplitude whatever types of

disturbances are considered.

With the critical surface obtained in this chapter, now the acoustic power required to the

shock revival can be estimated, and it seems to be consistent with the realistic simulations.

It is hence evident that the shock can certainly revive by the acoustic mechanism, though

it depends on the emission of the acoustic waves. There are some caveats, however.

First, the turbulence should have existed in the postshock flows before the acoustic wave

emission from the PNS since the g-mode oscillation is excited originally by the turbulence.

The turbulence hence affects not only the heating processes by the acoustic waves but also

the generation of acoustic waves itself. Although these effects are also important, it is

beyond the scope of this dissertation. Second, the 2D simulations are considered in this

chapter and the original works by Burrows et al. (2006, 2007a,b). In the 3D, however, the

properties of turbulence are different due to the inverse cascade as discussed in section

2.2.1. The turbulent eddy is small in 3D (e.g., Couch, 2013; Takiwaki et al., 2014; Melson

et al., 2015) and may reduce the neutrino heating rate shown in figure 4.19, and hence

the more acoustic power may be required, i.e., the critical surface may rise. On the

other hand, smaller turbulent eddies may produce the weaker g-mode oscillation on the

PNS, and hence the emitted acoustic waves may also be weaker. These issues should be

addressed somewhere, but it is not in the scope of this dissertation.
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Chapter 5

Summary and Conclusions

In this dissertation, I investigate the explosion mechanisms of the CCSNe with numerical

simulations. The explosion mechanism is still unclear despite much effort paid by numer-

ous supernova modelers. It is determined by the complex interplay among the hydrody-

namics, neutrino transport and reactions, nuclear EOS, and strong gravity. Therefore only

the numerical simulations can elucidate the explosion mechanism. Several hypotheses of

the explosion mechanism have been proposed so far, and which hypothesis is the most

realistic is addressed by careful examinations on each hypothesis. In this dissertation, the

neutrino heating mechanism and the acoustic mechanism are investigated by the numeri-

cal simulations with different levels of sophistication. I give the summary of what is done,

what is found, and what is the consequence, and subsequently, conclude this dissertation

with some future prospects.

First, the neutrino heating mechanism is investigated. Since the neutrino transport

plays a vital role in this mechanism, the Boltzmann-radiation-hydrodynamics code, which

solves the Boltzmann equation for the neutrino transport directly, is employed. The

preceding simulation demonstrated that a non-rotating progenitor fails to show the shock

revival (Nagakura et al., 2018), and hence whether the effects of rotation lead to the

successful shock revival or not is investigated in chapter 3. The rotation certainly affects

the morphology of the shock. Entropy distributions affected by the centrifugal force are

observed. The mean shock radius, the neutrino luminosity, and the mean energy of the

neutrinos for the rotating model are, however, very similar to those for the non-rotating

counterpart which does not explode. Besides, the timescale ratio, the commonly used

diagnostic for the shock revival, exceeds unity for only a limited period. These results

imply that the rotation employed in this chapter does not affect the explodability, although

it is almost the fastest end expected from the stellar evolution theory.

Incidentally, the distributions of neutrinos in the momentum space is examined, al-

though it does not directly measure the explodability. This is motivated by the fact

that the distribution function in the phase space is directly accessible thanks to the

Boltzmann-radiation-hydrodynamics code. The effects of rotation on the Ye prescription

(Liebendörfer, 2005), the energy dependence of the angular distribution in the momentum

space, and the angular moments of the distribution function are investigated. Especially,

the careful attention is paid for the second angular moment, or the Eddington tensor.
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It is found that the Eddington tensor is determined by the complex combination of the

neutrino flux, the neutrino reactions, and the matter velocity. Besides, the accuracy of

one of the approximate methods for neutrino transport, the M1-closure method, is exam-

ined. The estimated error is ∼ 20% at most. Finally, the angular momentum transport

by neutrinos is evaluated. According to the results, the analytic prescription proposed

in Epstein (1978) is accurate enough to estimate the order of magnitude of the angular

momentum loss.

Since the rotation does not lead the successful shock revival, other physical processes

should be considered. There are several possibilities including the updated microphysics,

general relativistic gravity, and so on. Besides, the acoustic mechanism is also a possible

scenario. In this dissertation, the acoustic mechanism is investigated next.

The acoustic mechanism works after the neutrino heating mechanism fails, and hence it

requires long-term simulations exceeding O(1) s after the core bounce. The significant

computational cost needed by the Boltzmann-radiation-hydrodynamics code prohibits

such long-term simulations. Instead, I resort to another phenomenological approach in

chapter 4: the critical surface drawn in the parameter space spanned by the mass ac-

cretion rate, neutrino luminosity, and acoustic power. In order to estimate the acoustic

power with large amplitude waves and neutrino reactions, I extend the Myers’ corollary

of the energy conservation theorem. First, the critical surface for the 1D spherically

symmetric simulations is drawn, although the acoustic mechanism intrinsically works in

multi-dimensions. This is because the 1D simulations are simple and easy to understand

the physical picture. Indeed, by investigating the energy injection of the acoustic waves

in the 1D simulations, it is found that there exists threshold value of the total heating

rate (the sum of the acoustic power and the neutrino heating rate) depending on the mass

accretion rate. It is also detected that the acoustic wave with large amplitude enhances

the neutrino cooling by rising the postshock temperature, and hence not all of the acoustic

power is used for the shock revival.

The shock revival in 2D by the acoustic mechanism is examined subsequently. By

exploiting the extended Myers’ corollary again, the critical surface in the space of the mass

accretion rate, neutrino luminosity, and acoustic power is drawn. The critical acoustic

powers are smaller for 2D than those for 1D because the turbulent effects help the neutrino

heating. According to the critical surface for the 2D simulations, the acoustic mechanism

is certainly a possible mechanism since the critical surface suggests that the acoustic power

estimated in Burrows et al. (2006) is enough for the shock to revive, although the emission

process of the acoustic waves is not fully understood yet.

As a consequence of the investigations conducted in this dissertation, the rotation alone

is not enough to revive the shock among many possible missing physics of the neutrino

heating mechanism. The heating by the acoustic waves in the late phase, i.e., the acoustic

mechanism, is one of the promising possibilities. There still are many things to be investi-

gated. In this dissertation, the acoustic mechanism is investigated not in a self-consistent

but in a phenomenological way. In order to fully understand the acoustic mechanism,

the emission of and heating by the acoustic waves should be simulated coherently with
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the time-dependent mass accretion rate and neutrino luminosity. One possible way is to

continue the simulation which fails in the shock revival by the neutrino heating mecha-

nism such as what is presented in chapter 3 by an approximate but self-consistent code.

Since the neutrino heating is less critical in the late phase than the early phase, the

approximate neutrino transport may be sufficient. Although this dissertation relies on

the acoustic mechanism to revive the shock, other possible missing physics is also worth

investigating. Updating the microphysics is one of the main streams of the exploration

of the neutrino heating mechanism as discussed in section 2.2.1. The neutrino reaction

rates continue to be updated both theoretically and numerically, and hence implementing

it in the Boltzmann-radiation-hydrodynamics code is urgent. As for the microphysics,

the EOSs are also continuously updated. For example, the EOS based on the variational

method to model the nuclear force is proposed by Furusawa et al. (2017), and applying it

to the CCSNe simulations is also required. Incorporating the general relativistic gravity

is also important since it not only affects the dynamics in the supernova core but also is

indispensable in calculating the gravitational waves. The implementation of the numerical

relativity in the code is hence also urgent. Indeed, I have already developed the numerical

relativity module in the spherical coordinates proposed by Baumgarte et al. (2013), and

it is now ready to implement in the Boltzmann-radiation-hydrodynamics code. Imple-

menting the updated microphysics and the numerical relativity results in the accurate

prediction of the multi-messenger (neutrinos and gravitational waves) signal. The resul-

tant code is hence pivotal to not only the exploration of the CCSN explosion mechanism

but also the development of the multi-messenger astronomy. Besides, the dimensionality

should not be forgotten. Due to the inverse cascade, the properties of turbulence in 2D

is different from that in 3D. Although it is impossible to extend the dimensionality of the

current Boltzmann-radiation-hydrodynamics code immediately owing to the limited com-

putational resources, such an extension is necessary. By accumulating the improvements

in the understanding of the missing physics, the whole picture of the explosion mechanism

of the CCSNe will be unveiled.
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Appendix A

Code validation

Although the numerical techniques utilized in chapters 3 and 4 are explained in chapter

2, how they work well is not shown so far. In this appendix, the validation of the code

is presented. The Boltzmann-radiation-hydrodynamics code is used in chapter 3 while

the hydrodynamics code with neutrino heating terms by light-bulb method is employed

in chapter 4. Actually, the hydrodynamics parts of both codes are essentially the same

except for the treatment of the neutrino heating and reaction terms, the gravitational

potential, and the acceleration terms. Therefore, the common hydrodynamics part is

validated first in section A.1. Next, the Boltzmann solver implemented in the Boltzmann-

radiation-hydrodynamics code is tested in section A.2. Not only the Boltzmann solver

but also it integrated with the hydrodynamics and gravity parts, namely, the Boltzmann-

radiation-hydrodynamics code, is validated in the section. Finally, the code employed in

chapter 4, the hydrodynamics code with the light-bulb-neutrino-heating is validated in

section A.3. Throughout this appendix, the radial, zenith, azimuthal grid numbers are

denoted as Nr, Nθ, and Nϕ, respectively. For the momentum space, the grid numbers of

neutrino energy and flight direction are written as Nϵ, Nθν , and Nϕν
, respectively.

A.1 Hydrodynamics part

The basic tests for the hydrodynamics part are presented in Nagakura et al. (2011). In

this section, they are described to show the validity of the code employed throughout in

this dissertation.

The standard test of the hydrodynamics code is the 1D shock tube problem. Two

different and uniform fluid states are connected discontinuously initially. Then, three so-

called simple waves are generated: the rarefaction wave, the shock wave, and the contact

discontinuity. The solution of the shock tube problem is obtained analytically by using

simple waves. This analytic solution is compared to the numerical solution.

In figure A.1, the results are presented. Here, two cases are tested. The initial conditions

are (ρL, vL, pL, ρR, vR, pR) = (10, 0, 13.3, 1, 0, 10−6) and (1, 0, 103, 1, 0, 10−2), where ρ, v,

and p are the density, velocity, and pressure, respectively, and the subscripts L and R

indicate the left and right states, respectively. Let me call the cases with the former and

latter initial conditions case A and case B, respectively. The spatial grid number is 400,
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Figure A.1. The shock tube test for cases A (left, at t = 0.4) and B (right, at t = 0.35).

The horizontal axis is the x-coordinate. The solid lines represent the ana-

lytic solutions. The plus, cross, and asterisk symbols indicate the density,

pressure, and velocity, respectively. Note that the spike of the analytic so-

lution around x ∼ 0.85 in the right panel is a density spike. This figure is

reproduced from Nagakura et al. (2011) by permission of the AAS.

and so-called γ-law EOS with γ = 5/3 is employed. Figure A.1 demonstrates that the

shock tube problems are correctly solved.

For the 2D flow test, the steady-state is evolved by the dynamical code, and it is

checked that the solution remains the steady-state. Here, the rotational equilibrium of

the stellar matter is considered as the steady-state solution. The computational domain

is 108 cm < r < 2 × 1010 cm and 0◦ < θ < 90◦, and the grid numbers are (Nr, Nθ) =

(230, 60) and (460, 60). The initial condition is constructed by applying the Hachisu self-

consistent field scheme (Hachisu, 1986; Kiuchi et al., 2010), and then it is evolved with

the hydrodynamical and Poisson equations. Figure A.2 shows the resultant density profile

along the rotational axis at t = 100 s and the initial condition for both resolutions. This

demonstrates that the hydrodynamics code employed here can correctly describe the 2D

steady-state solution with sufficiently high resolution.

A.2 Boltzmann solver

The hydrodynamical part of the code is validated in the previous section. In this section,

the Boltzmann solver employed in chapter 3 is validated. They are described in Sumiyoshi

& Yamada (2012), Nagakura et al. (2014), and Nagakura et al. (2017).

A.2.1 Validations with the static background

The basic tests for the Boltzmann solver implemented in the Boltzmann-radiation-

hydrodynamics code with the static background are reported in Sumiyoshi & Yamada

(2012). In the following, code validations in the paper are described in order to convince

the reader that the code successfully works. The tests conducted in the following are the
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Figure A.2. The steady-state solution of the rotational equilibrium of the stellar matter.

The density profiles of the initial condition (exact, red solid lines) and at

t = 100 s from the beginning of calculation (Nr grids, green dashed lines)

along the rotational axis are shown. The employed radial grid numbers

are Nr = 230 (upper panel) and Nr = 460 (lower panel). This figure is

reproduced from Nagakura et al. (2011) by permission of the AAS.

spatial diffusion of neutrinos in the optically thick regime, the free-streaming of neutrinos

in the optically thin regime, the energy spectrum of the steady-state neutrinos, the time

evolution to the equilibrium state, the absorptivity and emissivity of neutrinos, and the

steady-state neutrino distributions with realistic background of the CCSN in 1D and 2D.

First, the diffusion of neutrinos is tested. In the optically thick limit, the neutrinos

behave diffusively. Therefore the analytic solution of the diffusing Gaussian packet is

useful. It is expressed as

f(r, t) = f0

(
t0

t0 + t

)α
exp

{
− |r − r0|2

4D(t0 + t)

}
, (A.1)
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where r0, f0, t0, D = cλ/3, c, and λ are the central position of the packet, the initial

central value of the distribution, the initial time, the diffusion coefficient, the light speed,

and the mean free path of the isotropic scattering, respectively. The index α = Nd/2 is

related to the spatial dimension, Nd. Note that the time t is measured from the initial

time t0.
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Figure A.3. The spherical diffusion of the Gaussian packet of neutrinos. The radial pro-

files of the numerical solutions of the neutrino densities at t = 0 s (blue

crosses) and t = 10−4 s (red crosses) are compared to the analytic solution

(black solid lines). This figure is reproduced from Sumiyoshi & Yamada

(2012) by permission of the AAS.

First, in figure A.3, the diffusion of the packet at the coordinate center is shown. Since

r0 = 0, the solution is spherically symmetric although the calculation is done in 3D.

The computational domain is 0 ≤ r ≤ 5 km, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π, respectively,

and the grid numbers are (Nr, Nθ, Nϕ, Nϵ, Nθν , Nϕν
) = (80, 18, 36, 2, 12, 12). The mean

free path is set to λ = 103 cm and the initial time is set to t0 = 2.5 × 10−4 s so that

the initial width of the packet is 1 km. Figure A.3 implies that the spherical diffusion of

the Gaussian packet is correctly solved by the Boltzmann solver since the numerical and

analytic solutions coincide.

Next, the diffusion of the 2D Gaussian packet is shown in figure A.4. The center of

the packet r0 is located at 1, 000 km on the equator. The computational domain is a

square with a side of 10 km whose center is the same as the packet. Since the domain

is located far from the center, the coordinates are almost the Cartesian coordinates. It

is useful to employ the coordinates spanned by Z = r cos θ and R = r sin θ instead of r

and θ for the presentation in figure A.4. The grid numbers are (Nr, Nθ, Nϵ, Nθν , Nϕν
) =

(100, 96, 4, 12, 12). Again, λ = 103 cm and t0 = 2.5× 10−4 s. From figure A.4, it is proven

that the Boltzmann solver correctly treats the 2D diffusion.

Then, the Boltzmann solver in the optically thin limit is tested. In the optically

thin region, the neutrinos freely stream with the light speed c. In order to realize

the free-streaming, the neutrino reactions are switched off. In figure A.5, the 1D
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Figure A.4. The 2D diffusion of the Gaussian packet of neutrinos. The numerical so-

lutions (crosses) of the neutrino densities at t = 0 s and t = 10−4 s are

compared to the analytic solution (red and blue solid lines). The profile is

along Z = −8.1 km. This figure is reproduced from Sumiyoshi & Yamada

(2012) by permission of the AAS.

advection of the step-like-distributed neutrinos is shown. The grid numbers are

(Nr, Nθ, Nϕ, Nϵ, Nθν , Nϕν
) = (100, 3, 3, 4, 6, 6). The initial condition is a step-like distri-

bution as shown in the top panel of figure A.5. Here, only neutrinos with cos θν = 0.93247,

which correspond to the most forward grid point in the momentum space, have the

distribution shown in the figure. The azimuthal distribution is uniform. The middle and

bottom panels indicate that the neutrinos freely stream with the light velocity projected

onto the radial direction, c cos θν . The smearing of the step-like distribution is also

seen, but it is not so problematic since the neutrino distributions inside the shock of the

CCSN is not forward-peaked. The smearing is reduced when the spatial and temporal

resolutions are improved though it is not shown.

The collision term is validated under the spherical symmetry subsequently. For the

test, a snapshot of the CCSN whose progenitor mass is 15M⊙ at 100ms after the core

bounce simulated by the spherically symmetric code (Sumiyoshi et al., 2005) is taken as

a background flow. The radial profiles of the density, temperature, and neutrino chemical

potential of this snapshot are shown in figure A.6. In the following, this background is

fixed and the neutrino distribution only is evolved. Firstly, the steady-state solution of

the Boltzmann equation with the collision term is tested, and secondly, the time evolu-

tion toward the equilibrium state is examined. For these calculations, the computational

domain is 0 ≤ r ≤ 1.4 × 103 km, 0 ≤ θ ≤ π/2, and 0 ≤ ϕ ≤ π/2. The neutrino energy

ranges up to 300MeV, and the grid number is Nϵ = 14.

For the steady-state solution, the numerically obtained energy spectrum of neutrinos is

compared to the spectrum obtained from the formal solution. The well-known radiative
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Figure A.5. The free-streaming of neutrinos. The top panel shows the initial condition.

The red lines in the middle (t = 1.0× 10−5 s) and bottom (t = 2.0× 10−5 s)

panels show the subsequent evolutions. The blue dashed lines in the two pan-

els represent the wavefronts analytically obtained. This figure is reproduced

from Sumiyoshi & Yamada (2012) by permission of the AAS.
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Figure A.6. The radial profiles of the density (top), temperature (middle), and neutrino

chemical potential (bottom) at 100ms after the core bounce taken from

Sumiyoshi et al. (2005). This figure is reproduced from Sumiyoshi & Yamada

(2012) by permission of the AAS.
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transfer equation is*1

− d

ds
f(s) = η(s)− χ(s)f(s), (A.2)

where s, η, and χ are the path length, the opacity, and the emissivity of neutrinos,

respectively. Note that the path length s is along the ray of neutrinos and measured

backward from the considered point (s = 0) to the boundary (s = sb). The formal

solution of this equation is

f(0) =

∫ sb

0

e−τ(s
′)η(s′)ds′, (A.3)

with

τ(s) =

∫ s

0

χ(s′)ds′ (A.4)

being the optical depth. The incoming neutrinos at the boundary are neglected.
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Figure A.7. Energy spectra of neutrinos at r = 98.4 km obtained from the formal (equa-

tion (A.3), the black line) and numerical (the red line) solutions. This figure

is reproduced from Sumiyoshi & Yamada (2012) by permission of the AAS.

In figure A.7, the numerical and formal spectra are compared. The steady-state solution

of the Boltzmann equation is obtained by running the Boltzmann solver for a sufficiently

long time. The grid numbers here are (Nr, Nθ, Nϕ, Nϵ, Nθν , Nϕν ) = (200, 3, 3, 14, 24, 6).

The absorption and emission of neutrinos are considered, and the scattering is neglected.

Then, the spectrum numerically obtained as a result of the time evolution of the Boltz-

mann equation and the spectrum obtained from equation (A.3) are compared. The neu-

trino angle is cos θν = 0.99519, the most forward grid point, and the spatial point is

r = 98.4 km. These two spectra agree well.

It is proven that the Boltzmann solver can successfully reproduce the steady-state so-

lution. Next, the time evolution to the steady, equilibrium state is investigated. With the

*1 Not the distribution function f but the specific intencity I = ϵ3cf/(hc)3, where h is the Planck

constant, is usually considered in the radiative transfer equation. Since the neutrino energy does

not change in this equation, which quantity is used does not matter.
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absorption and emission reactions, the time evolution of the distribution function f(t) to

the steady-state is given by

f(t) = (f0 − feq)e−t/τ + feq, (A.5)

where f0, feq, and τ are the initial distribution function, the equilibrium distribution

nothing but the Fermi-Dirac distribution, and the relaxation timescale. The relaxation

timescale is defined as τ = λ/c, with λ and c being the effective mean free path and the

light speed. Here, the effective mean free path is defined as the reciprocal of the sum of

absorptivity of considered reactions. In this test, the electron capture on nuclei and the

pair annihilation reactions, and the isotropic scattering are considered.

1.0

0.5

0.0

f ν

10
-8

10
-7

10
-6

10
-5

10
-4

time [sec]

(a)

Eν=34.0 MeV

Eν=129 MeV

Figure A.8. The numerical evolution of the distribution functions at ϵ = 34.0MeV (blue

crosses) and 129MeV (red crosses) to the equilibrium values are compared

to the analytic solution (black solid lines). This figure is reproduced from

Sumiyoshi & Yamada (2012) by permission of the AAS.

In figure A.8, the time evolution to the equilibrium state is shown. The distributions at

the neutrino energies of ϵ = 34.0MeV and 129MeV are shown. Since the isotropic scat-

tering is switched on, the distributions are isotropic, independent of the neutrino flight

direction. The spatial point considered here is the center, whose density, temperature, and

chemical potential of neutrinos are 3.15 × 1014 g cm−3, 13.4MeV, and 158MeV, respec-

tively, of the CCSN. Initially, the distribution function is set to 10−5 times the equilibrium

value. This figure indicates that the analytical solution is successfully reproduced by the

numerical Boltzmann solver.

Next, the reaction rates considered in the collision terms are tested. The neutrino

reaction rates at the chosen snapshot are also given by the 1D code in Sumiyoshi et al.

(2005). Here, the neutrino reaction rates for the given snapshot is calculated by the

Boltzmann solver and compared to those by the 1D code. This comparison is displayed

in figure A.9 in terms of the radial profiles of the effective mean free paths and the

emissivities. The reactions considered here and their abbreviations are as follows: the

electron capture on nucleon (ecp), the anti-electron capture on nucleon (aecp), the electron
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Figure A.9. The radial profiles of effective mean free paths (left panels) and the emis-

sivities (right panels) of each reaction calculated by the Boltzmann solver

are compared to those by the spherically symmetric code (Sumiyoshi et al.,

2005). The former and the latter are indicated by the symbols and the

lines, respectively. Top, middle, and bottom panels show the effective mean

free paths and emissivities for the electron-type, the anti-electron-type, and

the heavy-lepton-type neutrinos, respectively. The neutrino energy is set to

34.0MeV. The names of reactions indicated near the lines are described in

the text. This figure is reproduced from Sumiyoshi & Yamada (2012) by

permission of the AAS.

capture on nuclei (eca), the nucleon scattering (nsc), the coherent scattering (csc), the

pair production (pap), and the nucleon-nucleon bremsstrahlung (nbr). Note that the

electron capture on nuclei obeys not the updated version in chapter 3 but the prescription

suggested in Bruenn (1985). The neutrino energy considered here is 34.0MeV. This

figure indicates that the evaluations from the two different codes coincide, and hence the

neutrino reactions are correctly implemented.

For the final 1D test with the snapshot at 100ms after the core bounce, the neutrino

number densities and flux of the steady-state solution is compared with the solution

by Sumiyoshi et al. (2005) in figure A.10. The grid numbers to obtain the steady-state

solution are (Nr, Nθ, Nϕ, Nϵ, Nθν , Nϕν ) = (200, 5, 5, 14, 6, 12). The profiles obtained by the

Boltzmann solver are in good agreement with those by Sumiyoshi et al. (2005), indicating

that the Boltzmann solver employed in this dissertation correctly solves the Boltzmann

equation.

In addition to the test using the postbounce snapshot shown in figure A.10, the same

test with the prebounce fluid profile is conducted. The chosen snapshot here is taken at



116 Appendix A Code validation

10
28
 

10
30
 

10
32
 

10
34
 

10
36
 

10
28
 

10
30
 

10
32
 

10
34
 

10
36
 

ne
ut

ri
no

 d
en

si
ty

 [
cm

-3
]

10
28
 

10
30
 

10
32
 

10
34
 

10
36
 

10
5

10
6

10
7

10
8

10
9

radius [cm]

(a)

nνe

nνe

nνµ

 − 

10
38

10
39

10
40

10
41

10
42

10
43

10
38

10
39

10
40

10
41

10
42

10
43

nu
m

be
r 

fl
ux

 [
cm

-s
s-1

]

10
38

10
39

10
40

10
41

10
42

10
43

10
5

10
6

10
7

10
8

10
9

radius [cm]

(a)

Fνe

Fνe

Fνµ

 − 

Figure A.10. The neutrino number densities (left panels) and fluxes (right panels) of the

steady-state solution with the snapshot at 100ms after the core bounce.

Top, middle, and bottom panels show the effective mean free paths and

emissivities for the electron-type, the anti-electron-type, and the heavy-

lepton-type neutrinos, respectively. The solution obtained by the Boltz-

mann solver and that by the 1D code (Sumiyoshi et al., 2005) are indicated

by the symbols and the black solid lines, respectively. This figure is repro-

duced from Sumiyoshi & Yamada (2012) by permission of the AAS.

the time when the central density reaches 1012 g cm−3. The radial profiles of the density,

temperature, and neutrino chemical potential are indicated in the left column of figure

A.11. The neutrino number densities and fluxes obtained by the Boltzmann solver and

the 1D code (Sumiyoshi et al., 2005) are compared in the middle and right columns of

the figure. Again, the results of both codes coincide, indicating the reliability of the

Boltzmann solver.

So far the 1D CCSN profile is employed to test the Boltzmann solver. Finally, the 2D

behavior is tested. In order to obtain a 2D background flow, the snapshot at 100ms after

the core bounce, which is employed in previous tests, is deformed by scaling the radius r

as

r̃ = r(1− 0.4 sin θ), (A.6)

depending on the zenith angle θ. The density contours of the deformed background are

shown in figure A.12.
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Figure A.11. The radial profiles of several quantities before the core bounce, where the

central density reaches 1012 g cm−3. The left column shows the density

(top), temperature (middle), and neutrino chemical potential (bottom).

The middle and right columns display the neutrino number densities and

fluxes of the steady-state solution, respectively. They are the same as figure

A.10 except for the background fluid profiles. This figure is reproduced from

Sumiyoshi & Yamada (2012) by permission of the AAS.

With this background flow fixed, the Boltzmann solver is run for a sufficiently long

period to obtain the steady-state solution. Here, only the electron-type neutrinos and the

emission/absorption reactions are considered. Again, the first octant, i.e., 0 ≤ θ ≤ π/2,

and 0 ≤ ϕ ≤ π/2 is considered and the grid numbers are (Nr, Nθ, Nϕ, Nϵ) = (200, 9, 9, 14).

For the angular coordinates in the momentum space, four sets of grid numbers are em-

ployed: (Nθν , Nϕν ) = (6, 6), (12, 6), (24, 6), and (12, 12). Similarly to figure A.7, the

formal solution of the spectrum is constructed from equation (A.3) and compared to the

numerically obtained spectrum. Here, four spatial points are chosen to examine the spec-

trum: (r, cos θ) = (98, 4 km, 0.082), (198 km, 0.082), (98, 4 km, 0.98), and (198 km, 0.98).

These points are indicated by the triangles and rectangles in figure A.12. For the simula-

tion with (Nθν , Nϕν
) = (24, 6), the distribution with cos θν = 0.99515, the most forward

grid point, is considered and the formal solution is obtained by the integral along the black

solid lines in figure A.12. For the coarser grid simulations, the most forward grid points are

again considered, but the directional cosine of the grid points itself are different from that

in the highest-resolution simulation: cos θν = 0.98156 for Nθν = 12 and cos θν = 0.93247



118 Appendix A Code validation

 !"#
$

%

"

#

&
'(
)
*
+

 !"#
$%"#

,'()*+

'"#'

'-' './0'

'.'

'

'

'

'

'

'

'

-/0

""

"%

log10(ρ)

8

10

12

14

9

11

13

Figure A.12. The density contour obtained by deforming the CCSN profile. The origi-

nal snapshot is taken at 100ms after the core bounce by Sumiyoshi et al.

(2005). The small triangles and rectangles are the points where the neu-

trino distributions are examined. Black solid, short-, and long-dashed lines

are the paths to obtain the formal solutions in figure A.13. This figure is

reproduced from Sumiyoshi & Yamada (2012) by permission of the AAS.
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Figure A.13. The spectra obtained from the numerical and formal solutions of the steady-

state with the fixed 2D background shown in figure A.12. The spatial points

are indicated in each panel, with µ being cos θ. The top panels show the

spectra itself with the highest-resolution simulations and formal solutions.

The bottom panels indicate the relative errors of spectra with different

resolutions. For all models, the most forward grid points in the momentum

space are considered. This figure is reproduced from Sumiyoshi & Yamada

(2012) by permission of the AAS.
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for Nθν = 6. For these simulations, the paths for the formal solution are the black short-

and long-dashed lines in figure A.12. In figure A.13, the comparisons between numerical

and formal solutions are indicated. For the spectra themselves, only the results of the

highest-resolution simulations are shown. All these panels demonstrate that they are in

good agreement. For the relative errors, the results of not only the highest-resolution

simulations but also the lower-resolution simulations are indicated. The errors between

the numerical and formal solutions reduce with increasing the resolution. One may think

that the relative errors at high neutrino energies are large. The distribution function

itself, however, is small there, and hence it is not so problematic. From these results, it

is proven that the Boltzmann solver can correctly treat the multi-dimensional neutrino

transport in the CCSN simulations.

A.2.2 Validations of the special relativistic effects

The tests investigated above consider the static background of fluid. On the other hand,

the fluid velocity cannot be neglected for the actual CCSN. The velocity reaches ∼ 10% of

the light speed at most, and hence the special relativistic effect should not be forgotten.

This is implemented in Nagakura et al. (2014). Here, the code validations reported in the

paper are described.

In order to see the neutrino trapping in moving matter, the relaxation of the neutrinos

to the isotropic distribution in the fluid rest-frame is tested. This test only concerns

the collision term, and hence the spatially one-zone calculation is conducted, and the

advection terms are neglected. The density, temperature, and electron fraction are set

to ρ = 1012 g cm−3, T = 2MeV, and Ye = 0.4. The velocity is set to (vr, vθ, vϕ) =

(
√
2, 1, 1) × 1010 cm s−1, approximately 2/3 of the light speed. Note that this is much

larger than the typical velocity of the CCSNe. The grid numbers in the momentum

space are (Nϵ, Nθν , Nϕν
) = (20, 6, 6). The isoenergetic scattering reactions, namely, the

nucleon scattering and coherent scattering are considered for the collision term. For the

initial condition, the neutrinos are isotropically distributed in the laboratory frame. Since

the isoenergetic scattering is considered, the initial distribution relaxes to the isotropic

distribution in the fluid-rest frame.

In figure A.14, the time evolution of the distribution function in the fluid-rest frame at

ϵfr = 60MeV are shown for several directions, where ϵfr is the neutrino energy measured

in the fluid-rest frame. Initially, the distribution is anisotropic in the fluid-rest frame

due to the Lorentz transformation from the laboratory frame. The distributions in any

direction relax to the isotropic analytical value denoted as “ana”. Relaxation of the spectra

in the fluid-rest and laboratory frames is shown in figures A.15 and A.16, respectively.

Initially, the distributions of the most forward and backward directions are the same in the

laboratory frame and different in the fluid-rest frame due to the Lorentz transformation.

Here, “forward” and “backward” mean the first and last grid point of the θν coordinate.

Owing to the isoenergetic scattering, the distributions of the most forward and backward

directions in the fluid-rest frame become the same while those in the laboratory frame are

different. This behavior is common for the all neutrino energy bins. This result indicates
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Figure A.14. The time evolution of the distribution function in the fluid-rest frame. Lines

other than orange dash-two-dotted line represent the distribution functions

in each angular bin indicated in the legend. Symbols nθν and nϕν indicate

the nθν -th and nϕν -th grid point. The orange dash-two-dotted line is the

analytically estimated isotropic distribution. This figure is reproduced from

Nagakura et al. (2014) by permission of the AAS.
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Figure A.15. Relaxation of the spectra of the forward- (the first grid of the θν coordinate,

red) and backward- (the last grid of the θν coordinate, green) directed

neutrinos in the fluid-rest frame. The left and right panels show the initial

condition and the steady-state solution, respectively. Symbols nθν and nϕν

indicate the nθν -th and nϕν -th grid point. This figure is reproduced from

Nagakura et al. (2014) by permission of the AAS.

that the neutrino trapping in moving matter discussed in section 2.2.1 is correctly realized.

One of the difficulties in the radiative transfer is the radiation field with a discontinuous

background. It is convenient to measure the neutrino energy in the fluid-rest frame since

the matter-neutrino interaction is formulated in that frame. It poses a difficulty if there

is a shock wave in the background matter since the neutrino energy in the fluid-rest frame

suddenly changes even if it does not change in the laboratory frame. The Boltzmann

solver in this dissertation mainly employs the fluid-rest frame although the laboratory
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Figure A.16. The same as figure A.15 except that the laboratory frame is employed. This

figure is reproduced from Nagakura et al. (2014) by permission of the AAS.

frame is utilized subsidiary, and hence this may be problematic.

In order to check whether the Boltzmann solver correctly treats this situation, the

steady-state solution with the discontinuous background is constructed. The computa-

tional domain is 108 cm < r < (108 + 105) cm and the spherical symmetry is imposed.

Since distant point from the origin of the coordinate center is employed, the plane-parallel

flow is realized virtually. The grid numbers are (Nr, Nϵ, Nθν ) = (6, 20, 6). The matter

velocity is set to zero for the first three grid points, while it is set to −2× 1010 cm s−1 for

the last three points. The collision terms are switched off, and hence the optically thin

regime is considered. Outgoing neutrinos with the Fermi-Dirac distribution is injected

from the inner boundary.
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Figure A.17. The spectra of neutrinos with the discontinuous background in the labora-

tory frame (left) and the fluid-rest frame (right). The symbol nr indicates

the nr-th radial grid point and the discontinuity lies between nr = 3 and

nr = 4. This figure is reproduced from Nagakura et al. (2014) by permission

of the AAS.

Figure A.17 shows the resultant spectra in the laboratory and fluid-rest frames. Since

the optically thin regime is considered, the injected spectrum is not affected as shown

in the left panel of the figure. On the other hand, the spectrum in the fluid-rest frame
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suddenly changes due to the discontinuous background as shown in the right panel of

the figure. The figure demonstrates that the radiative transfer with the discontinuous

background is correctly solved by the Boltzmann solver.

The tests of special relativistic effects presented above consider ideal situations. Here, a

test with a more realistic situation is conducted: the dynamical core-collapse of a massive

star. The computational domain is 0 < r < 4, 000 km and spherical symmetry is imposed.

The grid numbers are (Nr, Nϵ, Nθν ) = (300, 20, 8). The progenitor is 15M⊙ model in

Woosley et al. (2002), and the STOS EOS is employed. Not only a special relativistic

simulation but also a non-relativistic simulation is performed.
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Figure A.18. The radial profiles of the neutrino number fluxes when the central density

reaches 1012 g cm−3 (left) and 1014 g cm−3 (right). The red solid lines rep-

resent the result of the special relativistic simulation, whereas the green

dashed lines indicate that of the non-relativistic simulation. This figure is

reproduced from Nagakura et al. (2014) by permission of the AAS.

In figure A.18, the neutrino number fluxes in the laboratory frame when the central

density reaches 1012 g cm−3 and 1014 g cm−3 are indicated for both the special relativistic

and non-relativistic simulations. For the non-relativistic simulation, the neutrino flux is

always positive. This indicates that the neutrinos always escape away from the core and

not trapped. On the other hand, the flux in the special relativistic simulation is negative

for the inner region. Considering that the velocity is negative in this prebounce phase, the

neutrinos are correctly trapped by matter and flow inward in unison. This demonstrates

that the neutrino trapping in the realistic CCSN is correctly reproduced by the Boltzmann

solver.

A.2.3 Validations of the Boltzmann-radiation-hydrodynamics code

The Boltzmann-radiation-hydrodynamics code employed in chapter 3 is implemented and

tested in Nagakura et al. (2017). The tests reported in the paper are described in the

following.

A core-collapse simulation of the 15M⊙ model in Woosley et al. (2002) is conducted

under spherical symmetry. The input physics is the same as that in chapter 3. The
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Figure A.19. The radial profiles of the radial velocity, entropy, temperature, and electron

fraction at the core bounce. The red solid lines named “current” represent

the result by the Boltzmann-radiation-hydrodynamics code, while the green

dashed lines named “past” indicate those by the 1D code in Sumiyoshi et al.

(2005). Note that the horizontal axis is not the radial but the mass coordi-

nate. This figure is reproduced from Nagakura et al. (2017) by permission

of the AAS.

resultant radial profiles of the velocity, entropy, temperature, and electron fraction at

the core bounce are shown in figure A.19. It is compared to the result of the 1D code

described in Sumiyoshi et al. (2005) with the same input physics except for the inclusion

of the general relativistic effects. Although a perfect agreement is not achieved, they agree

reasonably well. The slight differences seen in the figure probably come from the general

relativistic effects, which is not considered in the Boltzmann-radiation-hydrodynamics

code.

In addition, the moving-mesh technique is tested. For the validation, the gravitational

collapse of the 11.2M⊙ model taken from Woosley et al. (2002) is simulated. Since the

non-rotating model is considered, spherically symmetric simulation is run from the onset

of the collapse to the core bounce. After that, the fluid distribution is mapped to the 2D

grids, and axially symmetric simulation is run. At this mapping, the velocity of 100 km s−1

is added along the symmetric axis in the region of r < 30 km in order to mimic the oscil-
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Figure A.20. The time evolutions of velocity (left) and offset (right) of the coordinate

center for the PNS oscillation test. This figure is reproduced from Nagakura

et al. (2017) by permission of the AAS.

lation of the PNS. The grid numbers are (Nr, Nθ, Nϵ, Nθν , Nϕν
) = (192, 32, 20, 4, 4). The

resolution is rather coarse, but it is enough for the current purpose. The resultant veloc-

ity evolution and trajectory of the origin of the spherical coordinates are shown in figure

A.20. Owing to the non-spherical accretion with respect to the PNS, the oscillation of the

PNS is seen. This motion cannot be reproduced by other codes which fix the PNS center

artificially. It is also checked that the central physical quantities take unphysical values

artificially without moving-mesh though it is not shown. The moving mesh technique

successfully captures the proper motion of the PNS without numerical problems.
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Figure A.21. The time evolutions of velocity (left) and offset (right) of the coordinate

center for the PNS kick test. This figure is reproduced from Nagakura

et al. (2017) by permission of the AAS.

On the other hand, the runaway motion of the PNS, or the PNS kick, is tested in

figure A.21. The setup is the same as those in the PNS oscillation test except that not

the velocity but the acceleration of 1011 cm s−1 is permanently imposed along the axis

in the region of r < 30 km. Due to the imposed acceleration, the velocity increases

to reach several thousands of km s−1, and the trajectory indicates the extremely fast

kick of the PNS. Note that the PNS kick velocity is O(100) km s−1 typically. Figure
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Figure A.22. The electron-type neutrino number density in the laboratory frame at 10ms.

This figure is reproduced from Nagakura et al. (2017) by permission of the

AAS.

A.22 indicates the electron-type neutrino number densities in the laboratory frame at

10ms and demonstrates that the trapped neutrinos successfully follow the PNS located at

z ∼ 20 km at that time as indicated in figure A.21. These results prove that the moving-

mesh technique implemented in the Boltzmann-radiation-hydrodynamics code can treat

the neutrino transfer in the acceleration frame.

A.3 Light-bulb method

Finally, the light-bulb method employed in chapter 4 is tested. Here, the steady-state

solution is considered like the test in section A.1. The steady-state solution constructed

for the initial condition of the simulations in chapter 4 should remain the steady-state with

fixed inner boundary. Since the code to generate the initial condition and the dynamical

code are independent of each other, this test simultaneously validates these two codes.

Contrary to the results presented so far in this appendix, this test is not reported in other

papers.

Figure A.23 indicates the dynamically evolved steady-state solutions under spherical

symmetry. The axisymmetric simulation is also performed, and the same results in figure

A.23 for each radial ray are obtained. Thus showing only the 1D results suffices here.

The set up is the same with that in chapter 4 with vanishing acoustic amplitude, i.e.,

fixed inner boundary. According to the obtained numerical solution, the steady-state flow

indeed remains steady. This hence demonstrates that not only the initial conditions are

correctly generated but also the neutrino heating by the light-bulb method is correctly

implemented in the dynamical code in chapter 4.
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Appendix B

Myers’ corollary

In this appendix, I extend the Myers’ corollary of the energy conservation theorem for

perturbations with not-necessarily-small-amplitude (Myers, 1986, 1991) and derive equa-

tions (4.6–4.9). Here I refer to the energy conservation law as the theorem because it is

derived from the continuity, Euler, and heat (entropy) equations. The discussion in this

appendix is almost a review of (Myers, 1991), except that the effects of neutrino reactions

are included. I believe, however, that it is worth summarizing.

The basic equations here are

∂ρ

∂t
+∇·m = 0⇔ C = 0, (B.1)

∂v

∂t
+ ζ +∇H − T∇s− µ

mu
∇Ye = −∇Φ+

1

ρ
M ⇔ L = λ, (B.2)

∂ρs

∂t
+∇·(ms) =

Q− µ
mu

Γ− v·M
T

⇔ S = σ, (B.3)

∂ρYe
∂t

+∇·(mYe) = ρΓ⇔ G = γ, (B.4)

Φ = −GcMPNS

r
. (B.5)

Here, ρ, v, T , s, mu, Ye, Φ, M , Q, Γ, Gc and MPNS are the density, fluid velocity,

temperature, specific entropy, atomic mass unit, electron fraction, gravitational potential,

momentum transfer from neutrinos, neutrino heating rate per unit volume, change rate

in the electron fraction, gravitational constant, and PNS mass, respectively; m = ρv

and H = e + P/ρ + 1
2v

2 are the mass flux and specific stagnation entropy, or Bernoulli

function; by defining the vorticity by ω := ∇ × v, the shorthand notation of the outer

product of the vorticity and velocity is ζ := ω × v; by letting µe,p,n be the chemical

potentials of electrons, protons, and neutrons, µ := µe +µp−µn is the chemical potential

of neutrinos. These basic equations are equivalent to equations (4.1–4.4) in chapter 4

except for the inclusion of the term M . Thanks to this term the following discussion is

as general as possible, though it finally vanishes. It is also worth noting that the heat

equation (B.3) is presented instead of the energy equation (4.3) since it is easy to consider

the homentropic or isentropic flow with the heat equation. The symbols C, L, S, and G

are the left-hand sides of the continuity, Euler, heat, and electron fraction equations in
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the expressions of equations (B.1–B.4), respectively*1. The symbols λ, σ, and γ are the

corresponding right-hand side terms. The thermodynamic relations which is useful for

the following discussions are

de = Tds+
P

ρ2
dρ+

µ

mu
dYe, (B.6)

dh = Tds+
1

ρ
dP +

µ

mu
dYe, (B.7)

where e, P , and h are the specific energy, pressure, and specific enthalpy, respectively. As

I stated, the energy conservation theorem cast in the following form,

∂

∂t
(ρH − P ) +∇·(Hm) +m·∇Φ−Q = 0, (B.8)

is derived from equations (B.1–B.4) with the identity v·ζ = v·(ω × v) = 0.

Let me express perturbative expansion of a quantity q as q(r, t) = q0(r) +∑∞
n=1 δ

nqn(r, t), where δ is a dimensionless parameter of the perturbation. The

subscript n indicates the order of the perturbation, and especially q0 represent the

unperturbed state. Since the point mass gravity with constant central mass is considered

in this appendix and chapter 4, the gravitational potential is not perturbed. By applying

this perturbative expansion to the basic equations and collecting terms of the same order,

the equations at each order are obtained:

Ci = 0, Li = λi, Si = σi, andGi = γi, (B.9)

where the symbols with subscript i corresponds to the i-th order perturbations of each

shorthand expressions. Similarly, the energy conservation equation (B.8) is expanded as

∇·(m0H0) +m0·∇Φ−Q0 = 0 (zero-th-order), (B.10)

∂

∂t
(ρH − P )1 +∇·(m0H1 +m1H0) +m1·∇Φ−Q1 = 0 (first-order), (B.11)

and

∂

∂t
(ρH −P )2 +∇·(m0H2 +m1H1 +m2H0)+m2·∇Φ−Q2 = 0 (second-order). (B.12)

Subsequently, these expressions for the energy conservation is cast in the following form:(
H − Ts− µ

mu
Ye

)
0

C0 + m0·(L0 − λ0) + T0(S0 − σ0) +
µ0

mu
(G0 − γ0)

= 0 (zero-th-order), (B.13)(
H − Ts− µ

mu
Ye

)
0

C1 + m0·(L1 − λ1) + T0(S1 − σ1) +
µ0

mu
(G1 − γ1)

+

(
H − Ts− µ

mu
Ye

)
1

C0 + m1·(L0 − λ0) + T1(S0 − σ0) +
µ1

mu
(G0 − γ0)

= 0 (first-order), (B.14)

*1 The symbol G represents the shorthand notation of the equation in this appendix and the gravita-

tional constant in the main body. Only the former is applied in this appendix, and the gravitational

constant is denoted as Gc instead of G.



129

and (
H − Ts− µ

mu
Ye

)
0

C2 +m0·(L2 − λ2) + T0(S2 − σ2) +
µ0

mu
(G2 − γ2)

+

(
H − Ts− µ

mu
Ye

)
2

C0 +m2·(L0 − λ0) + T2(S0 − σ0) +
µ2

mu
(G0 − γ0)

+
∂E2

∂t
+∇·F 2 +D2 = 0 (second-order), (B.15)

where E2, F 2, and D2 are

E2 =
P 2
1

2ρ0a20
+
ρ0u

2
1

2
+ ρ1u0·u1 +

ρ0
2

{(
∂T

∂s

)
P,Ye

s1 +

(
∂T

∂Ye

)
s,P

Ye1

}
s1

+
ρ0
2mu

{(
∂µ

∂Ye

)
s,P

Ye1 +

(
∂µ

∂s

)
P,Ye

s1

}
Ye1, (B.16)

F 2 = (P1 + ρ0u1·u0)

(
u1 +

ρ1
ρ0

u0

)
+ ρ0u0

(
s1T1 + Ye1

µ1

mu

)
, (B.17)

and

D2 = m1·
(
ζ1 + s1∇T0 + Ye1∇

µ0

mu

)
− s1m0·∇T1 − Ye1m0·∇

µ1

mu

−T1σ1 −
µ1

mu
γ1 − u1·M1 −

ρ1
ρ0

(u0·M1 − u1·M0). (B.18)

In the derivation, the thermodynamic relations (B.6–B.7) and Maxwell’s relations are

utilized. It should be noted that the zeroth- and first-order equations (B.13–B.14) are

trivially satisfied thanks to equations (B.9). The first and second lines of the second-

order equation (B.15) also vanish trivially with equations (B.9), whereas the last line does

not vanish trivially. For the following reasons, the last line is regarded as the energy

conservation theorem for the first-order perturbation. It is worth noting that up to first-

order terms are contained in the expressions for E2, F 2 and D2.

The well-known expression for the acoustic energy density in the homentropic flow

appears as the first three terms in the right-hand side of equation (B.16). The fourth

term in the equation represents the contribution from the non-uniform entropy and is

originated from the term Tds in equations (B.6–B.7). The disturbance energy should not

vanish by the periodic average of the oscillation, and hence the product of the first-order

perturbations in temperature and entropy should be included in these terms. Indeed,

(∂T/∂s)P,Ye
s1 and (∂T/∂Ye)s,PYe1 represents the variation in temperature induced by

the perturbation in entropy and electron fraction, respectively, and these terms are the

product of the entropy and temperature perturbations. Similarly, the contribution from

the non-uniform composition originated from the term µ
mu

dYe is represented by the fifth

term in equation (B.16). The flux F 2 is similarly interpreted: the acoustic energy flux in

the homentropic flow with inhomogenous velocity field appears in the first term on the

right-hand side in equation (B.17), and the contributions from the terms Tds and µ
mu

dYe

are expressed in the second term. On the contrary to E2 and F 2, the term D2 is difficult
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to interpret. This is because it is a collection of the remaining terms other than E2, and

F 2, and well-known counterpart in homentropic flow does not appear. Considering that

E2 and F 2 can be interpreted as the energy density and flux of the perturbation, however,

the form of equation (B.15) can be regarded as a conservative form of the disturbance

energy and D2 can be interpreted as a dissipation term. Indeed, the neutrino cooling

term, which is expressed as the fourth term −T1σ1, dissipate the energy. The positive

(negative) T1 leads the enhanced (suppressed) neutrino emission, and hence the term

σ1 = {(Q−µγ/mu− v·M)/T}1 takes negative (positive) values, resulting in the positive

values of −T1σ1 for both cases. As a consequence, the neutrino cooling reduces the

perturbation energy. Although other terms are still difficult to interpret, the term D2 is

regarded as the dissipation term in this appendix and chapter 4.

The perturbative expansion up to the second order of the basic equations and energy

conservation theorem is conducted so far. Myers focused on the structure of the perturbed

equation systems. First, the energy conservation equations (B.13–B.15) commonly have

the same structure: expression of(
H − Ts− µ

mu
Ye

)
(C − 0) +m · (L− λ) + T (S − σ) + µ

mu
(G− γ) (B.19)

at each order, which is trivially zero, presents in each equation, and remaining terms other

than this expression construct the non-trivial parts of the energy conservation equation.

Myers guessed that this structure is common for all orders. Based on this notion, he

recast the exact energy conservation equation including all orders by separating the trivial

contributions from equation (B.8):(
H − Ts− µ

mu
Ye

)
0

C +m0·(L− λ) + T0(S − σ) +
µ0

mu
(G− γ) +(

H − Ts− µ

mu
Ye

)
C0 +m·(L0 − λ0) + T (S0 − σ0) +

µ

mu
(G0 − γ0)

−
(
H − Ts− µ

mu
Ye

)
0

C0 −m0·(L0 − λ0)− T0(S0 − σ0)−
µ0

mu
(G0 − γ0)

+
∂Edis

∂t
+∇·F dis +Ddis = 0. (B.20)
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The terms Edis, F dis, and Ddis appearing in this form are given as

Edis = ρ

(
H −H0 − T0(s− s0)−

µ0

mu
(Ye − Ye0)

)
−m0·(u− u0)− (P − P0),

(B.21)

F dis = (m−m0)

(
H −H0 − T0(s− s0)−

µ0

mu
(Ye − Ye0)

)
+m0

(
(T − T0)(s− s0) +

µ− µ0

mu
(Ye − Ye0)

)
, (B.22)

Ddis = −(s− s0)m0·∇(T − T0)− (Ye − Ye0)m0·∇
µ− µ0

mu

+(m−m0)·
(
ζ − ζ0 + (s− s0)∇T0 + (Ye − Ye0)∇

µ0

mu

)
− (T − T0)

(
Q

T
− Q0

T0

)
+
µµ0

mu

(
T

µ
− T0
µ0

)(
γ

T
− γ0
T0

)
−TT0

(
m

T
− m0

T0

)
·
(
M

ρT
− M0

ρ0T0

)
. (B.23)

Because the non-trivial part of equation (B.20) takes the conservative form, he regarded

these terms as the energy density, energy flux, and dissipation of the energy for the

general disturbances. Note that although the procedure is the same as Myers’ theory, the

terms related to the neutrino reactions are also included. Whether his interpretation is

appropriate or not is difficult to judge, however, there is supporting evidence: by taking

the limit of small perturbations, the expressions of Edis, F dis, and Ddis are reduced to

those of E2, F 2, and D2, respectively. By setting the momentum transfer M (M0)

zero, equations (B.20–B.23) become equations (4.6–4.9). As discussed in section 4.2.2,

the term −(T − T0)(Q/T − Q0/T0) in equation (B.23) represents the energy dissipation

by the neutrino heating/cooling.
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