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Abstract

A fraction of observed exoplanets are known to be in significantly oblique orbits with respect
to the equatorial planes of their host stars unlike our solar system. Such a misalignment
between the stellar spin and planetary orbital axes is characterized by the spin-orbit angle
ψ. While the origin of the misalignment cannot be understood in the framework of the
conventional planet formation theory, several scenarios have been proposed in which large
misalignment results from the dynamical evolution of planetary orbits, the tilt of host stars, or
the tilt of protoplanetary disks. Because different mechanisms predict different distributions
of spin-orbit angles, measuring ψ is the key to understand the planet formation/migration
history. However, the value of ψ has been measured mainly for planets larger than Neptune
(e.g., hot Jupiters) because of the observational limitations.

Asteroseismology, the study of stellar pulsations, is now considered as a useful tool to
characterize stars, thanks to successful space missions including CoRoT and Kepler. Astero-
seismology also contributes to the understanding of exoplanetary systems because it provides
precise measurements of stellar parameters such as mass, radius, and age. It also measures
the inclination of stellar spin axis (i⋆) towards the observer, making possible to infer the
orbital architecture of exoplanets. Because stellar pulsation signals are independent of the
properties of planets, asteroseismology can potentially explore the orbital dynamics of small
planets as well as giant planets. Besides, asteroseismology offers an independent measure of
stellar rotational period (Prot).

In this thesis, we systematically analyze stellar inclinations and rotational periods with
asteroseismology for 33Kepler planet-host stars with detectable pulsations. This is the largest
asteroseismic catalogue of stellar inclinations and rotation periods ever for planet-host stars.
In addition, we analyze 61 Kepler stars without known planetary companions for a reference
sample. With these 94 stars, we investigate the possible constraints on the stellar inclinations
and therefore spin-orbit angles for planet-host stars.

First, we derive the analytic criteria for reliable determination of stellar inclination and
rotation. These criteria are then verified to work well in the actual asteroseismic analy-
sis by performing intensive numerical simulations. Applying these criteria to the sample
above leaves 9 and 22 reliable stars with and without planets, respectively. This is the first
systematic study of reliability of parameters derived with asteroseismology.

Among 9 reliable planet-hosts analyzed in this work, Kepler-408 is the unique star whose
planetary orbit is estimated to be misaligned with more than 2σ significance. In addition,
asteroseismic rotation period is found to be consistent with that derived from photometric

iii



variation, indicating that this misalignment is quite robust. Kepler-408 has an Earth-sized
planet, for which the conventional Rossiter-McLaughlin method is not feasible to prove the
misalignment. Consequently, this is the first discovery of significant spin-orbit misalignment
for a planet smaller than Neptune. This finding indicates that misalignment-generating
processes should work also for small planets.

Because rotation periods derived from photometric variation (Prot,photo) are known to be
occasionally uncertain, independent validation with asteroseismology (Prot,astero) is essential.
We find 13 stars among 33 planet-hosts above show consistent periods between asteroseis-
mology and photometry (Prot,astero≈Prot,photo). Therefore rotational periods are considered
to be measured accurately for these 13 stars. We also discover an interesting regularity be-
tween stellar rotational period Prot and orbital period of their planetary companions Porb

in some of 13 systems. In fact it turns out that their values of Porb/Prot are not randomly
distributed, but preferentially take rational numbers. Similar regularities have been reported
among orbital periods of planets, indicating that they are in orbital resonances. In this work,
we report the first observational signatures of the resonance between stellar rotations and
planetary orbits. This result is unlikely explained in terms of the conventional model of
star-planet tidal interaction, implying that more effective interaction may be at play in the
actual star-planet systems.

These discoveries revealed new aspects of exoplanetary systems with asteroseismology,
which may be difficult to be accomplished by other observations. In fact, asteroseismol-
ogy makes possible quite robust characterizations of exoplanetary systems when combined
with photometry and spectroscopy as we demonstrate in this work. Our work offers many
possibilities for asteroseismology to play a useful and unique role in unveiling the nature of
exoplanetary systems.
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Chapter 1

Introduction

The last two decades since the first detection of an extrasolar planet (hereafter, exoplanet)
around a solar-like star by Mayor & Queloz (1995) were particularly dramatic among the
long history of astronomy from the prehistoric era of human beings. This is because the
exoplanetary worlds revealed by subsequent studies until today are found to be completely
different from what we had imagined from the analogy of our solar system. Since the planet
formation and evolution theory was originally established to account for the current architec-
ture of our solar system, the unexpected properties of observed exoplanets drastically altered
our perspective on the planetary science. Based on the recent observations suggesting that
our solar system might not be a typical planetary system in the universe, the standard model
of planet formation (known as the Kyoto model or Hayashi model; Hayashi et al. 1985) now
needs to be extended so that it can reconcile the observed diversity of exoplanets.

Since the first detection, a significant number of exoplanets have been discovered, ap-
proaching 4,000 in total. Figure 1.1 illustrates the cumulative number of exoplanets detected
until today, with different colors for different detection methods. Among them, the transit
method (green bar) is one of the most successful methods (e.g., Winn 2010). The planet
passing the front of the central star produces periodical light reduction in the observed stel-
lar flux, which is known as “transit” event (Brown et al. 2001, Winn et al. 2010a). This
method allows us to obtain the period of planetary orbital motion, and the size of the planet
by the amplitude of light reduction.

Planetary transits have been surveyed mostly by space instruments, including CoRoT
(Convection, Rotation and planetary Transits; Baglin et al. 2006a,b) and Kepler (Borucki
et al. 2010). The continuous and uninterrupted photometry performed by these space satel-
lites led to the detection of thousands of exoplanets, including small planets (down to sub-
Earth size). Indeed CoRoT and Kepler made possible the careful characterization of each
exoplanet by combining other observations such as spectroscopy (e.g., High Accuracy Radial
Velocity Planet Searcher; HARPS; Mayor et al. 2003) and astrometry (e.g., GAIA; Berger
et al. 2018).

Figure 1.2 describes the radius distribution of the observed exoplanets as a function of
orbital semi-major axis. It is important to note that a significant number of Jupiter-sized
planets (gas-giants) are found in the orbits smaller than 0.1 au (top left region in the panel).
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2 Introduction

Figure 1.1: Cumulative number of exoplanets discovered per year. Different colors correspond
to different detection methods. Figure is taken from NASA Exoplanet Archive; http://
exoplanetarchive.ipac.caltech.edu/index.html.

In fact the first discovered exoplanet, 51Pegasi b, is found to revolve around a G dwarf similar
to the Sun, but has substantially large mass (> 0.472MJupiter) compared to its short orbital
period (in 4.2-day orbit, much inside than Mercury’s orbit in the solar system). Nowadays
more than 100 gas-giants in short orbits have been discovered, and then they are often referred
to as “hot Jupiters”. We also find from Figure 1.2 that the majority of detected exoplanets
are Earth-sized planets (planets with Rp ≲ 4REarth), and then they are often referred to as
“super Earths” (Winn & Fabrycky 2015 and references therein).

In addition to the radius and orbital semi-major axis distribution, recent observations
revealed the diversity in their orbital dynamics around central stars (Howard 2013, Winn
& Fabrycky 2015). In the solar system, all the 8 planets are orbiting in a plane almost
perpendicular to the solar spin axis, within the range of ≈ 7◦. On the contrary, non-negligible
number of exoplanets are found to have highly oblique orbits compared to the spin axes of
their host stars (Winn et al. 2011). Surprisingly, some of them have polar (Johnson et al.
2011), or even retrograde orbits (Narita et al. 2009, Winn et al. 2009, Anderson et al. 2010,
and Albrecht et al. 2012). The discovery of oblique orbits seriously challenges the conventional
planet formation and evolution theory, because it predicts that planets will be born to orbit
within the stellar equatorial plane as planets do in our solar system. Recently some promising
models of planetary formation and evolution have been proposed to reconcile the observed
diversity of planetary orbits. Therefore observational constraints on the obliquity of planetary
orbit are the key to obtain the unified picture of the formation and evolution history of
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Figure 1.2: Planetary radius distribution as a function of orbital semi-major axis of observed
exoplanets. Figures are taken from Exoplanet Orbit Database - Exoplanet Data Explorer;
http://exoplanets.org/.

planetary systems.

Although the primary missions of CoRoT and Kepler are planet hunting, they also en-
abled the science that studies the pulsations of stars, which is known as “asteroseismology”
(Chaplin et al. 2011, Chaplin & Miglio 2013, Huber 2016). Asteroseismology is the frequency
analysis of stellar lightcurves with high precision, and makes possible precise and accurate de-
termination of stellar properties such as mass and radius. Therefore asteroseismology greatly
contributes to characterize exoplanets by means of better understanding of planet-host stars.
However, the synergy between planetary science and asteroseismology has not been dedicated
intensively. Then the work bridging exoplanets and asteroseismology is now highly demanded
to put our knowledge on planetary science forward.

Asteroseismology has the same theoretical background as helioseismology, the frequency
analysis of the Sun (Harvey 1985). The Sun is known for its acoustic “5-minute oscillation”,
corresponding to the dynamical timescale for the sound waves to travel across solar interior.
Helioseismology accelerated our understanding on the Sun with both ground and space-based
observatory in last several decades. In the same way, the stars with similar mass to the Sun
(“solar-like stars”) are expected to show the acoustic oscillation. Thanks to its well-developed
theoretical background of acoustic pulsation of stars, asteroseismology is now widely used to
characterize solar-like stars (Huber 2016). In this thesis, we focus especially on the ability of
asteroseismology to measure the direction of stellar spin axis. By applying asteroseismology
to planet-host stars, we can examine orbital dynamics of exoplanetary systems.



4 Introduction

This thesis is organized as follows.

• In chapter 2, we define the spin-orbit angle in exoplanetary systems, describe its im-
plication for planetary formation and evolution theory, and summarize current results
from observations.

• Chapter 3 introduces basics of asteroseismology, mainly focusing on its potential to
determine the stellar inclinations from stellar pulsation signals.

• Chapter 4 discusses the possible uncertainty in measuring stellar inclination with aster-
oseismology, and performs the analytical and numerical studies to derive the conditions
necessary for the secure inclination measurement. We also derive the stellar inclina-
tions for 94 main-sequence solar-like stars observed by Kepler. This chapter is based
on Kamiaka et al. (2018).

• In chapter 5, we study further a misaligned Earth-sized planet Kepler-408b analyzed
in chapter 4. We also examine its validity by comparing our asteroseismic results with
other observations. This chapter is based on Kamiaka et al. (2019).

• Chapter 6 claims the observed resonance of stellar rotation periods measured from as-
teroseismology and planetary orbital periods determined from transits. We also discuss
the possible mechanism to enable this resonance, such as tidal interaction between stars
and planets. This chapter is based on Suto et al. (2019).

• Chapter 7 is devoted to summarize the achievements of this work and implications for
the future study.



Chapter 2

Backgrounds of spin-orbit angles in
exoplanetary systems

We find some exoplanets are in the orbits highly tilted with respect to the equatorial plane of
their host stars. This is one of the most surprising discoveries in exoplanetary science. This
misalignment between stellar spin and planetary orbital axes is characterized by “spin-orbit
angle” (or, “stellar obliquity”) ψ.

2.1 Spin-orbit angles and its implication for planetary

formation/migration

Large misalignment is inconsistent with what we know about the solar system, in which all 8
planets are almost coplanar and aligned to solar equator within ≈ 7◦. In the standard model
of planet formation/evolution, planets are considered to be born within protoplanetary disk
around the star. To begin with, stars form due to the gravitational collapse of molecular
cloud. And then protoplanetary disk is the disk-like remnant of the cloud that remains
around the protostar because of their non-zero angular momentum. Planets form within this
disk, and may experience inward/outward migration through angular momentum exchange
with disk materials. Therefore planetary orbits are thought to trace in most cases the plane
of protoplanetary disks, even after disk dispersal (≲ 10Myr after star formation). As long
as protostar and protoplanetary disk share the same direction of rotation, the spin-orbit
misalignment seems to be unlikely.

In the last two decades, intensive theoretical works have been made to link the observed
misalignments to the formation and/or migration histories that exoplanets must have experi-
enced. Therefore, the tilt of planetary orbit is now considered to be an important diagnostic
to investigate the formation and evolution history of planetary systems. In this section, we
summarize possible scenarios to enhance/suppress the misalignment proposed by theoretical
consideration of stellar and planetary dynamics. There are three major ways to enhance the
misalignment; (1) tilt the planetary orbit, (2) tilt the protoplanetary disk, where exoplanets
are considered to be born, or (3) tilt the central star. In principle, the observed misalign-
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6 Backgrounds of spin-orbit angles in exoplanetary systems

ments can be explained by at least one of these scenarios. On the other hand, we need to
keep in mind that some other mechanisms are known to be able to suppress the misalignment
enhanced by the dynamics above.

2.1.1 The mechanisms to tilt the planetary orbit

The mechanisms below can tilt the planetary orbits during the dynamical evolution of planets,
causing spin-orbit misalignment.

• Planet-planet scattering. Planet-planet scattering is the gravitational scattering
of more than one orbiting planets 1 (Rasio & Ford 1996, Weidenschilling & Marzari
1996, Lin & Ida 1997). In most cases, the gravitational interaction among planets
are much weaker than that between planet and star, so that planetary orbital motion
can be well approximated by two-body description between star and planet. If planets
get quite close each other, however, this two-body approximation never holds. This
is because in that situation gravitational interaction between planets dominates their
orbital motion than that with central star. To be more specific, planets which have
mutual separation r1,2 smaller than their mutual Hill radius, defined with their masses
(M1,2) and semi-major axes (a1,2) as

r1,2 < RH ≡
(
M1 +M2

3M⋆

)1/3(
a1 + a2

2

)
, (2.1)

experience gravitational scattering and exchange their orbital angular momenta. And
then the geometry of their orbital motion changes drastically. For example, this may
result in the ejection of one planet from planetary system (due to the gain of angular
momentum), whereas the other falls inward (due to the loss of angular momentum).
Because there is no reason for planets to keep their initial orbital inclination in this
scenario, this mechanism can randomize the orientation of the planet that survived the
scattering. Many numerical works have performed to study the outcome of scattering
(e.g., Chatterjee et al. 2008) by N-body simulation, concluding that a variety of orbital
orientation is possible even from fairly ordered initial state. In addition, this scenario
can account for the presence of recently-observed close-in planets (e.g., hot Jupiters),
which are very challenging to the in-situ formation.

• Kozai-Lidov cycles. Planetary orbit can be tilted even without experiencing violent
processes like scattering. One well-known mechanism is the Kozai-Lidov cycle, the os-
cillatory evolution of planetary orbital parameters induced by distant perturber (Kozai
1962). Suppose the star-planet system has distant and massive stellar/planetary com-
panion, and they satisfy hierarchical condition (aout ≫ ain andMout ≫Min)

2. If initial

1It does not necessary require direct collision, because gravitational interaction enhances the scattering
cross section rather than their physical radii.

2Binary systems in which planet revolves around one of them are very likely to satisfy this condition.



2.1 Spin-orbit angles and its implication for planetary formation/migration
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mutual inclination between planet and outer perturber exceeds the critical value

imut > cos−1[(3/5)1/2] = 39.2◦, (2.2)

orbital inclination and eccentricity e of inner body will be oscillatory so that it pre-
serves

√
1− e2 cos imut. Specifically, inclination becomes maximum (minimum) when

eccentricity becomes minimum (maximum), making possible highly inclined planetary
orbit. Kozai cycles are now often used to characterize the observed exoplanetary sys-
tems and predict their future evolution (Mazeh et al. 1997, Fabrycky & Tremaine 2007,
Naoz et al. 2011). Again, this scenario is compatible with observed close-in planets
when coupled with tidal dissipation (see below).

These two mechanisms are not necessarily exclusive, but can occur sequentially. For instance,
Nagasawa et al. (2008) showed that planet-planet scattering and the subsequent Kozai-Lidov
effect in multi-planetary systems modify the orbital plane of the close-in planets that survive
the orbit crossing.

2.1.2 The mechanisms to tilt the protoplanetary disk

Stars and planets do not always form in perfect isolation, but mostly under the influence of
other nearby systems and/or accreting materials onto the system. The mechanisms below
can tilt protoplanetary disks by significant torque in these non-static environments, allowing
spin-orbit misalignment.

• Torque from distant perturber. The Kozai-Lidov effect is shown to be at play also
for protoplanetary disk around one component of binary stars, as long as self-gravity
within the disk is strong enough to keep the structure of the disk (Batygin et al. 2011).
Besides, Batygin (2012) demonstrated that torque by distant perturber (e.g., binary
companion) can drive the precession of central star’s spin and disk’s normal axes. In this
scenario, both of these axes precess around orbital axis of binary motion with different
time scale, causing periodic variation of spin-orbit angle ψ 3. These mechanisms lead to
inherently inclined disks at the time of planet formation, making possible the spin-orbit
misalignment.

• Chaotic accretion. This scenario considers the observed misalignments as a common
outcome of star formation. In fact the molecular cloud, within which stars form through
the gravitational collapse, is not static but highly turbulent. This property is also the
case for gas and solid materials accreting onto the protoplanetary disk 4. This chaotic
nature of mass accretion allows anisotropic and variable gain of angular momentum to
the protoplanetary disk so that it can be tilted away from stellar spin axis during its
evolution. Recent numerical works found that especially inner disk orientation is highly
vulnerable to what falls into them in the last phase of accretion (e.g., Bate et al. 2010,
Thies et al. 2011, Fielding et al. 2015).

3Binary orbit remains almost intact because it is the largest reservour of angular momentum of the system.
4Because of the non-zero angular momentum, most materials accrete onto the disk first, not the star.

Subsequently it flows into the star through the disk inward.
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2.1.3 The mechanisms to tilt the stellar spin axis

The mechanisms below can tilt the stellar spin axis, allowing spin-orbit misalignment.

• Stat-disk magnetic interactions. Lai et al. (2011) proposed a possible channel of
the misalignments in which magnetic interaction between star and inner disk may push
stellar spin away from the normal of protoplanetary disk, even into retrograde state.
Therefore this process can deliver the birthplace of planets misaligned with respect to
stellar spin from the beginning. Since this scenario never assumes outer companion,
this is possible to occur in any star-planet systems.

• Internal gravity waves. Rogers et al. (2012) developed a scenario in which stellar
spin changes its orientation spontaneously, without any interactions with planets or
disks. This model is amenable to hot stars, which have convective interior and radiative
envelope. The physics behind is that the internal gravity waves excited at convective-
radiative interface will transport the considerable amount of angular momentum and
deposit it to radiative envelope. This re-distributes angular momentum within stellar
interior, making radiative envelope rotate in a different direction from the convective
interior. Since this mechanism works mainly for hot stars, it is consistent with the
presence of misaligned hot Jupiters around hot stars (see section 2.6).

2.1.4 The mechanisms for the re-alignment

Even if star and/or planet become highly oblique, some processes to suppress the misalign-
ment are known to work especially for systems with close-in planets.

• Tidal dissipation. Tidal interaction between star and planet affects the orbital dy-
namics of the planet in many aspects. Because tidal force scales inversely with the cubic
star-planet separation, it becomes highly effective for close-in planets. Tidal interaction
accompanies the dissipation of energy and angular momentum in stellar (or planetary)
convective layers. Therefore, it becomes more dominant for the planets around cooler
stars, which are known to have thicker convective envelopes (see section 2.6).

Tidal dissipation (1) makes planetary orbit shrink (a → 0), (2) circlizes the orbit
(e→ 0), and (3) aligns the orbit to equatorial plane of the star (ψ → 0). One possible
prediction by this nature is that close-in planets around cooler stars are more likely
to be aligned, even if their orbital orientation is initially random. In addition, this
naturally explains the formation of close-in planets when coupled with the Kozai-Lidov
mechanism. Since highly eccentric planets get close to the central star at pericenter
(rperi = a(1 − e)), planet under the Kozai-Lidov cycles will tidally-interact with the
star mainly at pericenter. This causes orbit and eccentricity shrink, leaving close-in
and circular orbit.

Because accurate modelling of tidal process requires the understanding of the physics
inside the star and planet in detail, the reliability of current tidal model could be still
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rather limited. Equilibrium tide is often taken as the standard model of tidal dissipa-
tion, based on weak friction theory of convective layers (e.g., Zahn 1977, Zahn 1989,
Correia et al. 2011). Later Lai (2012) extended the equilibrium model by incorporat-
ing inertial waves excited in the convective-radiative interface of the star. This model
enabled tidal theory to explain the presence of hot Jupiters more naturally 5.

• Star-disk magnetic interactions. Magnetic interaction between star and inner disk
may also align stellar spin towards the disk’s normal. This process enables the birth-
place of planets aligned to stellar spin, regardless of the origin of star-disk misalignment.

2.2 Geometry of spin-orbit misalignment

As described above, the spin-orbit angle ψ is an important diagnostic for the formation and
evolution history of planetary systems. However, it is difficult to measure ψ directly in most
cases. Therefore we often appeal to other three direct-observable angles associated with ψ;
planetary orbital inclination angle (iorb), stellar inclination angle (i⋆), and spin-orbit angle
projected onto the sky plane (λ). Here iorb and i⋆ are the inclination angles, the angle of
the axis from the line of sight, whereas λ is the position angle, the compass direction of the
axis’s projection onto the sky plane. Figure 2.1 introduces geometrical relation among these
angles. And then the methods to determine iorb, λ, and i⋆ are presented later in sections 2.3,
2.4, and 2.5, respectively.

The unit vector of stellar spin (s) and planetary spin (l) are given in coordinates in Figure
2.1 as

s =

 0
sin i⋆
cos i⋆

 , l =

 sin iorb sinλ
sin iorb cosλ

cos iorb

 , (2.3)

and thus

cosψ = s·l = sin i⋆ sin iorb cosλ+ cos i⋆ cos iorb. (2.4)

Since iorb is close 90◦ for transiting planets 6 , this equation reduces to

cosψ ≈ sin i⋆ cosλ. (2.5)

Therefore the measurements of i⋆ and λ are required to determine the spin-orbit angle ψ.

5Standard model predicts that hot Jupiters will be engulfed by the star due to the orbital shrink (a → 0),
which is incompatible with the observations. Indeed, Lai model enabled the survival of close-in and circular
hot Jupiters by retarding orbital shrink (Xue et al. 2014).

6Orbital inclination angle too away from 90◦ cannot carry planet to the front of the star at any phase of
its orbital motion. For circular orbits, for example, cos iorb < R⋆/a (R⋆ and a are stellar radius and orbital
semi-major axis) is required for transits to occur.
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Figure 2.1: Schematic illustration of the geometric configuration of star-planet system. The
coordinates are set with the origin centered on the star with XY plane corresponding the
sky plane, and positive Z-direction pointing toward the observer. Positive Y -direction are
defined so that stellar spin axis (red) projected onto the sky plane coincides with it, forming
a right-handed triad with Z and X-axes. Spin-orbit angle ψ, the angle between stellar spin
(red) and planetary orbital (blue) axes, can be decomposed into three angles associated with
this coordinate; stellar spin inclination measured from positive Z-axis (i⋆), planetary orbital
inclination measured from positive Z-axis (iorb), and spin-orbit angle projected onto sky plane
(λ).

2.3 Transit photometry and constraints on orbital in-

clination

Transit is the eclipse of the star by the planet. During that event, the star looks fainter
because the stellar flux is partially blocked by the planet. This phenomenon provides lots of
information on the stellar and planetary properties 7. In this section, we briefly review the
way to constrain the orbit of transiting planet, following Winn (2010).

7Eclipse of the planet by the star (i.e., the event where star blocks the planet) also provides the clues on
mainly planetary surface environment or composition. This is because flux emitted by planet will be fully
masked during that event. This is contrary to the ordinary transit event, at which stellar flux alone is partially
blocked. This type of eclipse is often called “secondary eclipse”, “superior conjunction”, or “occultation”.
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Figure 2.2: Schematic illustration of planetary transit with impact parameter b. Planetary
eclipse induces the dip in flux by δ. Four contact times (tI, tII, tIII, tIV) are defined.

Figure 2.2 illustrates the geometry of transit with impact parameter b (upper panel).
The stellar flux decreases by δ during transit (lower panel), which corresponds to planet-
to-star size ratio, R2

p/R
2
⋆. We define four contact times (tI, tII, tIII, and tIV), the moments

when planet touches stellar circumference while it passes the stellar front. To be more
exact, stellar flux decreases in “ingress” (tI − tII), reaches minimum during “full transit”
(tII − tIII), and increases again in “egress” (tIII − tIV). Note that transit lightcurve in Figure
2.2 is oversimplified, because for example no limb-darkening of the star is assumed for easy
understanding.

To be specific, what we obtain from transit lightcurve is transit depth δ, four contact
times (tI, tII, tIII, tIV), and planetary orbital period Porb that corresponds to the separation
of transit events in time series. As will be shown below, the modelling planetary transit can
convert parameters above into physical ones, such as orbital semi-major axis scaled by stellar
radius a/R⋆ and orbital inclination angle iorb as follows.

First, we define the planetary orbital parameters. In general we need six parameters to
define the motion of the planet uniquely (three in position, and three in momentum). By
solving Kepler problem, they are replaced by six orbital parameters, a, e, iorb, ω, Ω, and f as
defined in Figure 2.3 (see Table 2.1 and caption of Figure 2.3 for further description). The
position of the planet relative to the star, r, is given by

r =

 X
Y
Z

 = r

 cosΩ cos(ω + f)− sinΩ sin(ω + f) cos iorb
sinΩ cos(ω + f) + cosΩ sin(ω + f) cos iorb

sin(ω + f) sin iorb

 , (2.6)
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Figure 2.3: The coordinates defined for the planetary orbital motion. The star is centered
at origin. Positive Z-direction is pointing towards the observer, and XY plane defines sky
plane. Planetary orbit is inclined from sky plane by iorb, and planet crosses sky plane towards
observer at ascending node. Longitude of ascending node, Ω, is the angle between line of
nodes and positive X-direction (reference direction). Argument of pericenter, ω, is defined
as the angle between line of nodes and line pointing pericenter of the orbit. True anomaly,
f , is a phase parameter describing the position of planet measured from pericenter.

Table 2.1: The planetary orbital parameters
symbol name
a orbital semi-major axis
e orbital eccentricity
iorb orbital inclination
ω argument of pericenter
Ω longitude of ascending node
f true anomaly

where r is the separation between star and planet:

r =
a(1− e2)

1 + e cos f
. (2.7)
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The position of planet in the sky plane (X − Y plane) is given by

rsky ≡
√
X2 + Y 2 =

a(1− e2)

1 + e cos f

√
1− sin2(ω + f) sin2 iorb. (2.8)

Thus mid-transit phase is defined so that it minimizes rsky
8 as

f = +
π

2
− ω. (2.9)

Then the impact parameter b of transit is defined as

b ≡
rsky|f=+π/2−ω

R⋆

=
a cos iorb
R⋆

(
1− e2

1 + e sinω

)
. (2.10)

To proceed further, we use the Kepler’s second law:

r2ḟ =
2π

Porb

a2
√
1− e2. (2.11)

Then the total duration of transit and the duration of full transit are respectively expressed
as

Ttot ≡ tIV − tI =
Porb

2π
√
1− e2

∫ fIV

fI

[
r(f)

a

]2
df, (2.12)

Tfull ≡ tIII − tII =
Porb

2π
√
1− e2

∫ fIII

fII

[
r(f)

a

]2
df. (2.13)

The integration above can be approximated by

Ttot ≈ Porb

π
sin−1

[
R⋆

a

√
(1 + k)2 − b2

sin iorb

] √
1− e2

1 + e sinω
, (2.14)

Tfull ≈ Porb

π
sin−1

[
R⋆

a

√
(1− k)2 − b2

sin iorb

] √
1− e2

1 + e sinω
, (2.15)

where k ≡
√
δ = Rp/R⋆ is planet-to-star radius ratio, and is a direct observable. For the

case of Rp ≪ R⋆ ≪ a, these equations can be rewritten as

b2 ≈ (1− k)2 − (Tfull/Ttot)
2(1 + k)2

1− (Tfull/Ttot)2
(2.16)

R⋆

a
≈ π

2
√
k

√
T 2
tot − T 2

full

Porb

(
1 + e cosω√

1− e2

)
. (2.17)

Equations (2.10), (2.16), and (2.17) enable to derive a/R⋆ and iorb from direct observables,
given e and ω from other observations such as radial velocity measurements.

8There is another solution that minimizes rsky, f = −π
2 − ω. This corresponds to mid-occultation phase.
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2.4 Spectroscopic observations to determine projected

spin-orbit angle

Spectroscopic measurement of the star with planetary companion also offers unique infor-
mation on the dynamical state of star-planet system. Here we review what we learn from
stellar spectroscopy, focusing on the measurement of the projected spin-orbit angle λ by the
Rossiter-McLaughlin (RM) effect (e.g., Winn & Fabrycky 2015, Triaud 2017).

In general, the star with a planetary companion revolves around the center of mass (CM)
of the system. This induces the reflex motion of the central star accompanied by the orbital
motion of the planet, and appears as the periodic Doppler shift of absorption lines in stellar
spectra. This periodic Doppler shift is often used to detect exoplanets, which is known
as spectroscopic radial velocity (RV) method. The first exoplanet 51Pegasi b, indeed, was
detected with the RV measurement. Over the decades this method has successfully discovered
≈ 700 exoplanets, and is now one of the most successful methods to detect exoplanets.

The stellar reflex motion along with line of sight is given by converting the planetary
motion relative to the star (equation 2.6) to the stellar motion relative to CM;

vrad = − Mp

M⋆ +Mp

Ż = − Mp

M⋆ +Mp

na sin iorb√
1− e2

[cos(ω + f) + e cosω], (2.18)

where n = 2π/Porb =
√
G(M⋆ +Mp)/a3 is the orbital frequency of planet, and is called

mean motion. Thus the orbital eccentricity e, argument of pericenter ω, and Mp sin iorb are
estimated from RV data. Therefore RV measurement can predict lower limit of planetary
massMp sin iorb. This enables to infer planetary material density (moreover, the composition
of planet) when combined with transit method, which gives an estimate of planetary radius
Rp.

During transits, there appears the anomaly on the measured radial velocity. This is re-
lated to stellar rotation as follows. Due to the stellar rotation, the flux from stellar surface
approaching towards observer is blue-shifted, while receding half is red-shifted. During out
of transit, the contributions of these two are canceled so that no blue/red-shift anomaly will
be present in RV curve. During transits, on the other hand, planet masks either blue or red
part of stellar surface. When planet masks blue part, stellar radial velocity becomes slightly
red-shifted because contribution from blue part decreases. This anomaly of radial veloc-
ity during transit is knows as the Rossiter-McLaughlin (RM) effect (Holt 1893, Schlesinger
1910, Rossiter 1924, McLaughlin 1924), whose theory had initially been developed to model
eclipsing binaries.

Figure 2.4 visualizes the modelling of RM anomalies in RV curve for three different transit
chords. Top panel brackets the entire orbital phase of the star, and gray-shaded region is
in-transit phase where RM anomalies arise. Conventionally positive radial velocity is defined
for the motion moving away from the observer. Bottom panels provide close-up views of
the RM anomalies during transit (lower panels), and corresponding geometry of planetary
transit. From left to right, transits with λ = 30◦, 90◦, and 150◦ are illustrated. In the
case of λ = 30◦, planet passes the blue-shifted half of stellar surface first, and red-half after
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Figure 2.4: Modelled radial velocity curve of exoplanetary system based on the formulation
by Ohta et al. (2005). Star and planet with M⋆ = 1M⊙, Mp = 1MJ, a = 0.02 au, e = 0,
i⋆ = 90◦, iorb = 85◦, ω = 90◦, Prot = 10 days, R⋆ = 1R⊙, and k = 0.1 are assumed. No
limb darkening is taken into account. Top: Radial velocity over full orbital phase ([0, 2π]).
Shaded region denotes transit window, and red, green, and blue lines correspond to the
Rossiter-McLaughlin anomalies with λ = 30◦, 90◦, and 150◦, respectively. Bottom: Close-
up views of the RM anomalies during transit (lower panels) and schematic descriptions of
corresponding transit geometry (upper panels). Blue half is the stellar surface where rotation
makes it approach towards the observer, while red is receding half. From left to right, we
assume λ = 30◦, 90◦, and 150◦, respectively.
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that. Accordingly, radial velocity shifts to positive side first, and to negative side later.
The situation is completely opposite for λ = 150◦; radial velocity shifts blueward first, and
redward later. For transit with λ = 90◦, RM anomaly is always negative, because planet
keeps masking only red side.

This RM anomalies has been modelled as a function of λ by Ohta et al. (2005). For
example, the RM anomaly in full transit (tII − tIII in Figure 2.2) can be formulated as

∆vrad = rλ
2π

Prot

sin i⋆
k2

1− k2
, (2.19)

where

rλ = r[− cosλ cos(ω + f)− sinλ sin(ω + f) cos iorb] (2.20)

in the absence of stellar limb-darkening. Now the RM model has been developed further by
taking into account the realistic stellar absorption line profiles (Hirano et al. 2011), enabling
more accurate determination of λ. As demonstrated here, proper modelling of the RM
anomalies makes possible to derive projected spin-orbit angle λ.

In order for the RM anomalies to be detectable, larger planets are favored because they
give larger amplitude of the RM anomaly (equation 2.19). Besides, planets in shorter orbital
period (i.e., close-in planets) are advantageous because we have more opportunities to observe
planetary transit, and then multiple RM anomaly measurement contributes to reduce the
noise level of the resulting radial velocity. More frequent transit is favorable also because
transit window (shaded zone in upper panel of Figure 2.4) takes larger fraction in the entire
orbital phase.

2.5 Methods to derive stellar inclination

Stellar inclination angles measured from line of sight (i⋆) deliver the clues on dynamical state
of star-planet system with different and complementary viewpoint from that of λ. Here we
summarize the methods to derive i⋆, highlighting the sensitivity of each method to stellar
and planetary characteristics.

2.5.1 Spectroscopic line broadening and photometric variation

Stellar inclination i⋆ can be derived by combining spectroscopic and photometric observations.
In doing so, we need three variables; projected stellar rotation velocity (v sin i⋆), stellar
rotational period (Prot), and stellar radius (R⋆). Once these three parameters are given, i⋆ is
easily estimated as

i⋆ = sin−1

(
v sin i⋆

2πR⋆/Prot

)
, (2.21)

because 2πR⋆/Prot is a proxy for the equatorial rotation velocity of the stellar surface. In
what follows, we refer to this as “combined method” when deriving i⋆. Here we present the
remark on the measurement of each parameter.
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• Stellar rotation broadens the absorption line profile in the spectra. Therefore we can get
line of sight component of stellar rotation velocity (v sin i⋆) by modelling line broadening
properly. In the actual measurement, however, special care is necessary to distinguish
two contributions to line broadening; stellar rotation and (macro-)turbulence. In other
words, poor modelling of turbulence may lead to incorrect measurement of surface rota-
tional velocity v sin i⋆. Actually, it is difficult to isolate stellar rotation from turbulence
unless rotation is fast enough (e.g., v sin i⋆≳ 5 km/s).

• The measurement of rotational period Prot is based on the periodic signal encoded in
time series of stellar brightness. If there is inhomogeneity of brightness on the stellar
surface (star-spots and/or faculae), there happens periodic variation of the total stellar
flux as star rotates, whose period is identical to stellar rotation. However, this method
relies on some assumptions of the nature of star-spots. First, the lifetime of star-spots
needs to be long enough to be able to follow stellar rotational motion. If star-spot
appears or vanishes many times during one rotational period, it is no longer proper
tracer of stellar rotation. Second, a single-spotted star is preferable, because for multi-
spotted stars time series may suffer from high overtones of rotational periods (Prot/2,
Prot/3, ...). Third, we need to assume the latitudes the star-spots appear. Since it is
possible that different latitude rotates with different period (as is the case for the Sun),
derived periods always have uncertainty of up to ≈ 30% due to poor understanding of
spot-emerging latitudes.

• Stellar radius R⋆ cannot be derived directly from observations. Instead, it is derived
by modelling stellar evolution, which adopts spectroscopic parameters such as v sin i⋆,
surface gravity (log g), and metallicity ([Fe/H]) as input parameters.

We note here that three independent measurements are necessary for spectroscopic esti-
mate of i⋆. We may apply this method to a large number of stars 9, but i⋆ derived from the
combined method most likely suffer from large uncertainties.

In this combined method, relatively fast rotation of the stars are required for line broad-
ening to be detectable (v sin i⋆ ≳ 5 km/s). In addition, photometrically active stars are
unfavorable because flux variation not originating from star-spot modulation will be present
in stellar time series.

2.5.2 Asteroseismic estimate of the stellar inclination

Asteroseismology is a study of stars with their pulsations. Among stars, main-sequence
solar-like stars are known to show pulsations with amplitudes of a few parts per million in
time series. Through the analysis of this pulsation, asteroseismology is now expected to
deliver very accurate measurements of stellar parameters including stellar inclination i⋆. In
this thesis, we focus on photometric variation induced by stellar acoustic oscillation with

9Large scale observations have been operated to get v sin i⋆ and R⋆, such as Spectroscopic Properties of
Cool Stars (SPOCS) project (Valenti & Fischer 2005) and California Kepler Survey (CKS) project (Petigura
et al. 2017, Johnson et al. 2017).
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a few minutes period (frequencies with the order of a few thousand µHz). The review
of asteroseismology is given in chapter 3 in great detail, and in this subsection we briefly
describe the basic principle.

In asteroseismic analysis, we do not deal with stellar photometric time series directly,
but its Fourier-transforms (“power spectrum”) to extract periodicity within it. In addition,
the shape of this power spectrum is tightly dependent on the viewing angle of star (i⋆) in
sub-µHz scale. The change of the shape is so tiny that i⋆ measurement had been almost
impossible until the advent of high precision space telescopes such as CoRoT and Kepler,
which can describe “fine structure” of power spectrum with sub-µHz resolution.

The advantage of asteroseismic determination of i⋆ is mainly two-fold. First, the shape
of power spectrum is directly sensitive to the value of i⋆. This is not the case for the
combined method of spectroscopy and photometry. Therefore asteroseismic i⋆ measurement is
relatively model-independent, unlike combined method that assumes line broadening model,
spot generation/annihilation model, and stellar evolution model. Second, the applicability
of asteroseismology does not depend on the properties of planets. This is clearly contrary to
the RM measurement, which prefers deep and frequent transits (i.e., those by hot Jupiters)
for the detectable anomalies. Actually the RM measurements have been made mostly for
hot Jupiters, as we see in section 2.6. Because most of detected exoplanets are Earth-sized
planets (rather than hot Jupiters), indeed, asteroseismology has great potential to explore
smaller and more distant planets for the study of the misalignment.

Measuring the spin-orbit angle for smaller and/or more distant planets may not immedi-
ately lead to the strong quantitative constraints on the possible planet formation scenarios.
However, it will provide a significant implication to the possible scenarios.

As described above, the discovery of misaligned exoplanets has triggered the development
of various planet formation scenarios that account for such misalignments. For example,
intensive effort has been made to predict the evolution of the spin-obit angle of exoplanets
numerically (e.g., Nagasawa et al. 2008). However, the quantitative understanding of the
outcome of orbital evolution is hampered by the arbitrariness of the initial conditions adopted
there; e.g., the number of planets, planet masses, and planet orbital periods. Recently, ALMA
observation discovered the gapped structure in some protoplanetary disks. It is presumed
that these gaps are formed by the protoplanets, which provides realistic initial conditions for
the planetary orbital evolution (e.g., Tamayo et al. 2015).

As this example demonstrates well, new observations can lead to the great progress in
the theory, making possible the quantitative comparison of the theory with the observations.
In the same way, the measured misalignments for small and/or distant planets will provide
realistic conditions of planet formation. Of particular importance is measuring the spin-orbit
angles in various kinds of exoplanetary systems including e.g., small or distant planet sys-
tems, and multi-planet systems. Once enough number of measurements are achieved, the
statistics of the spin-orbit angles will not only valify the already known models of planet
formation/evolution, but also contribute to establish more realistic models. In this sense,
measuring the inclination angle for planet-host stars with asteroseismology is a basic obser-
vational research to establish the comprehensive planet formation scenario.
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Table 2.2: Summary of derived ψ in literatures.
System ψ (deg) Method to measure i⋆ Reference

CoRoT-18 20±20 combined method Hébrard et al. (2011)
GJ 436 80+20

−18 combined method Bourrier et al. (2018)
HAT-P-7 94.6+5.5

−3.0 combined method Winn et al. (2009)
115+19

−16 asteroseismology Benomar et al. (2014)
97±14 asteroseismology Lund et al. (2014b)

116.4+30.2
−14.7 asteroseismology Campante et al. (2016)

HAT-P-20 36+10
−12 combined method Esposito et al. (2017)

HAT-P-22 24±18 combined method Mancini et al. (2018)
HAT-P-36 < 63 combined method Mancini et al. (2015)
Kepler-25 26.9+7.0

−9.2 asteroseismology Benomar et al. (2014)
12.6+6.7

−11.0 asteroseismology Campante et al. (2016)
Kepler-63 104+9

−14 combined method Sanchis-Ojeda et al. (2013)
Qatar-2 < 43 combined method Esposito et al. (2017)
WASP-19 0±20 combined method Hellier et al. (2011)
WASP-32 11±14 combined method Brothwell et al. (2014)
WASP-43 < 20 combined method Esposito et al. (2017)
WASP-84 17.3±7.7 combined method Anderson et al. (2015)
WASP-117 69.5+3.6

−3.1 combined method Lendl et al. (2014)
XO-2 27+12

−27 combined method Damasso et al. (2015)

2.6 Current results of spin-orbit angle distribution

If we can measure all of iorb, λ, and i⋆, spin-orbit angle (ψ) can be given uniquely (equation
2.4). However, measuring these three angles simultaneously for one system is quite demand-
ing in most cases The reasons are two-fold. First, the RM measurement is most likely for hot
Jupiters as we noted. On the other hand, asteroseismology has no requirement on the prop-
erties of planets around the star. Therefore most planet-host stars with detectable acoustic
oscillations have Earth-sized planets, which are the most common exoplanets. Second, Ke-
pler, the satellite that had detected acoustic oscillations for many stars, had been dedicated
to 10◦×10◦ field of view around Cygnus. Because Kepler stars are quite distant (as deep as
up to 1,000 persec), spectroscopic follow-up is difficult in most cases. For these reasons, the
RM measurement and asteroseismology have few common stars.

Table 2.2 summarizes 15 confirmed exoplanetary systems with measured spin-orbit angle
ψ. In fact, there are only two planetary systems for which spin-orbit angle ψ is successfully
derived with asteroseismology; HAT-P-7 (Benomar et al. 2014, Lund et al. 2014b, Campante
et al. 2016) and Kepler-25 (Benomar et al. 2014, Campante et al. 2016). Because of small
number statistics, the discussion on the spin-orbit angle distribution has been mainly made
in terms of either λ or i⋆. In what follows we briefly highlight the previous works on the
spin-orbit angle distribution.
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2.6.1 Spin-orbit angle distribution revealed by λ

Projected spin-orbit angle λ has been measured for more than 120 exoplanets so far. Figure
2.5 summarizes the values of λ for 124 planets taken from TEPCat sample (Southworth
2011) 10 11. It is again clear from this figure that almost all measurements are limited for
close-in (Porb≲ 1week) gas-giants (Rp≳ 4R⊕). In addition, it is important to note that
more than half planets in this sample are consistent with spin-orbit alignment 12 (the gray-
shaded region), while non-negligible fraction of planets are known to be misaligned. Some of
them are found in polar (λ≈ 90◦, 270◦), retrograde (90◦≲λ≲ 270◦), or even counter-orbiting
(λ≈ 180◦) orbits.

Fabrycky & Winn (2009) first performed statistical study in terms of λ by using 11
measurement of λ at the time of their writing. They assumed two possible populations of
λ to describe the entire distribution of known values; Gaussian distribution around λ = 0◦

and isotropic distribution. The former is to describe aligned systems, while the latter is for
misaligned systems. Authors estimated how likely the data suggest each model is. They
found observation favors < 36% probability for isotropic distribution, suggesting that up to
30% of the systems was not necessarily in the aligned state. Despite the small number of
measured λ, this trend seems to hold even with much more observations until today (Figure
2.5).

When classified in terms of the spectral types of host stars, statistics of the RM samples
helps us understand the possible origin of these misalignments (Winn et al. 2010a, Albrecht
et al. 2012, Dawson 2014, Winn & Fabrycky 2015). Figure 2.6 compares measured values of
λ and effective temperatures of host stars (Teff) for hot Jupiters (0.7 days< Porb < 7 days).
Planets around stars below Teff =6,100K show the trend of alignment, while large scatter of
the values of λ is found for planets around hotter stars. In addition, more massive planets
(Mp > 3MJ) are likely to be aligned regardless of temperature of their host stars. Recently,
Muñoz & Perets (2018) verified this distinction in quantitative fashion. With 118 samples
(74 around cooler stars, 44 around hotter stars), they found that cooler and hotter samples
obey different distribution with 4σ significance.

It is interesting to note that this boundary of 6,100K coincides with the discontinuity of
stellar potation profile, which is also known as “Kraft break” (Kraft 1967). To be specific,
hotter stars tend to rotate more rapidly, while cooler ones rotate slowly. This distinction
would be attributed to the internal structure of the stars. Cooler stars have radiative core
and thick convective envelope, while hotter stars have convective core and radiative envelope
covered by thin convective layer. Since convective motion is known to be responsible for the
generation of magnetic field, it suggests that magnetic breaking through the mass ejection
works more effectively for cooler stars. This naturally explains the observed profiles of stellar
rotation.

Because the excitation mechanisms of spin-orbit misalignment presented in section 2.1
are not necessarily exclusive each other, the profiles of λ distribution in Figure 2.6 may

10http://www.astro.keele.ac.uk/jkt/tepcat/
11We removed 55Cnc e and WASP-2b, for which earlier measurement of λ is disputed by later study.
12In this thesis we define “alignment” as |λ|≲ 30◦.
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Figure 2.5: The distribution of observed values of λ with the Rossiter-McLaughlin measure-
ments for 124 planetary systems. Radial coordinate corresponds to the planetary orbital
period (Porb) in logarithmic scale, while angular coordinate represents λ. The size of symbols
is proportional to planetary radius (Rp), and planets larger (smaller) than 4R⊕ are colored
in red (blue). The shaded area denotes aligned systems (|λ| < 30◦). The sample is taken
from TEPCat (Southworth 2011; http://www.astro.keele.ac.uk/jkt/tepcat/).

have various origins. Indeed, the key to infer the planet formation/evolution history is to
know how likely each mechanism is. When interpreting the observation, the gap at 6,100K
suggests that some of misalignments have the origin of dynamical excitation followed by
tidal realignment. As we introduced, one promising scenario for the observed distribution of
λ is planet-planet scattering or Kozai-Lidov migration followed by tidal realignment (section
2.1). Tidal interaction is theoretically based on tidal dissipation in stellar convective layers.
Since cooler stars tend to have thicker convective envelopes, it predicts that tidal force works
more effectively for planets around cooler stars. Figure 2.6 is consistent with this hypothesis;
even if spin-orbit misalignment can be excited for all planets regardless of the type of central
star, misalignments around cooler stars are preferentially suppressed due to the stronger
star-planet tidal interaction. Because larger planets are expected to have thicker envelope,
tidal force will work more effectively for larger hot Juiters. This is again consistent with the
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Figure 2.6: Distribution of the values of λ as a function of stellar effective temperature Teff
for stars with secure measurements. Close-in planets (Porb = 0.7 − 7 days) are shown. The
vertical dashed line represents Teff = 6,100K, below (above) which stars are marked in blue
(red). Planets with 0.3 − 3MJup are marked in circle, while those with 3 − 30MJup are in
squares.

overall alignment for more massive hot Jupiters (3− 30MJup), as we find in Figure 2.6.
Figure 2.7 plots measured values of λ against theoretically-estimated realignment timescale;

τCE (CE; convective envelopes) for cooler stars and τRA (RA; radiative envelopes) for hotter
stars. The explicit forms of these timescales are given by Zahn (1977);

τCE = 10q−2

(
a/R⋆

40

)6

Gyr, (2.22)

and

τRA = 1.25q−2(1 + q)−5/6

(
a/R⋆

6

)17/2

Gyr, (2.23)

where q ≡Mp/M⋆ is the planet-to-star mass ratio. Figure 2.7 reveals that most of misaligned
systems, mainly planets around hotter stars (red), are found in timescale longer than even
the age of the universe. On the other hand, planets whose timescale is less than the age of the
universe are mostly in aligned states |λ| < 30◦. All of the observational evidences are in favor
of planet-planet scattering or Kozai-Lidov cycles followed by tidal dissipation for observed
hot Jupiters. However, it is not well understood if the same mechanism will work also for
Earth-sized planets, mainly because of the small number statistics. This emphasizes the
importance of asteroseismology, which can unveil the geometry of small and distant planets,
that is, the planets that have been less explored so far.
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Figure 2.7: Distribution of λ values as a function of tidal dissipation timescale for stars with
secure measurements. The colors and symbols share the same meanings as those in Figure
2.6. Timescale τCE (equation 2.22) is computed for cooler stars, while τRA (equation 2.23) is
for hotter stars.

2.6.2 Spin-orbit angle distribution revealed by i⋆

Stellar inclination i⋆ is another tracer of spin-orbit angle ψ. Misalignment can be proved
even if λ is not measured, because low i⋆ corresponds to large misalignment for any values
of λ (equation 2.5) for transiting systems. By measuring i⋆, we may be able to reveal spin-
orbit angle distribution of Earth-sized planets, because combined method and asteroseismic
method rely on observing signals that are independent of planet size.

The statistical studies of i⋆ have been given by several authors based on the rich samples
of spectroscopic observations. Hirano et al. (2012, 2014) derived i⋆ for total 33 planetary
systems with combined method based on their own spectroscopic observations. They reported
possible misalignments for single-transiting super-Earth system Kepler-96 and for three multi-
transiting systems (Kepler-261, 518, and 1164), although their constraints are not strong
enough to draw firm conclusion in the absence of follow-up studies. Winn et al. (2017a)
derived i⋆ with combined method for the largest sample (156 planetary systems) ever as
part of California Kepler Survey (CKS) project, and found all stars to be compatible with
high inclination (i.e., spin-orbit alignment). In summary, combined method measured stellar
inclination angles i⋆ for hundreds of planetary systems, and none of them are undoubtedly
verified to be misaligned because of their weak constraints.

As introduced above, asteroseismology is another method to measure i⋆. As a pioneering
work that applied asteroseismology to the planetary dynamics, Chaplin et al. (2013) con-
firmed high stellar inclination (implying spin-orbit alignment) for double-transiting system
Kepler-50 and triple-transiting system Kepler-65.
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One of the most epoch-making works with asteroseismology for planet-host stars was
presented by Huber et al. (2013a). They found a significant misalignment (i⋆ = 43±4 degrees)
for a red-giant star Kepler-56 with double-transiting gas-giant planets. Because Kepler-56 is
an evolved star with expanded radius such that the RM anomaly is almost undetectable, this
discovery undoubtedly demonstrated the potential of asteroseismology to investigate spin-
orbit angle in complementary manner with the conventional RM method. In addition, it is
worth emphasizing that it is the first discovery of a significant misalignment for multi-planet
system.

Statistical study on spin-orbit angle with asteroseismology was first presented by Cam-
pante et al. (2016). They analyzed the acoustic oscillation of 25 main-sequence solar-like
stars with transiting planet(s), and found that all systems are compatible with aligned orbits
within 2σ (i⋆≈ 90◦).

In summary, there are ≈ 30 measurements of stellar inclination angles i⋆ with astero-
seismology. However, we need to keep in mind that some authors raised the caution that
asteroseismology may give inaccurate measurements of i⋆, unless the stellar rotation is rapid
enough (Gizon & Solanki 2003, Ballot et al. 2006). Therefore a substantial proportion of
these measurements could be inaccurate, expect the unambiguous case Kepler-56. Motivated
by this situation, we mainly focus on the reliability assessment of parameters derived by
asteroseismology in next chapters 3 and 4.



Chapter 3

Basics of asteroseismology

3.1 History of the study of stellar pulsations

3.1.1 History of the discovery of variable stars

The variability of some stars has been known since centuries. Mira (a red-giant), observed by
David Fabricius (1564-1617) and Johannes Holwarda (1618-1651), is the first star known to
have luminosity variation recorded over time. With the development of photography, quan-
titative methods to evaluate the stellar luminosities were eventually made possible, so that
more variable stars were found. The first mention of the term “stellar pulsation” was made by
Arthur Eddington (1882-1944). Around the same time, major advances in astrophysics were
achieved due to the characterization of Cepheids (a class of pulsator named after δCephei).
These stars show luminosity variations of several magnitude. Leavitt & Pickering (1912)
established that there was a direct dependence of the luminosity and pulsation period. This
is possible only if those stars have similar mass and temperature, so that they can be used
as “cosmic ruler”. Based on that, distances of observed astronomical objects could be finally
estimated. For example, the Magellanic cloud, which has been thought to be a part of our
galaxy, was found to be outside the Milky Way. Edwin Hubble (1889-1953) used Cepheids to
show that the universe is expanding, contrary to the dominant vision from Albert Einstein
(1879-1955) at that time that the common view was that the universe was static. Stellar
pulsations therefore allowed radical changes in our perception of the universe. With the re-
sent advent of space missions such as SOHO, CoRoT, and Kepler, new major discoveries are
made possible.

3.1.2 Understanding the Sun: History of the study of solar pulsa-
tions

The solar oscillations have been first detected by Leighton et al. (1962) and Evans & Michard
(1962), whose origin could not be understood at all at that time. This has been known as solar
5-minute oscillation. The interpretation in terms of global oscillations due to solar acoustic
waves was then given by Ulrich (1970) and Leibacher & Stein (1971), and later verified by

25
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Deubner (1975). This is the birth of helioseismology, and enabled for the first time to probe
the interior of the star with high precision, in a similar way to what Earth seismology can
do. This is because the oscillation of stars induced by acoustic waves is tightly related to
its internal structure. Sound waves travel at sound speed, which depends on the internal
properties of the stars including pressure and density. Based on that, seismic investigation
of the stars can uniquely deliver lots of information on the stellar interior for which other
observation methods may not. Under the hydrostatic equilibrium, for example, the sound
travel timescale is identical to the dynamical timescale of stars:

tdyn =

(
R3

⋆

GM⋆

)1/2

≈ (Gρ⋆)
−1/2, (3.1)

which clearly gives the stellar mean density. It predicts that younger stars, such as those in
main-sequence phase, will oscillate with higher frequency, while evolved stars will oscillate
with longer timescale. This is because stellar radius expands over the evolution while the
mass remains almost constant. Furthermore, by looking at waves traveling in different layers
of stellar interior, we can also probe density, pressure and temperature profiles inside the star
(see below).

In principle, local sound waves (also called “p modes”) are stochastically excited and
damped due to the turbulent motion in the stellar outer convective layers. This excitation
occurs at various frequencies. Waves produced locally near the surface of the star then
interfere between each other to form global waves traveling within the stellar cavity. The
process of excitation and damping of p mode oscillations can take place in any star which
has a significant outer convective layer, i.e., stars with masses ranging from 0.8− 1.6M⊙ for
main-sequence stars. This is why solar-like stars, namely F, G, and K-type stars including
the Sun, are likely to be the targets of frequency analysis.

Oscillatory phenomena can be observed as recurring expansion and contraction patterns
of stellar surface because of the nature of the density waves. This type of oscillation can be
observable both in photometry (intensity variation measurement) and spectroscopy (radial
velocity variation measurement), because surface dynamical motion of expansion/contraction
always accompanies with intensity variation via temperature variation 1. It is clear that
variations in intensity and radial velocity share a common period. For example, surface
temperature (and intensity) becomes maximum when the surface is contracted the most,
while minimum when the surface is expanded the most. Variation pattern of intensity can
be seen in principle in the stellar time series, and variation pattern of radial velocity can be
observed as periodic Doppler shift of stellar spectra.

In the case of the Sun, intensive and continuous observation has been operated to reveal
the physics happening inside the Sun, both from ground and space-based observatories. There
are some famous ground-based project of helioseismology such as Birmingham Solar Oscil-
lations Network (BiSON) and Global Oscillations Network Group (GONG). For instance,
BiSON is a global network of 6 ground-based instruments located at various longitudes on

1I = σSBT
4
eff , where I is intensity, σSB is Stefan-Boltzmann constant, and Teff is stellar surface tempera-

ture.
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the Earth; north/south America, north/south Africa, and west/east Australia. They are lo-
cated so as to be able to continuously monitor the Sun and avoid observational interruptions
due to day/night shifts. On the other hand, there are space-based instruments optimized for
helioseismology, such as Solar and Heliospheric Observatory (SOHO) and Solar Dynamics
Observatory (SDO). For instance, SOHO is located at the Lagrange point between Sun and
Earth so that it can always keep the Sun in its view. The common characteristic of these
instruments is that they are designed so that they can perform continuous monitoring of the
Sun. Since helioseismology is analysis of the Solar photometry/spectroscopy in frequency
domain, long and uninterrupted observation is highly required.

Helioseismology revealed the internal profiles of the Sun in great detail due to observations
since decades. One of the most successful discovery is the precise identification of the base
of the solar convective zone by detecting the sudden change of sound speed across the radia-
tive/convective boundary (Basu et al. 1996). Moreover, the rotation profile inside the Sun
has been found to be different from what the theory predicts (Schou et al. 1998, Thompson
et al. 2003). Solar evolution model in the absence of angular momentum transport expects
that the deep interior rotates ≈ 100 times faster than the envelope. Helioseismology demon-
strated that this was not the case, suggesting that angular momentum transport should be
more effective inside the Sun. Furthermore, current observation revealed that solar interior
rotates as solid body, and solar envelope rotates faster at equator than at higher latitudes
(latitudinal differential rotation). This discovery contributed to the advance of the stellar
dynamics theory, involving any mechanisms at play inside the star such as dynamo motion,
magnetic field, and angular momentum transport/redistribution.

Another important topic that helioseismology considerably contributed to, is the under-
standing of neutrino physics. It had been long know that the amount of neutrino detected
in ground-based facilities is approximately half of what is predicted by the solar model the-
oretically. This neutrino deficit problem has been under debate whether it comes from poor
modelling of solar interior or poor understanding of neutrino properties. Because helioseis-
mology is a unique tool to model solar interior, it is recognized to be the key to reconcile
this problem. Later a new model of neutrino was proposed, predicting that a e neutrino
generated inside the Sun will change flavor possibly among µ or τ neutrino. This is known as
the neutrino oscillation, and was confirmed later by detecting anomalous neutrino in Earth
atmosphere by Super-Kamiokande (Fukuda et al. 1998). Therefore precise description of so-
lar interior by helioseismology indeed promoted our understanding of not only astrophysics,
but also particle physics.

As given above, the benefits from helioseismology has been delivered to various fields of
(astro-)physics. Now we have the data from new observatories (CoRoT and Kepler) that can
lead to great discovery again, which is discussed in next subsection.

3.1.3 The study of solar-like pulsations

Asteroseismology is the seismic investigation of the stars other than the Sun. Although theo-
retical background of asteroseismology is identical to that of helioseismology, its applicability
has been rather limited, and only the Sun has been the major target for decades. This results
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from the difficulty to conduct the long and uninterrupted monitoring for the stars other than
the Sun, and due to the great distance separating us from stars. Before the launch of the
space telescopes CoRoT and Kepler, there were a handful of stars for which asteroseismic
analysis was possible. This includes the main solar-like stars; ηBootis (Bedding & Kjeldsen
1995), ProcyonA (Barban et al. 1999), β Hydri (Bedding et al. 2001), αCentauri A (Bouchy
& Carrier 2001, Bazot et al. 2007), µHerculis (Bonanno et al. 2008), and 18 Scorpii (Bazot
et al. 2011).

MOST (Microvariability and Oscillations of Stars; 2003-2014; Walker et al. 2003) and
CoRoT (2006-2013) have entirely changed the situation and thoroughly demonstrated how
powerful asteroseismology with space-borne instruments is (e.g., Benomar et al. 2009). MOST
and CoRoT have been succeeded by Kepler (2009-2018), allowing to observe thousands of
stars. These space telescopes performed photometric asteroseismology, because they do not
have spectroscopic instruments on board. Kepler has observed ≈ 1.5×105 stars over 4 years
of its primary operation mainly with 29.4 minutes exposure, with the so-called long cadence
mode (LC, Gilliland et al. 2010). It also has 512 slots with 58.8 seconds exposure (short
cadence; SC) to detect precise transit timing variation (TTV; Holman & Murray 2005, Agol
et al. 2005) or follow the shape of transit ingress/egress in details (Winn 2010). Here exposure
time (∆t) defines the maximum frequency that can be uniquely extracted in Fourier spectra
from time series (Nyquist frequency); νNyq = 1/(2∆t) ≈ 293µHz for LC and 8,496µHz for
SC. Kepler LC mode has been successful in detecting more than 15,000 solar-like pulsators
in the evolved phase. Because typical oscillation frequency of the stars in main-sequence
phase is found for frequencies higher than ≈ 1,000µHz, we need to rely solely on SC mode to
detect their pulsations. By making use of 512 slots for SC mode, Kepler has detected ≈ 200
solar-like oscillators in main-sequence phase.

Figure 3.1 illustrates how stellar acoustic oscillations look like in Fourier spectra of time
series (hereafter, “power spectra”) for a typical main-sequence solar-like star Kepler-408.
The forest of power excess (blue) at a few thousand µHz are the peaks corresponding to
eigen-frequencies, and standing upon monotonically decreasing noise background (red). This
noise is mostly due to the convective motion at the surface of the star (see subsection 3.2.5).

The fundamental properties of the star are related to the profiles of the observed peaks
of eigen-modes. For example, the frequency of maximum amplitude, νmax (≈ 2,100µHz in
Figure 3.1), is supposed to scale with the stellar massM⋆, radiusR⋆, and effective temperature
Teff (e.g., Brown et al. 1991, Bedding & Kjeldsen 2003, Chaplin et al. 2008) as

νmax ∝M⋆R
−2
⋆ T

−1/2
eff . (3.2)

Besides, Figure 3.1 suggests that the peaks of eigen-modes are regularly located with almost
equal separation. This separation is approximated as ≈∆ν/2, where ∆ν (called “large
separation” as will be shown in later sections) is directly related to the sound travel time
across the stellar diameter, and is therefore sensitive to the mean stellar density ρ̄ (e.g., Ulrich
1986) as

∆ν ∝ ρ̄1/2 ∝M1/2
⋆ R−3/2

⋆ . (3.3)
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Figure 3.1: The overview of power spectra of main-sequence solar-like oscillator (Kepler-
408). Gray and black correspond to different levels of smoothing of spectra. Red line is
the modeled noise background, and blue is the fit to acoustic oscillation modes (see section
3.2). Although power spectra ranges up to Nyquist frequency of short cadence sampling
(≈ 8,500µHz), spectra only around power excess are shown just for clarity.

Table 3.1: Number of target stars of space instruments.
instrument number of stars

before CoRoT ≈ 100− 1,000
CoRoT ≈ 10,000
Kepler ≈ 150,000
TESS ≈ 200,000
PLATO ≈ 1,000,000

The full width at half maximum of the mode peak, or more commonly mode width Γ, is
related to the mode lifetime τ = 1/πΓ. Mode width increases with stellar effective tempera-
ture (Chaplin et al. 2009), reflecting shorter mode lifetimes τ in hotter stars. Therefore mode
width is an indicator of the stellar spectrum type. In summary, the properties of oscillation
modes in power spectra are tightly related to the fundamental stellar properties including
mass, radius, and effective temperature. Therefore these scaling relations can be used to
estimate the stellar fundamental properties from measured oscillation properties.

In the coming years, we expect some additional results from new space missions; TESS
(Transiting Exoplanet Survey Satellite; already under operation) and PLATO (PLAnetary
Transits and Oscillations of stars; planned for 2026). Table 3.1 summarizes the number
of stars that was and will be observed for each space instrument. These promising future
instruments are expected to make possible the full study of pulsators in all directions in the
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sky with high completeness. Among them, it is of particular interest to study solar-like stars.
This is because they are low mass stars and the most common stars in the universe, and also
because they can be understood in details as we have the prototype of solar-like star next to
us; the Sun.

The benefit from asteroseismology has been delivered in various aspects of astrophysics,
both in stellar physics and stellar population. With small number of stars, a pioneering
example of stellar physics revealed by asteroseismology is the fact that stellar internal rotation
period is likely to be almost consistent with surface rotation (Benomar et al. 2015; Nielsen
et al. 2015, 2017). Similarly to the Sun, this suggests that uniform rotation along with
radial direction is likely to be achieved in main-sequence solar-like stars. This significantly
contributes to evaluate the efficiency of angular momentum transport within each star during
its evolution. Another leading work is on the spin-axis alignment of the stars that belong
to the same open cluster (Corsaro et al. 2017). Thanks to the ability of asteroseismology
to measure stellar inclination angle seen from us (sections 2.5, 3.2), Corsaro et al. (2017)
reported a clustering of spin-axes in open clusters NGC 6791 (25 stars) and NGC 6819 (23
stars), which is very unlikely to happen by chance. Because the birth of stars is associated
with the collapse of gas cloud, this could be the key to understand the angular momentum
redistribution of molecular cloud to the dynamics of stars (proper motion, orbital motion,
and rotation) due to the turbulence.

Moreover, asteroseismology is becoming an important method to study stellar populations
across the Milky Way. This is because asteroseismology enables very precise and accurate
measurements of stellar fundamental parameters such as radius (down to ≈ 2 percent) and
mass (down to ≈ 4 percent), as well as age (down to ≈ 10 percent) with the stellar modeling 2.
These precisely-measured parameters are used to understand the structure of Milky Way, such
as vertical age distribution of the galactic disk (Casagrande et al. 2016) and age distribution
in globular clusters (Miglio et al. 2016). A series of these study is now established as an
important field of astrophysics, “Galactic archaeology” (Miglio et al. 2017).

Asteroseismology can also play an essential role in current and future characterization of
exoplanets (Ragazzoni et al. 2016). Indeed, the most basic parameters such as the radius
and mass of exoplanets are usually derived on the basis of those of their host stars. This is
because, for example, transit method gives planet-to-star size ratio alone. Thus the precise
determination of the fundamental parameters of host stars are of significant importance.
Another important quantity that asteroseismology can also deliver uniquely is the tilt of
stellar spin axis measured from line of sight; stellar inclination angle i⋆ as introduced in
chapter 2. This angle can be helpful in constraining planetary orbits, inferring possible
planet migration scenario. Such synergies between exoplanets and asteroseismology can lead
to breakthrough in our understanding of the planet formation and evolution.

In recent works, actually, more and more authors have been getting interested in astero-
seismology of solar-like stars with exoplanets. Consequently, statistical works on asteroseis-

2For example, there are 66 best-studied dwarfs for which radii, masses, and ages are determined with
comparison with the stellar models. They have been observed for at least ≈ 1 year and at best ≈ 4 years
campaign and are called the Kepler asteroseismic LEGACY sample after the end of Kepler primary mission
(Lund et al. 2017, Silva Aguirre et al. 2017).
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mic characterization of planets has been presented (Huber et al. 2013b, Silva Aguirre et al.
2015, Campante et al. 2016, Davies et al. 2016). In addition, some focused on the orientation
of stellar spin axis with asteroseismology; Kepler-50 and 65 (Chaplin et al. 2013), Kepler-56
(Huber et al. 2013a), HAT-P-7 (Lund et al. 2014b, Benomar et al. 2014), and Kepler-25
(Benomar et al. 2014). Because the ability of asteroseismology to measure stellar inclination
is one of the most important topics in this thesis, we introduce theories of stellar acoustic
oscillation and demonstrate how stellar inclination can be determined within that framework
in the next section.

3.2 Theory of stellar internal structure and pulsations

Star is a ball of plasma gas at thermal and hydrostatic equilibrium maintained by a balance
between nuclear fusion and gravity. Because nuclear fusion of hydrogen does not occur in the
gaseous body below ≈ 0.08M⊙, it defines the minimum mass for “stars”. Low mass gaseous
body that cannot ignite hydrogen is called either “brown dwarf”, that mildly shines by the
nuclear fusion of deuterium, or “planet”, that faintly shines by its gravitational contraction 3.
All gaseous bodies across the entire HR diagram are known to pulsate, even including dead
stars (white dwarf, neutron stars, pulsar, ...) and planets (e.g., global Jovian pulsation de-
tected by Gaulme et al. 2011). Among such pulsators, low mass stars (0.8M⊙≲M⋆≲ 2.5M⊙)
are often referred as solar-like stars. The Sun, the best known solar-like star, has radiative
core (R≲ 0.7R⊙) in which energy is transported by radiation. This radiative core is cov-
ered by convective envelope (R≳ 0.7R⊙) in which energy is transported by convection of
fluid materials. The solar convective layer is thick enough to sustain long-lived global acous-
tic oscillation, which enabled helioseismology to investigate the solar internal structure and
rotation profiles as mentioned in section 3.1. Any other main-sequence solar-like stars are
expected to have similar property, except those with M⋆≳ 1.1M⊙ that begin to have a con-
vective core according to theory and recent observations from CoRoT and Kepler. Evolved
solar-like stars (stars that have depleted their core hydrogen) are found to have very different
internal properties, but they are not the topic of this thesis and they will not be discussed
here.

3.2.1 Equations of internal structure and stellar pulsations

Based on physical properties, the internal structure of the stars can be described in the basic
equations below;

• The equation of continuity

∂ρ

∂t
+∇·(ρv) = 0, (3.4)

3The mass that separates the brown dwarfs and the planets is ≈ 13MJ.
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where ρ = ρ(t, r) and v = v(t, r) are density and local instantaneous velocity of fluid
element at time t and position r. The local time derivative ∂/∂t is the time derivative
at a fixed point.

• Equations of motion

∂v

∂t
+ (v·∇)v = −1

ρ
∇p+∇Φ, (3.5)

where p = p(t, r) and Φ = Φ(r) are pressure and gravitational potential at time t and
position r.

• Poisson’s equation

∇2Φ = 4πGρ, (3.6)

where G is gravitational constant.

• Energy equation

ρT

(
∂

∂t
+ v·∇

)
S = ρϵ−∇F , (3.7)

where T = T (t, r), S = S(t, r), ϵ = ϵ(t, r), and F = F (t, r) are temperature, entropy,
the rate of energy generation per unit mass (e.g., mostly from nuclear reactions in the
core), and the density of energy flux. In general, F describes any ways of energy trans-
portation; radiation, convection, and conduction. In most cases molecular conduction
is almost negligible. The term ∇F term depends on the location inside the star; radia-
tive energy transport dominates in the inner core, while convective energy transport
dominates in outer envelope. In most cases, convective motion of fluid materials is
too complex to be handled in analytically or numerically. Therefore they are often
described by performing averages over the typical scales of convective motion, whose
familiar example is the mixing-length theory.

Based on these basic equations, stellar pulsations can be modelled by a first order per-
turbative approach;

X = X0 + δX, (3.8)

where X0 represents equilibrium (static) states of physical parameter X, and δX describes
perturbation imposed on X.

In addition, we assume the adiabatic pulsations of stars; heating timescale (principally
the order of Kelvin-Helmholtz timescale) is much longer than pulsation timescale (the order
of minutes to hours). This adiabatic approximation states that time-derivative terms are
much larger than heating terms in equation (3.7), therefore enabling to neglect the terms in
right-hand side. This simplifies equation (3.7) to

dp

dt
=

Γ1p

ρ

dρ

dt
, (3.9)
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where

Γ1 =

(
∂lnp

∂lnρ

)
ad

(3.10)

is an adiabatic exponent, and the time derivative

d

dt
=

∂

∂t
+ (v·∇), (3.11)

following the motion of the gas, is the material time derivative. This equation is identical to
equation of state, relating p and ρ of the gas element in the star.

To enable the simple analytic approach, we further assume spherical star; X0(t, r) =
X0(t, r). This implies that stellar equilibrium state varies only with time and radius and
does not depend on polar and azimuthal angle. This leaves basic equations to 1-dimensional
problem. Moreover, we assume stationary equilibrium; X0(t, r) = X0(r). This allows us to
eliminate time-derivative terms in the basic equations; dX0/dt = 0.

Based on these equations and simplifications, we can analytically get perturbations on p,
r, Φ, namely, δp, δr, δΦ. Stationary equilibrium implies the independence between space
and time variables. Therefore solution of perturbative approach to scalar variable (p and Φ)
takes the form of

δX(t, r) = δX(r) exp(−iωt). (3.12)

Consequently δX is eigen-function of the operator defined by spherical harmonics as

Y m
l (θ, ϕ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos θ) exp(imϕ), (3.13)

where Pm
l is the associated Legendre polynomials with degree l and order m. Angular

variables θ and ϕ correspond to co-latitude (polar angle measured from north pole) and
longitude on the sphere, respectively. It is then possible to show that the solutions for the
perturbed quantities can be written as

δX(t, r, θ, ϕ) = Xα,l,m(r)Y
m
l (θ, ϕ) exp(−iωα,l,mt) (3.14)

with ωα,l,m = 2πνα,l,m being pulsation frequency of the modes (α, l,m). In addition, the
displacement eigen-functions δr can be written in the form of

δr =

 ξr(r)Y
m
l (θ, ϕ)er

ξ⊥(r)
∂Y m

l (θ,ϕ)

∂θ
exp(−iωα,l,mt)eθ

ξ⊥(r)
1

sin θ

∂Y m
l (θ,ϕ)

∂ϕ
exp(−iωα,l,mt)eϕ

 , (3.15)

where ξr(r) and ξ⊥(r) are the amplitudes of the spatial displacement along with radial and
tangential direction, respectively. The unit vectors of radial, polar, and azimuthal direction
are given by er, eθ, and eϕ, respectively. In the expressions above α is an arbitrary real
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Figure 3.2: Contour maps of the real part of spherical harmonics Y m
l (θ, ϕ) (equation 3.8)

for l = 0 (top), l = 1 (middle), and l = 2 (bottom) modes. Blue and red colors have the
opposite phases of stellar pulsation motion. The θ = 0◦ axis is inclined towards the viewer
for the clearer visibility.

number, but due to boundary conditions at the surface and in the interior, we can replace it
by an integer n such that each pulsation is described by (n, l,m).

Among three indices (n, l,m), the index n is referred to as a radial order, corresponding
to the number of nodes of sound wave along with radial direction. Second, the index l is
referred to as an angular degree, representing the number of nodes of sound wave on stellar
surface. Third, the index m is referred to as an azimuthal order, counting the number of
nodes of sound wave across an equator on the stellar surface. Obviously, m cannot be greater
than l (−l < m < +l). Figure 3.2 introduces the examples of oscillation patterns and their
visibilities for various combination of (l,m). Mode with l = 0 is a simple radial oscillation,
at which all the stellar surfaces pulsate with common phase, preserving spherical symmetry.
As l increases, however, the stellar oscillation becomes more complicated. Mode with l > 0
is called non-radial pulsation, where different area of stellar surface has different phase of
oscillation. For example, the mode with (l,m) = (1, 0) corresponds to the hemispherical
oscillation, at which northern (southern) hemisphere expands (contracts) while the other
contracts (expands) in turn. What we actually observe is the superposition of all possible
modes, especially high radial orders (10≲n≲ 25) and low angular degree (l≲ 3) (see Figures
3.1 and 3.5).

We cannot resolve the oscillatory motion over the stellar disk in Kepler stars, and then
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they show themselves only as point sources. In other words, we are observing the flux
integrated over the stellar disk for Kepler stars. Since oscillation mode gets much more
complicated as angular degree l increases, the mode patterns with higher l are more likely
canceled out. Therefore the modes with higher l have very small amplitudes in the integrated
flux. Actually, mode patterns are visible typically up to l = 2 for Kepler stars 4 , unlike the
Sun for which we can resolve disk intensity/velocity such that it is possible to observe up to
l≈1,500.

3.2.2 Properties of the oscillations: The Cowling approximation

In the perturbative approach, assumptions of adiabaticity and sphericity greatly help mod-
elling the stellar internal structure. Here we impose another approximation that the per-
turbation to the gravitational potential can often be neglected (δΦ ≈ 0) in order to enable
the simple analytic description of stellar interiors. This approximation is valid when either
l or n is large, and for the stars observed by CoRoT and/or Kepler the latter is often the
case. Indeed we often observe modes of n = 10 − 20 for main-sequence solar-like stars. For
large n, the density profile inside the star rapidly changes in radial direction so that most
perturbations will be canceled out when integrated over radius. This allows us to safely
neglect δΦ in differential equations. In addition, it is also reasonable for higher n modes to

assume that pressure scale height (Hp ≡
(
−dlnp

dr

)−1
) is much larger than the varying scale

of eigen-functions (δp or ξr). This enables to ignore the terms that have δp/Hp or ξr/Hp in
differential equations.

All approximations above leave a single second-order differential equation for ξr as

d2ξr
dr2

= −K(r)ξr, (3.16)

where K(r) is

K(r) = −ω
2

c2

(
1− N2

ω2

)(
1− S2

l

ω2

)
, (3.17)

and c =
√

Γ1p/ρ is the adiabatic sound speed. In equation (3.17), two characteristic fre-
quencies are introduced; acoustic frequency Sl (also called Lamb frequency) and buoyancy
frequency N (also called Brunt-V äisälä frequency). They are written as

S2
l =

l(l + 1)c2

r2
, (3.18)

and

N2 = g

(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr

)
, (3.19)

4For high signal-to-noise ratio stars, namely Kepler magnitude of V ≲ 7, even l = 3 modes can be apparent
in power spectra and useful to the analysis; for example, 16CygA and B with V = 5.86 and 6.09 (Davies
et al. 2015).
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Figure 3.3: Propagation diagram of p and g modes for a star with M⋆ = 1.0M⊙ and [Fe/H]
= 0.0 at the age of 4.6Gyr. Acoustic frequency Sl is drawn in dashed lines for l = 1,
l = 2, l = 3, and l = 10. Buoyancy frequency N is drawn in solid line. This diagram is
computed by MESA code (Modules for Experiments in Stellar Astrophysics; Paxton et al.
2011, 2013, 2015, 2018). Blue region shows trapping region of quadrupole p mode (condition
a), while red region represents trapping region of g modes (condition b). Black dotted band
represents the typical frequency range of acoustic oscillation for main-sequence solar-like star
(1,500− 3,500µHz).

where g = −1
ρ
dp
dr

is the gravitational acceleration inside the star.

Equations (3.16) obviously predicts that the perturbation can be oscillatory when K(r) >
0, while decays exponentially when K(r) < 0. The former case can be reduced to two
conditions;

a) ω > |N | and ω > Sl,

b) ω < |N | and ω < Sl.

For a given frequency, there may be several regions where wave oscillates, intervened by the
regions where it decays. The solution is then said to be trapped in the region that satisfies
condition a) or b). The boundary between trapping zone and decaying zone is defined by
K(r) = 0, which is known as turning points of propagating waves.

Figure 3.3 describes acoustic frequency Sl and buoyancy frequency N as a function of
fractional radius of the star. This diagram allows to visualize the behavior of these char-
acteristic frequencies. For example, Sl decreases from the stellar core to surface, while N
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takes positive values only at stellar interior. The region that satisfies condition a) for l = 2 is
colored in blue, while condition b) is in red. For these modes, the white region is the zone in
which waves cannot live long and then distinguishes the trapping zones. In the blue region,
the modes behave as “p modes” (higher frequency, where the pressure force dominates in
equation 3.16), while in the red region the modes behave as “g modes” (lower frequency,
where the buoyancy force dominates). On one hand, p modes are standing acoustic waves,
whose restoring force is pressure gradient. On the other hand, g modes have gravity as restor-
ing force (see next subsection for details). Figure 3.3 predicts that p modes exists mainly
outer layer of the star (the horizontal solid bar labelled “p”), while g modes are trapped deep
inside the star (the horizontal solid bar labelled “g”). We will discuss mainly p modes in
what follows because g modes cannot be observed in main-sequence stars (even in the Sun),
that is, the stars which will be analyzed in later chapters.

3.2.3 Acoustic waves: p modes

Acoustic p modes are trapped between inner turning point r = rt and the surface. In other
words, sound waves can be oscillatory in r ∈ [rt, R], while damps exponentially in r ∈ [0, rt].
Here the inner turning point is defined by Sl(rt) = ω so that K(r) = 0, which gives

c2(rt)

r2t
=

ω2

l(l + 1)
. (3.20)

This rt defines the deepest stellar layer that acoustic wave can propagate as a function of l
and ω.

For p modes, which have typical frequency of a few thousand µHz, we usually suppose
ω≫N . Therefore K(r) can be approximated to be

K(r) ≈ 1

c2
(ω2 − S2

l ). (3.21)

Because of the similarity of this relation to a plane sound wave (i.e., ω2 = c2k2 with k being
the wave number), it can be said that the dynamics of p modes is solely determined by the
variation of the sound speed with r. This is why p modes can be understood as acoustic
waves 5.

The dynamics of p modes inside the star can be understood in terms of ray theory. As
the wave dives into the star more deeply, the material density gets higher (∂ρ/∂r < 0)
such that the deeper parts of the wave fronts experience a higher sound speed and therefore
travels faster. Consequently, the direction of propagation will be bent away from radial
direction. This is the nature of waves traveling across medium with varying density. This

5On the other hand, g modes have gravity as the restoring force. The buoyancy frequency N corresponds
to the frequency of the motion of “blob” in convective stability. If fluid element is displaced adiabatically
and the density of surroundings is smaller than the element, then buoyancy forces it back towards original
position. This leads to oscillatory motion of fluid elements around equilibrium position. Because g modes
cannot be present in convective layer, the sudden drop of buoyancy frequency N toward zero at r/R ≈ 0.7
in Figure 3.3 indicates the base of convective zone.
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l=100

Figure 3.4: Schematic illustration of acoustic wave propagation. Deeply (shallowly) pene-
trating rays correspond to l = 30 (l = 100) modes with the frequency of ν = 3,000µHz. The
lines orthogonal to the former path of propagation correspond to the wave fronts.

is schematically illustrated in Figure 3.4. The standing acoustic wave that departs from the
stellar surface inwards will be bent as it travels, and mostly goes back to the surface after
reflected by the turning point rt. It will be also essentially reflected by stellar surface R
because of the sharp density gradient near the surface, and again dives into stellar interior.
Global acoustic oscillation of the star is the recurring process of this phenomena.

Solutions of equation (3.16) also predict that modes with smaller l penetrates the star
more deeply, while modes with higher l will be essentially trapped in outer layer (see also
Figure 3.3). To be extreme, l = 0 will no longer experience the refraction, and penetrate
stellar core, and reaches the stellar surface opposite to the starting point. This is the theo-
retical basis for the property of asteroseismology that different l modes can reveal different
layers of stellar interior.

Tassoul (1980) showed that in first approximation, the pulsation frequency of p modes is
a linear function of n and l;

ν(n, l) =
ω(n, l)

2π
≈

(
n+

l

2
+ εn,l

)
∆ν + δn,l, (3.22)

where

∆ν =

(
2

∫ R

0

dr

c(r)

)−1

(3.23)

is the inverse of the sound travel time inside the star. Then εn,l is a small correction of order
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Figure 3.5: Zoom-in view around maximal power of stellar oscillation modes for typical
main-sequence solar-like oscillator Kepler-408. Gray and black correspond to different levels
of smoothing of spectra, and red is the best fit. Radial orders and angular degrees (n, l) are
accompanied next to each mode. Long arrow indicates the extent of large separation ∆ν,
and short arrow is for small separation δνl (see text). The upper inset describes the entire
power excess due to acoustic oscillation as in Figure 3.1.

unity 6 (e.g., Tassoul 1980, 1990, Mosser et al. 2013). The additional term δn,l is related to
the sound speed at different depths (see below).

Equation (3.22) clearly predicts that any radial order modes n belonging to the same
degree l show up with regular spacing of ∆ν, and in similar way, any degree modes l belonging
to the same radial order n with regular spacing of ∆ν/2 (Figure 3.5). For this reason ∆ν
is referred to as a large separation (a frequency spacing between consecutive radial modes).
Based on this property, the modes of (n, l) = (n0 − 1, 2) and (n0, 0) will be found close to
each other, and the same is the case with (n0 − 1, 3) and (n0, 1) for the stars with visible
l = 3 modes. Figure 3.5 provides close-up view of three sequential radial order modes n for
typical main-sequence solar-like oscillator. We find modes are located fairly regularly, and
l = 0 and l = 2 modes appear together. Furthermore, the additional term δn,l is written as

δn,l = −l(l + 1)D0, (3.24)

where D0 is positive constant that reflects the conditions in the stellar core. This is based on
the fact that different l modes have different sensitivity to stellar interior along with radial
direction (i.e., small l modes dive star into the radiative core, while large l modes are bound

6Actually, observations find 0.8≲εn,l≲1.6 for main-sequence solar-like stars (White et al. 2012). Since the
(n, l) dependence (i.e., frequency dependence) of εn,l is very weak, εn,l does not violate the regularity of the
location of eigen-modes.
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in outer convective layer). Therefore, l = 2 (3) modes appear always in slightly smaller
frequency than l = 0 (1) by

δνl = ν(n, l)− ν(n− 1, l + 2) ≈ δn,l − δn−1,l+2 = (4l + 6)D0. (3.25)

This difference in frequency δνl is called small separation, and useful to infer the physics at
different stellar radii.

This regularity of modes becomes fairly apparent when we plot the spectra modulo ∆ν
(Échelle diagram, Figure 3.6). This figure includes entire frequency range of oscillation over
y-axis, and x-axis is frequency modulo ∆ν so that each l = 0, 1, 2 mode shows up only once
along with x-axis. The power density of modes is described as contour map. The sequence
of l = 1 modes for different n (green) is apparent on the right side of Figure 3.6, while l = 0
(red) and 2 (blue) are on the left side together. This Échelle diagram greatly helps the correct
identification of oscillation modes, especially for lower/higher ends of frequency where modes
are difficult to be identified because of noise.

The m dependence of eigen-frequencies, that we did not discuss above, shows up in much
smaller frequency scale (≈ a fewµHz) and is tightly related to the stellar rotation. Since the
estimate of the stellar inclination relies on the slight difference among m modes (as will be
discussed later), the frequency resolution of power spectra 7 needs to be fine enough. This is
why i⋆ measurement through asteroseismology has not been made possible until the onset of
long observation with space observatories.

For non-rotating stars, the eigen-frequency is independent of m (equation 3.22). On the
other hand, the central frequency for rotating stars becomes

ν(n, l,m) = ν(n, l) +mδν⋆ ≈
(
n+

l

2
+ εn,l

)
∆ν + δn,l +mδν⋆, (3.26)

where δν⋆ is approximately the inverse of an average of the rotational period over the stellar
interior, and is called stellar rotational splitting (see e.g., Appourchaux et al. 2008). Thus,
the degeneracy among m modes can be broken due to the stellar rotation; rotation makes the
frequency of modes with m ̸= 0 in power spectra shifted by rotational frequency of the star
(δν⋆≈ 1/Prot). Equation (3.26) predicts that due to rotation l = 1 modes will be split into
three (m = −1, 0,+1) with equal spacing of δν⋆

8 , and l = 2 into five (m = −2,−1, 0,+1,+2).
Radial mode (l = 0) is not affected by rotation because it does not propagates along horizontal
direction.

7Frequency resolution is inversely proportional to total observational duration Tobs.
8Departures from this regularity can be used to infer the stellar sphericity. It is known that stellar

rotation and magnetic field cause distortion of the star into either oblate or prolate shape. In the distorted
star the acoustic distance for the sound wave slightly changes, which is understood as asymmetrical location
among m-components. Gizon et al. (2016) measured the oblateness of KIC 11145123 and found ∆R/R =
(1.8 ± 0.6)×10−6 (∆R ≈ 3 km for R = 1.56×106 km), concluding that this star is the most round object in
the entire universe. We do not take into account mode asymmetry in this thesis, because it is beyond the
scope of the purpose of this work.
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Figure 3.6: Échelle diagram of main-sequence solar-like oscillator Kepler-408. y-axis is the
entire frequency range within which power excess due to acoustic oscillation is found. x-axis
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blue symbols connect a series of l = 0, 1, and 2 modes with different n, respectively.
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3.2.4 Excitation mechanism of p modes

Understanding the mode excitation mechanism is necessary to derive the shape of the mode
profile. The mechanism proposed by Goldreich & Keeley (1977) assumes that stellar modes
are stochastically excited by convection motions and damped by dynamical and thermal
effects. This profile is the consecutive re-excitations of surface waves in random phase and
amplitude. Because of the broad spectrum of the energy offered by convective phenomena
(e.g., Kolmogorov 1941a,b), this mechanism allows the excitation of a large number of eigen-
modes.

At first approximations, each eigen-mode can be represented by a damped and randomly
re-excited oscillation by interaction with turbulent convection. The amplitude of these modes
is therefore the solution of the forced oscillation (Anderson et al. 1990),

1

ω2
0

d2y(t)

dt2
+

2πΓ

ω2
0

dy(t)

dt
+ y(t) = f(t), (3.27)

where y(t) represents the spatial displacement, ω0 is the proper pulsation frequency of the
undamped oscillator, Γ (time-independent constant) is the inverse of characteristic damping
timescale, and f(t) is a stochastic function that describes the excitation source. A series of
solutions from equation (3.27) can be formulated as a convolution;

y(t) = (h∗f)(t) =
∫ +∞

−∞
h(u)f(t− u)du, (3.28)

where h(u) is the response to the impulse of the system, which is of peculiar interest to model
the mode profile. Fourier transform of equation (3.28) gives

Y (ν) = H(ν)F (ν), (3.29)

where Y (ν), H(ν), and F (ν) denote the Fourier transforms of y(t), h(t), and f(t), respec-
tively. By replacing f(t) = δ(t − t0) with t0 being the moment of the impulse, we calculate
the response to the impulse from equation (3.27),

H(ν) =
ν20e

2iπνt0

ν20 − ν2 + iΓν
. (3.30)

For main-sequence stars, the frequency of pulsations is relatively high (ν0 ≳ 1,000µHz).
Assuming that solar-like stars take similar values of Γ to that of the Sun (≈ 1µHz), it can be
estimated that Γ≪ν0. Thus the profile of a mode in the power spectra can be easily deduced
as

P (ν) ∝ |H(ν)|2 ≈ H

1 + 4(ν − ν0)2/Γ2
. (3.31)

Therefore each mode of damped stellar pulsation, whose excitation source is turbulent con-
vection, is theoretically well represented by a Lorentzian in the power spectra.
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As a consequence, the entire power spectra P (ν) are well approximated by superposition
of all possible oscillation modes (n, l,m):

P (ν) =
nmax∑

n=nmin

lmax∑
l=0

+l∑
m=−l

H(n, l,m, i⋆)

1 + 4[ν − ν(n, l,m)]2/Γ2(n, l,m)
+N(ν), (3.32)

where N(ν) is a background model (see next subsection). Here H(n, l,m, i⋆), Γ(n, l,m), and
ν(n, l,m) are height, width (inverse of characteristic lifetime), and central frequency of mode
with (n, l,m), respectively. Note that the dependence on i⋆ is entirely imprinted in its height
H(n, l,m, i⋆) as we demonstrate later. The asteroseismic analysis in this work is the fit of
the model above against stellar power spectra, optimizing model parameters in the Bayesian
manner with Markov Chain Monte Carlo (MCMC) sampling method (Details are described
in section 3.3).

3.2.5 Noise background: Origin and modelling

On the surface of the Sun, convective phenomena are visible in the form of granules. Any
stars with convective envelope have this type of surface structure (up to ≈ 2.5M⊙). A granule
corresponds to rising bubble of a hot plasma from the depths to the surface. Around granule,
on the other hand, there is the flow of descending cold material that enters the deeper layers
of the stellar surface. By this contrast effect, the hotter surface areas appear shiny, while
cooler areas are dark. It is difficult to quantify the size and lifetime of granules because
there is a whole spectrum of almost continuous sizes of convective structure ranging from a
few 105m (granulation) to about 5×107m (super-granulation). The associated characteristic
lifetimes range from a few minutes (transporting small amount of energy) to several tens of
hours (transporting lots of energy). This convective phenomena are also manifested in time
series.

Another source of periodicity in the solar time series comes from the active regions. Active
regions are the areas of intense magnetic field, and the convective movements are inhibited
by the field there. As a result, the active regions correspond to the plasma cooler than the
surrounding environment (up to 2,000K less), known as spots.

In the power spectrum, these two phenomena are fairly well reproduced by a generalized
semi-Lorentzian

L(ν) =
4σ2τ

1 + (2πτν)p
=

A

1 + (Bν)p
, (3.33)

where σ is the intensity of the process, τ is characteristic lifetime, and p is a parameter
depending on the nature of the phenomenon and its degree of spatial and temporal coherence.
Empirically Harvey (1985) used this formula to describe the solar power spectra with p = 2,
and then equation (3.33) is also called Harvey-like profile.

Because the pulsation in main-sequence stars occurs at high frequency, it suffices to
consider only two Harvey-like profiles for the total background model (Appourchaux et al.
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Figure 3.7: The noise background and mode envelope of power spectra. The smoothed
spectra is shown in gray. Mode envelope (blue solid) is upon the noise background (black
solid), which can be separated into there components; two Harvey-like profiles (red and
magenta dashed) and white shot noise (green dashed).

2009, Karoff et al. 2013)

N(ν) =
2∑

i=1

Ai

1 + (Biν)pi
+N0, (3.34)

where N0 is the white noise, mostly due to the instrumental photon shot noise. One Harvey-
like profile corresponds to stellar granulation, while the other is to model active regions.

Figure 3.7 illustrates a typical noise background in Kepler star (black solid line). As in
equation (3.34), we model total background with three different contributions; two Harvey-
like profiles (red and magenta dashed lines) and white shot noise (green dashed line). The
profile describing stellar active region (red) is dominant only at very low frequency, while
white noise (green) surpasses the other two at very high frequency.

3.2.6 Power distribution among azimuthal components

As mentioned above, the dependence of the Lorentzian profile on i⋆ is incorporated into
mode heights H(n, l,m, i⋆). The structure is as follows. Under the assumption of energy
equipartition among different m-components associated with the same degree l, Gizon &
Solanki (2003) showed that the height H(n, l,m, i⋆) of the mode is given by

H(n, l,m, i⋆) = E(l,m, i⋆)H(n, l), (3.35)
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where

E(l,m, i⋆) =
(l − |m|)!
(l + |m|)!

[
P

|m|
l (cos i⋆)

]2
, (3.36)

and P
|m|
l is the associated Legendre polynomials with degree l and order m (Toutain &

Gouttebroze 1993, Gizon & Solanki 2003). For instance,

E(0, 0, i⋆) = 1, (3.37)

E(1, 0, i⋆) = cos2 i⋆, (3.38)

E(1,±1, i⋆) =
1

2
sin2 i⋆, (3.39)

E(2, 0, i⋆) =
1

4

(
3 cos2 i⋆ − 1

)2
, (3.40)

E(2,±1, i⋆) =
3

2
cos2 i⋆ sin

2 i⋆, (3.41)

E(2,±2, i⋆) =
3

8
sin4 i⋆. (3.42)

It is clear that l = 0 modes cannot be used to infer stellar inclination because of its insensi-
tivity to i⋆. We also note that viewing angle i⋆ is irrelevant to the total amount of energy dis-
tributed to the particular angular degree l;

∑m=+1
m=−1 E(1,m, i⋆) = 1 and

∑m=+2
m=−2 E(2,m, i⋆) = 1.
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Although energy is expected to be equally distributed among different m-components
intrinsically, the viewing angle i⋆ changes the energy balance appearing in the observed power
spectra simply due to the geometrical effect. This is because different m-components have
different sensitivity to latitudes (Lund et al. 2014a, Benomar et al. 2015). More specifically,
m = ±l modes are sensitive to the equatorial region, while 0 < |m| < l modes are sensitive
to higher latitudes. For example, (l,m) = (2, 2) mode has maximal sensitivity to θ = 90◦

(equator), while (l,m) = (2, 1) mode is peaked around θ = 51◦. Modes with m = 0 have
no particular sensitivity to latitudes. When viewed from north/south pole (i.e., θ = 0◦),
therefore, m = 0 alone will be visible, while m = ±l modes surpass the others (−l < m <
+l) when viewed from the equator.

For this reason, if the power of each m-mode associated to the same degree l is properly
identified in P (ν), the ratio of their heights can be used to determine i⋆. Figure 3.8 clearly
demonstrates this gradual shift of relative power density for varying i⋆. As i⋆ increases,
energy of m = 0 mode will be re-distributed into |m| > 0 modes.

We again note that equation (3.36) is derived by assuming energy equipartition among
different m-components. This assumption is actually consistent with the solar data (Gizon
& Solanki 2003). Because 94 stars we will analyze in this work (chapter 4) are low mass stars
in main-sequence phase, similarly to the Sun, we consider this assumption is still valid for
them.

Stellar rotation may break the energy equipartition, because m > 0 (m < 0) modes are
forward (backward) propagating waves along with rotational motion. One way to evaluate
the effect of rotation on the stars is to compare the centrifugal force and surface gravity of
the star as (

2π

Prot

)2
R3

⋆

GM⋆

≈ 1.3×10−4

(
Prot

10 days

)−2(
R⋆

R⊙

)3(
M⋆

M⊙

)−1

, (3.43)

where G is the gravitational constant. Based on that, we estimate that the deviation from
spherical symmetry is very small, at least for 94 stars we will analyze. Although this discus-
sion does not refer to the explicit relation between rotation and mode excitation, we suppose
that the rotation will rarely affect the energy equipartition among m-modes, due to its small
contribution to the spherical asymmetry (≈ O(10−4)). 9.

3.3 Procedure in the fit of stellar oscillations

Asteroseismic analysis in this thesis is the fit of the model power spectrum (equation 3.32) to
the observed power spectra, to search for the parameters that represents the observation best.
In doing so, we fit the spectrum in two steps because of the large number of free parameters.
Before describing the steps of the analysis, we introduce the conventional approximations

9As an observational clue, it is worth introducing a rapidly-rotating F-type star KIC 3424541 (Appour-
chaux et al. 2012a, Benomar et al. 2015). Although this star shows very rapid rotation of Prot ≈ 3.5 days,
its rotationally-split m = −1 and m = +1 components of l = 1 modes are found to have almost the same
amplitudes in the observed spectra (see Figure B1 of Benomar et al. 2015).



3.3 Procedure in the fit of stellar oscillations 47

often adopted in the actual spectra fitting (subsection 3.3.1). The first step of the analysis is
the fit of the background, using a single Gaussian function to model the envelope of excess
power from the oscillation modes (subsection 3.3.2). The next step is MCMC fit for the
parameters of the oscillation modes (subsection 3.3.3).

3.3.1 Conventional approximations for modes in spectra fitting

An asteroseismic analysis performed in this work requires to identify the indices (n, l,m)
for each mode from the noisy spectra, and then preferably fit many lines simultaneously
to determine the global parameters i⋆ and δν⋆. In fact, since each Lorentzian profile has
three parameters (central frequency, height, and width), total number of parameters to be
fitted increases dramatically as we adopt more modes (n, l, and m). It is typical that high
signal-to-noise ratio stars have more than 20 detectable radial orders, leading to more than
100 parameters to be fitted, which requires very long computation for a reliable parameter
estimation. Therefore one has to adopt several approximations in order to reduce the num-
ber of free parameters as much as possible. We summarize conventional assumptions often
adopted in asteroseismology below.

Since it is known for the Sun that height ratio of non-radial (l ̸= 0) and radial (l = 0)
modes is uniform over the range of pulsation frequency (Salabert et al. 2011, and references
therein), the intrinsic height of the oscillation for l ̸= 0 modes can be scaled with those of
l = 0 as

H(n, l) = V 2
l H(n, l = 0), (3.44)

where V 2
l is referred to as the mode visibility and independent of the radial orders n. This

removes the degrees of freedom for H(n, l ̸= 0). We adopt a slightly different sets of values,
(V 2

1 , V
2
2 ) = (1.449, 0.6589) for simulations in section 4.2 and (1.447, 0.5485) for the real data

analysis in section 4.3, as described later in detail.
As for the mode width Γ(n, l,m), earlier analysis of the Sun and solar-like stars found

that it does not dramatically change with frequency, but shows gradual increase from lower
to higher frequency (Toutain & Froehlich 1992, Garćıa et al. 2004). Figure 3.9 illustrates this
profile for one of the Kepler stars. Therefore we first neglect the m-dependence of Γ(n, l,m),
because frequency shift given by rotation is at best a few µHz, small enough to assume almost
the same width.

The remaining l-dependence is empirically modeled from the set of the fitted values of
ν(n, l) and Γ(n, l = 0) as follows. First we identify the modes (n, l) for nmin ≤n≤nmax from
the spectra, and obtain the corresponding eigen-frequency ν(n, l) and mode width Γ(n, l = 0).
Then we estimate Γ(n, l ̸= 0) by linear interpolation of Γ(n, l = 0) with respect to ν(n, l). For
example, Γ(n0, l = 1) is given by a set of parameters; ν(n0, l = 0), ν(n0, l = 1), ν(n0+1, l = 0),
Γ(n0, l = 0), Γ(n0 + 1, l = 0). The same is the case for Γ(n0, l = 2). Again this removes the
degrees of freedom for Γ(n, l ̸= 0).

In summary, under the assumptions above, the free parameters characterizing the entire
power spectra are as follows.
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Figure 3.9: Mode width profile of main-sequence solar-like star Kepler-408. Width of radial
modes (l = 0) are shown. Width of non-radial modes (l ̸= 0) are interpolated linearly with
ν(n, l) and Γ(n, l = 0).

• Central mode frequency for each (n, l) mode: ν(n, l)

• Mode height for each (n, l = 0) mode: H(n, l = 0)

• Mode width for each (n, l = 0) mode: Γ(n, l = 0)

• Global parameters: i⋆, δν⋆

• Background parameters: A1,2, τ1,2, p1,2, and N0.

Eventually, the total number of fitting parameters is (nmax−nmin+1)(lmax+3)+9. In what
follows we describe the parameter set above as θ.

3.3.2 Noise background and oscillation envelope fit

The power excess of acoustic oscillation is standing atop the noise background (equation 3.32).
Therefore, poor modelling of the noise background may accidentally lead to the inaccurate
estimate of model parameters, especially those responsible for mode heights, e.g., height
H(n, l) and stellar inclination angle i⋆. Before attempting to fit the m-mode splittings of
power spectra, we begin with the rough estimate of the noise background level and the
envelope of the acoustic modes. In doing so, we assume two Harvey-like profiles with white
shot noise (equation 3.34), and a single Gaussian envelope to model the entire power excess
over the oscillation frequencies. This model has 7 (noise background) + 3 (Gaussian) =
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10 parameters in total. Figure 3.7 illustrates the result of this simple fit; the entire noise
background (black solid line) and Gaussian envelope (blue solid line) model with optimized
parameters. The errors of the noise background parameters derived here are used as priors in
the following MCMC analysis. The Gaussian envelope is used to guess the frequency range
of possible oscillation modes.

After fitting the noise background correctly, we attempt to identify each eigen-mode. In
this step, we define angular degree (l = 0, 1, 2) to all possible eigen-modes and set the priors of
mode center, which will be used in the following analysis. This process is conducted visually
on mode by mode basis. Top panel of Figure 3.10 shows the eigen-modes identified in this
procedure. All peaks are attributed to either l = 0, 1, or 2. In doing so, the fact that eigen-
modes are regularly spaced makes the visual and correct identification feasible. Moreover, the
échelle diagram (Figure 3.6) is helpful to find correct eigen-modes at lower/higher frequency
end of power excess, where modes have so small amplitudes that they are possible to be
misidentified.

3.3.3 Bayesian-MCMC approach

In the Bayesian-MCMC sampling approach, we adopt the algorithm developed by Benomar
et al. (2009). In this subsection we briefly summarize the formulation behind the algorithm
and setups for the MCMC run.

Bayesian formulation

In Bayesian approach, the derived values and errors of mode parameters θ are discussed
through Bayes’ theorem:

π(θ|y,M) =
π(θ|M)π(y|θ,M)

π(y|M)
, (3.45)

where y is the observed power spectra and M is the model parametrized with θ, i.e., the
model power spectrum P (ν) (equation 3.32)

M(ν,θ) = P (ν)

=
nmax∑

n=nmin

lmax∑
l=0

+l∑
m=−l

H(n, l,m, i⋆)

1 + 4[ν − ν(n, l,m)]2/Γ2(n, l,m)

+
2∑

i=1

Ai

1 + (Biν)pi
+N0. (3.46)

In equation (3.45), π(θ|y,M) is the posterior probability distribution (PPD) of parameters
θ for given data y and model M. Besides, π(y|θ,M) is the likelihood function and represents
the probability of observing data y given the model M. Lastly, π(θ|M) is a priori knowledge
of the model parameters θ. The denominator π(y|M) is the total probability of the model
M describing the data y, and is used as normalizing factor in equation (3.45).
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Figure 3.10: Top: The positions of eigen-modes that are identified as l = 0 (red), l = 1
(green), or l = 2 (blue). Bottom: The close-up view of a single set of l = 0, 1, and 2 modes
around νmax. Solid vertical line represents the frequency assumed as the mode center ν(n, l),
and two vertical dashed lines represent the priors set for ν(n, l) for the MCMC sampling.
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Likelihood function

The noise in the power spectrum follows χ2 distribution with two degrees of freedom (Duvall
& Harvey 1986). Knowing the noise statistics of the power spectrum gives the likelihood
function in the form of

π(y|θ,M) =
N∏
i=1

1

M(νi,θ)
exp

(
− yi
M(νi,θ)

)
, (3.47)

where the product is performed for all frequency samples νi.

Priors

The prior on each parameter is defined as follows.

• Prior on ν(n, l):
We set un-informative, uniform prior on ν(n, l) as

p(ν(n, l)|M) =

{
1

ν(n,l)max−ν(n,l)min if ν(n, l)min < ν(n, l) < ν(n, l)max

0 otherwise,
(3.48)

where ν(n, l)min and ν(n, l)max are set by the visual inspection of the power spectra. The
vertical dashed lines in the bottom panel of Figure 3.10 show the example of ν(n, l)min

and ν(n, l)max set for each mode.

• Priors on H(n, l = 0) and Γ(n, l = 0):
We set the truncated Jeffreys priors on H(n, l = 0) and Γ(n, l = 0) as

p(x|M) =

{
ln(1+xmax

xmin )
x+xmin if xmin < x < xmax

0 otherwise,
(3.49)

where (xmin, xmax) = (1, 10) ppm2/µHz for H(n, l = 0), and (xmin, xmax) = (5, 25)µHz
for Γ(n, l = 0).

• Prior on δν⋆:
We set un-informative, uniform prior on δν⋆ as

p(δν⋆|M) =

{
1

δνmax
⋆

if 0 < δν⋆ < δνmax
⋆

0 otherwise,
(3.50)

where δνmax
⋆ is set to be 5µHz (corresponding to 2.3-day rotational period), beyond

which is unlikely for the main-sequence solar-like stars.

• Prior on i⋆:
We set an isotropic prior on i⋆ (i.e., uniform prior on cos i⋆) as

p(i⋆|M) =

{
sin i⋆ if 0◦ < i⋆ < 90◦

0 otherwise.
(3.51)
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• Priors on noise background parameters:
We set un-informative, uniform priors on noise background parameters (Ai, τi, pi, and
N0) as

p(x|M) =

{
1

xmax−xmin if xmin < x < xmax

0 otherwise,
(3.52)

where (xmin, xmax) is set to be 1σ error range derived in the earlier fit (subsection 3.3.2).

MCMC sampling

The power spectrum is then analyzed using a Markov Chain Monte Carlo (MCMC) algorithm
based on a Metropolis-Hasting scheme, with parallel tempering (e.g., Gregory 2005, Benomar
et al. 2009, Handberg & Campante 2011). The MCMC algorithm works so as not only to
find the maxima of the posterior probability π(θ|y,M) (maximum a posteriori), but also
to give conservative and robust estimate on the uncertainties by sampling the probability
around the maxima effectively. The number of parallel chains is fixed to cmac = 5, with a
temperature distribution following a geometric law T = λc−1 with (Tmin, Tmax) = (1, 70).

We divide the analysis into three steps: the burn-in phase, training phase, and acquire
phase. The burn-in phase (40,000 samples) ensures that we reach the region of interest in the
parameter space. The training phase (700,000 samples) employs an adaptive algorithm to op-
timize the covariance matrix of the Gaussian proposal probability density function to achieve
the ideal acceptance rate of 23.4% (Atchade 2006). During the acquire phase (1,000,000
samples), the optimal covariance matrix is used to sample the posterior distribution. This
phase ensures that we reach an acceptance rate near 23.4% that remains stable along the
acquisition phase. Convergence of the posterior distribution is confirmed through the visual
inspection.

The MCMC sampling method makes it easy to obtain the marginal probability distribu-
tion for each of the model parameters. We define median 1σ, and 2σ error of each parameter
as its median, 68% credible interval, and 95% credible interval of the marginal probability
distribution, respectively.



Chapter 4

Reliability assessment of asteroseismic
measurement of stellar inclination

The number of transiting exoplanetary systems with measured ψ using asteroseismology is
hampered by the required signal-to-noise ratio (SNR) and the relatively high stellar rotation
rate. In reality, a majority of transiting exoplanets have been searched around F, G, and
K type stars in their main-sequence phase. For such main-sequence stars, i⋆ is difficult to
measure. Their oscillation modes exhibit low amplitudes and suffer from severe blending
among modes (see e.g., Appourchaux et al. 2008). Therefore the systematic verification of
the reliability of i⋆ derived from asteroseismology is of fundamental importance.

As shown by Gizon & Solanki (2003) and Ballot et al. (2008, 2006) using a limited number
of simulations, the inferred value of i⋆ is not so accurate if modes are of insufficient SNR or
not properly identified. This is why we attempt in this chapter to perform systematic mock
simulations to examine the reliability of i⋆ determination from asteroseismology. In this
work, we focus on main-sequence stars, but our method could be applied to evolved stars
as well. This is because the fundamental physical reason allowing us to infer the inclination
are the same (Beck et al. 2012, Benomar et al. 2013, Mosser et al. 2017). In the future, it is
worthwhile to extend our methodology for those evolved stars, as discussed in more details
in section 4.4.

4.1 Analytic criteria to distinguish among different az-

imuthal orders

As suggested in the previous chapter, accurate measurement of i⋆ crucially depends on the
ability of identifying the frequencies and heights of different m-modes associated with the
same degree l. Ideally, the higher amplitude and the wider separation between different m-
modes are required. More specifically, the former is represented by the ratio of the mode
height H(n, l,m, i⋆) and the noise level, and the latter, by the ratio of the stellar rotational
splitting and the mode width, δν⋆/Γ(n, l). This consideration may be translated into analytic
criteria that are necessary to distinguish among different m-modes.

53
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Because l = 0 modes are insensitive to either rotation (δν⋆) or inclination (i⋆), i⋆ can
be determined by non-radial modes (l ̸= 0). For a majority of main-sequence stars whose
pulsations are detected, their visible modes are limited up to l = 2. Moreover, the amplitudes
of l = 1 modes are roughly three times larger than those of l = 2 modes (V 2

1 /V
2
2 ≈ 3). Thus

l = 1 modes are most likely to play a key role in the ability to determine i⋆ in practice, and
we consider analytic criteria to separate m = 0 and m = ±1 modes for l = 1 below.

A difficulty to distinguish among different m-modes may be understood from Figure
4.1, in which model profiles of power spectra around the central frequency ν0 for differ-
ent values of i⋆ and δν⋆/Γ are plotted; i⋆ = 30◦, 60◦, and 80◦ from left to right panels,
and (δν⋆/Γ)/(δν⋆/Γ)⊙ = 2.0, 1.0, and 0.5 from top to bottom panels, with (δν⋆/Γ)⊙ ≈
0.42µHz/0.95µHz ≈ 0.44 being the solar value near the maximum of mode amplitude. The
horizontal axis corresponds to (ν − ν0)/Γ in units of (δν⋆/Γ)⊙.

Hereafter, we note the contribution ofm = −1, 0,+1 to the power spectra as Pl=1,m=−1,0,+1(ν).
From equations (3.32), (3.26), and (3.42), Pl=1,m=0(ν) and Pl=1,m=±1(ν) are explicitly written
as

Pl=1,m=0(ν) = H(n, l = 1)
cos2 i⋆

1 + 4(ν − ν0)2/Γ2
, (4.1)

Pl=1,m±1(ν) = H(n, l = 1)
sin2 i⋆

2[1 + 4(ν − ν0 ∓ δν⋆)2/Γ2)]
. (4.2)

Figure 4.1 is normalized so that H(n, l = 1) is unity.
The reliability of the estimate of i⋆ and δν⋆ is crucially determined by how well one can

separate the contributions from three different m-modes encoded in the total profile (black
solid curve in Figure 4.1). To be more specific, their separate contributions to the total power
are computed as ∫ ∞

0

dνPl=1,m=0(ν) ≈ H(n, l = 1)Γ(n, l = 1)

2
cos2 i⋆, (4.3)∫ ∞

0

dνPl=1,m=±1(ν) ≈ H(n, l = 1)Γ(n, l = 1)

4
sin2 i⋆. (4.4)

These need to be much larger than the resolvable element of the power, which is roughly
given by the product of the root mean square (rms) noise level σn in the observed power
spectra and the frequency resolution δf ≈ 1/Tobs with Tobs being the total observational
duration.

The consideration above leads to the following qualitative and analytic criteria.

(I) The identification of m = 0 mode requires

H(n, l = 1)Γ(n, l = 1)

2
cos2 i⋆ > ασnδf, (4.5)

where we introduce a fudge constant α that will be empirically determined later through
the comparison with mock simulations. The condition (4.5) becomes

cos2 i⋆ > α
2

SNR

δf

Γ
, (4.6)
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Figure 4.1: Model power spectra of dipole (l = 1) mode with central frequency ν0. x and
y- axes correspond to the frequency in units of (δν⋆/Γ)⊙ and relative power for different
m components in units of the height of m = 0 mode with i⋆ = 0 (deg), respectively. Blue
dashed (red dotted-dashed) line represents the contribution of m = 0 (m = ±1) modes, and
black solid line shows the consequent total power spectra. Different panel corresponds to the
different combination of δν⋆/Γ and i⋆, ranging from faster (upper; twice solar rotation) to
slower (lower; half solar rotation) rotation and from lower (left) to higher (right) inclination.
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where we define the signal-to-noise ratio SNR:

SNR ≡ H(n, l = 1)

σn
. (4.7)

Then the inequality (4.6) leads to an upper limit on the detectable i⋆;

i⋆ < cos−1

√
α

2

SNR

δf

Γ
. (4.8)

In other words, we cannot reliably estimate the true value of i⋆ if it is larger than the
threshold value in the right-hand-side of the inequality above. For instance, a reliable
estimate of i⋆ = 90◦ is very demanding and requires an ideal observation with either
SNR = ∞ or δf = 0 (i.e., observation with infinite time).

(II) Similarly, the identification of m = ±1 mode requires

H(n, l = 1)Γ(n, l = 1)

4
sin2 i⋆ > β σnδf, (4.9)

with β being another fudge factor to be estimated later. In this case, we obtain a lower
limit on the measurable i⋆ as

i⋆ > sin−1

√
β

4

SNR

δf

Γ
. (4.10)

Again this condition implies that either SNR = ∞ or δf = 0 is needed for i⋆ to be
measurable down to 0◦.

The two criteria above are independent of the rotational splitting δν⋆. Indeed if we take
into account conditions to distinguish among the peak height of different m-modes, instead
of their total area (i.e., power), we obtain criteria dependent on δν⋆/Γ. In this case, however,
the dependence on the frequency resolution δf is neglected. In principle, we could combine
those conditions to improve our analytic criteria, but the results become complicated so that
it may lose easy applicability. Therefore we decide to consider the condition on δν⋆ separately
as follows.

(III) The requirement that the peaks of m = ±1 modes need to be distinguished from the
sum of the m = ±1 modes at ν = ν0 is written as

Pl=1,m±1(ν0 ± δν⋆) > [Pl=1,m=+1(ν0) + Pl=1,m=−1(ν0)], (4.11)

which reduces to the simple form of

δν⋆
Γ

> 0.5. (4.12)

This is insensitive to i⋆, and a very basic requirement on δν⋆/Γ to reliably estimate i⋆.
We note that interestingly the solar value ≈ 0.44 is very close to this threshold just by
chance.
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4.2 Mock simulations to extract stellar inclinations from

power spectra

Measurement of the stellar inclination from asteroseismology is based on several complicated
procedures and their validity can be examined quantitatively only through the analysis of
simulated power spectra. Thus we here carry out intensive analyses of systematic mock
spectra.

In this simulation, we try to clarify the condition(s) of the stars necessary for the reliable
measurement of i⋆. We generate simulated power spectra of the stars assuming various stellar
properties and observational conditions (long/short observational duration, high/low signal-
to-noise ratio, fast/slow rotation, and high/low inclination angle). We perform asteroseismic
analysis to these simulated spectra, mainly focusing on the derived values of i⋆. The reliability
of the analysis is judged by checking if output i⋆ is close to input value or not. By performing
this test to the simulated spectra above, we attempt to map the parameter space where
reliable measurement of i⋆ is feasible (i.e., output i⋆ ≈ input i⋆).

We first describe how to generate simulated power spectra, and then present the results
against our analytic criteria discussed in the previous section.

4.2.1 Generating mock power spectra scaled from a reference star
KIC 12069424

As we demonstrated in the previous section, the precision and accuracy of the estimate
of the stellar inclination depend sensitively on the splitting-to-width ratio δν⋆/Γ and on
the signal-to-noise ratio SNR. In the present simulation, we have not implemented realistic
noises except for the background noise level of N0 in equation (3.34). Thus the SNR ≡
H(n, l = 1)/σn defined in section 4.1 is not easy to be assigned properly. Instead, we use
height-to-background ratio HBR≡H(n, l)/N0 as a proxy for SNR throughout the following
analysis. In practice, the difference between HBR and SNR is expected to be incorporated
by renormalizing the values of α and β in inequalities (4.8) and (4.10). The relation of HBR
and SNR will be revisited in subsection 4.2.3.

We take the HBR and δν⋆/Γ as our primary variables in simulated power spectra, and
generate realistic mock spectra covering a wide range of their values. In practice, we choose
KIC 12069424 (16CygA) as our reference star, which is one of the brightest stars monitored
by Kepler. It has one of the highest HBR among the observed main-sequence stars, and
therefore is one of the most studied stars in the Kepler field (Metcalfe et al. 2012, Metcalfe
et al. 2014, Davies et al. 2015). The observed power spectrum for KIC 12069424 is shown in
Figure 4.2.

We first extract the mode parameters (frequency, height, width, noise background param-
eters, rotational splitting and inclination) of the reference star by following the asteroseismic
analysis method described in section 3.3. We fit a total of 17 radial orders with associated
degrees l = 0, 1, and 2. While l = 3 degree is identifiable for this reference star due to its
high brightness, it is not the case for most of other stars. Therefore we do not incorporate
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Figure 4.2: Observed power spectra of the reference star KIC 12069424 (16CygA). Astero-
seismic power spectra smoothed with a boxcar filter over 0.2µHz (gray) and 2.0µHz (black)
are shown. Superimposed is the background level (red) and the fitted oscillation modes
(blue). The inset shows the modes of degree l = 0, 1, 2 around highest amplitude.

the modes of l ≥ 3 for the reference star and for the simulated spectra. We verified that
frequencies, rotational splitting and stellar inclination are all consistent with the result de-
rived by Davies et al. (2015) within 2σ significance. Figure 4.3 shows the measured profile
of HBR (HBRref) and the splitting-to-width ratio ((δν⋆/Γ)ref) of KIC 12069424 as a function
of the radial mode frequency. These profiles are fairly representative of other solar-like stars
(see e.g., Appourchaux et al. 2012a).

As shown in Figure 4.3, the height-to-background ratio HBR(n, l = 0) as a function of
the radial mode frequency has a peak at νmax,ref , and the corresponding peak value of HBR is
defined as HBRmax,ref . We scale those reference parameters to generate mock spectra covering
a range of HBR and δν⋆/Γ as described below. Hereafter, the subscript “sim” indicates the
variables of simulated stars scaled from a reference star.

The mode heights Hsim(n, l = 0) of a simulated star are specified by its maximum value
of HBR at νmax,sim; HBRmax,sim, and are scaled as

Hsim(n, l = 0) = HBRsim(n, l = 0)N0 (4.13)

=
HBRmax,sim

HBRmax,ref

HBRref(n, l = 0)N0. (4.14)

In reality, the noise background of the spectrum of actual main-sequence solar-like stars
weakly depends on frequency (see section 3.2). It typically decreases by a factor of a few
between modes with the lowest measurable frequency and the highest measurable frequency.
Figure 4.2 illustrates this profile for KIC 12069424 (red solid line). Here, for simplicity we
neglect the frequency dependence in equation (4.13). We include only the constant power N0,
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Figure 4.3: Measured profiles of the reference star KIC 12069424 (16CygA). Measured
height-to-background ratio (HBR; blue) and splitting-to-width ratio (δν⋆/Γ; red) of the ra-
dial modes are shown as a function of the radial mode frequency ν(n, l = 0). These reference
profiles are scaled and used in simulated power spectra in section 4.2.

and adopt the value of the reference star N0,ref = 0.0857 ppm2/µHz. The height Hsim(n, l)
for l = 1 and l = 2 are scaled using the visibilities of the reference star, V 2

1,ref = 1.449 and
V 2
2,ref = 0.659, from equations (3.44) and (4.13).
The other primary parameter that controls the reliability of the estimate of i⋆ is the

splitting-to-width ratio δν⋆/Γ(n, l). It measures the influence of the overlap between split
components (see section 4.1) on the inclination. In the current simulation, we fix the width of
the mode Γ(n, l) to the reference value Γref(n, l). On the other hand, we modify the rotational
splitting δν⋆,sim so that

δν⋆,sim = γsim Γmax,ref , (4.15)

where Γmax,ref = 1.08µHz is the width of the mode that corresponds to HBRmax,ref . Here,
γsim is the splitting-to-width ratio at HBRmax,sim.

Obviously the observation duration Tobs is another important factor that defines the
number of independent data points sampling mode profiles. The longer Tobs improves the
frequency resolution δf ∝ 1/Tobs. It also improves the description of the mode profile, which
in turns can enhance the accuracy on the stellar inclination. To assess this effect, we consider
Tobs = 1 and 4 years, corresponding to the minimal and maximal observation duration of the
Kepler LEGACY sample (Lund et al. 2017).

In summary, we generate simulated power spectra for various combination of four param-
eters; Tobs, HBR, δν⋆/Γ, and i⋆. The ranges of these parameters are carefully chosen to be
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Table 4.1: Value and range of the control parameters in simulated spectra.
parameter value and range
Tobs (year) [1, 4]
HBRmax,sim [0, 1, ..., 29, 30]

γsim = δν⋆,sim/Γmax,ref [0.1, 0.2, ..., 0.9, 1.0]
i⋆,sim (deg) [0, 10, ..., 80, 90]

representative of the Kepler stars 1. Table 4.2.1 summarizes the ranges of the four control
parameters for the simulated spectra; Tobs, HBRmax,sim, γsim and the inclination angle i⋆,sim.
Eventually, a grid with a total of 3,000 artificial spectra is generated each for Tobs =1 and 4
years. In the next subsection, we perform asteroseismic analysis to those simulated spectra
and then evaluate how output i⋆ and δν⋆/Γ are different from inputs. This test reveals the
parameter space where i⋆ measurement is reliable (input ≈ output) as a function of four con-
trol parameters Tobs, HBR, δν⋆/Γ, and i⋆. In addition, it serves as a check for the robustness
of the analytic criteria above.

4.2.2 Results of mock spectra analysis

Figure 4.4 plots the result of mock spectra analysis on i⋆-δν⋆/Γ plane. Specifically, it shows
the difference between the true input value and the median of the inferred posterior prob-
ability distribution (PPD) for i⋆ and δν⋆/Γ. As we will show later, the median value does
not necessarily represent the best-fit, but we use it here just for simplicity. The base of the
gray arrows indicates the input value, and the tip is the measured median value. Left panels
are for Tobs = 4 years, while right panels are for Tobs = 1 year. Top, middle, and bottom
panels correspond to HBRmax,sim = 30, 5, and 3, respectively. Note that HBRmax,sim = 3-5
are representative of the maximum HBR of the modes for Kepler stars with detected pul-
sations. In practice, below HBRmax = 3 the noise makes difficult to observe the individual
pulsation modes, so that the asteroseismic analysis is often limited to the measure of the
central frequency at maximum power νmax and of the large separation ∆ν. The case with
HBRmax,sim = 30 corresponds to the best cases, such as KIC 12069424 (the reference star).

Clearly there exists a coherent pattern of arrow distribution over the plane, suggesting
the presence of the large uncertainty in the parameter estimation. The length of each arrow
reflects the amplitude of the uncertainty. The possible cause of these uncertainty will be
discussed in next subsection. Labels of “a” to “i” in the top-left panel of Figure 4.4 indicate
the locations of (i⋆, δν⋆/Γ) in the corresponding panels of Figure 4.1. The comparison of
Figure 4.4 with Figure 4.1 helps intuitive understanding of this result.

To proceed further, we overlay the analytic criteria (I)-(III) on each panel of Figure 4.4.
The three blue vertical lines in the right part indicate the criterion (I) with α = 15 (left
dashed), 10 (middle solid) and 5 (right dashed). Similarly, the three red vertical lines in
the left part indicate the criterion (II) with β = 10 (left dashed), 15 (middle solid) and 20

1Specifically, Kepler stars analyzed in this work have been observed typically for 1-4 years. Their SNRs
are 30 (best case) or below. Few stars show extreme rapid rotation, leading to δν⋆/Γ≲1.0 in most cases.
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Figure 4.4: Comparison of asteroseismically-derived values and true inputs of i⋆ and δν⋆/Γ
for the simulated spectra. Arrows in each panel start from the true values and end at the
estimated values. Left and right panels show the results for Tobs = 4 years and 1 year,
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lines correspond to analytic criteria (I), (II), and (III) discussed in section 4.1, respectively.
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4 year PPD (i⋆ = 83.8◦) to the input value (i⋆ = 90◦).

(right dashed). Finally the horizontal black dashed line corresponds to the criterion (III),
δν⋆/Γ = 0.5. In doing so, we set SNR = HBRmax just for simplicity. As we remarked above,
those criteria are not expected to be strict, and the adopted values of α and β are merely
empirical. Nevertheless the regions bounded by the criteria agree with those in which the
input parameters are reproduced fairly accurately from the mock simulation. We also note
that the length of the arrows for Tobs = 4 years becomes approximately half with respect to
that for 1 year on average. This indicates that the accuracy of the estimate scales as 1/

√
Tobs.

On the basis of the empirical comparison above, we divide the observed Kepler stars into
two different categories by using α = 10 and β = 15 in the next section. Although these
three analytic criteria are helpful in getting a qualitative understanding of the condition
necessary for reliable i⋆ measurement, they do not always ensure the reliability of measured
i⋆ quantitatively.
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Before finishing this section, we emphasize the limitation of using the median value of
the derived PPD in estimating the inclination angle. For that purpose, we compute the
derived PPD of the inclination angle for a simulated star assigned i⋆ = 90◦ as an input value.
The resulting PPDs are plotted in Figure 4.5 for different values of δν⋆/Γ. Red and blue
histograms correspond to 1 year and 4 years simulations, respectively, for HBRmax,sim = 3.
While the true value (90◦) can be measured better for higher δν⋆/Γ and longer observation,
the measured value always becomes less than 90◦. For example, the gray regions in the
bottom-right panel brackets between the measured and true values. This is because we
employ the sampling method for inclination over the range of [0◦, 90◦]. In similar fashion,
the derived inclination for true inclination of 0◦ is always greater than 0◦. Therefore the
uncertainty indicated in Figure 4.4 may be partly, even though not entirely, due to the use
of the median value of the entire PPD.

4.2.3 Possible interpretation of the large uncertainty in mock spec-
tra analysis

Since our simulated spectra are not noised, one may expect that the input parameters will be
uniquely retrieved, as is mostly the case in the parameter space regarded as reliable (green
area in Figure 4.4). However, it is clearly not the case outside this region, where we found
long arrows suggesting large uncertainty. In practice, there exists large uncertainty for small
input δν⋆/Γ (lower region in the Figure 4.4) or small input i⋆ (leftmost region in the Figure
4.4). These long arrows cannot represent a systematic error of the analysis, because the
model used to generate the simulated spectra and that used in the fitting are identical.

We argue that this uncertainty for small input δν⋆/Γ or i⋆ is caused by strong degeneracy
between δν⋆/Γ and i⋆. As introduced in panels “a”, “d”, “g”, “h”, and “i” in Figure 4.1, the
shape of l = 1 mode profiles are insensitive to δν⋆/Γ and i⋆ when either δν⋆/Γ or i⋆ is small.
Such a degeneracy leads to the broad distribution of the resulting posterior probability density
of δν⋆/Γ and i⋆. Indeed, the broadness of the posterior distribution is the essential problem
that makes precise parameter estimation quite difficult. When posterior is broad over the
range of parameter space, the parameter estimation always suffers from large uncertainty.
The probability distribution described in red in Figure 4.6 demonstrates such underlying
difficulty in parameter estimation for broad distribution, which is actually what we observed
in small input δν⋆/Γ or i⋆ area in Figure 4.4.

On the other hand, input parameters could be successfully found in green area in Figure
4.4, because the mode profile is quite sensitive to i⋆ and δν⋆/Γ and then they do not suffer
from a strong degeneracy as observed above. Consequently, the output parameter can be
estimated with high precision (see probability distribution described in blue in Figure 4.6).

Obviously, the real observed spectra are noisy data. For these noisy spectra it must be
more difficult to find true values of δν⋆/Γ and i⋆ when true δν⋆/Γ or i⋆ is small, because
noise makes it difficult to identify the correct shape of mode profiles. Therefore, estimating
statistical errors for the noisy spectra is of another particular importance.

When generating the simulated spectra, we used the ratio of the mode height and constant
background power (HBR≡H/N0) as a proxy for SNR of the real spectra. Although “SNR”
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years. Black vertical dashed line represents input i⋆, while red and blue vertical lines are
medians of these distributions.

should account for how noisy the observed spectrum is, the realistic noise is not assigned in
our simulated spectra. Based on this situation, proper relation between HBR and SNR is
not obvious. Thus considering noisy simulated spectra may allow more realistic evaluation
of SNR in relation with HBR.

The noise in power spectrum is known to follow a χ2 distribution with 2 degree of freedom
(e.g., Duvall & Harvey 1986). Based on this property, we generate the noisy simulated spectra
with 10 different noise realizations for the case of input HBR = 5, Tobs = 4 years, and
(i⋆, δν⋆/Γ) = (10◦, 0.2), (50◦, 0.2), (90◦, 0.2), (10◦, 0.6), (50◦, 0.6), (90◦, 0.6). Their results of
asteroseismic analysis are given in Figure 4.7. Total 10 arrows begins from each combination
of input (i⋆, δν⋆/Γ) above. And then the distribution of the endpoints of arrows indicates
the statistical error expected at each point in i⋆-δν⋆/Γ diagram. As we suspected, there exist
large statistical errors for small δν⋆/Γ or i⋆.

This result does not change our qualitative understanding that reliable measurement of
stellar inclination prefers substantially fast rotation δν⋆/Γ and more or less intermediate
inclination. Moreover, it will not affect the results and conclusions in later chapters, because
we will focus on the stars whose parameters are reliably determined there. However, the
additional simulations with noised spectra are necessary to understand and evaluate the
statistical errors of asteroseismic analysis. These tests will help us probe more realistic
relation between HBR and SNR.
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Figure 4.7: Same as Figure 4.4, but for the simulated spectra of HBR=5 and
Tobs=4 years with realistic noise. At each combination of input (i⋆, δν⋆/Γ) =
(10◦, 0.2), (50◦, 0.2), (90◦, 0.2), (10◦, 0.6), (50◦, 0.6), (90◦, 0.6), we create the mock power spec-
tra with 10 different noise realizations. Each black arrow at each combination of input
(i⋆, δν⋆/Γ) represents the result of the analysis for each simulated spectrum. Scatter of the
endpoints of 10 arrows indicates the statistical error expected at each input (i⋆, δν⋆/Γ).

4.3 Application to Kepler data

4.3.1 Target star selection

We analyze stars monitored by Kepler during its initial 4 years mission. In total, we consider
33 stars with transiting planets and 61 stars without known transiting planets. The stars
without known planets in this work are taken from LEGACY sample (Lund et al. 2017, Silva
Aguirre et al. 2017). This sample consists of 66 main-sequence solar-like stars observed in
short cadence for at least ≈ 1 year by Kepler. Out of the 66 stars, we select 61 stars that
do not have known planets (the remaining 5 stars with planets are also analyzed below).
We re-analyze 25 stars with planets in Campante et al. (2016), which include 4 stars (KIC
3632418, 9414417, 9955598, and 10963065) with planets from the LEGACY sample above.
In addition, we analyze 8 stars with planets whose asteroseismic analysis has not yet been
published elsewhere, including one star (KIC 7296438) from LEGACY sample.

Figure 4.8 is the surface gravity and effective temperature diagram of these 94 stars in our
sample. We find all stars are predominantly in main-sequence phase and in range of spectral
type from early K to late F (i.e., 5,000K≲Teff ≲ 6,500K). Actually, we find no signature
of mixed modes, which is typical for evolved stars (sub-giants and red-giants), in the power
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spectra of any stars.
The power spectra prepared using the method of Handberg & Lund (2014), are down-

loaded from Kepler Asteroseismic Science Operations Center (KASOC) database 2. There
are two different spectra available, with and without weighting of the photometric flux with
the flux uncertainty. We use unweighted spectra for 42 targets since their weighted spectra
are not available. Otherwise we use the weighted spectra for 51 stars. For KIC 11401755,
the latest weighted spectra are not available, and we decided to use its unweighted spectra.
We adopt V 2

1 = 1.447 and V 2
2 = 0.5485, the mean of visibility of the Sun in green and red

VIRGO/SPM channels from Salabert et al. (2011). This averaging might give visibilities
representative of the Kepler visibilities (Ballot et al. 2011).

4.3.2 Asteroseismic inference of Kepler stars

We perform asteroseismic analysis using the MCMC method, and summarize the main results
in Tables 4.2, 4.3 and 4.4, 4.5 for stars with and without planets, respectively. We classify
stars as category A if their measured values of (i⋆, δν⋆/Γ) satisfy the three analytic criteria
(I), (II), and (III) with α = 10 and β = 15. Otherwise the stars are classified as category

2http://kasoc.phys.au.dk
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Table 4.2: Results on Kepler planet-host stars in category A
KIC KOI Kepler ID HBRmax δν⋆/Γ i⋆(16%, 50%, 84%) δν⋆(16%, 50%, 84%)

(deg) (µHz)

3544595 69 93 2.25 1.01 [49.9, 58.0, 70.4] [0.42, 0.49, 0.56]
4141376 280 1655 0.69 0.70 [41.2, 58.9, 77.7] [0.80, 0.98, 1.37]
6521045 41 100 3.13 0.51 [62.3, 75.2, 85.6] [0.43, 0.46, 0.51]
8077137 274 128 1.45 0.65 [56.5, 67.4, 80.1] [0.84, 0.93, 1.05]
8494142 370 145 0.80 0.51 [38.9, 60.0, 80.1] [0.89, 1.09, 1.72]
9955598 1925 409 2.91 0.50 [40.3, 49.8, 66.3] [0.32, 0.41, 0.49]
10963065 1612 408 7.79 0.61 [38.2, 41.7, 46.8] [0.88, 0.99, 1.08]
11401755 277 36 1.19 0.54 [42.5, 60.0, 79.5] [0.53, 0.65, 0.84]
11807274 262 50 1.61 0.73 [59.9, 71.6, 83.9] [1.41, 1.52, 1.70]

Table 4.3: Results on Kepler planet-host stars in category B
KIC KOI Kepler ID HBRmax δν⋆/Γ i⋆(16%, 50%, 84%) δν⋆(16%, 50%, 84%)

(deg) (µHz)

3425851 268 ... 0.78 0.84 [32.3, 52.0, 75.1] [1.37, 1.98, 3.01]
3632418 975 21 7.92 0.40 [60.3, 71.3, 83.3] [0.88, 0.94, 1.04]
4143755 281 510 1.67 0.43 [ 4.6, 20.7, 55.4] [0.09, 0.32, 0.91]
4349452 244 25 0.94 0.91 [71.3, 80.6, 87.1] [1.41, 1.49, 1.59]
4914423 108 103 0.63 0.42 [16.0, 43.4, 73.2] [0.34, 0.62, 1.44]
5094751 123 109 0.54 0.40 [ 3.7, 15.9, 49.9] [0.12, 0.60, 2.12]
5866724 85 65 1.07 0.85 [66.4, 75.0, 84.5] [1.32, 1.41, 1.52]
6196457 285 92 1.62 1.76 [ 4.5, 14.5, 35.8] [0.24, 1.90, 3.97]
6278762 3158 444 3.95 2.39 [48.4, 64.8, 78.6] [0.35, 0.39, 0.49]
7296438 364 ... 6.12 0.57 [ 6.8, 19.2, 48.7] [0.15, 0.50, 1.11]
7670943 269 ... 0.81 0.76 [66.8, 77.3, 86.0] [1.79, 1.90, 2.05]
8292840 260 126 1.32 0.61 [64.4, 75.6, 85.3] [1.37, 1.47, 1.59]
8349582 122 95 1.17 0.54 [10.8, 34.8, 66.1] [0.12, 0.27, 0.55]
8478994 245 37 1.09 1.53 [19.9, 38.7, 64.6] [0.43, 0.71, 1.16]
8554498 5 ... 0.78 0.42 [ 2.3, 11.9, 49.6] [0.07, 0.44, 1.67]
8866102 42 410 2.28 0.66 [78.4, 83.6, 88.0] [2.03, 2.07, 2.12]
9414417 974 ... 3.88 0.37 [46.0, 58.7, 76.9] [0.92, 1.05, 1.25]
9592705 288 ... 1.55 0.44 [42.7, 52.2, 65.3] [0.90, 1.08, 1.30]
10586004 275 129 2.16 0.95 [19.7, 42.9, 69.5] [0.38, 0.70, 1.12]
10666592 2 2 1.60 0.21 [28.6, 41.8, 61.4] [0.66, 0.95, 1.29]
11133306 276 509 0.75 0.86 [ 7.6, 27.1, 62.4] [0.21, 0.61, 1.53]
11295426 246 68 5.86 0.32 [27.6, 43.1, 70.2] [0.21, 0.30, 0.46]
11853905 7 4 0.98 0.42 [ 8.0, 36.2, 66.9] [0.19, 0.38, 0.92]
11904151 72 10 1.58 0.85 [ 8.6, 40.5, 74.0] [0.16, 0.33, 0.80]
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Table 4.4: Results on Kepler planet-less stars in category A
KIC HBRmax δν⋆/Γ i⋆(16%, 50%, 84%) δν⋆(16%, 50%, 84%)

(deg) (µHz)

1435467 3.35 0.52 [52.7, 59.5, 70.4] [1.46, 1.64, 1.82]
4914923 10.58 0.56 [36.4, 43.3, 51.7] [0.49, 0.58, 0.69]
5773345 5.06 0.67 [27.5, 31.2, 35.4] [1.50, 1.78, 2.13]
6225718 10.21 0.70 [25.1, 27.2, 29.8] [1.52, 1.70, 1.85]
6679371 2.71 0.53 [69.9, 78.5, 86.3] [1.78, 1.86, 1.97]
7103006 2.97 0.51 [41.9, 46.2, 51.5] [1.76, 1.96, 2.16]
7206837 1.80 0.93 [32.3, 35.4, 38.8] [2.46, 2.74, 3.03]
7510397 8.76 0.67 [13.9, 17.6, 21.7] [0.99, 1.37, 1.66]
7680114 5.55 0.51 [15.9, 24.3, 52.0] [0.26, 0.59, 0.93]
7871531 2.91 0.60 [50.7, 64.1, 81.2] [0.34, 0.40, 0.47]
7970740 4.66 0.57 [40.2, 48.5, 61.5] [0.29, 0.37, 0.46]
8006161 8.78 0.62 [33.1, 39.6, 47.5] [0.45, 0.54, 0.64]
8179536 2.37 0.71 [47.8, 53.3, 60.3] [1.55, 1.72, 1.91]
8379927 8.21 0.54 [67.0, 71.9, 78.8] [1.10, 1.15, 1.20]
8394589 3.33 0.70 [63.7, 69.1, 76.0] [1.00, 1.06, 1.11]
9025370 2.75 0.60 [52.5, 69.9, 83.6] [0.41, 0.47, 0.55]
9139151 3.37 0.57 [61.0, 71.2, 83.0] [0.93, 1.00, 1.09]
9139163 2.88 0.83 [23.1, 25.1, 27.6] [3.09, 3.50, 3.85]
9965715 3.10 0.62 [55.5, 60.3, 66.2] [1.83, 1.96, 2.09]
11253226 2.31 0.53 [45.8, 48.3, 50.9] [3.10, 3.24, 3.39]
12009504 3.83 0.53 [63.6, 69.2, 77.1] [1.12, 1.20, 1.27]
12069424 35.68 0.54 [45.9, 51.9, 60.2] [0.45, 0.50, 0.55]

B. We find 9 stars with planets of category A, and 22 without planets. The classification
is admittedly not strict, because it is based on the measured median values neglecting the
quoted errors, in addition to the qualitative nature of the criteria themselves. Nevertheless
such a classification is useful as a rough measure of the reliability of the inference.

Top and bottom panels in Figure 4.9 plot the distribution of measured i⋆ and δν⋆/Γ
for stars with and without planets, respectively. Stars belonging to categories A and B are
plotted in filled circles with error-bars and in crosses, respectively. Also we indicate the
KOI number for category A stars with planets in top panel. Since the target selection is
somewhat heterogeneous, we cannot put any strong conclusion at this point. Nevertheless it
is interesting to note that the category A stars with planets are preferentially located around
the large i⋆ region relative to those without planets, suggesting a general spin-orbit alignment
of transiting planets.

Figures 4.10 and 4.11 show examples of power spectra and the resulting two dimensional
PPD of i⋆ and δν⋆ for categories A and B stars. They present the difference of the ability
to constrain i⋆ and δν⋆ between categories A and B. Note, however, that these two may be
extreme examples, and in some cases the difference between A and B is milder.
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Table 4.5: Results on Kepler planet-less stars in category B
KIC HBRmax δν⋆/Γ i⋆(16%, 50%, 84%) δν⋆(16%, 50%, 84%)

(deg) (µHz)

2837475 1.74 0.46 [70.9, 76.6, 83.6] [3.01, 3.10, 3.20]
3427720 3.18 0.31 [12.4, 28.5, 61.0] [0.19, 0.43, 0.88]
3456181 3.52 0.28 [34.5, 48.6, 72.0] [0.75, 0.99, 1.36]
3656476 11.57 0.42 [34.6, 48.8, 73.1] [0.24, 0.31, 0.42]
3735871 1.42 0.38 [42.9, 66.2, 83.1] [0.62, 0.72, 0.98]
5184732 13.74 0.43 [58.8, 70.8, 83.0] [0.53, 0.57, 0.63]
5950854 2.16 1.04 [ 1.7, 8.2, 27.6] [0.05, 1.15, 2.35]
6106415 19.61 0.44 [67.0, 75.9, 85.1] [0.68, 0.71, 0.75]
6116048 12.58 0.42 [62.8, 73.0, 83.7] [0.61, 0.64, 0.70]
6508366 2.56 0.49 [80.9, 85.6, 88.7] [2.12, 2.19, 2.26]
6603624 17.93 0.44 [ 2.0, 4.2, 38.7] [0.30, 1.44, 2.00]
6933899 10.51 0.31 [48.9, 64.2, 81.0] [0.33, 0.37, 0.45]
7106245 1.65 0.43 [13.5, 28.6, 62.6] [0.27, 0.57, 1.36]
7771282 1.17 0.39 [48.6, 67.0, 82.0] [1.05, 1.19, 1.39]
7940546 9.25 0.35 [52.5, 63.0, 76.6] [0.97, 1.08, 1.23]
8150065 1.39 0.28 [ 5.2, 26.0, 65.8] [0.15, 0.49, 1.37]
8228742 6.52 0.44 [29.9, 38.5, 58.6] [0.56, 0.83, 1.11]
8424992 2.72 0.41 [ 4.0, 19.2, 59.3] [0.08, 0.31, 1.04]
8694723 7.59 0.46 [32.4, 37.4, 43.0] [1.10, 1.25, 1.46]
8760414 7.19 0.43 [ 2.1, 8.1, 40.4] [0.04, 0.48, 1.74]
8938364 8.91 0.31 [ 7.8, 25.0, 61.7] [0.10, 0.23, 0.65]
9098294 3.86 0.36 [30.8, 49.9, 75.1] [0.33, 0.43, 0.66]
9206432 1.62 0.30 [21.1, 36.2, 59.6] [1.06, 1.73, 2.77]
9353712 1.78 0.87 [21.0, 28.9, 53.8] [0.86, 1.84, 2.65]
9410862 1.66 0.78 [13.7, 21.2, 45.3] [0.47, 1.16, 2.01]
9812850 1.82 0.38 [50.7, 64.7, 81.3] [1.40, 1.57, 1.87]
10068307 11.91 0.40 [33.4, 41.9, 58.4] [0.58, 0.77, 0.96]
10079226 2.23 2.50 [49.8, 71.6, 84.0] [0.64, 0.75, 0.93]
10162436 6.61 0.29 [28.7, 44.6, 62.2] [0.48, 0.65, 1.02]
10454113 3.23 0.42 [26.4, 34.5, 47.6] [0.83, 1.16, 1.53]
10516096 6.79 0.33 [53.2, 70.2, 83.8] [0.45, 0.49, 0.58]
10644253 1.86 0.21 [ 2.5, 13.9, 54.4] [0.06, 0.34, 1.36]
10730618 1.01 0.31 [11.4, 24.6, 52.8] [0.52, 1.32, 2.65]
11081729 1.32 2.30 [80.7, 85.4, 88.6] [3.22, 3.40, 3.51]
11772920 1.93 0.49 [51.1, 67.0, 81.8] [0.28, 0.33, 0.40]
12069127 1.66 0.19 [16.9, 40.4, 70.3] [0.35, 0.65, 1.16]
12069449 29.29 0.37 [33.1, 47.0, 70.7] [0.27, 0.35, 0.49]
12258514 13.77 0.30 [19.9, 34.0, 64.6] [0.28, 0.46, 0.81]
12317678 2.74 0.20 [46.1, 62.4, 80.5] [0.92, 1.06, 1.34]
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Figure 4.9: Measured values of i⋆ and δν⋆/Γ for Kepler stars with (top) and without (bot-
tom) known planetary companions. The black solid horizontal line represents δν⋆/Γ = 0.5
(equation 4.12). Filled circles indicate category A stars, while crosses correspond to category
B stars. The numbers labelling the filled circles denote the KOI IDs for stars with planets.
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Figure 4.10: Results of our asteroseismic analysis for KIC 10963065 (KOI 1612, Kepler-408),
as a typical example of planet-host stars in category A. Left: Power spectra around νmax along
with the best-fit model curve (red solid line). Black and gray lines indicate spectra smoothed
over the width of 0.2µHz and 2.0µHz, respectively. The upper insets display the zoom-in
views of the spectra, around l = 1 (left) and l = 0+2 (right) modes. Black and gray lines in
these insets are smoothed over 0.15µHz and 0.75µHz. Right: Upper-right panel is the two-
dimensional correlation map of i⋆ and δν⋆ obtained from the MCMC sampling. Top-left and
bottom-right panels are the corresponding marginalized PPD for δν⋆ and i⋆, respectively.
Bottom-left panel is the PPD of the combined quantity, δν⋆ sin i⋆. Green vertical lines in
these histograms indicate the median and 1σ credible regions.
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Figure 4.11: Same as Figure 4.10, but for category B star KIC 6196457.
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4.3.3 Consistency with other observations

Unlike for simulated stars, the true values of the stellar parameters for actual Kepler stars are
obviously not known. Thus it is important to compare our asteroseismic estimates of stellar
parameters with other independent observations, which is attempted in this subsection. In
this subsection we present a brief comparison of v sin i⋆, δν⋆, and i⋆ with other observations
to discuss the overall trend. Then more dedicated study for some particular stars will be
given in later chapters, in terms of i⋆ (chapter 5) and Prot = 1/δν⋆ (chapter 6).

We first consider v sin i⋆ that can be measured also from line widths of spectroscopically
observed stars. For 33 stars with planets, we use the spectroscopic v sin i⋆ from California-
Kepler Survey (CKS) 3, except one from Huber et al. (2013b). For 61 stars without planets, we
consider two different spectroscopic datasets from Bruntt et al. (2012) and Molenda-Żakowicz
et al. (2013). First we adopt the data for 43 stars from Bruntt et al. (2012). Out of the
remaining 18 stars not listed in their catalog, we adopt the data from Lund et al. (2017) for
11 stars. Next we repeat the same procedure starting with the dataset of Molenda-Żakowicz
et al. (2013). In this case, we combine 46 stars from Molenda-Żakowicz et al. (2013), and 11
stars from Lund et al. (2017). Note that v sin i⋆ in Huber et al. (2013b) and Lund et al. (2017)
is calculated on the basis of the Stellar Parameter Classification pipeline (SPC; Buchhave
et al. 2012), while CKS, Bruntt et al. (2012), and Molenda-Żakowicz et al. (2013) developed
their own pipelines in computing v sin i⋆.

While v sin i⋆ can be directly estimated from spectroscopic data, it is not the case for
asteroseismology. We estimate the stellar radius R⋆ from the scaling relation calibrated with
the Sun:

R⋆

R⊙
=

(
νmax,⋆

νmax,⊙

)(
∆ν⋆
∆ν⊙

)−2(
Teff,⋆
Teff,⊙

)1/2

, (4.16)

where νmax,⋆ is the frequency corresponds to the peak of the mode heights (see Figure 4.3),
∆ν⋆ is the large separation, and Teff,⋆ is the effective temperature of the star. Thus R⋆ can
be estimated from the two asteroseismic observables, νmax,⋆ and ∆ν⋆, along with Teff,⋆, which
leads to asteroseismic estimate of v sin i⋆:

v sin i⋆ = 2πR⋆δν⋆ sin i⋆. (4.17)

We adopt νmax,⊙ = 3,100µHz, ∆ν⊙ = 134.9µHz, and Teff,⊙ = 5,777K (Broomhall et al.
2009, Gaulme et al. 2016).

Figure 4.12 compares v sin i⋆ from asteroseismic and spectroscopic data. The left panel
shows planet-hosting stars in blue (32 from CKS and 1 from Huber et al. 2013b), and also
stars without planets, 11 from Lund et al. (2017) in black, 43 from Bruntt et al. (2012) in
red, and 46 from Molenda-Żakowicz et al. (2013) in green. Since a significant fraction of stars
without planets overlaps in the two sources, we distinguish them using different colors. Filled
circles and crosses correspond to categories A and B stars, respectively. We do not quote
error-bars for Bruntt et al. (2012) since they are not available from their published table.

3https://california-planet-search.github.io/cks-website/
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Figure 4.12: Comparison of v sin i⋆ estimated from spectroscopy and those from asteroseis-
mology. Filled circles and crosses correspond to categories A and B stars, respectively. Panel
a shows stars with planets (blue), with spectroscopic values from CKS (32 stars) and Huber
et al. (2013b) (1 star). Shown stars without planets use values from Lund et al. (2017) in
black (11 stars), from Bruntt et al. (2012) in red (43 stars), and from Molenda-Żakowicz
et al. (2013) in green (46 stars). Panel b is an enlarged view for stars without planet whose
v sin i⋆ is less than 6 km/s.

The left panel of Figure 4.12 suggests that asteroseismic and spectroscopic v sin i⋆ are
in reasonable agreement. However, a closer look at v sin i⋆ < 6 km/s data in the right
panel reveals an interesting feature; the estimates by Bruntt et al. (2012) (red) are sys-
tematically larger than our asteroseismic values, while those by Molenda-Żakowicz et al.
(2013) (green) are systematically smaller. Our result are somewhere in-between, except for
v sin i⋆ ≲ 2 km/s. Since these authors have a large fraction of stars in common, the feature
should not be due to differences in the stellar properties. We suspect that the difference
between the two spectroscopic results comes from the subtle modelling of micro/macro-
turbulence effects in spectroscopic data. We would like to point that “the roundest A-type
star” KIC 11145123 (Kurtz et al. 2014, Gizon et al. 2016) presents an interesting example
in this context. Takada-Hidai et al. (2017) found that the spectroscopically measured value
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of v sin i⋆≈5 km/s suffers from systematic overestimate, and asteroseismically derived equa-
torial rotation velocity of v sin i⋆≈1 km/s proved to be more reliable. This suggests that the
spectroscopic measurement of v sin i⋆ for slowly rotating stars needs to be interpreted with
caution, which is in good agreement with our conclusions from Figure 4.12. The impor-
tance of the careful calibration of turbulence has been well recognized in earlier publications,
for instance by Bruntt et al. (2012). The lower panels of Figure 4.12 provide observational
evidences of this problem. Incidentally, the overall consistency between asteroseismic and
spectroscopic v sin i⋆ (> a few km/s) may also reinforce the nearly-uniform rotation of stars
as stated by Benomar et al. (2015). This is because asteroseismology measures the stellar
rotation averaged over its interior, while spectroscopy measures its surface rotation.

Figure 4.13 compares asteroseismic δν⋆ and the inverse of stellar rotation period measured
from photometric variability for 46 stars (Garćıa et al. 2014). While they agree reasonably
on average, individual agreement is not good except for δν⋆ ≳ 2µHz (Prot ≲ 6 days). Again
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Figure 4.14: Comparison of i⋆ derived from asteroseismology and those derived from spectro-
scopic and time-domain photometric observations (equation 2.21). The colors and symbols
are the same as those in Figure 4.12.

both the photometric variation and rotational splitting are not reliably identified for slowly
rotating stars.

Combining the spectroscopic v sin i⋆, asteroseismic R⋆, and photometric Prot, we can
estimate i⋆ by equation (2.21). Figure 4.14 is similar to Figure 4.12, but instead, compares
i⋆ estimated from equation (2.21) with the asteroseismic i⋆. Panel a (left) shows the stars
whose i⋆ is derived from the combined analysis, while panel b (right) shows planet-less stars
with v sin i⋆ < 6 km/s alone, similarly to Figure 4.12. The large scatter, that is mainly due
to the photometric variation uncertainty, makes it difficult to draw any definite conclusion
at this point. Indeed, the lightcurve modulation attributed to star-spots could be affected
by the fact that the number, lifetime and latitude of the star-spots are not understood well.
It is therefore difficult to identify the reason of the scatter at this stage. However, this is the
current status of the mutual comparison of independently measured i⋆, which needs to be
kept in mind in considering the implications of the distribution of i⋆.

This caution may be relevant to interpret the recent results by Kovacs (2018), which
reports the possible alignment of stellar inclinations in the Praesepe cluster from the combined
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analysis of photometric rotation periods (Prot), spectroscopic rotation velocities (v sin i⋆), and
estimated stellar radii (R⋆). Figures 3 and 4 of Kovacs (2018) indicate that the cumulative
distribution of i⋆ for the cluster is biased toward the larger value relative to the isotropic
distribution. This could be explained as well if the macro-turbulence is underestimated as it
might be the case for Bruntt et al. (2012). It is premature to firmly conclude at this point,
but it clearly indicates the importance of our current findings exhibited in Figure 4.12, and
the necessity to perform in the future a thorough comparative study of methods for inferring
the stellar inclination.

4.4 Discussion and conclusion

One of our main findings in this chapter is that the asteroseismology provides reliable stellar
inclination only for stars with at least 20◦ ≲ i⋆ ≲ 80◦, δν⋆/Γ ≳ 0.5, with higher signal-to-noise
ratio, and with longer observations. A significant uncertainty arises when this is not the case,
so that the stellar inclination could be overestimated for low inclinations and underestimated
otherwise. Below we discuss more broadly its implication on previous results.

4.4.1 Inclinations for CoRoT stars

Although the statistics is low, it is interesting to note that the analysis of solar-like stars
observed by CoRoT (Baglin et al. 2006a,b) often led to low and medium stellar inclinations.
An isotropic distribution of stellar spins in the sky should give instead a larger proportion of
stars with high inclination. We have i⋆ = 45± 4 (deg) for HD 181420 (Barban et al. 2009),
i⋆ = 24 ± 3 (deg) for HD 181906 (Garćıa et al. 2009), and in fact they are based on the
low SNR. On the other hand, we have i⋆ = 17 ± 9 (deg) or i⋆ = 26+17

−7 (deg) for HD 49933
(Benomar et al. 2009, Benomar et al. 2015) and i⋆ = 71± 6 (deg) for HD 49385 (Deheuvels
et al. 2010) with high SNR.

Those CoRoT stars were observed only for 90 to 180 days, with a signal-to-noise that
does not exceed ≈ 5. From Figure 4.4, we expect that a substantial uncertainty covering
lower inclinations should be present for most of the CoRoT stars, which is in agreement with
the apparent excess of low to medium stellar inclinations. This is also largely consistent with
our Kepler data analysis plotted in Figure 4.9, especially for stars without planet in which
the correlation with the transiting planetary orbital plane should not exist.

4.4.2 Inclinations for evolved stars

While the current work is specifically dedicated to low-mass main-sequence stars, our results
can be of importance also for evolved stars. Sub-giants and red-giants show mixed modes,
arising from the coupling between pressure modes and gravity modes. Mixed modes can
be mostly sensitive either to the envelope (pressure-like modes) or to the interior (gravity-
like modes). The large number of l = 1 mixed modes observed in evolved stars has enabled
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detailed studies of the interior and evolution of those stars (e.g., Deheuvels et al. 2012, Mosser
et al. 2014).

Because pressure-like modes are short-lived 4 and probe the slowly rotating envelope (e.g.,
rotations of the order ≈ 100 days in red-giants), it is expected that split-components of l = 1
modes suffer from a severe blending (δν⋆≪Γ). On the contrary, gravity-like modes have
lifetimes of the order of years and probe regions that mostly rotate faster than the envelope
(Beck et al. 2012, Deheuvels et al. 2012, Benomar 2013, Deheuvels et al. 2014, Deheuvels
et al. 2015, Mosser et al. 2017), so that split-components are well separated (δν⋆≫Γ).

In these conditions and as suggested by Figure 4.4, it is likely that gravity-like modes
allow an accurate determination of the stellar inclination, provided that they have a signif-
icant signal-to-noise ratio. However, we need to be cautious when determining the stellar
inclination from pressure-like modes. We also stress that when modes of evolved stars are
fitted individually (e.g., using a local fit, rather than a global fit as performed in this study),
inclinations of blended modes or low signal-to-noise modes are expected to be significantly
misled towards lower values. This suggest that the asteroseismic determination of the stellar
inclination for the red-giant Kepler-56 (Huber et al. 2013a), reported to have a large i⋆ and
to host multiple transiting planets, remains certainly accurate because the analyzed split
component of the l = 1 modes are clearly well resolved and of high signal-to-noise ratio
(see their Figure 1). However, results from Corsaro et al. (2017) on spin alignment of star
clusters may require a careful interpretation because they fit different modes independently
and determine a posteriori the stellar inclination. In addition, the clusters consist of faint
stars with modes of relatively low amplitudes. As suggested by Figure 4.4, this may mislead
stellar inclinations towards ≈ 30 degrees. This indicates the importance of studying a po-
tential uncertainty on stellar inclination for sub-giants and red-giants as we have performed
for main-sequence stars.

4.5 Summary of this chapter

The measurement of the stellar inclination angle i⋆ is particularly important to probe the
spin-orbit alignment of transiting exoplanetary systems in an independent and complemen-
tary manner to the projected angle λ from the Rossiter-McLaughlin measurement (Ohta
et al. 2005). The statistical distribution of i⋆ and λ provides a quantitative test for the-
ories of the origin and evolution of planetary systems. While the majority of transiting
exoplanets are found around F, G, and K type stars in their main-sequence phase, those
are harder to measure i⋆ compared to evolved solar-like stars (red-giants and sub-giants).
This is mostly due to the relatively lower oscillation amplitude and the sever mode blending
of main-sequence solar-like stars. Therefore, it is of fundamental importance to perform a
systematic verification of the reliability of i⋆ derived from asteroseismology for those stars.

We generated 3,000 simulated oscillation power spectra scaled from a reference star KIC
12069424 (16CygA) that span a wide range of the height-to-background ratio, rotational
splitting δν⋆, and inclination angle i⋆, each for 1 year and 4 years observation duration.

4The lifetime of the modes is inversely proportional to the mode width.
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Then we performed systematic mock simulations of asteroseismic analysis, and examined
the reliability of i⋆ derived from asteroseismic analysis with a Bayesian-MCMC sampling
method. We find that the low signal-to-noise ratio of the power spectra induces a systematic
under-estimation (over-estimation) for stars with high (low) inclinations. The combination of
analytical consideration and mock simulation results revealed three empirical criteria on (i⋆,
δν⋆/Γ) plane as a function of the power, height-to-background ratio HBR, and the observation
duration Tobs, which are required for a reliable estimate of i⋆. These criteria indicate that
for the reliable measurements stars need to be at least in the range of 20◦ ≲ i⋆ ≲ 80◦ with
high HBR, high δν⋆/Γ, and longer Tobs.

We also performed asteroseismic analysis of 94 main-sequence solar-like stars in Kepler
short cadence data using the same Bayesian-MCMC sampling method; 33 and 61 are stars
with and without known planetary companions, respectively. We find that 9 stars with planet
and 22 stars without planet satisfy the criteria above.

The stellar inclination and rotation, i⋆ and δν⋆, that we derived asteroseismically for those
Kepler stars are compared with those derived photometrically and spectroscopically. We find
that our asteroseismic v sin i⋆ is in good agreement with the average of two independent
spectroscopic analysis by Bruntt et al. (2012) and Molenda-Żakowicz et al. (2013). This
suggests that a careful modelling of macro-turbulence is crucial in estimating v sin i⋆ from
spectroscopic data, especially for slowly rotating stars.

The rotation period Prot derived from the photometric variability of the stellar light
curve shows reasonable, even if not good, agreement with δν⋆. The combined estimate of
i⋆, however, is very limited both observationally and statistically, and does not show strong
agreement with its asteroseismic estimate at this point, indicating that further quantitative
study is necessary. Some important implications of our asteroseismic results for the Kepler
stars will be revisited in later chapters.



Chapter 5

Highly oblique exoplanetary system
Kepler-408

As we reviewed in section 2.6, all previous detections of misaligned orbits are for planets
larger than Neptune. Smaller planets are relatively unexplored because of the difficulty of
the relevant measurements.

One of the most successful techniques for investigating spin-orbit misalignment, the
Rossiter-McLaughlin effect, requires the observation of signals for which the amplitude is
proportional to the loss of light during planetary transits. Hence, it is much easier to ap-
ply to giant planets than small planets. Two other techniques introduced in chapter 2, the
asteroseismic method and the combined method, rely on observing signals that are indepen-
dent of planet size. However, the asteroseismic method has only been applied to 33 stars,
because it requires an unusually bright star with large-amplitude p mode oscillations. The
combined method has been applied to samples of hundreds of stars, but in most cases it only
provides weak constraints (Schlaufman 2010, Winn et al. 2017b). Due to these limitations,
it is unclear whether the misalignments are the result of processes specific to giant planets,
or whether they also occur for terrestrial planets.

In this chapter, we report the detection of a gross misalignment between the equator of
the star Kepler-408 and the orbital plane of a planet comparable in size to the Earth.

5.1 Basic properties of Kepler-408 system

Kepler-408 (also known as KIC 10963065 and KOI-1612), one of 33 planet-host stars analyzed
with asteroseismology in previous chapter, has been monitored for 4 years by Kepler. Transit
signal of only one planet has been detected, with a period of 2.5 days, a duration of 1.3 hours,
and a fractional transit depth of 3.1×10−5 (Thompson et al. 2018). Table 5.1 summarizes the
known characteristics of the system. With a Kepler apparent magnitude of 8.8, the host star
is the third brightest of all the Kepler stars with confirmed planets. This unusual brightness
enables an investigation of the stellar obliquity using asteroseismology. In practice, Kepler-
408 is classified as category A according to the analytic criteria. This is because this unusual
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Table 5.1: System parameters of Kepler-408
Parameter Value Reference
Stellar parameters
Effective temperature, Teff [K] 6088± 65 Petigura et al. (2017)
Surface gravity, log(g/cm s−2) 4.318+0.08

−0.089 Petigura et al. (2017)
Metallicity, [Fe/H] −0.138+0.043

−0.042 Petigura et al. (2017)
Mass, M⋆ [M⊙] 1.05± 0.04 Johnson et al. (2017)
Radius, R⋆ [R⊙] 1.253± 0.051 Berger et al. (2018)
Age [Gyr] 4.7± 1.2 Johnson et al. (2017)
Projected rotation rate, v sin i⋆ [km/s] 2.8± 1.0 Petigura et al. (2017)
Rotation period, Prot [days] 12.89± 0.19 Angus et al. (2018)
Planetary parameters
Planet-to-star radius ratio, Rp/R⋆ 0.0063± 0.0003 This work
Radius, Rp [R⊕] 0.86± 0.04 This work
Time of inferior conjunction [BJD] 2454965.6804± 0.0003 This work
Orbital period, Porb [days] 2.465024± 0.000005 Thompson et al. (2018)
Orbital inclination, iorb [deg] 81.85± 0.10 This work

brightness enables high SNR and frequency resolution fine enough. Moreover, it is important
to note that Kepler-408 is an unique system that shows significantly low stellar inclination
among 33 planet-host sample.

However, there are conflicting reports in the literature. Campante et al. (2016) found
the inclination to be consistent with 90◦ and set a lower limit of 54◦. This was part of a
homogeneous study of 25 stars with transiting planets. In contrast, Nielsen et al. (2017)
found the inclination to be between 40 and 45 degrees. This finding was incidental to the
main purpose of that study, which was to probe the internal rotation profiles of 6 stars. The
authors did not remark on the transiting planet, nor on the conflict with Campante et al.
(2016).

We have examined the case of Kepler-408 in greater detail, to try and resolve this conflict.
This is motivated by the numerical simulations in chapter 4, which established the obser-
vational requirements for the reliable inference of the rotational inclination, and found that
the characteristics of Kepler-408 should allow for reliable results. Section 5.2 describes the
transit analysis. Section 5.3 presents some independent checks on the previous measurements
of the stellar rotation period, which plays a key role in the asteroseismic analysis. Section
5.4 describes the asteroseismic analysis, and resolves the prior discrepancy by identifying a
problem with the analysis by Campante et al. (2016). Section 5.5 shows that our asteroseis-
mic estimate of i⋆ agrees with the constraint that is obtained by combining measurements
of the stellar radius, rotation period, and sky-projected rotation velocity. Our findings and
some implications are summarized in section 5.6.
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Figure 5.1: Phase-folded transit light curve of Kepler-408b. Upper panel: Binned data (open
circles) with the best-fitting model (thick line). Lower panel: Residuals between the data
and the best-fitting model.

5.2 Transit modelling

The orbital inclination, iorb, of a transiting planet is always close to 90◦. For a precise mea-
surement, we modeled the Kepler transit light curve. We downloaded the short-cadence,
pre-search data conditioning (PDC) light curves from the Mikulski Archive for Space Tele-
scopes. The data surrounding each transit were fitted with a standard model for the loss of
light (Mandel & Agol 2002), assuming the orbit to be circular and accounting for stellar vari-
ability with a locally quadratic function of time. After dividing through by the best-fitting
quadratic functions, the transit data were phase-folded and averaged, giving a mean light
curve with a higher signal-to-noise ratio (Figure 5.1).

This light curve was then fitted to obtain our final estimates for the transit parameters
(Table 5.1). Uniform priors were adopted for the logarithm of the planet-to-star radius ratio
(Rp/R⋆), the cosine of the orbital inclination (cos iorb), the normalization of the light curve,
the two coefficients of the quadratic limb-darkening profile, and the logarithm of a noise
term to account for the scatter of the residuals between the data and the model. A Gaussian
prior was adopted for the mean stellar density (ρ⋆ = 0.816 ± 0.025 g/cm3) based on the
asteroseismic analysis in chapter 4. The posterior distributions for the model parameters
were obtained with a nested sampling code (Feroz et al. 2009). The result for the orbital
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Figure 5.2: Two methods for determining the stellar rotation period. Top: Auto-correlation
function. Middle: Lomb-Scargle periodogram. Lower: Close-up of the periodogram near the
most significant peaks.

inclination was iorb = 81.85± 0.10 (deg).
We also tried allowing the planet’s orbit to be eccentric. In that case, although the mode

of the eccentricity posterior was about 0.7, the circular solution was not excluded with a
high significance. These results are in agreement with the previous light-curve analysis of
Van Eylen et al. (2018), who found that the eccentricity was consistent with zero within 95%
confidence.

5.3 Stellar rotation period from photometric variabil-

ity

The Kepler photometric time series exhibits quasi-periodic modulation that is presumably
due to the rotation of surface inhomogeneities across the star’s visible hemisphere. By com-
puting the autocorrelation function, McQuillan et al. (2013) determined the photometric
rotation period to be 12.44± 0.17 days. Angus et al. (2018) reported a value of 12.89± 0.19
days by modeling the Kepler data as a Gaussian process with a quasi-periodic covariance
kernel function.

To perform an independent check on the determination of the stellar rotation period, we
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Figure 5.3: Confirmation of the rotation period through visual inspection. Shown is the
entire Kepler light curve, folded with the candidate 12.94-day period. Vertical offsets have
been applied to each cycle of data in order to separate them; they are organized like the
lines of text on a page. Highlighted in blue are several occasions where the pattern of flux
variation is similar from one rotation to the next. This would be unlikely if the rotation
period had been misidentified.
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Figure 5.4: Spectral window function of Kepler-408 for the frequency range of [−10,+10]µHz
(left) and [−0.5,+0.5]µHz (right).

analyzed the Kepler data outside of transits. We normalized the data from each quarter by
setting the median flux equal to unity. A Lomb-Scargle periodogram of the resulting time
series has its most prominent peak at 12.96 ± 0.07 days, and the auto-correlation function
shows a series of peaks spaced by 12.94 ± 0.22 days (Figure 5.2). Previous experience has
shown that the strongest photometric periodicity sometimes occurs at harmonics of the true
rotation period, presumably because there are several active regions on the star. In the
present case, visual inspection of the light curve confirms that the true period is close to 12.9
days. We were able to identify several time intervals in which a complex pattern of variations
repeats nearly exactly after 12.9 days (Figure 5.3), which would be an unlikely coincidence
if the true period were different.

In what follows, we adopt the value Prot = 12.89± 0.19 days based on the work of Angus
et al. (2018), since their analysis appears to be the most rigorous with regard to the quoted
uncertainty. The reciprocal of the rotation period, which is most relevant to the asteroseismic
analysis, is 1/Prot = 0.898± 0.013µHz.

5.4 Asteroseismic analysis

5.4.1 Power spectrum of Kepler-408

The power spectrum of Kepler-408, available on KASOC database, is computed from its time
series with the pipeline by Handberg & Lund (2014) as follows. Kepler-408 has been observed
from Aug. 2009 to May 2013 in 1 minute time sampling (short cadence mode). However, it
lacks the observation from Sep. 2009 to Mar. 2010, from Dec. 2010 to June 2011, from Jan.
2012 to Mar. 2012, and from Jan. 2013 to Apr. 2013 (Lund et al. 2017). For this original
time series, the pipeline by Handberg & Lund (2014) corrects the sudden jumps in measured
flux between observing windows, separated by the gaps above. And then it removes long-
term trends (e.g., stellar activity), instrumental effects, and signals of planetary origin (e.g.,
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Figure 5.5: Key parameters for the reliable inference of rotational inclination. The blue curve
shows the height-to-background ratio (HBR) for the l = 0 modes. The red curve shows the
ratio between the frequency splitting δν⋆ and the line width Γ for the l = 0 modes.

planetary transits). The power spectrum for asteroseismic analysis is prepared by computing
the Lomb-Scargle periodogram of the corrected time series (Lomb 1976, Scargle 1982).

The observed spectra calculated above will be given by the underlying stellar spectrum
convolved with the spectral window, i.e., the power spectrum of time window function. In
principle, finite observation duration and the gaps in the time series result in the spurious
peaks (e.g., side-lobes) in the spectral window. This may complicate the correct identification
of the oscillation modes in the observed spectrum by generating artificial peaks (aliases).

In order to evaluate this effect in the case of Kepler-408, we calculate the spectral window
of Kepler-408 following Handberg & Lund (2014) (Figure 5.4). We find that the spectral win-
dow has the strongest peak at the center, along with the side-lobes with small but significant
power around [−0.05,+0.05]µHz. Beyond that frequency range the power of side-lobes is no
more than a few percent of that of the central peak, predicting no detectable aliases in the
observed noisy power spectra. The spread of non-negligible power in the spectral window is
so narrow ([−0.05,+0.05]µHz around the center) that we conclude that the aliases will not
complicate the mode identification of the rotationally-split m-components (in separation of
δν⋆ ≈ 0.9µHz), and (n, l) modes (in separation of ∆ν/2 ≈ 50µHz).
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Figure 5.6: Constraints on rotational inclination and frequency splitting. Shown is the
posterior probability density (PPD) in the space of i⋆ and δν⋆, marginalized over all other
parameters. The one-dimensional marginalized densities are also shown to the left and below
the axes. The panel in the bottom left is the PPD of δν⋆ sin i⋆, which is more tightly con-
strained than either δν⋆ or i⋆. The red and blue histograms are the PPDs without and with a
prior constraint of δν⋆ = 0.898±0.013µHz based on the measured rotation period. The white
lines identify the region where δν⋆ sin i⋆ = 0.51 ± 0.19µHz, the value that is independently
determined from measurements of v sin i⋆ and R⋆ (see section 5.5).

5.4.2 Checks for consistency and robustness

Key results of asteroseismic inference

Figure 5.5 provides the profiles of pulsation modes of Kepler-408. We find that height-to-
background ratio (HBR) and splitting-to-width ratio δν⋆/Γ are sufficiently high, such that
reliable inference of i⋆ is possible for this system. The key results were i⋆ = 42+5

−4 degrees
and δν⋆ = 0.99 ± 0.10µHz (see Figure 5.6). The measured splitting is in agreement with
the value of 1/Prot = 0.898 ± 0.013µHz based on the photometric rotation period, thereby
providing a successful consistency check. We also tried using the photometric rotation period
as a prior constraint on the asteroseismic analysis, which sharpened the constraint on the
stellar inclination angle to 45.9±2.1 degrees (see the blue curves in Figure 5.6).
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Figure 5.7: Individual profiles for dipole modes (l = 1) for the radial orders from n = 13
to 24. In each panel, the gray and black lines represent the raw data and the data after
smoothing with a boxcar kernel of width 0.5µHz, respectively. The red curve is based on a
model assuming i⋆ = 0◦, the blue curve is for i⋆ = 90◦, and the green curve is for a model in
which i⋆ is a free parameter and best-fitting value is i⋆ = 42◦.



88 Highly oblique exoplanetary system Kepler-408

1

2

3

4

5 n=12 i⋆=0∘
i⋆=90∘
i⋆=42∘

n=13 n=14

1

2

3

4

5 n=15 n=16 n=17

1

2

3

4

5 n=18 n=19
∘max height)

n=20

−4 −2 0 2 4
1

2

3

4

5 n=21

−4 −2 0 2 4

n=22

−4 −2 0 2 4

n=23

ν− νn, l=2,m=0 (μμz)

Po
we

r d
en

sit
y 
(p
pm

2 /μ
Hz

)

Figure 5.8: Same as Figure 5.7, but for quadrupole modes (l = 2).
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Visual inspection of the mode profiles

The individual line profile of l = 1 and l = 2 mode is given in Figures 5.7 and 5.8, respectively.
To allow for a simple visual inspection, Figure 5.9 displays the average l = 1 and l = 2
profiles, based on the combination of the data from 13 different radial orders. The profile of
the average l = 1 multiplet (top panel) is centrally peaked, demonstrating the visibility of
the m = 0 mode, and ruling out an inclination angle near 90◦. The signal-to-noise ratio and
frequency resolution are high enough that the absence of the m = 0 mode would have led
to a flat-topped appearance, from the combination of the marginally resolved m = +1 and
m = −1 modes. On the other hand, the profile of the l = 2 modes (bottom panel) is not
centrally peaked, ruling out inclinations near zero. Together, the appearance of the modes
suggests an intermediate value of the inclination.

Mode profile of l = 2 multiplet

The bottom panel of Figure 5.9 shows that the l = 2 multiplet has an asymmetric appearance,
with more power at frequencies above the line center than below. This is unexpected because
the geometrical factors El,m do not depend on the sign of m. Given the large errors present
in the actual power spectra (gray lines in Figures 5.7 and 5.8), however, we find that the
data do not reject our symmetric model. Therefore, the data do not prove that the observed
asymmetric appearance is statistically significant. Based on this fact, we apply the symmetric
model to the deta to derive stellar inclination, leading to i⋆ = 42+5

−4 degrees.
Despite its insignificance from a statistical point of view, estimating the effect of this

asymmetric appearance on the derived parameters is of another importance. In doing so, we
produced the modified power spectrum of Kepler-408, by artificially reducing the power of
m = 1 components of l = 2 modes for n = 18 to 21 by 30%, such that m > 0 and m < 0
modes have similar power. The reduction was applied over the frequency range of Γ around
ν(n, l = 2,m = 1) for n = 18 to 21. We performed asteroseismic analysis to this modified
spectra, and obtained the inclination of i⋆ = 39+4

−3 (deg), consistent with the original value
i⋆ = 42+5

−4 (deg). Based on this test, we conclude that this asymmetric appearance does not
lead to any systematic bias in the results for the inclination. Consequently, the asymmetry of
the l = 2 modes does not affect our conclusion that Kepler-408b has a significantly misaligned
orbit.

Figure 5.8 suggests that the asymmetry in power is mainly due to modes of high radial
order (n = 18 to 21). Such high-order modes are more sensitive to the conditions near
the stellar surface (Sonoi et al. 2015). Thus, the asymmetric appearance may arise from
the (poorly understood) magnetic and non-adiabatic processes occurring near the surface.
Because the reason for the asymmetry is not clear, we tried fitting only the l = 1 modes
and found that a low inclination (and a high stellar obliquity) are still preferred as shown in
Figure 5.11c below.

Finally, we illustrate the profiles of l = 1 and l = 2 modes of other stars just for reference.
Figure 5.10 shows the stacked profiles of 4 stars classified as category A (i.e., reliable stars),
including KIC 12069424, the reference star used in chapter 4. The best fit curves (in red)
are estimated by the fit using raw spectra (in gray). The observed spectra are intrinsically
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Figure 5.9: Average power spectra of rotationally split multiplets, for l = 1 (top) and l = 2
(bottom). The profiles of multiple modes have been stacked to improve the signal-to-noise
ratio and allow for a visual inspection, although the quantitative fits were performed on the
data without any averaging or stacking (see Figures 5.7 and 5.8). For l = 1, the modes with
n = 13 to 25 were included. For l = 2, the modes with n = 12 to 24 were included. The
thin gray line shows the data without any smoothing, while the thick gray and black lines
show the data after smoothing over 0.05 and 0.75µHz in frequency, respectively. Each panel
also shows three model curves that were optimized to fit the data. The red curve is based
on a model assuming i⋆ = 0◦, the blue curve is for i⋆ = 90◦, and the green curve is for a
model in which i⋆ is a free parameter. For the l = 2 modes, the gradual rise observed at the
high-frequency end is from a neighboring radial mode (l = 0). The asymmetry in the line
profile is not understood (see text).



5.4 Asteroseismic analysis 91

−5 −4 −3 −2 −1 0 1 2 3 4 5
ν− νn, l=1,m=0 (μμz)

0

1

2

3

4

5

6

P(
ν)

 (p
pm

2 /μ
μ
z)

KIC 12069424, l=1 mode 
stacked ove  17  adial o de s

 aw spect a
spect a smoothed ove  0.1Γ
best fit

−5 −4 −3 −2 −1 0 1 2 3 4 5
ν− νn, l=2,m=0 (μμz)

0.0

0.5

1.0

1.5

2.0

P(
ν)

 (p
pm

2 /μ
μ
z)

KIC 12069424, l=2 mode 
stacked ove  17  adial o de s

 aw spect a
spect a smoothed ove  0.1Γ
best fit

−4 −3 −2 −1 0 1 2 3 4
ν− νn, l=1,m=0 (μμz)

0

5

10

15

P(
ν)

 (p
pm

2 /μ
μ
z)

KIC 6521045, l=1 mode 
s acked over 11 radial orders

raw spec ra
spec ra smoo hed over 0.1Γ
bes  fi 

−4 −3 −2 −1 0 1 2 3 4
ν− νn, l=2,m=0 (μμz)

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

P(
ν)
 (p

pm
2 /μ

μ
z)

KIC 6521045, l=2 mode 
 tacked over 11 radial order 

raw  pectra
 pectra  moothed over 0.1Γ
be t fit

−5 −4 −3 −2 −1 0 1 2 3 4 5
ν− νn, l=1,m=0 (μμz)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P(
ν)
 (p

pm
2 /μ

μ
z)

KIC 8379927, l=1 mode 
stacked over 18 radial orders

raw s ectra
s ectra smoothed over 0.1Γ
best fit

−5 −4 −3 −2 −1 0 1 2 3 4 5
ν− νn, l=2,m=0 (μμz)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

P(
ν)

 (p
pm

2 /μ
μ
z)

KIC 8379927, l=2 mode 
stacked ove  18  adial o de s

 aw spect a
spect a smoothed ove  0.1Γ
best fit

−5 −4 −3 −2 −1 0 1 2 3 4 5
ν− νn, l=1,m=0 (μμz)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P(
ν)

 (p
pm

2 /μ
μ
z)

KIC 9139151, l=1 mode 
s acked over 13 radial orders

raw spec ra
spec ra smoo hed over 0.1Γ
bes  fi 

−5 −4 −3 −2 −1 0 1 2 3 4 5
ν− νn, l=2,m=0 (μμz)

−0.5

0.0

0.5

1.0

1.5

P(
ν)

 (p
pm

2 /μ
μ
z)

KIC 9139151, l=2 mode 
s acked over 13 radial orders

raw spec ra
spec ra smoo hed over 0.1Γ
bes  fi 

Figure 5.10: Same as Figure 5.9, but for 4 other stars. Left (right) panel shows l = 1 (l = 2)
modes stacked over all fitted radial orders n. From top to bottom, we show KIC 12069424,
KIC 6521045, KIC 8379927, and KIC 9139151. Red curves correspond to the best-fit model
using raw spectra (gray). Black curves are spectra smoothed over 0.1Γ at νmax for clear
visibility.
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quite noisy in most cases, and we do not find any statistically-significant asymmetric profiles,
similarly to the case of Kepler-408.

Dependence of the derived inclination on the choices of the modes

As further tests of robustness, we repeated the analysis for 5 different choices of the set of
radial orders and angular degrees to be fitted (see Figure 5.11). This led to larger uncer-
tainties, and small systematic changes in the derived parameters. Fitting the l = 1 modes
tends to give lower inclinations, while the l = 2 modes favor higher inclinations. Such com-
plementary roles of l = 1 and l = 2 modes are very useful in constraining i⋆ and δν⋆ reliably.
While Kepler-408 is one of the stars with the clearest pulsation spectrum, its asteroseismic
modelling is still subtle and careful individual tests are required for the reliable parameter
extraction. In all cases, though, the results are compatible with a large spin-orbit misalign-
ment, and the splitting is compatible with the photometric rotation period, implying that
our asteroseismic inference for the Kepler-408 system is robust.

5.4.3 Comparison with previous results

We note here that our results do not agree with those of Campante et al. (2016), who found
i⋆ > 54◦. In attempting to understand the reason for the discrepancy, we noted that our
results use an unweighted power spectrum (Lomb-Scargle periodogram) while Campante
et al. (2016) computed it using a weighted least square fitting method. By performing our
analysis on their dataset, however, we could verify that the data processing cannot be the
cause of the discrepancy as we found the same inclination (i⋆ = 43.7+9.8

−5.5 degrees). We also
noticed that their best fitting model gave δν⋆ = 0.50+0.20

−0.04 µHz, which is inconsistent with
the photometrically measured rotation period. Another difference is related to the chosen
model for the background noise in the power spectrum. For the sake of uniformity, Campante
et al. (2016) adopted the same model for all 25 systems of their analysis. Their model was
parameterized as:

B(ν) = B0 +

[
B1

1 + (2πντ1)a
+
B2

ν2

]
sinc2

(
πν

2ν0

)
, (5.1)

where ν0 = 8,496.6µHz is the Nyquist frequency.
While equation (5.1) is reasonable in general, it does not provide a satisfactory fit to the

Kepler-408 power spectrum, as shown in Figure 5.12. In the vicinity of the oscillation modes,
the best-fitting model of this form falls short of the measured background by about 10%.
Formally, our model for the background spectrum is preferred over the model of Campante
et al. (2016) by an “odds ratio” (based on the integrated likelihoods) of exp(855); see section
12.7 of Gregory (2005) for details.

When we replaced our model for the background with that of equation (5.1), we were
able to reproduce the result of i⋆ > 54◦ reported by Campante et al. (2016). Evidently, it is
essential to perform a careful subtraction of the low-frequency noise for each system, to obtain
an unbiased estimate of i⋆ from asteroseismic analysis. Appourchaux et al. (2012b) have
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Figure 5.11: Constraints on i⋆ and δν⋆, as in Figure 5.6, after making variations in the analysis
procedure. a: Fitting only the lower radial orders (13≤n≤18) and l = 0, 1, 2. b: Fitting only
the higher radial orders (19≤n≤25) and l = 0, 1, 2. c: Fitting only the dipole modes (l = 1)
of all orders. d: Fitting only the quadrupole modes (l = 2) of all orders. e: Fitting dipole
and quadrupole modes of all orders, with a Gaussian prior of δν⋆ = 0.898± 0.013µHz based
on the measured rotation period (Angus et al. 2018). f: Fitting all orders and modes, after
replacing our model for the noise background with the (unsatisfactory) model of Campante
et al. (2016).
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studied the systematic errors in measurements of seismic parameters caused by inaccuracies in
the model for background noise. Although they did not examine the implications for inference
of the inclination angle, they did note that inaccuracies can greatly impact the inferred mode
heights and linewidths, which in turn may bias the measurement of the rotational splitting
and inclination. Our work demonstrates that this is indeed the case: systematic errors in the
background model can severely bias the measured inclination.

As an additional test, we tried replacing the background model with a simple quadratic
function of frequency. By restricting the frequency range to the limited interval spanned
by the oscillation modes (1,300-2,900µHz), we found that the quadratic function also gives
a satisfactory fit. The results for the inclination were the same as in our original analysis
(i⋆ = 42+5

−4 degrees), confirming that the exact functional form of the background model does
not matter, as long as it provides a satisfactory fit.

5.5 Projected rotation rate from spectroscopy

There is also evidence independent of asteroseismology that the rotational inclination is
in the neighborhood of 45◦, based on the measured values of the stellar radius, rotation
period, and sky-projected rotation velocity (Table 5.1). The stellar radius (R⋆) was deter-
mined by combining the observed geometric parallax, apparent K magnitude, and spectro-
scopic effective temperature (Berger et al. 2018). The rotation period (Prot) was determined
from the Kepler photometry, as noted above. The combination of these quantities implies
v = 2πR⋆/Prot = 4.92 ± 0.21 km/s. Meanwhile, the sky-projected rotation velocity (v sin i⋆)
was found to be 2.8 ± 1.0 km/s by modeling the Doppler-rotational contribution to the ob-
served spectral line broadening (Petigura et al. 2017). Together, these data can be used
to place constraints on sin i⋆. To obtain the likelihood function for sin i⋆, we integrated
p1(v)·p2(v sin i⋆) over v, where p1 and p2 are Gaussian functions representing the constraints
v = 4.92 ± 0.21 km/s and v sin i⋆ = 2.8 ± 1.0 km/s. The result is sin i⋆ = 0.70 ± 0.21, or
i⋆ = 44+20

−15 degrees, which is consistent with our asteroseismic result.

As another consistency check, we can combine the spectroscopically determined v sin i⋆
and R⋆ to give δν⋆ sin i⋆ = 0.51 ± 0.19µHz. The white lines in Figure 5.6 show the region
that is defined by this constraint, which is independent of the asteroseismic analysis. The
results are again consistent to within 1σ.

5.6 An Earth-sized misaligned planet Kepler-408b

By modelling the power spectrum of p modes, we found the stellar inclination to be i⋆ = 42+5
−4

degrees (section 5.3). Our result in chapter 4 is similar to that reported by Nielsen et al.
(2017). However, Nielsen et al. (2017) did not remark on the conflict with the analysis of
Campante et al. (2016), nor did they appreciate the importance of this system for understand-
ing the origin of the spin-orbit misalignment (as will be described below). The more thorough
analysis in this chapter has resolved the conflict, by examining the individual and stacked
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Figure 5.12: Models of the noise background. Top panels: The entire power spectrum of
Kepler-408, along with the best-fitting model and its three separate components. The left
panel shows the spectrum and model used in our analysis. The right panel shows those used
in Campante et al. (2016), which does not provide a satisfactory fit to the lower envelope of
the power spectrum in the vicinity of the oscillation modes. Bottom panels: Close-up of the
oscillation modes, after subtracting the best-fitting model for the background.
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Figure 5.13: Sizes and orbital periods of planets for which the stellar obliquity has been
measured, based on the Rossiter-McLaughlin effect (red) and asteroseismology (blue). The
darker symbols represent those for which the stellar obliquity is known to be higher than 30◦

with greater than 95% confidence. Based on the compilation of Southworth (2011).

line-profiles for different modes, comparing the best-fit with and without the photometric ro-
tation period constraint, and exploring different possibilities for the background model. This
experience with Kepler-408 and the methodology presented in this chapter should allow for
more robust determinations of i⋆ in the future, through the precise and accurate combination
of asteroseismology, photometry and spectroscopy.

As for the inclination of the orbital axis, by fitting the Kepler light curve we found iorb =
81.85± 0.10 degrees (section 5.2). Knowledge of both the rotational and orbital inclinations
is not enough information to determine the stellar obliquity, because both measurements are
subject to the usual degeneracy i ↔ 180◦ − i, and because we do not know the position
angle (λ) on the sky between the two axes. Nevertheless we may set a lower limit on the
stellar obliquity of |iorb − i⋆| = 40± 5 degrees for the Kepler-408 system.

Of all the planets known to have a spin-orbit misalignment, Kepler-408b is the smallest
by a factor of six, as illustrated in Figures 5.13 and 5.14. Those figures also identify other
systems of particular interest. Kepler-56 is an obliquely rotating star (i⋆ ≈ 45◦) hosting
two transiting planets (Huber et al. 2013a). HAT-P-7 and Kepler-25 are the only known
systems for which both the Rossiter-McLaughlin and asteroseismic measurements have been
successful (Benomar et al. 2014). HAT-P-11b and GJ 436b are the smallest planets previously
known to be misaligned (Winn et al. 2010b, Yee et al. 2018, Bourrier et al. 2018).
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Figure 5.14: Observed spin-orbit angles for transiting exoplanets as a function of planetary
radius (top) and orbital period (bottom). Red symbols are for determinations of the position
angle λ based on the Rossiter-McLaughlin effect (Southworth 2011). Blue symbols are for
determinations of inclination based on asteroseismology. For systems with more than one
transiting planet, only the result for the innermost planet is plotted, with the sole exception
of Kepler-25c. The plotted error bars correspond to 2σ (95%) confidence limits.
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As such, it provides a clue about the origin of misalignments in general. Stars and
their planets are thought to form in a well-aligned state. This is because the star and the
protoplanetary disk inherit the same direction of angular momentum from an initial clump of
gas that contracts under its own gravity. The observation of a large obliquity is an indication
that something torqued the system out of alignment. The circumstances and the timing of the
torque are unknown. Since all the previous cases of large obliquities involved planets larger
than Neptune, some of the proposed theories have focused on giant planets. The data have
often been regarded as evidence that the formation of close-orbiting giant planets, including
hot Jupiters, involves processes that tilt the planet’s orbit (Winn et al. 2010a, Triaud et al.
2010).

The case of Kepler-408 shows that orbit-tilting processes are not specific to giant planets,
and must occur at least occasionally for “hot Earths”. In a recently proposed theory for the
formation of very short-period terrestrial planets (Petrovich et al. 2018), an inner planet’s
orbital angular momentum is reduced through chaotic long-term interactions with more dis-
tant planets, leading to spin-orbit misalignments of 10◦ − 50◦, as observed here. Another
theory involves a secular resonance with a more distant giant planet (Hansen & Zink 2015),
although in the case of Kepler-408, no additional transiting planets are known. The existing
Doppler data do not show any signals exceeding 4m/s on timescales less than a year (Marcy
et al. 2014). Other possibilities are that stars and their protoplanetary disks are occasion-
ally misaligned due to torques from neighboring stars (Batygin 2012) or that inner planets
become misaligned due to the torque from a wider-orbiting and misaligned giant planet (Lai
et al. 2018). To decide among these and other theories will require a larger and more diverse
sample of planetary systems for which the stellar obliquity can be probed.



Chapter 6

Observational signatures for the
spin-orbit resonance

Asteroseismology enables an independent measure of stellar rotation period in addition to the
method that uses periodic variability in the observed photometry. Therefore asteroseismology
is also applicable for the test of the robustness of photometrically-derived rotation periods.
In this chapter, we report the observational signatures for an interesting regularities between
rotation periods (Prot) of the stars and orbital periods of their planetary companions (Porb).

6.1 Tidal evolution of stellar spin and planetary orbit

As we introduced in chapter 2, there are at least two possibilities for the origin of the spin-
orbit misalignment. One possibility is that the well-aligned initial condition is significantly
broken via the violent dynamical evolution of planets in late stages, and the inner-most planet
becomes realigned toward the stellar spin axis through the tidal interaction preferentially in
cool host-star systems. Of course, it is also possible that some fraction of the observed
spin-orbit misalignment is merely of primordial origin. The asteroseismic analysis by Huber
et al. (2013a) revealed that the stellar inclination of Kepler-56 with two transiting planets
is approximately 45◦. Since it is not easy, even if not impossible, to dynamically change
the orbital plane of the two planets in a coherent fashion, it is natural to expect that the
spin-orbit misalignment observed for Kepler-56 simply reflects the initial condition. The two
possibilities above for the origin of the spin-orbit misalignment, which we refer to as the
realignment channel and the primordial channel, are not necessarily exclusive, and thus the
observed distribution may be accounted for by their combination.

A possible problem for the realignment channel is that the alignment time-scale is longer
than the orbit damping (Lai 2012, Rogers & Lin 2013, Xue et al. 2014). According to the
conventional equilibrium tide model (Murray & Dermott 2000), the semi-major axis of the
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planet, a, and the spin angular velocity of the star, Ω⋆ evolve according to

da

dt
= − 2

Q′
⋆

Mp

M⋆

(
R⋆

a

)5

na, (6.1)

dΩ⋆

dt
= −sign(Ω⋆ − n)

1

α⋆Q′
⋆

(
Mp

M⋆

)2(
R⋆

a

)3

n2. (6.2)

In the expressions above,Mp andM⋆ are the mass of the planet and the star, R⋆ is the radius
of the star, n is the mean motion of the planet, α⋆ is the inertia moment of the star in units
of M⋆R

2
⋆, and we introduce the effective tidal quality factor of the star:

Q′
⋆ ≡

2Q⋆

3k2⋆
(6.3)

with Q⋆ and k2⋆ being the quality factor and the 2nd Love number of the star, respectively.
Equations (6.1) and (6.2) imply the corresponding damping and synchronization (or align-

ment) time-scales:

τa ≡
∣∣∣∣ a

da/dt

∣∣∣∣
≈ 9.5× 1010

(
Q′
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)(
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where Porb = 2π/n and Prot = 2π/Ω⋆ denote the orbital period of the planet and the spin
rotation period of the star, respectively.

The (re)alignment is unlikely to be completed within the age of the universe if one assumes
a typical value of the tidal quality factor Q′

⋆(= 105 − 107). Moreover, the fact of τa ≪ τsync
regardless of the value of Q′

⋆ implies that the realigned planet should have been fallen into the
star. Thus the realignment channel does not seem to work in the conventional equilibrium
tide model. This is why Lai (2012) proposed an alternative tidal model (see, e.g., Rogers &
Lin 2013, Xue et al. 2014).

Since the spin-orbit alignment is usually supposed to proceed in a roughly similar time-
scale of the orbit circularization and the spin-orbit synchronization, one may test the re-
alignment channel hypothesis from the distribution of the eccentricity e and Porb/Prot. In
particular, the realignment channel would imply that Prot ≈ Porb, while no specific correlation
is expected between Prot and Porb in the primordial channel.

While Porb can be measured precisely for transiting planets, it is not always the case
for Prot of their host star. It is possible to estimate Prot spectroscopically, combining the
equatorial rotational velocity from Doppler broadening and the stellar radius. The estimate,
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however, depends on the assumed turbulence, and also requires the stellar radius and incli-
nation that are usually not well-determined. Although the photometric variation of the star
is more directly related to Prot, the formation and dissipation of star-spots complicate the
interpretation of the photometrically estimated rotation period Prot,photo.

In this respect, asteroseismology provides a complementary and indeed more reliable
estimate for the stellar rotation period Prot,astero. Furthermore, since asteroseismology fits
both Prot,astero and the stellar inclination i⋆ as performed in previous chapters, the spin-orbit
misalignment and synchronization can be examined simultaneously. Thus asteroseismology
provides an unique methodology to test empirically the degree of the star-planet tidal inter-
action in a model-independent fashion.

The analysis of the Porb/Prot,photo has been performed for Kepler eclipsing binaries (EBs)
by Lurie et al. (2017). They measured Prot,photo for 816 EBs from their star-spot modulation,
and found that 79% of EBs with Porb < 10 days are synchronized. They also noted that the
fraction of super-synchronous (Porb > Prot) EBs significantly increases for Porb > 10 days.
The tidal interaction between the host star and planets in exoplanetary systems should be
much weaker than that between stars in EBs. Nevertheless we found a similar tendency for
Kepler transiting planetary systems, as will be shown below. The finding discussed in this
chapter can give a useful empirical constraint on the star-planet tidal interaction.

The rest of the chapter is organized as follows. Section 6.2 critically compares the stellar
rotation periods estimated from photometric variation and asteroseismology. We find that
Prot,photo is somewhat sensitive to the detail of the underlying assumptions and needs to be
interpreted with caution. Section 6.3 describes our major finding of (quasi-)resonance of
stellar spin and the planetary orbital periods. We discuss its implications and summarize
our conclusion in section 6.4.

6.2 Stellar rotation period from photometric variation

and asteroseismology

In general, Prot,photo derived from photometric variation is more precise than Prot,astero from
asteroseismology. However, it does not necessarily imply that Prot,photo is more accurate than
Prot,astero. The present analysis focuses on the sample of 33 stars with transiting planets
from Kepler data, which are analyzed with asteroseismology in chapter 4. We consider
systems whose stellar rotation periods are relatively well measured from asteroseismology.
Specifically we select 19 systems for which v sin i⋆ from asteroseismology is inconsistent with
0 within 5σ (Table 6.1). The stellar rotation of those systems is fast enough to securely
measure the rotation period from their power spectra. For reference, we also consider 48
stars without known planets, but with reliable v sin i⋆ measurement, out of 61 analyzed in
chapter 4. Among these 19 + 48 = 67 stars, 30 objects are also analyzed independently by
Benomar et al. (2018). We find that Prot,astero of 26 among 30 stars agrees within 1σ and the
remaining 4 have Prot,astero consistent within 2σ, suggesting that the asteroseismic result is
almost free from details of the individual analysis.

Figure 6.1 plots Prot,photo for the 19 planet-host stars against our Prot,astero. Measured
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Table 6.1: Basic stellar properties of 19 planetary systems; Teff and Prot,photo denote the
effective temperature and photometrically-derived rotation period. The asteroseismically
derived rotation period, Prot,astero, and inclination, i⋆,astero, are estimated using uniform priors,
while i⋆,joint is derived using the photometric rotation period as a prior in the asteroseismic
analysis.

KOI Kepler ID Teff Prot,photo Prot,astero i⋆,astero i⋆,joint

(K) (days) (days) (deg) (deg)

Stars with reliable period measurement

41 100 5825 27.7+5.0
−4.2 25.1+2.0

−2.3 75.2+10.4
−12.9 77.6+8.6

−11.1

85 65 6211 8.2+0.6
−0.4 8.2+0.6

−0.6 75.0+9.5
−8.7 75.4+9.0

−7.7

260 126 6239 7.2+0.8
−0.5 7.9+0.6

−0.6 75.6+9.7
−11.2 73.8+10.4

−10.2

262 50 6225 8.1+1.1
−0.8 7.6+0.6

−0.8 71.6+12.3
−11.7 75.1+9.9

−10.6

269 ... 6477 5.3+0.2
−0.2 6.1+0.4

−0.5 77.3+8.7
−10.5 66.0+7.5

−5.5

274 128 6090 13.2+1.1
−0.9 12.4+1.3

−1.3 67.4+12.7
−10.9 71.5+10.7

−8.4

277 36 5911 17.2+1.6
−1.6 17.8+3.9

−4.0 60.0+19.4
−17.5 62.4+16.2

−12.7

280 1655 6148 13.5+1.6
−1.2 11.9+2.6

−3.4 58.9+18.8
−17.7 68.3+13.3

−11.9

288 ... 6150 13.6+0.8
−1.2 10.7+2.2

−1.8 52.2+13.1
−9.5 67.1+13.0

−9.6

370 145 6022 14.0+1.1
−1.7 10.7+2.3

−3.9 60.0+20.1
−21.1 78.1+8.2

−11.6

974 ... 6247 11.0+0.4
−0.8 11.0+1.6

−1.8 58.7+18.2
−12.6 62.1+12.4

−8.3

975 21 6305 12.6+1.0
−1.0 12.3+0.8

−1.2 71.3+12.0
−11.0 75.1+9.8

−8.8

1612 408 6104 12.5+1.0
−1.0 11.7+1.4

−1.0 41.7+5.1
−3.5 43.1+3.5

−2.9

Stars with no clear signal in periodogram

2 2 6389 30.6+8.1
−16.2 12.1+5.5

−3.2 41.8+19.6
−13.2 ...

69 93 5669 32.0+11.0
−13.2 23.5+3.9

−3.0 58.0+12.3
−8.1 ...

246 68 5793 32.5+9.1
−18.2 38.0+16.8

−12.8 43.1+27.1
−15.5 ...

1925 409 5460 12.4+3.3
−1.3 28.3+7.9

−4.7 49.8+16.5
−9.5 ...

Stars with bimodal peaks in periodogram

42 410 6273 20.3+2.2
−1.3 5.6+0.1

−0.1 83.6+4.4
−5.2 ...

244 25 6270 22.4+3.3
−1.6 7.8+0.5

−0.5 80.6+6.6
−9.2 ...

Note: Teff is from NASA Exoplanet Archive
(https://exoplanetarchive.ipac.caltech.edu).
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Figure 6.1: Photometric rotation periods Prot,photo of 19 planet-host stars against their as-
teroseismic rotation periods Prot,astero. The values of Prot,astero are based on four independent
papers as indicated in the legend. The number in the parenthesis indicates the number of
stars plotted here that are overlapped in the paper and this work. We mark 6 stars, whose
Prot,photo derived from the LS periodogram is unreliable, by their KOI IDs.

values of Prot,photo published in literature are rather different. We plot the results by Garćıa
et al. (2014) with the Morlet wavelet method in green, Mazeh et al. (2015) with the auto-
correlation function in red, and Angus et al. (2018) with Gaussian process in gray. We
also measure Prot,photo using the Lomb-Scargle (LS) periodogram, which is plotted in blue.
Specifically, we compute the LS periodogram using the long cadence PDCSAP lightcurves
provided on the KASOC website 1. Quarters are first concatenated by fitting the fourth-
order polynomials on each quarter and extrapolating the time to the initial time of the
subsequent quarter. This allows to remove jumps (due to the change of CCD when Kepler
rotates) but preserves temporal gaps between quarters. Additionally, a smooth curve (a
box-car smoothing of 50 days width) is removed from the concatenated lightcurve in order
to effectively filter-out variabilities longer than ≈ 50 days.

1http://kasoc.phys.au.dk
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Figure 6.2: Examples of the LS periodogram for our sample. The thick black line indicates
the boxcar-smoothed result (over 0.1µHz) of the original LS periodogram (thin gray curves).
The original periodogram is normalized so that the maximum power of each system is unity.
The period corresponding to the maximum power of the smoothed LS curve is marked by the
vertical blue line, and the associated range of its full-width-at-half-maximum is plotted as
blue-shaded areas. We also show the mean and its 1σ confidence interval of the asteroseismic
rotation period by the horizontal red bar. Panel a: Example of clear signature of the pho-
tometric rotation. Panel b: Example of dubious detection due to the absence of clear peak.
Panels c and d: Cases showing clear double peaks, neither of which match the asteroseismic
rotation period.
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Effects of transits on photometric variation are minimized by trimming the lightcurve. To
find the best trimming threshold, we visually inspect each lightcurve and proceed on a trial-
and-error basis. We also verify that the signal from the transits is effectively removed from
the low frequency part of the LS periodogram. Note that the LS periodogram is computed
using an oversampling factor of four.

A low-frequency peak of the LS periodogram is interpreted as the surface rotation rate,
due to surface structures co-rotating with the stellar surface. To minimize noise fluctuations,
the peak position is extracted on the LS periodogram smoothed over a box-car window
of width 0.1µHz. This value corresponds to the typical width of the observed peak and
might be due to the finite lifetime of surface spots and to the effect of latitudinal differential
rotation. The peak extraction is performed on the range 0.2 − 3.0µHz, corresponding to
periods between 3.8 and 60 days.

The uncertainty on the peak position is estimated from its full-width-at-half-maximum
of power in the frequency domain. We compute the corresponding frequency region in a
linearly equally bin in the frequency, and convert it in the time domain, which is indicated
as blue-shaded regions in Figure 6.2. This works nicely for the 13 reliable stars with a clear
peak in the periodogram, but the resulting error-bars in Prot,photo may be somewhat uncertain
for the six dubious stars. Since we focus on the architecture of the 13 reliable stars in what
follows, this does not affect our conclusion.

Figure 6.1 indicates that the measurements of Prot,photo are somewhat dependent on the
detailed methods of identifying the photometric variation, and in some cases exhibit large
differences for the same systems. In particular, we note that for Prot,astero ≈ 10−20 days, the
estimates by Angus et al. (2018) are larger by a factor ≈ 2 (gray squares) relative to ours
(blue circles). We individually examine the the LS periodograms of the 19 systems, and find
that their estimates do not correspond to the highest peaks for most of the cases above.

As clearly noted in Angus et al. (2018), Gaussian Processes (GP) are prone to over-fitting
and require lots of care when setting the hyper-parameters and hyper-priors. Actually, our
examination of the low frequency power spectrum suggests that the GP method picks up a
time-scale consistent with that of the convective turnover expected for solar-like stars (see
e.g. Landin et al. 2010), rather than the stellar rotation period. Therefore, it is likely that
the GP method is difficult to clearly distinguish the granulation noise (in the power spectrum
it shows up as a pink noise, often referred to as the Harvey-like profile, see section 3.2) from
the signal from the stellar surface rotation.

Both our asteroseismic and photometric estimates are largely consistent with the result
of Mazeh et al. (2015) plotted in red triangles, but there are three stars for which their
auto-correlation method gives rotational periods of more than ≈ 60 days. This is statistically
unexpected for a solar-like star in the main-sequence phase (see McQuillan et al. 2014, and our
Figure 6.4 below), and could correspond to harmonics of the true rotation period, probably
more visible in the auto-correlation function than in the LS periodogram.

Our LS periodogram analysis returns unusually large uncertainties for four KOIs (KOI 2,
69, 246, and 1925), and discrepant results compared to asteroseismology for two KOIs (KOI
42 and 244), which are labelled in Figure 6.1. We carefully examine their LS periodograms,
and possibly understand the origin of these anomalies as described in what follows.
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Figure 6.2a shows the LS periodogram for KOI-1612 (Kepler-408) whose highest peak
(blue area) is consistent with the period estimated from asteroseismology (red bars); 13 out
of the 19 systems belong to this case, and will be referred to as reliable. Figure 6.2b for HAT-
P-7 (KOI-2, Kepler-2) represents an example without any clear peak in the LS periodogram
(4 out of the 19 stars). We cannot estimate the rotation period of those stars due to the
large uncertainty. This may be because the star is seen near pole-on, or has a weak magnetic
activity level (no large-scale surface structure).

Such systems with no clear peak in the periodogram may be regarded as good candidates
for oblique systems, especially for cool stars that are supposed to exhibit detectable star-
spot activity. When searching for significantly tilted planets, the absence of clear rotational
peak in the LS periodogram, combined with a low inclination derived from asteroseismology,
may provide a substantial hint. In particular, we note that Kepler-68, 93, and 409 may be
potentially misaligned systems, in addition to HAT-P-7 for which a large projected spin-orbit
misalignment has been discovered by Winn et al. (2009). Figure 6.3 shows the correlation
map between the stellar inclination i⋆ and rotational splitting δν⋆ (= Prot,astero) derived from
asteroseismic analysis in chapter 4 for these systems. They have the maximum of probability
for i⋆ at < 60◦. This is systematically lower than the other 13 reliable detections (see Table
6.1).

Kepler-69 has three planets, including two inner Earth-sized planets (Rp = 2.4R⊕, 1.0R⊕)
in compact orbits (Porb = 5.4 days, 9.6 days). Kepler-93 has a close-in Earth-sized planet
(Rp = 1.6R⊕, Porb = 4.7 days) and a massive planet in a distant orbit (Porb > 1460 days).
Kepler-409 has an Earth-sized planet (Rp = 1.2R⊕) in a 69-day orbit. Because the measure-
ment of the projected spin-orbit angle λ for such small planets is practically impossible at this
point, the three systems above may be new interesting candidates for obliquity studies based
on asteroseismology. As Figure 6.3 indicates, the asteroseismic analysis clearly identifies the
value of δν⋆ sin i⋆, even if the degeneracy between δν⋆ (= 1/Prot,astero) and i⋆ is not easy to be
broken. Thus reliable and independent estimates of Prot,photo are very useful in breaking the
degeneracy as our joint analysis shows (see Table 6.1 and Figure A.3). Nevertheless the fact
that those four systems have relatively low inclinations around 40◦ may explain why they do
not show any detectable periodicity in their photometric lightcurves.

As for the two stars that show a discrepancy between asteroseismology and the LS pe-
riodogram analysis, KOI-244 (Kepler-25) and KOI-42 (Kepler-410), we note that they have
at least two clear peaks in the LS periodogram. As bottom panels indicate, neither peak
agrees with the asteroseismic rotation period at all. We do not yet understand the origin
of this bimodality. It may indicate that the transit signal is not completely removed during
the lightcurve preparation, and that the residual contaminates the periodogram. It seems
more likely, however, that the peaks are related to some harmonics of the true rotation
period, while the true period itself is obscured for some unknown reason. Indeed Prot,photo

corresponding to the highest peak in the periodogram are ≈ 3Prot,astero and ≈ 4Prot,astero for
KOI-244 and KOI-42, respectively.

Given the comparison of the different estimates of Prot,photo described above, we decided
to use our own results (blue circles in Figure 6.1) and Prot,astero (chapter 4) as the two
independent proxies for the true rotation period. Because we inspected the LS periodogram
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Figure 6.3: Constraints on the stellar inclination and frequency splitting from asteroseismic
analysis. We plot the posterior probability density (PPD) on i⋆-δν⋆ plane, marginalized over
all other parameters. The one-dimensional marginalized densities are also shown to the left
and below the axes. The panel in the bottom left is the PPD of δν⋆ sin i⋆. Top left: Kepler-68
(KOI-246). Top right: Kepler-93 (KOI-69). Bottom left: Kepler-409 (KOI-1925). Bottom
right: HAT-P-7 (Kepler-2, KOI-2).
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Figure 6.4: Rotation periods of the 19 stars against their effective temperature. Blue and
red symbols correspond to Prot,photo and Prot,astero with crosses and circles indicating single
and multiple planet systems, respectively. The mean and its 1σ uncertainty regions for the
photometrically derived rotation period (McQuillan et al. 2014) are plotted as the thick black
line and the gray area.

of the 19 systems individually and homogeneously, our estimate of Prot,photo is more robust
and reliable than those presented in the previous literature (Figure 6.1). Note that we still
keep four stars (KOI-2, 69, 246, and 1925) with no clear peak and two stars (KOI-42 and 244)
with two peaks in the analysis, but put their KOI number in the subsequent plots. When
interpreting our following results, it would caution a possible bias due to their somewhat
unreliable Prot,photo.

Incidentally Benomar et al. (2014) attempted for the first time to recover the full spin-
orbit angle, instead of its projected value λ, through the joint analysis of the RM effect and
asteroseismology. They considered two systems, HAT-P-7 (Kepler-2, panel b) and Kepler-25
(panel c), which are classified as uncertain and bimodal, respectively. Thus a verification of
their result is difficult through an independent estimate of Prot,photo.

Figure 6.4 shows Prot,astero (red circles) estimated by asteroseismology and Prot,photo (blue
circles) estimated by LS periodogram for those 19 planet-host stars against the stellar effective
temperature Teff . For comparison, the 1σ region of Prot − Teff from photometric variation
analysis of ≈ 34,000 Kepler stars (McQuillan et al. 2014) is plotted as gray bands. Clearly
both Prot,astero and Prot,photo for our sample are systematically longer than the average of
Kepler stars. We note that the discrepancy above becomes even stronger if we use Prot,photo

by Mazeh et al. (2015) and Angus et al. (2018). We also made sure that 48 planet-less stars
with secure rotational period measurement in chapter 4 exhibit the same trend, implying that
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plotted against Prot,astero. Blue circles indicate the 13 stars with reliably-determined Prot,photo.
Red crosses labeled by KOI IDs indicate the 6 stars whose Prot,photo is not reliable.

the discrepancy is not related to the effect of the accompanying planet. The reason for this
discrepancy is unclear, but we suspect that this results from (unknown) factors affecting the
detectability of solar-like pulsations. For example, magnetic activity is known to damp solar
pulsations so that they show reduced amplitudes (e.g., Benomar et al. 2012). The statistical
distribution derived by McQuillan et al. (2014), however, is still consistent at 2σ with our
estimates, and thus the apparent discrepancy may be simply due to the limited size of our
sample.

Figure 6.5 plots Prot,photo/Prot,astero against Prot,astero for 19 planet-host stars; 13 sys-
tems with reliable Prot,photo (in blue circles) and 6 systems with unreliable Prot,photo (in red
crosses). It is reassuring that there is a clear sequence around Prot,photo/Prot,astero ≈ 1,
mainly for the systems with reliable measurements of Prot,photo. Indeed all the systems whose
Prot,photo/Prot,astero is very different from unity correspond to the six stars classified as either
uncertain or bimodal. We also note that the three stars with Prot,photo ≫ Prot,astero have
Prot,astero < 20 days. Since both asteroseismic and photometric period measurements are
expected to be more reliable for faster rotating stars, this tendency is difficult to be ascribed
simply to an observational bias, but may have a yet unknown but physical explanation.

Before presenting our major results in the next section, we emphasize that strictly speak-
ing, neither Prot,astero nor Prot,photo may represent the true rotation period of the star Prot,true.
The surface differential rotation would lead to Prot,photo > Prot,true for most stars in which the
high-latitude surface rotates more slowly than the equator. Multiple formation/dissipation
of star-spots may result in Prot,photo/Prot,true significantly different from unity. It may be
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Figure 6.6: Possible spin-orbit resonance on Porb,b/Prot,photo-Prot,photo/Prot,astero (left panel)
and on the plane Porb,b/Prot,astero-Prot,photo/Prot,astero (right panel). For multi-planetary sys-
tems, we plot the inner-most planet alone.

also the case for Prot,astero, which mainly probes the stellar internal rotation (not surface
rotation) using its effect on stellar surface oscillations. Since most of our 19 stars have
Prot,astero ≈ Prot,photo, they are likely to be a good proxy for Prot,true, at least approximately,
but their quantitative difference needs to be kept in mind in understanding the result pre-
sented below.

6.3 Possible signature of spin-orbit resonance

Figure 6.6 shows Porb,b/Prot,photo (left) and Porb,b/Prot,astero (right) against Prot,photo/Prot,astero

for the 19 systems, where Porb,b is the orbital period of the inner-most planet of each system.
Just for reference, the range of 0.7 < Prot,photo/Prot,astero < 1.3 is shaded in gray, taking
account of a possibility that Prot,photo and Prot,astero do not exactly agree with Prot,true. Indeed
the ratio for the 13 stars except for the six dubious is within the region. Their parameters
are listed in Tables 6.2 and 6.3. An interesting feature clearly visible in Figure 6.6 is that
Porb,b/Prot seems to be strongly clustered around 1/4 and 1, especially for the systems with
0.7 < Prot,photo/Prot,astero < 1.3.

Figure 6.7 exhibits the trend more clearly, in which the overall spin-orbit architecture
for multi- (top) and single- (bottom) planetary systems is plotted separately (see also Table
6.4). Interestingly and intriguingly, Porb/Prot for multi-planetary systems does not seem to
distribute in a homogeneous fashion, but rather preferentially takes discrete values.

The most straightforward interpretation is that those systems are in spin-orbit resonant
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Table 6.2: Properties of single-planetary systems.

KOI Kepler ID Rp Mp e a Porb Porb/Prot,photo Porb/Prot,astero

(R⊕) (M⊕) (au) (days)

Stars with reliable period measurement

269 ... 1.83 ... ... 0.15 18.01 3.38+0.12
−0.11 2.95+0.24

−0.17

280 1655 2.21 5.0 ... 0.10 11.87 0.88+0.08
−0.09 1.00+0.41

−0.18

288 ... 3.04 ... ... 0.10 10.28 0.75+0.07
−0.04 0.96+0.20

−0.16

974 ... 2.52 ... ... 0.29 53.51 4.86+0.37
−0.17 4.86+0.94

−0.62

975 21 1.64 5.08 0.02 0.04 2.79 0.22+0.02
−0.02 0.23+0.02

−0.01

1612 408 0.82 ... ... ... 2.47 0.20+0.02
−0.01 0.21+0.02

−0.02

Stars with no clear signal in periodogram

2 2 16.9 585 ... 0.04 2.20 0.07+0.08
−0.02 0.18+0.06

−0.06

69 93 1.6 3.2 ... 0.05 4.73 0.15+0.10
−0.04 0.20+0.03

−0.03

1925 409 1.19 ... ... ... 68.96 5.58+0.67
−1.18 2.44+0.48

−0.53

Stars with bimodal peaks in periodogram

42 410 2.84 ... 0.17 0.12 17.83 0.88+0.06
−0.09 3.20+0.07

−0.07

Note: Rp, Mp, e, a, and Porb are from NASA Exoplanet Archive
(https://exoplanetarchive.ipac.caltech.edu).

states that have Porb/Prot ≈n/m with n and m being simple integers. It is true that the
time-scale τsync of the spin-orbit synchronization (Porb,b/Prot≈1) is unrealistically long at
least in a conventional equilibrium tide model. Nevertheless we may speculate that there are
a few dynamically stable local minima corresponding to Porb,b/Prot≈n/m. In the course of
the slow-down of the stellar rotation and/or the planetary migration that are not directly
triggered by the tidal interaction, the star-planet system may fall into one of such quasi-
resonant states temporarily. If the hypothesis is correct, the corresponding time-scale could
be significantly smaller than τsync based on the mere tidal interaction. Otherwise the current
result would challenge the existing tidal theories if it is achieved entirely due to the star-planet
tidal interaction.

Bottom panel of Figure 6.7 is the same as top panel but for single-planetary systems.
Apart from the four stars classified as uncertain or bimodal, the spin-orbit resonance is still
visible, even though to a lesser extent than exhibited in top panel. This may be a simple
statistical fluctuation, but may suggest that the apparent spin-orbit resonance is somehow
related to, or even enhanced by the orbital resonance in the overall architecture of the multi-
planetary systems.

Because of the limited number of the planetary systems that allow a reliable asteroseismic
estimate of the stellar rotation period, it is not easy to provide the statistical significance
of the presence of the spin-orbit resonance that we propose here. Nevertheless we attempt
to evaluate it using histograms of Porb/Prot,astero in Figure 6.8, whose total number count is
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Table 6.3: Properties of multi-planetary systems.

KOI Kepler ID Rp Mp e a Porb Porb/Prot,photo Porb/Prot,astero

(R⊕) (M⊕) (au) (days)

Stars with reliable period measurement

41 100 1.32 7.34 0.13 ... 6.89 0.25+0.04
−0.04 0.27+0.03

−0.02

2.20 ... 0.02 ... 12.82 0.46+0.08
−0.07 0.51+0.05

−0.04

1.61 ... 0.02 ... 35.33 1.27+0.22
−0.19 1.41+0.14

−0.10

85 65 1.42 ... 0.02 0.04 2.15 0.26+0.01
−0.02 0.26+0.02

−0.02

2.58 26.6 0.08 0.07 5.86 0.72+0.04
−0.05 0.71+0.06

−0.05

1.52 ... 0.10 0.08 8.13 1.00+0.06
−0.07 0.99+0.08

−0.07

260 126 1.52 ... 0.07 0.10 10.50 1.45+0.10
−0.14 1.33+0.11

−0.09

1.58 ... 0.19 0.16 21.87 3.02+0.20
−0.30 2.77+0.24

−0.19

2.50 ... 0.02 0.45 100.28 13.84+0.92
−1.37 12.72+1.09

−0.89

262 50 1.71 ... ... 0.08 7.81 0.97+0.11
−0.12 1.02+0.12

−0.07

2.17 ... ... 0.09 9.38 1.16+0.14
−0.14 1.23+0.15

−0.08

274 128 1.13 30.7 ... 0.13 15.09 1.14+0.09
−0.09 1.22+0.15

−0.12

1.13 33.3 ... 0.17 22.80 1.73+0.13
−0.14 1.84+0.22

−0.18

277 36 1.49 4.45 0.04 0.12 13.84 0.80+0.08
−0.07 0.78+0.23

−0.14

3.68 8.08 ... 0.13 16.24 0.94+0.10
−0.08 0.91+0.27

−0.16

370 145 2.65 37.1 0.43 ... 22.95 1.63+0.23
−0.12 2.15+1.26

−0.38

4.32 79.4 0.11 ... 42.88 3.05+0.42
−0.22 4.02+2.36

−0.71

Stars with no clear signal in periodogram

246 68 2.40 6.00 ... 0.06 5.40 0.17+0.21
−0.04 0.14+0.07

−0.04

1.00 4.80 0.42 0.09 9.61 0.30+0.38
−0.06 0.25+0.13

−0.08

... 267 0.18 1.40 625 19.23+24.63
−4.22 16.43+8.28

−5.04

Stars with bimodal peaks in periodogram

244 25 2.71 9.60 ... 0.07 6.24 0.28+0.02
−0.04 0.80+0.05

−0.05

5.20 24.60 0.01 0.11 12.72 0.57+0.04
−0.07 1.64+0.11

−0.09

... 89.90 ... ... 123 5.48+0.43
−0.70 15.83+1.04

−0.90

Note: Rp, Mp, e, a, and Porb are from NASA Exoplanet Archive
(https://exoplanetarchive.ipac.caltech.edu).
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Table 6.4: Ratios of the photometric rotation, planetary orbital and asteroseismic rotation
periods.

KOI Kepler ID Prot,astero Porb,b nrot,astero nrot,phot norb,b norb,c norb,d

(days) (days)

Stars with reliable period measurement

41 100 25.1+2.0
−2.3 6.89 4.0 4.4+0.9

−0.8 1.1+0.1
−0.1 2.0+0.2

−0.2 5.6+0.4
−0.5

85 65 8.2+0.6
−0.6 2.15 4.0 4.0+0.4

−0.4 1.0+0.1
−0.1 2.9+0.2

−0.2 4.0+0.3
−0.3

260 126 7.9+0.6
−0.6 10.50 2.0 1.8+0.2

−0.2 2.7+0.2
−0.2 5.5+0.4

−0.4 25.4+1.9
−2.0

262 50 7.6+0.6
−0.8 7.81 4.0 4.2+0.7

−0.6 4.1+0.3
−0.4 4.9+0.4

−0.5 ...

269 ... 6.1+0.4
−0.5 18.01 1.0 0.9+0.1

−0.1 3.0+0.2
−0.2 ... ...

274 128 12.4+1.3
−1.3 15.09 3.0 3.2+0.4

−0.4 3.7+0.4
−0.4 5.5+0.6

−0.6 ...

277 36 17.8+3.9
−4.0 13.84 4.0 3.9+0.9

−0.9 3.1+0.7
−0.7 3.6+0.8

−0.8 ...

280 1655 11.9+2.6
−3.4 11.87 1.0 1.1+0.3

−0.3 1.0+0.2
−0.3 ... ...

288 ... 10.7+2.2
−1.8 10.28 1.0 1.3+0.3

−0.2 1.0+0.2
−0.2 ... ...

370 145 10.7+2.3
−3.9 22.95 1.0 1.3+0.3

−0.5 2.2+0.5
−0.8 4.0+0.9

−1.5 ...

974 ... 11.0+1.6
−1.8 53.51 1.0 1.0+0.1

−0.2 4.9+0.7
−0.8 ... ...

975 21 12.3+0.8
−1.2 2.79 9.0 9.2+0.9

−1.1 2.0+0.1
−0.2 ... ...

1612 408 11.7+1.4
−1.0 2.47 5.0 5.3+0.8

−0.6 1.1+0.1
−0.1 ... ...

Stars with no clear signal in periodogram

2 2 12.1+5.5
−3.2 2.20 5.0 12.6+6.6

−7.5 0.9+0.4
−0.2 ... ...

69 93 23.5+3.9
−3.0 4.73 5.0 6.8+2.6

−3.0 1.0+0.2
−0.1 ... ...

246 68 38.0+16.8
−12.8 5.40 7.0 6.0+3.1

−3.9 1.0+0.4
−0.3 1.8+0.8

−0.6 115.0+50.9
−38.5

1925 409 28.3+7.9
−4.7 68.96 2.0 0.9+0.3

−0.2 4.9+1.4
−0.8 ... ...

Stars with bimodal peaks in periodogram

42 410 5.6+0.1
−0.1 17.83 1.0 3.6+0.4

−0.3 3.2+0.1
−0.1 ... ...

244 25 7.8+0.5
−0.5 6.24 4.0 11.6+1.8

−1.1 3.2+0.2
−0.2 6.5+0.4

−0.4 63.3+3.8
−3.9

Note: Teff and Porb,b are from NASA Exoplanet Archive
(https://exoplanetarchive.ipac.caltech.edu).
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normalized to the unity in the logarithmic scale. The top and bottom panels indicate the
distributions of Porb/Prot for the innermost planets alone and all planets, respectively. The
vertical dotted lines indicate ratios of simple integers, which are admittedly subjective to
some extent but may be useful for readers to judge the significance of our proposal.

We note here that even if the spin-orbit resonance interpretation is correct, Porb/Prot,astero

does not have to coincide with a ratio of simple integers exactly. A possible radial differential
rotation would make Prot,astero slightly different from Prot,true. Furthermore, if the planetary
orbit is eccentric, the stellar rotation velocity would be more likely synchronized towards the
planetary orbital velocity at the pericenter. Thus Prot,true would deviate from Porb to some
extent.

Finally we plot the spin-orbit angles λ and 90◦ − i⋆ against τsync in Figure 6.9. The black
symbols refer to λ from the RM database (Southworth 2011), while the red symbols are based
on our asteroseismic analysis. As discussed in section 6.1, the bimodal distribution of λ in
Figure 6.9 may suggest the presence of both primordial and realignment channels for the
spin-orbit angle. If the strong clustering around λ≈ 0◦ results from the realignment channel
at least partially, it also indicates another tidal model because τsync of the conventional
equilibrium tide is too long. This may be the same situation that we encounter here in our
interpretation of the spin-orbit resonance.

6.4 Discussion and conclusion

In this chapter, we find an interesting correlation between the stellar rotation and planetary
orbital periods for 19 Kepler transiting planetary systems whose rotation periods are esti-
mated from both photometric variation and asteroseismology. Out of the 19 systems, we
find 13 reliable systems that have clear peaks in the LS periodogram of their photometric
lightcurve. The corresponding rotation periods Prot,photo for the 13 systems are in good agree-
ment with the asteroseismicestimate Prot,astero within 1σ level. Among those reliable systems,
KOI-280b, 288b, 262b, 277c, and 85d are likely in the spin-orbit synchronized states, i.e.,
Prot,astero = Porb within 1σ. Moreover, for a significant fraction of the 13 planetary sys-
tems, Porb/Prot can be expressed as a ratio of simple integers, which suggests a spin-orbit
(quasi-)resonance.

We emphasize that our interpretation is based on 13 stars. Due to this limited number,
it is perhaps not so difficult to express their Porb/Prot in terms of the ratio of simple integers.
Also it is always possible to find a set of two integers that well approximate the observed
ratios of Porb/Prot. On the other hand, it is not easy to explain the fact that three (KOI-
280b, 288b, 262b) out of the 13 systems have Prot,astero = Porb,b just by chance. In any case,
a larger sample of stars would be required to confirm/refute our spin-orbit (quasi-)resonance
hypothesis.

In order to select a robust sample of stars with a reliable rotation period, we focused on
stars that show consistent results between asteroseismic analysis and the LS periodogram.
This turned out to be particularly important because we found a relatively low-level of agree-
ment among different published values of Prot,photo. Asteroseismology has played a key role in
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Figure 6.8: The normalized distribution of Porb/Prot in logarithmic scale for innermost plan-
ets alone (top) and all planets (bottom). Red line represents the histogram for reliable
asteroseismic samples, which is generated by using the median values of their posterior prob-
ability distribution (PPD) of Prot,astero. Blue line represents the histogram generated from
Prot,photo derived from photometric variation in Mazeh et al. (2015). Black line is drawn by
Porb and Prot,photo independently sampled from the two catalogs so that this represents the
case where the two are totally unrelated. Gray band are the standard deviation of 1,000
random sampling.
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Figure 6.9: Spin-orbit angles λ and 90◦ − i⋆ against τsync. The data for λ on the basis of the
Rossiter-McLaughlin effect are taken from the compilation by Southworth (2011).

providing an entirely independent measurement of the stellar rotation. It is worth noting that
a careful case-by-case examination is necessary if we use photometric variations (such as the
LS periodogram) to derive Prot,photo. Indeed, the latitudinal differential rotation, the size of
the star-spots and their typical formation/dissipation timescales would introduce significant
differences between Prot,photo and Prot,true. Furthermore, the planet itself induces a photo-
metric modulation that, if not entirely removed, could be incorrectly identified as the stellar
rotation period. These issues can only be circumvented by checking results independently
with different methods, such as presented in this study. Unfortunately, however, measur-
ing the rotation with asteroseismology requires high quality photometric data, so that it is
difficult to increase the number of reliable stars significantly.

The spin-orbit resonance that we propose here points towards a strong tidal interaction
between stars and planets. This cannot be explained in a conventional equilibrium tide model.
Due to the limited number of planetary systems with a reliable stellar rotation period, the
interpretation of the current data may not be conclusive, but suggestive for the spin-orbit
resonance of transiting multi-planetary systems in particular.

While τsync, the time-scale of the spin-orbit synchronization given by equation (6.5) for
planetary systems, is generally much longer than the age of the universe, quasi-synchronized
states, e.g., Prot = (n/m)Porb,b with n and m being simple integers, may be local minimum
states of the dynamical architecture, and the time-scale to reach those states may be signif-
icantly shorter than τsync. This hypothesis can be, for example, modeled and tested against
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numerical simulations.



Chapter 7

Summary and conclusion

Among various diversities in exoplanetary systems, the oblique orbits of planets with respect
to the equatorial planes of their host stars seriously challenge the conventional theory of
planet formation. Possible scenarios to explain these misaligned orbits have been proposed,
and some of them ascribe the misalignment to the primordial origin, while others to the
dynamical evolution of orbits after planets are born. Measuring the spin-orbit angle ψ is the
key to understanding how common the oblique orbits are, and how likely these scenarios are
in the actual misaligned systems. However, the measurements of spin-orbit misalignments in
terms of their projected values (λ) have been ever made for planets larger than Neptune (e.g.,
hot Jupiters), mainly because of the observational limitations of the conventional Rossiter-
McLaughlin effect. Although combined method enables the measurement of spin-orbit angles
in terms of stellar inclinations i⋆ and is independent of planet size, it only provides weak
constraints.

Asteroseismology, the study of stellar pulsations, has been made possible thanks to long
and uninterrupted observation of space observatories such as CoRoT and Kepler. Asteroseis-
mology is useful to infer the obliquity of planetary orbits by measuring the tilt of stellar spin
axis towards the observer (i⋆). Importantly, asteroseismology is an unique tool to explore
the orbital architecture of Earth-sized planets as well as combined method, because it relies
on observing signals independent of the planet size.

In this thesis, we examined the applicability of asteroseismology to exoplanetary science,
and major results are summarized as follows.

• We assessed the reliability of the parameters derived from asteroseismology, especially
stellar inclination angle i⋆ and rotational splitting δν⋆≈ 1/Prot. Although authors in
earlier studies have claimed that asteroseismology may return inaccurate values of i⋆
and δν⋆ in some cases, the dedicated study to reveal the conditions necessary for the
reliable measurements has yet to be presented. In practice, stellar inclination and
rotational splitting are often discussed without referring to their reliability in most
literatures.

Motivated by the necessity to remove this ambiguity, we derived analytic criteria for
the secure measurement of i⋆ and δν⋆. These criteria were then verified to work well
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in the actual asteroseismic analysis by performing thorough numerical simulations. We
found that for the reliable determination of i⋆, i⋆ and δν⋆ should be at least 20◦≲i⋆≲80◦

and δν⋆/Γ≳ 0.5.

We next performed asteroseismic analysis to 33 and 61 stars with and without known
transiting planets, and found 9 and 22 out of them have accurate inclinations and
splittings. This systematic study of 94 stars in total offers the largest catalogue of
stellar inclinations and splittings ever for dwarf stars, including most of main-sequence
solar-like stars with detectable pulsation signals. And then we showed statistically that
asteroseismology sometimes fails to derive the correct values of i⋆ and δν⋆ (as we failed
in 24 out of 33 planet-host stars and 39 out of 61 planet-less stars), which raises the
caution when interpreting the derived inclination for individual system.

• The reliability of asteroseismic measurements can also be studied by comparing with
other observations, such as rotational periods derived from photometric variation in
stellar lightcurves. Among the reliable planet-host stars analyzed in this work, Kepler-
408, a G0 type star with a sub-Earth planetary companion, is found to show unam-
biguous spin-orbit misalignment (i⋆ = 42+5

−4 degrees). Rotational splitting derived by
photometry (δν⋆ = 0.898±0.013µHz) agrees our asteroseismic measurement (δν⋆ =
0.99±0.10µHz) well, making the misalignment of this system robust. Moreover, stellar
inclination derived from spectroscopic v sin i⋆ and R⋆ also predicts intermediate incli-
nation (i⋆ = 44+20

−15 degrees) despite relatively large errors. Such an agreement between
asteroseismology and other observations shows that joint analysis can provide quite
robust measurement of stellar inclination and rotational splitting. Kepler-408, one of
the most successful cases, is the first confirmation of a significant spin-orbit misalign-
ment for planets smaller than Neptune. As a consequence, Kepler-408b is the smallest
exoplanet ever known to have large misalignment. The astronomical importance of
this discovery is that misalignment-enhancing mechanisms are found to work also for
small planets, and spin-orbit misalignment may be common also for Earth-sized sys-
tems. The conventional RM effect cannot probe the misalignment for such a small
planet. Since asteroseismology is independent of the properties of planets, this discov-
ery clearly demonstrates that asteroseismology is a promising method to explore the
orbital dynamics of Earth-sized planets.

• It is also worth emphasizing that asteroseismology offers an independent measure of
stellar rotational period (Prot≈ 1/δν⋆). If asteroseismology agrees other observations
such as photometry, therefore, the derived rotation period can be taken as the proxy
for the true rotation period because they rely on completely different signals in obser-
vations. In this work, we find 13 exoplanetary systems where asteroseismically derived
rotation period (Prot,astero) and that from photometric variation (Prot,photo) are consis-
tent. Among them, we discovered the signature of correlation between planetary orbital
motion and stellar rotation; the values of Porb/Prot were turned out to preferentially
take rational numbers in some systems, implying that they are in spin-orbit resonance.
While dozens of planetary systems are known to be in resonant states among planetary
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orbits, the resonance between star and planet has not been reported yet. This is partly
because it is difficult to measure Prot,photo accurately in most cases, because of the
various assumptions on the star-spots. Based on asteroseismology as an independent
measure of Prot, we discovered for the first time the resonance between star and planet
although we have merely 13 samples. If this finding is proved to be really the case,
it raises the necessity to re-consider the star-planet tidal interaction. In fact the spin-
orbit synchronization (Prot = Porb) cannot be realized by the standard tidal theory,
because estimated timescale for the synchronization is unrealistically long. Therefore
it suggests that spin-orbit resonance is a (quasi-)equilibrium state during star-planet
tidal evolution, or there may exist much stronger interaction beyond standard tide at
play in the actual star-planet systems.

In summary, we attempted to apply asteroseismology to exoplanetary science in this
work, and found observational evidence of spin-orbit misalignment for Earth-sized planet
(chapter 5) and spin-orbit resonances in transiting planetary systems (chapter 6). These
results are based on the careful investigation of the reliability of parameters derived with
asteroseismology (chapter 4). Because these findings are difficult to be accomplished by other
observations, they clearly demonstrate the asteroseismic potential as a useful and unique
methodology to characterize exoplanetary systems. With these successful results enabled
by asteroseismology, this work opened up a new window for the synergetic collaboration of
asteroseismology and exoplanetary science.

In the near future, even more stars are expected as new asteroseismic targets by ongoing
and/or future space campaigns, e.g., TESS (already under operation) and PLATO (planned
for 2026). Eventually it is expected that exoplanets can be studied further both qualitatively
and quantitatively, thanks to more than one million stars planned to be observed. And thus
new discoveries similar to those by this work may become common outcome of asteroseis-
mology with the rich samples by future observations. If misalignments in the orbits of small
planets are discovered one after another, for example, it leads to the statistical study of the
formation and evolution history of Earth-like planets. With sufficient samples of Prot,astero,
on the other hand, additional tests on the accuracy of asteroseismic measurement will be
made possible, as we tried with small number of samples in this work. Once asteroseismol-
ogy is established as complete and independent methodology to measure stellar rotation, we
can for example compare stellar internal and surface rotation statistically. This study may
unveil how common stellar radial differential rotation is in the actual stars as we found in
the Sun. In conclusion, asteroseismology is expected to keep bringing new discoveries in the
field of stellar and planetary science with future observations in coming decades. We hope
that our work will serve as a basic framework for the synergetic study of asteroseismology
and planetary science in the future.
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Appendix A

Correlation of Porb/Prot with stellar
and orbital parameters of each system

We show Porb,b/Prot as a function of stellar and orbital parameters of each system, mainly
for completeness. We do not find any strong correlation nor particular bias in the following
plots. Thus they are not inconsistent with our spin-orbit resonant interpretation, even if not
strongly support it.

Figure A.1 shows Porb,b/Prot,photo (blue symbols) and Porb,b/Prot,astero (red symbols) against
the transit period of the inner-most planet Porb,b for the 19 systems; single-planet and multi-
planet systems are plotted in crosses and circles, respectively. We note that our results
are basically consistent with Figure 6 of Lurie et al. (2017), especially for Porb,b/Prot,astero.
Nevertheless it may be puzzling given the fact that the star-planet tidal interaction should
be significantly weaker than the star-star interaction in EBs. Since the typical time-scale
τsync expected from the equilibrium tidal model, equation (6.5), is too large, the result above
is quite surprising unless Q′

⋆ is unrealistically smaller than its fiducial range 105 − 107. This
is clearly shown in Figure A.2. As we mentioned in section 6.1, the alignment time-scale is
basically identical to that of synchronization τsync. Thus systems with Prot≈Porb are expected
to show the spin-orbit alignment. In reality, however, the stellar inclination i⋆ estimated from
asteroseismology alone has a relatively large error-bar (chapter 4) except the notable case of
Kepler-408 (KOI-1612, chapter 5). The constraint on i⋆ becomes more precise if combined
with the independent prior on Prot,photo. Thus we selected 13 reliable systems in which the
mean values of Prot,photo and Prot,astero agree within the 1σ level, and repeated asteroseismic
inference adopting the Gaussian distribution of Prot,photo. The result is plotted in Figure
A.3. While most systems are consistent with the spin-orbit alignment, i⋆ ≈ 90◦ within 2σ
confidence level except Kepler-408 (KOI-1612). Nevertheless Figure A.3 is equally consistent
with the primordial channel, and thus no clear conclusion cannot be drawn yet. We also plot
the ratio against the eccentricity in Figure A.4, but it is difficult to interpret it either, due
to the limited statistics, unlike Figure 8 of Lurie et al. (2017).
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126 Correlation of Porb/Prot with stellar and orbital parameters of each
system

101 102

Porb, b (days)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

42

244
2 69

1925

246

Prot = 10days

Prot = 20days

planet b, phot (single)
planet b, phot (multi)
planet b, astero (single)
planet b, astero (multi)

P o
rb
,b
/P

ro
t,
ph

ot
, P

or
b,

b/P
ro
t,
as
te
ro

Figure A.1: Porb,b/Prot,photo (blue symbols) and Porb,b/Prot,astero (red symbols) against the
transit period of the inner-most planet Porb,b for 19 systems. Single- and multi-planet systems
are plotted in crosses and circles, respectively. Just for reference, thick-dashed and thin-
dotted lines correspond to Prot = 10 and 20 days, respectively.
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Figure A.2: Porb,b/Prot,photo (blue) and Porb,b/Prot,astero (red) against the synchronization time
scale, equation (6.5). Single- and multi-planet systems are plotted in crosses and circles,
respectively.
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ical Astronomy, 111, 105
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Deheuvels, S., Doğan, G., Goupil, M. J., et al. 2014, A&A, 564, A27

Deubner, F.-L. 1975, A&A, 44, 371



132 REFERENCES

Duvall, Jr., T. L., & Harvey, J. W. 1986, in NATO Advanced Science Institutes (ASI) Series
C, Vol. 169, NATO Advanced Science Institutes (ASI) Series C, ed. D. O. Gough, 105–116

Esposito, M., Covino, E., Desidera, S., et al. 2017, A&A, 601, A53

Evans, J. W., & Michard, R. 1962, ApJ, 136, 493

Fabrycky, D., & Tremaine, S. 2007, ApJ, 669, 1298

Fabrycky, D. C., & Winn, J. N. 2009, ApJ, 696, 1230

Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601

Fielding, D. B., McKee, C. F., Socrates, A., Cunningham, A. J., & Klein, R. I. 2015, MNRAS,
450, 3306

Fukuda, Y., Hayakawa, T., Ichihara, E., et al. 1998, Physical Review Letters, 81, 1562
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