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Abstract

Orbital axes of eight planets in the solar system are all well aligned with Sun’s rotational
axis. This notable regularity in the solar system forms the basis of the standard paradigm
dating back to Kant and Laplace, that planet formation takes place in a rotationally-
supported circumstellar disk of gas and dust particles, dubbed protoplanetary disk. In
this scenario, the “spin–orbit alignment” is understood to be an inevitable consequence
of the physical processes involved.

This paradigm was called into question by the discovery of exoplanets, planets orbiting
stars other than the sun, since 1995. It turned out that hot Jupiters, Jupiter-sized planets
orbiting very close to their host stars, often orbit in the direction significantly different
from, or even opposite to, the stellar rotation. The fact was realized by measuring the
sky-projection of the stellar obliquity, the angle between the stellar spin and planetary
orbital axes, via the spectroscopic Rossiter-McLaughlin (RM) effect: the anomaly in the
stellar radial velocity during the planetary transit, the eclipse of the stellar disk by the
planet viewed edge-on.

Two possible explanations have been presented for the irregularity. The “spin–orbit
misalignment” may be a signature that the formation of a hot Jupiter, especially the
“migration” to the current close-in orbit, involves violent dynamical processes that did
not take place in our solar system. In fact, such mechanisms also explain other striking
irregularities of exoplanetary systems, including such large eccentricities as are not ob-
served in the solar system. Alternatively, it may simply mean that the alignment in the
solar system is just a coincidence, and protoplanetary disks may routinely be misaligned
with the stellar equator. In either case, the traditional view of planet formation requires
significant modification, but in different manners depending on the scenario.

Solving this nature and nurture problem will be easier if the measurements of spin–
orbit misalignments are extended to planets other than hot Jupiters. If it turns out
that hot Jupiters are the only planets that exhibit significant misalignments, it becomes
more likely that the origin of the peculiar orbit is linked to the spin–orbit misalignment,
i.e., dynamical migration should be important. If, on the other hand, the spin–orbit
misalignment is common among every kind of planets, its origin may be irrelevant to
the specific dynamical process but just trace the initial condition. Such a test, however,
requires an observational breakthrough because the traditional RM measurement used
for hot Jupiters is difficult to apply to planets with smaller radii and/or longer orbital
periods than hot Jupiters.

In this thesis, we present measurements of spin–orbit misalignments for transiting
planetary systems using high-precision photometric data obtained by the Kepler space
telescope. We especially focus on establishing the methodology to constrain various prop-
erties of exoplanetary systems not limited to the stellar obliquity, and demonstrate its
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validity through the application to real systems. We also report on characterization of
the hierarchical triple-star system consisting of a close inner orbit and a wide outer or-
bit, as another complementary approach to directly search for the system with a clear
signature of the past dynamical interaction. Our main results and their significance are
summarized as follows:

• We establish a methodology to determine the true stellar obliquity, rather than its
sky projection obtained from the RM effect. This is made possible by performing a
consistent joint analysis of the RM effect, transit light curve, and asteroseismology,
the spectral analysis of the stellar brightness modulation due to its oscillation. We
then apply the technique to two transiting systems, HAT-P-7 and Kepler-25, and
show that the measurement of true obliquity can reveal the qualitatively different
architecture from what is inferred from the sky-projected angle. Our method also
provides precise constraints on the system parameters other than the obliquity.

• We revisit another method to measure stellar obliquities using the subtle anomaly in
the transit light curve caused by inhomogeneity of stellar surface brightness caused
by its rapid rotation (gravity darkening). The obliquity from the gravity-darkening
method was known to disagree with the spectroscopic one (similar to the RM effect)
for the Kepler-13A system. We show that the discrepancy can be solved by properly
taking into account the uncertainty in the stellar surface brightness profile and
present an updated joint solution of the photometry and spectroscopy data. We
also perform the most precise analysis of the spin–orbit precession observed in this
system and show that the follow-up observation of the future dynamical evolution
of the system can be used to test our revised solution.

• The gravity-darkening method is also applied to HAT-P-7, which was also analyzed
by asteroseismology, and found to give a mutually-consistent result. The method
thus established will be useful to study stellar obliquities in the domain that cannot
be probed by other methods.

• We precisely determine the three-dimensional orbital architecture and physical di-
mensions of the hierarchical triple-star system KIC 6543674, which consists of a
short-period (2.4 days) inner binary and a long-period (1100 days) outer binary.
Those constraints are obtained essentially from the Kepler photometry data alone
by jointly modeling the eclipse light curves of three stars and the effect of mutual
gravitational interaction on the light curves, thus sparing the years of spectroscopic
and astrometric observations. The analysis presented here provides a useful frame-
work for the future attempt to search and characterize the direct evidence for the
dynamical interaction and migration, because such systems are expected to be in a
hierarchical configuration frequently.

These studies are to help future explorations of spin–orbit misalignments for qualita-
tively different population of exoplanets from hot Jupiters, and will eventually lead to the
comprehensive understanding of the origin of the spin–orbit misalignment and its relation
to the dynamical history of exoplanetary systems. They will also contribute to expanding
the capability of high-precision and continuous photometric data, as will be obtained by
several successors of Kepler in the next decade.
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Chapter 1

Diversity of the Extrasolar Worlds

The solar system consists of three different types of planets located in three distinctly
separated areas. Their orbits are mostly circular and confined in a plane perpendicular
to the sun’s rotation axis. These regular features have led to a standard scenario for the
solar system formation through the collisional growth of small rocky and icy particles
(planetesimals) and subsequent gas accretion within a rotating circumstellar disk of gas
and dust (protoplanetary disk).

Since then, a huge diversity of exoplanets, planets orbiting stars other than the sun,
has been discovered. With the steady improvements in the observational technique and
the advent of new tools, we are beginning to obtain detailed information on the architec-
tures and physical properties of those distant new worlds. Such efforts have consequently
revealed that the properties of our solar system may not be the norm, and called into
question what we thought we knew about the solar system.

The aim of exoplanetary science is to understand the diversity in orbital and physical
properties in a comprehensive manner. More specifically, we wish to distinguish the
features of planetary systems that necessarily result from the law of Nature, from those
that are sculpted by accidents specific to each system. This thesis is to deal with one
aspect of those “nature and nurture” problems in exoplanetary science, which will be
described in the first three chapters.

1.1 The Overall Occurrence

As of April 2016, about 2000 exoplanets have been confirmed around 1200 stars. Their
masses and orbital semi-major axes are shown in Figure 1.1 by filled circles. Their colors
correspond to various methods used to identify each planet, which are summarized in
Section 1.2. The planets in our solar system are also plotted by filled diamonds for
comparison. Most of the currently known exoplanets are very different from the planets
in the solar system, simply because planets with similar masses and orbits to them are
difficult to detect with the current technique. Even taking into account this detection
bias, however, Figure 1.1 already exhibits great diversity in the exoplanet property.

Three distinct populations of exoplanets show up in Figure 1.1, which are labeled
as “hot Jupiters,” “cold Jupiters,” and “super Earths.” Since radial velocity and tran-
sit methods (cf. Section 1.2) are biased toward the shorter semi-major axis and larger
planetary mass, the gap between hot Jupiters and cold Jupiters, and that above super
Earths are both likely to be real. Below we discuss the occurrence and property of each
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2 Chapter 1 Diversity of the Extrasolar Worlds

Figure 1.1 Masses (0.1M⊕–13MJup) and orbital semi-major axes (0.01–100AU) of known
exoplanets as of April 14, 2016. The planets in the solar system are also shown with filled
diamonds. The exoplanet data are from the confirmed planet catalog at NASA Exoplanet
Archive http://exoplanetarchive.ipac.caltech.edu/index.html. The color of each
circle shows a detection method by which the planet was first identified. The plotted value
of the planetary mass is the “minimum” mass Mp sin i when the true mass is not available;
this is usually the case for non-transiting planets characterized with radial velocities (see
Section 1.2).
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Figure 1.2 Masses (1M⊕–13MJup) and radii (< 2.2RJup) of known exoplanets as of May
2, 2016. The planets in the solar system are also shown with filled diamonds. The
exoplanet data are from the confirmed planet catalog at NASA Exoplanet Archive http:
//exoplanetarchive.ipac.caltech.edu/index.html. The color of each circle shows a
detection method by which the planet was first identified. Note that planets with known
radii are all transiting, although some of them may be first identified with radial velocities
(several blue circles in the plot). Thus the masses plotted in this figure are basically the
true masses without the ambiguity due to the unknown orbital inclination.
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population. We also comment on the eccentricities of exoplanets, which also show far
greater diversity than the near-circular orbits in the solar system.

1.1.1 Hot Jupiters

Hot Jupiters usually refer to Jupiter-sized planets with orbital periods less than 10 days,
although the thresholds are not clearly defined. They are easiest to discover with major
“indirect” detection methods (i.e., radial velocity and transit; see Section 1.2), and the
first exoplanet discovered around a Sun-like star, 51 Pegasi b, also falls into this category
(Mayor & Queloz, 1995). Radial velocity (RV) surveys show that they exist around
roughly 1% of FGK stars (Wright et al., 2012), and seem to favor metal-rich hosts (e.g.,
Fischer & Valenti, 2005). In fact, the transit survey by Kepler (Section 1.2.3) found the
occurrence rate roughly half of the estimate from RV surveys (e.g., Howard et al., 2012),
and this mild tension may be attributed partly to the difference in metallicity between
the two samples (e.g., Dawson & Murray-Clay, 2013).

In the standard scenario, formation of a giant planet involves accumulation of small
particles of rock and ice into a core of ∼ 10M⊕, and subsequent accretion of surrounding
H/He gas that grows the core into a gaseous giant planet (e.g., Armitage, 2010). Giant
planet formation via this “core accretion” process is deemed unlikely at the current lo-
cation of hot Jupiters (∼ 0.05AU), where high irradiation from the host star makes the
protoplanetary disk too hot for enough amount of solid particles to exist (e.g., Boden-
heimer et al., 2000). The current paradigm of hot Jupiter formation, therefore, assumes
that they are formed far from the host star (beyond a few AU, like Jupiter in the solar
system), rather than in situ, and then “migrated” inward to their current orbits.1

The mechanism for the migration has been an issue of intense discussions since the
discovery of the exoplanet, and is still under debate. Lin et al. (1996) proposed a mech-
anism usually referred to the “disk migration,” in which a giant planet opens a gap in
its natal protoplanetary disk and is transported inward with the viscous diffusion of the
disk over the timescale of ∼ 105 yr (see, e.g., Lubow & Ida, 2011, for details). This sce-
nario, however, is unlikely to explain some of the known properties of hot Jupiters, such
as the high eccentricity and spin–orbit misalignment, as will be discussed later in this
chapter. The fact motivated another channel of migration including the violent few-body
dynamical processes, sometimes referred to “high-eccentricity migration.” The details of
this scenario will be discussed in Section 3.1 in Chapter 3.

1.1.2 Super-Earths and Mini-Neptunes

In the solar system, no planets between the sizes of Earth and Uranus (15M⊕, 4R⊕) exist.
In exoplanetary systems, on the other hand, many have been found in this mass and radius
range (and slightly above, up to ∼ 30M⊕), as illustrated in Figures 1.1 and 1.2. They
are called “super-Earths” or “mini-Neptunes,”2 and actually the most abundant among

1Note, however, that the possibility of in-situ formation is recently revisited (Boley et al., 2016;
Batygin et al., 2015), motivated by the discovery of many super Earths (Section 1.1.2) on close-in orbits,
which, if formed before the dispersal of the gas disk, could potentially grow into hot Jupiters.

2The two names are often used rather loosely without referring to their physical properties, as their
internal structures are usually not very well constrained.
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the known exoplanet populations, despite that they do not exist in the solar system.3

The transit survey by the Kepler space telescope (Section 1.2.3) has revealed that planets
with 1R⊕ < Rp < 4R⊕ and periods ! 100 days exist around ∼ 50% of Sun-like stars
(e.g., Fressin et al., 2013), and are often found in compact multi-planetary systems, where
multiple planets reside in closely-packed orbits (Lissauer et al., 2011b; Fabrycky et al.,
2014).

Most of the currently known super-Earths have orbits smaller than that of Venus.
While this may indicate that super-Earths, like hot Jupiters, experienced smooth inward
migration through the interaction with the gas disk (e.g., Goldreich & Tremaine, 1980), in
situ formation from a more massive disk than assumed in the solar-system model (Hayashi,
1981) is also discussed as a viable possibility (e.g., Raymond & Cossou, 2014), given that
they have relatively smaller masses and that they do not need to be formed before the
disk dispersal, unlike Jupiter-sized planets.

The planets in this mass/radius range are known to exhibit a wide range of physical
properties, with their mean densities spanning over almost two orders of magnitudes,
from less than 0.1 g cm−3 (Masuda, 2014) to more than the value (5.5 g cm−3) of Earth
(Carter et al., 2012). Some of them seem to be scaled-up version of Earth consisting of
an iron core overlaid with a silicate mantle (e.g., Weiss et al., 2016), while others need
significant fractions of gas envelopes to account for the observed mass and radius (e.g.,
Lissauer et al., 2013). Both the statistical analysis of observational data and theoretical
modeling of interior structures suggest that the dividing line between the rocky planets
and planets with gaseous envelopes (i.e., “physical” distinction between super-Earths
and mini-Neptunes) exists around 1.6R⊕ (Weiss & Marcy, 2014; Lopez & Fortney, 2014;
Rogers, 2015).

1.1.3 Cold and Warm Jupiters

Given the current precision of the radial velocity measurements (! 1m s−1), Jupiter-
mass planets around several AU from the host star (i.e., Jupiter analogues) are readily
detectable (see Equation 1.4), if monitored for a sufficiently long (! 10 yr) duration (e.g.,
Vogt et al., 2014). The Doppler surveys performed in the past decade showed that the
occurrence rate of such “cold Jupiters” is roughly 10% for FGK stars (see, e.g., Cumming
et al., 2008, who found the occurrence rate of 10.5% for P < 5.5 yr and Mp = 0.3–10MJup

from eight-year measurements).
The same surveys (Udry et al., 2003; Cumming et al., 2008) have also reported the

lack of Jupiter-mass planets with intermediate orbital radii (often called “warm Jupiters”),
below the rise of occurrence around 1AU. Indeed, this so-called “period valley” seems to
make a natural distinction between hot and cold Jupiters in Figure 1.1. The origin of the
period valley and warm Jupiters is not understood and still debated actively (e.g. Dawson
& Murray-Clay, 2013; Dong et al., 2014; Dawson & Chiang, 2014; Huang et al., 2016).

1.1.4 Eccentric Planets

Another notable feature of exoplanets, not captured in Figure 1.1, is their eccentricity
distribution. While the orbits of solar-system planets are mostly circular, except for

3Perhaps we should say that they are not known, or confirmed, to exist; the predicted mass of “Planet
Nine,” a hypothetical planet in the outer solar system, may be in this range (Batygin & Brown, 2016).
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Mercury with e = 0.21, exoplanets exhibit a far wider range of orbital eccentricities,
which are plotted against their semi-major axes in Figure 1.3. For example, HD 80606b,
the planet with one of the largest eccentricities, resides in an almost parabolic orbit with
e = 0.93 (Naef et al., 2001). The possible origins for such high eccentricities are the
gravitational scattering between multiple planets (e.g., Lin & Ida, 1997; Chatterjee et al.,
2008; Jurić & Tremaine, 2008) and long-term gravitational perturbation from a companion
star (e.g., Takeda & Rasio, 2005); these processes will be further discussed in Section 3.1.

Figure 1.3 shows that the maximum eccentricity increases with increasing semi-major
axis (e.g., Butler et al., 2006), with its upper envelope consistent with a constant value of
the orbital pericenter distance q = a(1−e). This is likely due to tidal dissipation; variation
in the star–planet distance over an eccentric orbit causes the time-dependent distortions
of the two bodies, which are eventually dissipated within them. The resulting loss of
orbital energy leads to the orbital circularization, whose timescale depends sensitively on
the minimum star–planet distance q (e.g., Correia & Laskar, 2010). In fact, the same
mechanism may also be responsible for the formation of hot Jupiters, as will be detailed
in Section 3.1.

Figure 1.4 illustrates another feature that larger planets are more likely to have larger
eccentricities (e.g., Wright et al., 2009). Wright et al. (2009) also found that planets in
multi-planetary systems tend to have smaller eccentricities; this trend may be associated
with the correlation with planetary size, as the smaller planets are more often found in
multi-planetary systems. In addition, Dawson & Murray-Clay (2013) identified that gi-
ant planets with semi-major axes 0.1AU–1AU, i.e., warm Jupiters, around metal-rich
stars with [Fe/H] > 0 have higher eccentricities than those around metal-poor stars with
[Fe/H] < 0; the trend can be seen in Figure 1.3 as the lack of blue circles in the corre-
sponding regime. This trend, along with the above eccentricity–mass correlation, may be
the sign of eccentricity excitation due to planet–planet scattering, as more giant planets
are expected to form around more metal-rich stars.

1.2 Planet Hunting in a Nutshell

In the following, we briefly comment on each of the methods used to detect exoplanets
in Figure 1.1. The “direct imaging” method is to capture the light from an exoplanet
directly, while the others infer the existence of planets by observing the radiation from
their host stars and hence are called indirect methods.

1.2.1 Direct Imaging

The most direct way to detect exoplanets around other stars is to actually image them,
as can be done for the planets in the solar system. This requires an extraordinary effort
to overcome the contrast between a planet and its host star.

Suppose, for example, that we try to detect the light reflected by a “second Earth”
around another star, with radius Rp and semi-major axis a. The flux ratio f between the
planet and its host star is then given by

freflection = Ab

πR2
p

4πa2
= 10−10

(
Ab

0.3

)(
Rp

R⊕

)2 ( a

1AU

)−2

, (1.1)
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Figure 1.3 Orbital eccentricity versus semi-major axis of known exoplanets detected with
radial velocities. The exoplanet data are from the confirmed planet catalog at NASA
Exoplanet Archive http://exoplanetarchive.ipac.caltech.edu/index.html. The
dashed line corresponds to the pericenter distance of 0.03AU. The color of each circle
corresponds the metallicity of the planet’s host star.
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Figure 1.4 Orbital eccentricity versus mass of known exoplanets detected with radial ve-
locities. The exoplanet data are from the confirmed planet catalog at NASA Exoplanet
Archive http://exoplanetarchive.ipac.caltech.edu/index.html. The mass is ba-
sically Mp sin i but Mp is plotted if available. The color of each circle corresponds the
metallicity of the planet’s host star.
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where Ab = 0.3 is the bond albedo of the Earth. The ratio corresponds to the magnitude
difference of about 25. To detect such a faint source even as an isolated object, deep
exposures are required.

A more promising approach is to observe the thermal emission from an exoplanet at
longer wavelengths. Assuming that both the planet and star are blackbody radiators, the
contrast in the thermal flux is given by

fthermal =

(
Rp

R⋆

)2 exp(hc/kBTpλ)− 1

exp(hc/kBT⋆λ)− 1
, (1.2)

where kB is the Boltzmann constant, h is the Planck constant, and c is the speed of light
in vacuum. For λ = 10µm, at which the planet at a = 1AU around a Sun-like star is
brightest, the contrast amounts to fthermal ∼ 10−6 ≫ freflection for Rp = R⊕ and R⋆ = R⊙.
Even in the infrared, the problem of resolution needs to be overcome; to resolve a = 10AU
at the distance of 10 pc, a telescope with a diameter of ∼ 5m is required.

For these reasons, the direct imaging method has mainly discovered young, self-
luminous planets far from the host star (Figure 1.1). The mass of each planet is estimated
from the system age and planet luminosity via the cooling model of young Jupiters and
brown dwarfs (e.g., Baraffe et al., 2003). Basically, more massive planets are brighter
at a given age because they cool down more slowly. The planetary mass thus estimated
is usually more reliable for more aged systems because the model is largely independent
from the unknown initial condition for such old systems (Kuzuhara et al., 2013).

1.2.2 Radial Velocity

The acceleration of the host star induced by its planet’s gravity can be detected by
measuring the stellar radial velocity (RV) with spectroscopy. The RV variation of a
planet-hosting star, with respect to the barycentric motion of the system, is given by

v⋆(t) = K⋆ (cos[ω + f(t)] + e cosω) , (1.3)

where e, ω, and f are the eccentricity, argument of pericenter, and true anomaly of the
planetary orbit relative to the star (cf. Appendix A), and the RV semi-amplitude K⋆ is
given by

K⋆ =

(
Mp

M⋆ +Mp

)
na sin i√
1− e2

=

(
2πGM⋆

P

)1/3 Mp/M⋆

(1 +Mp/M⋆)2/3
sin i√
1− e2

=
28m s−1

√
1− e2

Mp sin i

MJup

(
M⋆ +Mp

M⊙

)−2/3( P

1 yr

)−1/3

, (1.4)

with i being the orbital inclination relative to the sky plane (cf. Appendix A).
The RV time series sufficiently sampled over the whole phase yields e, ω, orbital phase,

orbital period, and K⋆. The RV semi-amplitude, combined with P and e, translates into
the constraint on Mp sin i/(M⋆ + Mp)2/3. Given the stellar mass, therefore, one obtains
a dynamical constraint on the planetary mass through the combination Mp sin i. The
quantity is usually called “minimum” planetary mass, since the true planetary mass Mp

is always larger than Mp sin i. Because the RV method alone is not sensitive to the orbit
direction at all, it is only possible for some special cases (e.g., transiting planets with
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i ≃ π/2) that the true planetary mass is obtained from RVs. The masses of RV planets
in Figure 1.1 are either of this minimum mass or the true mass if available.4

Equation (1.4) shows that the signal scales as MpP−1/3 or Mpa−1/2, and so the tech-
nique is biased toward more massive and shorter-period planets (see Figure 1.1). While
it is also true that K⋆ is larger for more eccentric orbits, the sensitivity dependence on
eccentricity is more complex because the finer sampling around the pericenter, where the
RV (only) exhibits significant variations for a highly eccentric orbit, is required to detect
such a planet (Cumming, 2004).

1.2.3 Transit

A planet, if viewed edge-on, periodically passes in front of the stellar disk to produce
periodic “dips” in the stellar flux. Such an eclipse by a planet, usually called “planetary
transit,” provides a way to detect exoplanets with the photometric observation. Below
we summarize its basic concepts and leave the more detailed discussion of the method in
Appendix B.

A great advantage of the transit is that it reveals the planetary radius, which is
inaccessible with any other detection methods. Since the planet can be regarded as a dark
disk in the usual photometry, the depth of the dip, or the transit depth δ, is essentially
given by the ratio of the area of the planetary disk to that of the star:

δ =

(
Rp

R⋆

)2

. (1.5)

The transit observation also yields an extremely precise orbital period, whose precision
is improved linearly with the time baseline. As mentioned above, the RV follow-up of
transiting planets also leads to the true planetary mass, which is otherwise difficult to
obtain. In fact, the process is usually essential to confirm a transiting object to be a
genuine planet, because the transit light curve does not reveal the mass of the object
(but see below for exceptions). Transits also provide the precious opportunity to study
exoplanet atmosphere by analyzing the light that grazes, or is emitted/reflected by, the
upper atmosphere of the planet and reaches to us (transmission/occultation spectroscopy).

As such, transiting planets are advantageous targets for detailed characterization in
many aspects. The problem is how to find them, because the transit can be observed only
for a short duration, and for systems with suitable geometry. For a randomly oriented
planetary orbit, the probability that a given planet transits as seen from an observer on
Earth is roughly R⋆/a; this is ∼ 10% for the most close-in planets, and only 0.5% for
an Earth-like planet around a Sun-like star. Moreover, even if the system does have the
geometry to exhibit transits, we need to observe the star at the right time, since the
transit lasts for a fraction of R⋆/πa of the whole orbital period; typical duration of the

4Strictly speaking, it is always possible that the object with Mp sin i comparable to that of Jupiter is
actually a substellar object (e.g., Sahlmann et al., 2011). It should be noted, however, that the minimum
mass is a priori close to the true mass if the orbit direction is isotropic; for example, the probability that
the true mass is larger than the twice of the minimum mass is only 13%, and the true mass is larger than
the minimum mass only by a factor of 4/π on average.
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transit is given by5

T0 =
R⋆P

πa
= 13 hr

(
P

1 yr

)1/3( ρ

ρ⊙

)−1/3

= 4hr

(
P

10 days

)1/3( ρ

ρ⊙

)−1/3

. (1.6)

Combining all these together, the transit method is strongly biased toward short-period
planets, even more than the RV method. This drawback is overcome by the continuous
monitoring of a large number of stars from space, as made possible by CoRoT (Baglin
et al., 2006b) and Kepler (Borucki et al., 2010) space telescopes, which have brought
ample photometric data with unprecedented precision and time coverage.

This thesis is largely based on the data of transiting systems collected by Kepler.
Below we give a brief overview of the telescope and another detection and characterization
method made possible by Kepler.

The Kepler Space Telescope

The Kepler space telescope is implemented with a differential photometer with a 115 deg2

field of view and continuously monitored the brightness of ∼ 160000 stars located in the
constellations of Cygnus and Lyra (Borucki et al., 2010). During the main mission over
four years between 2009–2013, Kepler has discovered more than 4000 transiting planet
candidates, whose orbital periods and radii are estimated from the transit light curve.
Among these candidates, more than 1000 are “confirmed” to be genuine planets as of
April 2016, by determining their masses and/or showing that they are highly unlikely
to be astrophysical false positives: phenomena that mimic the transit-like signal (mostly
blended eclipsing binaries).

The preliminary stellar parameters of the target stars, including magnitudes in differ-
ent bands, effective temperature, surface gravity, and metallicity, are listed in the Kepler
Input Catalog (KIC, Brown et al., 2011) available at the MAST archive,6 and each star
is given a KIC number. If the periodic dips are found in the light curve of a star, the
star is listed up as a Kepler Object of Interest (KOI, Coughlin et al., 2015), and given a
KOI number of the form “KOI-xxxxx”. The source object of the transit-like signal is also
given a KOI name of the form “KOI-xxxxx.yy”, where yy distinguishes multiple signals
found for one star, and assigned beginning from 01 in the order of detection. Finally, if
the transit-like signal is confirmed to be due to a genuine planet, the system is given a
Kepler number like “Kepler-zzz,” and each planet is assigned a lower-case letter beginning
from “b,” in the order of increasing distance from the host star.7

Kepler observes a target in two cadences, long cadence (LC; 29.4min) and short ca-
dence (SC; 58.35 s). The LC photometry has been obtained for all the targets, while the
SC data exist for a selected set of targets (mainly KOIs, and sometimes include eclipsing
binaries). The photometric precision integrated over 6.5 hr (comparable to the typical

5We use the Kepler’s third law divided by the stellar radii cubed, 4π2(a/R⋆)3/P 2 = GM⋆/R3
⋆, to

derive this scaling. The relation shows that the timescale of the transit essentially fixes the density of the
system, which is the only physical dimension constrained from the light curve alone (see also Appendix
B).

6https://archive.stsci.edu/index.html
7The letter “a” is reserved for the central star. If the host star forms a multi-stellar system, the

capital letter follows after the Kepler number to specify the planet-hosting component (like “Kepler-16A
b”). The order of planet letters is sometimes irregular because inner planets may be found after the outer
one(s) in some cases.
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transit duration; Equation 1.6) is estimated to be better than 100 ppm (= 10−4) for a
V ! 14 star typical in the Kepler target (Van Cleve et al., 2016). The value is compara-
ble to the transit depth expected for a Sun-Earth system with Rp/R⋆ ≃ 0.01.

The primary mission ended in the summer of 2013 due to the loss of two reaction
wheels. Adopting a tricky way of operating the spacecraft and maintaining its pointing,
however, the telescope has now been reused for the K2 mission to sequentially observe
different patches of the sky along the ecliptic for shorter (∼ 80 days) durations (Howell
et al., 2014) and is still in operation as of May 2016.

Transit Timing Variation

The long-term, continuous monitoring by Kepler has made it possible to detect gravita-
tional interaction between multiple planets in the same system. The temporal modulation
of the orbital period of a transiting planet, measured very precisely from the interval be-
tween the successive transits, allows for the detection of another non-transiting planet
and/or detailed characterization of the transiting ones. The method is referred to the
transit timing variation (TTV, Miralda-Escudé, 2002; Holman & Murray, 2005; Agol
et al., 2005).

TTVs allow for the confirmation of transiting planet candidates identified by Kepler,
without (often demanding) RV observations. Indeed, the technique is often the only option
for many of the multi-transiting systems that are too faint to observe RVs with a sufficient
precision in a reasonable amount of time, and hence essential for maximizing the scientific
yield from the Kepler data. Moreover, TTVs serve as a valuable probe of the diversity of
low-mass planets (see Section 1.1.2) owing to its sensitivity down to Earth mass or even
smaller (Jontof-Hutter et al., 2015), and have discovered planetary systems with unique
properties (e.g., Lissauer et al., 2011a; Sanchis-Ojeda et al., 2012; Carter et al., 2012;
Masuda, 2014). An attempt has also been made to use such precise timing data for many
planetary systems to constrain the time-variation of a fundamental constant (Masuda &
Suto, 2016).

1.2.4 Microlensing

When a foreground star happens to pass very close to our line of sight to a more distant
background star, the foreground star acts as a lens to split the background star into several
images. The split images are typically unresolved and simply observed as a temporal
magnification of the background star (microlensing) because surface brightness of the
source is unaffected by lensing.8 If the lens object hosts a planet, it causes an additional,
short-lived magnification feature, which can be used to infer the planet-to-lens mass ratio
and sky-projected lens–planet distance (see, e.g., Gaudi, 2010, for a review).

To significantly perturb the image, planets need to be located close to the Einstein
ring, whose angular radius is given by

θE =

√
4GML

c2

(
1

dL
− 1

dS

)
, (1.7)

where ML is the lens mass, and dL and dS are the distances to the lens and source,
respectively. The configuration typical for planet detection is that the source lies in the

8See, e.g., section 9.2 of Weinberg (2008).
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Galactic bulge (with dS = 8kpc), while the lens is in the Galactic disk (dL ∼ 4 kpc). The
corresponding angular and physical Einstein radii are

θE = 550µarcsec×
(

ML

0.3M⊙

)1/2( dS
8 kpc

)−1/2(dS/dL
2

− 1

)1/2

(1.8)

and

θEdL = 2.2AU×
(

ML

0.3M⊙

)1/2( dS
8 kpc

)1/2 [dL/dS − (dL/dS)2

0.25

]1/2
. (1.9)

The lensed multiple images are therefore typically unresolved, as mentioned above, and
the microlensing method is typically sensitive to planets around the snow line. It can also
be shown that the duration and amplitude of the magnification of planetary origin only
weakly depends on the planetary mass (Gaudi, 2010). For these reasons, the microlensing
provides a unique probe of the parameter region that is out of reach of other methods;
this is clearly illustrated by yellow circles in Figure 1.1. On the other hand, it is difficult
to follow-up the planet found by microlensing for further characterization. Hence this
methodology is suited to discussing the statistics, rather than detailed characterization of
individual systems.

1.2.5 Timing

Suppose that a planet-hosting star has a “clock” that can be read by a distant observer
like us. Due to the finite speed of light, the gravitational acceleration induced by the
planet causes the temporal delay and speed up of the clock, whose amplitude ∆t is given
by

∆t =
a

c

Mp

M⋆ +Mp
= 1.5ms×

( a

AU

)(Mp

M⊕

)(
M⋆ +Mp

M⊙

)−1

. (1.10)

The estimate shows that planets as light as Earth can be detected if the host “star” is an
astrophysical object with an ultra-precise clock, i.e., a pulsar. This was indeed the case
for a planetary system around the millisecond pulsar PSR B1257+12 (Wolszczan & Frail,
1992). It is worth noting that the discovery prevails the detection of the “first” exoplanet
around a normal star in 1995.

If the companion is a stellar-mass object, less precise clocks are also useful. The
examples of such clocks include eclipsing binaries (see Chapter 6), stars exhibiting coherent
pulsations (e.g., Shibahashi & Kurtz, 2012), and inner short-period transiting planets. In
addition to the above “light-travel time” effect, the clock can be physically delayed due to
the gravitational tidal force. It is usually the latter effect that is referred to as TTVs in
the exoplanet literature, since the light-travel time effect due to a planetary-mass object
is hard to detect without such an ultra-precise clock as a pulsar. In Figure 1.1, the planets
detected with these methods, including TTVs, are marked as “timing” altogether.

1.2.6 Other Methods

Astrometry

High-precision astrometry can directly observe the sky-plane stellar motion caused by a
planet. The angular resolution ∆θ required to detect a planet around a star at distance
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d is

∆θ =
a

d

Mp

M⋆
= 5× 10−4 arcsec

( a

5AU

)( d

10 pc

)−1( Mp

MJup

)(
M⋆

M⊙

)−1

. (1.11)

The precision required for the exoplanet detection is currently hard to achieve, and so
the applications of this technique has so far been limited to sub-stellar mass objects
including brown dwarfs (e.g., Sahlmann et al., 2013). It is expected that GAIA mission
by the European Space Agency will be able to detect planetary mass companions with
astrometry.

Astrometric detection of the sky-plane orbit as a function of time allows for the recon-
struction of the full orbit in three-dimensions. If successfully applied to planets with RV
measurements, therefore, the true mass of the companion can be obtained without the
ambiguity of orbital inclinations. Such analyses have been performed for some “Jupiter-
mass planets” detected with RVs to reveal their non-planetary nature by showing that
the orbit is close to face-on (e.g., Sahlmann et al., 2011).

Orbital Brightness Modulation

Close-in planets generate the brightness modulation of the star–planet system in phase
with the orbital motion, which is detectable only with high-precision space-based pho-
tometry (e.g., Shporer et al., 2011). The modulation usually consists of the ellipsoidal
variation caused by the tidal distortion of the star (Morris & Naftilan, 1993), Doppler
beaming due to the stellar reflex motion (Loeb & Gaudi, 2003), and the phase modula-
tion of the light emitted and/or reflected by the planet, among which the first two can
be used to constrain the companion’s mass. Several transiting planets were confirmed by
examining this orbital brightness modulation (e.g., Faigler et al., 2013).

1.3 Directions of Stellar Spin and Planetary Orbits

Another notable feature of exoplanets, which this thesis focuses on, is the misalignment
between the axes of stellar spin and planetary orbit (spin–orbit misalignment). In the
solar system, the equator of the sun and orbital planes of the eight planets are aligned
within 7◦. This regularity has been the basis of the standard paradigm of planet formation
from the rotating protoplanetary disk, which has a long history that dates back to Nebular
Hypothesis by Kant and Laplace.

Observations, however, have shown that it is not necessarily the case in exoplanetary
systems, especially for hot Jupiters (Section 1.1.1), as illustrated in Figure 1.5. In this
figure, each filled circle corresponds to each planetary orbit, where the distance from
the star is proportional to the logarithm of the orbital period or semi-major axis, and
the position angle shows the points where each orbit crosses the sky plane from this
side of the paper. The latter angle, denoted as λ, is equivalent to the sky projection
of the stellar obliquity, the angle between the stellar spin and planetary orbital axes,
and measured spectroscopically via the so-called Rossiter-McLaughlin (RM) effect (see
Section 2.2 for more detail). While we do see some clustering of planets with spin–orbit
alignments comparable to the solar system, more than one third of the sample systems
have significantly misaligned orbits (see also the histogram in Figure 1.6), and some even
revolve in the opposite directions to the stellar rotation (retrograde orbit).
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Figure 1.5 Summary of the measurements of the sky-projected obliquity λ (Section 2.1)
as of April 2016. The list of the systems is based on Holt-Rossiter-McLaughlin Encyclo-
pedia by René Heller,9and the system parameters are retrieved from NASA Exoplanet
Archive,10although the spurious measurements of λ are omitted here in a spirit similar
to Albrecht et al. (2012). Each filled circle corresponds to the descending node of each
planet, where the planetary orbit crosses the sky plane from this side of the paper to the
other. Distance from the central star (yellow circle at the origin) is proportional to the
logarithm of the orbital period. Blue diamonds are the values for some of the planets
in the solar system, with the blue-shaded region showing the entire range of the stellar
obliquity for the solar-system planets. Red circles are planets in multi-transiting systems,
which will be further discussed in Section 2.4.3.

Currently, most of such measurements are for hot Jupiters, and the misalignment
is often attributed to their “violent” migration including few-body dynamical processes,
as will be discussed in Chapter 3. This scenario, however, is still incomplete in many
aspects, and a part of the observed misalignments may possibly be a generic feature of
exoplanetary system that is not related to the migration. If this is the case, the good
spin–orbit alignment in the solar system is not the norm but simply an initial condition.
This thesis describes an effort to understand the origin of the spin–orbit misalignment
and its relationship to the dynamical history of diverse exoplanets.

Is the Obliquity Distribution a Simple Function?

The first question to ask may be whether the distribution of λ could be compatible with
a simple function of the true stellar obliquity ψ. For that purpose, the geometric effect
needs to be taken into account because λ is the sky projection of ψ (see Figure 2.1).
Fabrycky & Winn (2009) answered this question negatively, showing that the observed
distribution of λ cannot be well described with an isotropic function of ψ nor a Fisher
distribution on a sphere with a constant dispersion. The failure of a single distribution is
essentially because the observed λ has both a significant peak around λ = 0◦ and a long
tail (see Figure 1.6), which are difficult to be reconciled simultaneously. The result hints
a rather complex origin of the observed obliquity distribution; that will be the main topic
of discussion in the following chapters.

9http://www2.mps.mpg.de/homes/heller/
10http://exoplanetarchive.ipac.caltech.edu
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Figure 1.6 Histogram of the λ measurements in Figure 1.5. The vertical axis is normalized
so that the integral over the entire range of λ be unity.

1.4 Plan of this Thesis

This thesis is to deal with the origin of the spin–orbit misalignment from an observational
viewpoint. While the measurements of stellar obliquities presented in Figure 1.5 have
mainly been performed using a spectroscopic technique (i.e., the RM effect), here we
focus on the methods using high-precision photometric data obtained by the Kepler space
telescope. We will show how such methods help to understand the origin of the spin–
orbit diversity in exoplanetary systems by providing the information complementary to
the spectroscopic one and by extending the obliquity measurements to systems that were
beyond the scope of the RM effect.

We begin with summarizing the methods of obliquity measurements and current ob-
servational results in Chapter 2. Here we also examine the correlation between the stellar
obliquity and other system properties, especially the one with the stellar effective tem-
perature, which will give clues for understanding the origin of high obliquities. Chapter
3 describes two contrasting theoretical scenarios for the origin of the spin–orbit misalign-
ment. The first one is the “high-eccentricity migration,” which produces large spin–orbit
misalignments, as well as large orbital eccentricities, in the course of the migration of
hot Jupiters. A great deal of discussion will also be devoted to the interpretation of the
trend with the effective temperature in the context of this scenario, referring to its major
drawbacks as well. We then comment on the second scenario at the other extreme, that
the observed spin–orbit misalignment is of primordial origin, rather than the outcome of
the violent dynamical migration of hot Jupiters. The chapter is closed by listing impor-
tant questions that need to be addressed for settling this nature and nurture problem,
emphasizing the need of extending the obliquity measurements to planets other than hot
Jupiters.

In Chapters 4 and 5, we present measurements of stellar obliquities using the high-
precision photometric data obtained by the Kepler spacecraft. The former makes use of
asteroseismology for the measurements of the true obliquity, rather than the sky-projected
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obliquity usually obtained from the spectroscopic technique. We present, for the first time,
a consistent procedure for the joint analysis of spectroscopic and photometric data, with
the applications to two important systems. The latter focuses on another methodology
of gauging the obliquity using gravity darkening exhibited by fast-rotating stars. We
present an updated analysis of this phenomenon in the Kepler-13A system, where the
gravity-darkening method and the spectroscopic one was known to disagree. We provide
a possible solution for this discrepancy and propose a procedure to test this conclusion
with future follow-up observations. We also apply the same technique to the HAT-P-7
system for the first time, and give a cross-validation of the result in Chapter 4.

In Chapter 6, photometric data are used for characterizing a triple-star system in a
hierarchical configuration. Here the modeling of eclipse light curves is combined with the
dynamical modeling of the multi-body gravitational interaction to yield precise masses and
radii of three stars in the system essentially from the photometric data alone. The analysis
presented here does not only expand the potential of high-precision photometric data, but
also serves as a useful test bed for characterizing hierarchical multi-planetary systems that
would be direct evidence for the dynamical interaction and migration scenario as discussed
in Chapter 3.

Finally, Chapter 7 summarizes the results and concludes. Possible directions of future
studies are also presented.





Chapter 2

Measurements of Stellar Obliquities

As mentioned in Chapter 1, hot Jupiters exhibit a wide range of stellar obliquities. The
knowledge comes from the spectroscopic technique, that is, analysis of the Rossiter-
McLaughlin (RM) effect measured with the radial velocity (RV) data. While the RM
effect is difficult to observe for planets with smaller radii or on wider orbits than hot
Jupiters, new methods based on the high-precision photometric data have recently been
developed to provide the complimentary information on those planets. In this chapter, we
review the methods to measure stellar obliquities and summarize our current knowledge
from observations. Their implications and the relationship with theory of hot-Jupiter
formation will be discussed in the next chapter.

2.1 Definition and Terminology

The stellar obliquity, or the spin–orbit angle, is the angle between the stellar spin and
planetary orbital axes, defined between 0 and π. Throughout this thesis, we use ψ to
denote this angle. We call the orbits with ψ < π/2 prograde, and those with ψ > π/2
retrograde.

It is usually difficult to measure ψ for individual systems. Instead, it is easier to mea-
sure either one of the sky-plane or line-of-sight components of the true stellar obliquity ψ,
which are illustrated in Figure 2.1. The former angle, denoted by λ (Ohta et al., 2005), is
called the sky-projected obliquity; it is the angle of the sky-projected orbital axis measured
counter-clockwise from the sky-projected spin axis. The line-of-sight misalignment can
be inferred from the stellar inclination i⋆, which is the direction of the stellar spin axis
relative to our line of sight. For transiting exoplanets with their orbital inclination iorb
close to π/2, stellar inclination significantly different from π/2 immediately concludes the
spin–orbit misalignment, while the opposite is not necessarily the case. Note that the
two angles i⋆ and λ serve as the polar and azimuth angles to specify the direction of the
stellar spin vector relative to the orbital one in three dimensions, with Z-axis being our
line of sight. The true stellar obliquity ψ is related to the sky-projected angle λ and the
two inclinations iorb and i⋆, via the law of cosines in spherical trigonometry:

cosψ = cos iorb cos i⋆ + sin iorb sin i⋆ cosλ. (2.1)

Note that the measurements of obliquities discussed in this thesis are all for transiting
systems. In fact, it is always advantageous to measure ψ in transiting systems, because
iorb, one of the three angles required to specify ψ, is already fixed very precisely.

19
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Figure 2.1 Definitions of iorb, i⋆, λ, and ψ in this thesis. The orbital inclination, iorb, is
the angle between the planetary orbital axis (blue arrow) and the observer’s line of sight.
In a transiting system, iorb is usually very close to π/2 and hence the orbital axis almost
coincides with its projection onto the plane of the sky. Inclination of the stellar spin axis,
i⋆, is similarly defined as the angle between the stellar spin axis (red arrow) and the line
of sight. The angle between the two axes (red and blue ones), ψ, is the stellar obliquity or
the spin–orbit angle. Its sky projection, λ, denotes the angle between the sky projections
of the same two axes.

2.2 Obliquity from Spectroscopic Transit

Obliquities have traditionally been measured using the spectroscopic technique. The two
techniques described here, both based on the same phenomenon, allow us to measure the
sky-projected angle λ.

2.2.1 The Rossiter-McLaughlin Effect

Stellar rotation, which is faster than the planet-induced stellar motion by an order-of-
magnitude, does not usually affect RVs. This is because the rotational velocity profile
of a star is symmetric with respect to its sky-projected rotation axis; half of the surface
is moving toward us, while the other away, and their net contribution is zero. In other
words, stellar rotation only causes a symmetric broadening of its absorption lines, which
does not shift the center of the lines.

A transiting planet breaks this symmetry and results in anomalous RV variations,
known as the Rossiter-McLaughlin effect (Rossiter, 1924; McLaughlin, 1924). The pattern
of the velocity anomaly depends on the relationship between the stellar rotation axis and
orbit of the transiting planet, both projected onto the plane of the sky (see Figure 2.2). If
the planetary orbit is prograde, for example, the planet first blocks the approaching side
of the star and then the receding side, and so the star apparently moves away, and then
toward us (left panel). If the orbit is retrograde, on the other hand, the opposite pattern
is observed (right panel).

As a first-order approximation, the RM effect can be simply described as a shift in
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Figure 2.2 Schematic illustration of the Rossiter-McLaughlin effect. The left panel illus-
trates a misaligned prograde orbit, while the right one shows a retrograde case.

the intensity-weighted centroid of the absorption lines in the velocity space (Ohta et al.,
2005). Its amplitude ∆vRM is then given by

∆vRM = v sin i⋆

(
Rp

R⋆

)2 √
1− b2 = 100m s−1

(
v sin i⋆

10 km s−1

)(
Rp/RJup

R⋆/R⊙

)2 √
1− b2, (2.2)

where v sin i⋆ is the line-of-sight component of the stellar rotational velocity and b is the
impact parameter of the transit normalized to R⋆ (cf. Appendix B). The formula gives a
useful order-of-magnitude estimate for the expected anomaly, although we need to take
into account other complicated effects for a more precise, quantitative analysis. Note
that the value of ∆vRM is comparable to or even larger than that of the orbital RVs for
a Jupiter-sized planet (cf. Equation 1.4), while the detection is challenging for smaller
planets and/or stars with a rotation velocity similar to the sun (about 2 km s−1).

Precisely speaking, a transiting planet does not induce the net shift of the absorption
lines, as is the case for the orbital motion. Rather, it distorts the line profile (cf. panel
(b) of Figure 2.3), and fitting such distorted lines with a symmetric template produces
the anomalous velocity variations. The RM anomaly, therefore, depends on the specific
manner to derive the velocity shift from given absorption lines and does not agree with the
value computed as a centroid shift in general. Such deviations from the value computed
with the centroid formula by Ohta et al. (2005) was first pointed out by Winn et al. (2005).
The improved formulae taking into account specific procedures of the analysis, as well as
other minor but significant effects to shape the absorption lines, have been developed by
Hirano et al. (2010, 2011) for the iodine-cell technique, and by Boué et al. (2013) for the
cross-correlation based method.

For a reliable measurement of the sky-projected obliquity λ with the RM effect, it is
essential to determine the time when ∆vRM becomes zero relative to the central time of
the transit. The two times are equal when λ = 0◦, while in the case of the left panel
in Figure 2.2, the former time, when the planetary orbit crosses the sky-projected stellar
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rotation axis, is earlier than the central time of the transit, i.e., the midpoint of the transit
chord. For this reason, a joint analysis with the photometric transit light curve (which
determines the transit center), along with a reliable determination of the orbital radial
velocity (which fixes the zero point of the RV anomaly), greatly improves the precision
and accuracy of the measurement (Winn et al., 2005, and Chapter 4 of this thesis). It is
also ideal that the transit impact parameter is not too close to zero, or the RM anomaly
is always symmetric with respect to the transit center even for a spin–orbit misaligned
case. The value of λ obtained in that case totally depends on the prior constraint on
v sin i⋆ and needs to be taken with care.

2.2.2 Doppler Tomography

As explained in the previous section, the essence of the RM effect is the distortion, rather
than the shift, of the stellar absorption lines. The technique described here is to directly
detect the distortion as a function of time. The shape of the line distortion is characterized
as a “bump” in the absorption lines, whose position and width are determined by the line-
of-sight rotation velocity distribution under the planetary disk, i.e., position and radius
of the planetary disk (see panel (b) of Figure 2.3). During a planetary transit, the central
wavelength of the bump thus moves accordingly to the planetary motion. The range of
wavelength/line-of-sight velocity over which the bump, or the planetary “shadow” moves,
depends on the transit impact parameter and sky-projected obliquity λ, as illustrated in
Figure 2.3a. The method was first applied to a transiting planet by Collier Cameron et al.
(2010a).

While it is more demanding to extract the subtle planetary shadow from the noisy
spectra than to measure RVs, this technique, if applicable, allows for a more precise mea-
surement of λ with fewer assumptions than the RM measurement, without the ambiguity
of separating the orbital RVs and RM anomaly for instance (Albrecht et al., 2013). More-
over, it provides a unique possibility to constrain obliquities of fast-rotating planet-hosting
stars, for which RVs (and hence the usual RM effect) cannot be measured very precisely
due to the significant rotational broadening of the spectral lines (Collier Cameron et al.,
2010b; Johnson et al., 2014; Bourrier et al., 2015). The same is also true for early-type
stars that exhibit few absorption lines, for which precise RV velocimetry is impossible.

2.3 Obliquity from High-Precision Photometry

High-precision, continuous photometry as obtained by Kepler opened up new possibilities
to gauge ψ. As will be described in detail below, they basically constrain i⋆ and are often
applicable regardless of the planet properties. They are therefore complementary to the
spectroscopic methods both in terms of applicable targets and derived information.

2.3.1 Asteroseismology

The long-term, uninterrupted, and extremely precise data of the stellar brightness pro-
vided by space-borne instruments, including MOST (Walker et al., 2003), CoRoT (Baglin
et al., 2006a,b), and Kepler (Borucki et al., 2010), have made it possible to probe the
internal structures of many stars through the detection of their oscillation modes with
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Figure 2.3 Schematic illustration of the Doppler tomography method. (a) The bottom
panel shows the motion of the planetary shadow (i.e., radial velocity corresponding to
the central wavelength of the shadow) as a function of time, for the three different orbits
illustrated in the top panel. (b) Illusrtation of the planetary shadow in the absorption
line profile.

unprecedented precisions. The frequencies of oscillations, which are determined by the
internal structure of the star (i.e., property of the cavity), provide precise knowledge
about the stellar interior that is otherwise far out of reach. Such information from aster-
oseismology is valuable for precise and accurate characterization of explanetary systems
as well (e.g., Carter et al., 2012), not to mention the stellar physics. More details on the
recent development of asteroseismology may be found in recent conference proceedings
(e.g., Shibahashi et al., 2012; Shibahashi & Lynas-Gray, 2013; Guzik et al., 2014).

In addition to the fundamental stellar properties, asteroseismology also reveals the
direction of the stellar rotation axis (i.e., stellar inclination i⋆ in Figure 2.1) through the
amplitudes (rather than frequencies) of the oscillation spectrum (Gizon & Solanki, 2003).
As is exactly the case for energy eigenstates of a quantum mechanical system in a spher-
ically symmetric potential, each oscillation mode is labeled by three quantum numbers
(n, l,m). While the (2l + 1)-modes with the same (n, l) but different m have the same
frequencies in the absence of stellar rotation, these degenerate modes can be separated
in the power spectrum once the stellar rotation breaks the degeneracy, resulting in the
typical splitting of 1/Prot with Prot being the stellar rotation period. These split modes
would usually have the same energy because we expect that the pressure-mode oscillation
observed for Sun-like stars is excited by turbulence without any preferred direction. The
disk-integrated strength1 of each mode with different m, however, depends on the viewing
angle; the modes with more angular nodes always visible from the observer tend to be
weaker, because the oscillations on both sides of a node cancel each other. The relative

1Remember that the surface is not resolved for stars, unlike the case of asteroseismology for the sun
(i.e., helioseismology).
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heights of the modes with the same (n, l) but with different m thus yields i⋆ through the
following simple formula:

E(l,m, i⋆) =
(l − |m|)!
(l + |m|)!

[
P |m|
l (cos i⋆)

]2
, (2.3)

where P |m|
l is the associated Legendre function, and E integrated over 0 < cos i⋆ < 1 is

normalized by (2l + 1)−1.
For transiting systems with orbital inclination close to π/2, stellar inclination gives

a measure of the “line-of-sight” misalignment, which is complementary to the “sky-
projected” misalignment constrained from the RM effect (see Figure 2.1). In fact, if
the stellar inclination i⋆ thus obtained is combined with the RM effect, true stellar obliq-
uity ψ, which is usually hard to constrain, is obtained. In Chapter 4 we discuss the first
attempt of such an application. For the planets not amenable to the RM measurement
due to their small radii or long orbital periods, on the other hand, the constraint on
ψ from asteroseismic i⋆ alone is usually not very strong for Sun-like stars. Rather it is
better suited for statistical inference, given the advantage that the method can be ap-
plied regardless of the property of the planets (Campante et al., 2016). Meanwhile, i⋆
can be constrained more precisely for evolved stars, for which asteroseismology led to an
important discovery (Huber et al., 2013, see Section 2.4.3).

2.3.2 Gravity Darkening

Centrifugal force due to rapid stellar rotation reduces the surface gravity around the
stellar equator and elongates it relative to the pole. The elongation expands the intervals
of the equipotential surfaces, and hence reduces the temperature gradient. As a result,
stellar flux becomes smaller around the equator than the pole. This is the phenomenon
known as gravity darkening, and the flux dependence on the surface gravity g is given by

Teff ∝ gβ, β = 0.25 (2.4)

for a star with a radiative envelope (von Zeipel’s law; von Zeipel, 1924).
If a planet transits such a “gravity-darkened” star, the above equator-to-pole bright-

ness contrast deforms the transit light curve (Figure 2.4). Since the shape of this anomaly
depends on the position of the bright stellar pole relative to the planetary orbit, stellar
obliquity can be inferred from the gravity-darkened transit light curve (Barnes, 2009). The
method has been applied to several transiting planets (Barnes et al., 2011, 2015; Ahlers
et al., 2015) and eclipsing binaries around fast-rotating stars (Philippov & Rafikov, 2013;
Zhou & Huang, 2013; Ahlers et al., 2014), for which obliquity measurements with other
techniques are challenging. In the only case where the Doppler tomography was also
applicable (Johnson et al., 2014), however, the result from the gravity-darkening method
was shown to disagree with the latter measurements. Moreover, gravity-darkening mea-
surements performed by different authors sometimes report inconsistent results (Zhou &
Huang, 2013; Ahlers et al., 2014) for some unknown reason. These issues will be further
discussed in Chapter 5.

The theory of gravity darkening is directly tested by actually imaging the surface
brightness distribution of nearby rapid rotators with interferometry (e.g. Monnier et al.,
2007), and more indirectly with the modeling of ellipsoidal variations of close binaries
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Figure 2.4 Schematic illustration of the gravity-darkened transit. The transit is deepest
when the planet is closest to the bright pole of the star (white region). Note that here
we only show the brightness distribution due to the gravity darkening, while the actual
brightness profile is dominated by the limb darkening.

(e.g. Djurašević et al., 2006). While the observed profile largely agrees with the theoreti-
cal predictions, some observations report possible deviation from the classical von Zeipel
law. This may be due to the very rapid rotation close to the break up (Espinosa Lara
& Rieutord, 2011) or may be due to the poorly-understood processes including the con-
vection or magnetic field (Rieutord, 2015). Indeed, gravity darkening of lower-mass stars
with convective envelope seems far from being understood.

2.3.3 Spectroscopic v sin i⋆ and Stellar Rotation Period

The width of absorption lines yield v sin i⋆, the projected rotational velocity of the star.
If we have the independent knowledge on v = 2πR⋆/Prot, the stellar equatorial rotation
velocity, we can constrain i⋆ and compare it to iorb ≃ π/2 for transiting systems. The
stellar radius can usually be estimated by stellar modeling based on the stellar atmospheric
parameters obtained from spectroscopy, or by asteroseismology if applicable. The problem
is how to estimate Prot, for which two methods have been proposed.

The first is to rely on the empirical relation between the stellar age and the rotation
period, which forms the basis of gyrochronology. In general, older stars tend to rotate
more slowly presumably due to the magnetic braking, which produces a good correlation
with the age and rotation period. While gyrochronology estimates the stellar age from the
rotation period, we could use the relation in an opposite way to obtain the latter from the
former, derived from spectroscopy or asteroseismology. Schlaufman (2010) applied this
method to 75 transiting planets and identified 10 systems exhibiting possible spin–orbit
misalignments.

The second is to use photometric modulation of the star due to the star spots on
the stellar surface. The Kepler data made it possible to infer the rotation periods of
tens of thousands of stars in this way (McQuillan et al., 2013; Walkowicz & Basri, 2013;
McQuillan et al., 2014). Hirano et al. (2012a, 2014) applied the method to∼ 100 transiting
systems for which spectroscopic v sin i⋆ and R⋆ are obtained. While they did not find any
significant difference for single- and multi-transiting samples, Morton & Winn (2014),
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who adopted a more sophisticated statistical approach, presented a piece of evidence that
planets in single-transiting systems have higher obliquities than those in multi-transiting
systems.

Both methods do not give very strong constraints on individual systems due to rel-
atively large uncertainties in the spectroscopic v sin i⋆ and R⋆. In addition, in the first
method the rotation period estimated from the gyrochronological relation is very un-
certain due to the inherent scatter in the empirical relation as well as the difficulty in
precisely estimating the stellar age. Nevertheless, they can be applied to a large number
of samples and thus may benefit the statistical inference with larger samples.

2.3.4 Spot Anomaly

If a transiting planet crosses over a star spot, we observe an instantaneous increase in
the relative flux because of the smaller intensity within the spot. Such anomalies, if
observed multiple times via continuous photometric monitoring, also allow for constraining
stellar obliquities (Sanchis-Ojeda et al., 2011). While it is a priori likely to observe such
recursive spot crossings for lower-obliquity systems, the method is also applicable, at least
in principle, to the misaligned case as demonstrated by Sanchis-Ojeda & Winn (2011).

In addition to the in-transit anomaly, star spots also induce out-of-transit flux mod-
ulation over the timescale of stellar rotation period. The modulation, if continuously
monitored as well, greatly helps the above decoding, because the global modeling of such
out-of-flux modulations reveals the stellar rotation period and even the longitudinal phase
of the spot at a given epoch (Nutzman et al., 2011; Sanchis-Ojeda et al., 2012). The es-
sentially same effect also manifests as the correlation between the local derivative of the
out-of-transit flux and shifts in the transit times induced by the spot anomaly; the cor-
relation can be used to distinguish the prograde and retrograde motion (Mazeh et al.,
2015a).

2.3.5 Spot-Modulation Amplitude

The methods discussed so far are, at least in principle, applicable to individual systems,
while this method is statistical in nature.

Brightness modulation due to star spots tend to be weaker when the stars are seen
from the pole. For such a configuration, only the spots around the equator contribute to
the brightness modulation, because those around the pole are always visible to us. The
spots responsible for the observed modulation in this case are located close to the limb
of the stellar disk, and so they produce only minor modulations due to foreshortening
and limb darkening. Thus, if we compare the spot-modulation amplitudes of stars that
host transiting planets (where planetary orbits are close to edge on) with that do not, we
can evaluate correlation between the stellar inclination and planetary orbital inclination:
the stars hosting transiting planets should show the modulations of larger amplitudes
than those without transiting planets, if the stellar equatorial plane is correlated with the
planetary orbital plane.

Mazeh et al. (2015b) applied this analysis to 993 KOIs (i.e., stars hosting candidate
transiting planets) and 33614 Kepler stars with no known transiting planets. They found
that cool planet-hosting stars with Teff ! 6000K exhibit a clear signature of the spin–orbit
correlation (i.e., alignment), while their hotter counterparts show a weaker correlation and
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hence statistically have higher stellar obliquities. Since the majority of these KOIs are
relatively small planets on wider orbits than hot Jupiters, the result demonstrates that
the high obliquity of hot stars identified in the RM sample is not specific to hot Jupiters,
as will be discussed in Section 2.4.1.

More importantly, they found no sharp obliquity dependence on the orbital period for
the cooler KOI sample, as later confirmed by Li & Winn (2016) with a more elaborated
analysis.2 The fact argues against the scenarios that the current obliquity distribution
has been sculpted by the tidal star–planet interaction, as will be discussed in the next
chapter.

2.4 Correlations with the System Properties

As of April 2016, stellar obliquities have been measured for about 80 individual systems.3

Since most of these constraints are from the spectroscopic transit observations, they are
mainly Jupiter-sized planets and only the sky-projected obliquities λ are constrained. As
we have seen in Figure 1.5, λ of exoplanetary systems distribute broadly; about one third
of the sample exhibit spin–orbit misalignments in terms of λ at the three-sigma level.

In this section, we summarize our current knowledge on the obliquity, both on λ from
the RM measurements and statistical results from various photometric techniques de-
scribed above. We especially focus on the correlation with other properties of the system,
which will be an important clue to understand the origin of the spin–orbit misalignment.
The theoretical interpretation will be separately discussed in Chapter 3.

2.4.1 Hot Stars (with Hot Jupiters) Have High Obliquities

The most significant trend in the stellar obliquity known to date is the correlation between
the misalignment and the effective temperature of the host star (or whatever else corre-
lated to the latter). Winn et al. (2010) first pointed out that large spin–orbit misalign-
ments are preferentially found around hot stars with Teff " 6250K, which was confirmed
by Albrecht et al. (2012) with a larger sample. Similar trends can be seen in terms of the
stellar mass (Schlaufman, 2010), stellar age (Triaud, 2011), and stellar rotation period
(Dawson, 2014), which are all well correlated with the stellar effective temperature for
main-sequence stars.

Figure 2.5 shows the updated compilation of this λ–Teff relation for the same sample as
in Figure 1.5. Here we choose Teff = 6100K as a dividing line following Winn & Fabrycky
(2015), who also discussed the latest statistics. The trend is still clear except for the four
systems in the upper left part labeled with the planet names. It is worth noting that
they all have relatively large a/R⋆ > 10, and often have smaller masses (Figure 2.6), i.e.,
they are not hot Jupiters. These features support the tidal origin of the trend, as will be
discussed in the next chapter.

Until recently, the trend has been discussed mainly in the context of hot Jupiter
formation, as a natural consequence that obliquities have been measured only for hot
Jupiters. The statistical inference using the spot-modulation amplitude (Section 2.3.5),
however, recently showed that planets other than hot Jupiters are also likely to have

2Note that they did find a weak period dependence; see Section 3.2.1 for its implication.
3See, e.g., Holt-Rossiter-McLaughlin Encyclopaedia at http://www2.mps.mpg.de/homes/heller/.
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Figure 2.5 The values of λ as a function of effective temperatures of the host stars. The
vertical dashed line corresponds to Teff = 6100K. Filled circles denote close-in planets
with a/R⋆ < 10, while planets shown by open ones orbit farther away from the star
(a/R⋆ > 10).
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Figure 2.6 The values of λ as a function of the planetary mass. The red and blue circles
correspond to planets around hot (Teff > 6100K) and cool (Teff < 6100K) stars, respec-
tively, and the vertical dashed line corresponds to Mp = 3MJup. Note that masses of the
planets in this plot are not the minimum mass, since they are all transiting (or the RM
effect cannot be measured). For clarity, planetary masses are set to the minimum value
of the horizontal axis when only the upper limit is obtained.

higher obliquities around hotter stars (Mazeh et al., 2015b). While the result may indicate
that the large spin–orbit misalignment is not specific to hot Jupiters and their formation
process, the interpretation is quite uncertain at this point; the statistical nature of the
spot-amplitude analysis only allows for the relative comparison between hot and cool
stars, and so it is difficult to quantitatively assess how the “higher” obliquity found for
planets around hotter stars compare to the high obliquity observed for hot Jupiters.

2.4.2 Planetary Mass Cut Off for Retrograde Planets

Discovery of planets on retrograde (ψ > π/2) orbits (e.g. Winn et al., 2009a) was one of
the most surprising outcomes of the RM measurements. Hébrard et al. (2011) pointed out
that such retrograde orbits are only found for hot Jupiters less massive than ∼ 3MJup, as
clearly shown in Figure 2.6. It may also be worth noting that the massive hot Jupiters on
prograde orbits are mostly found around hot stars, around which spin–orbit misalignments
are more frequent. The fact may point to the effect of tidal star–planet interaction, whose
strength increases proportionally to the planet-to-star mass ratio. Alternatively, it may
simply suggest that these “super-Jupiter” mass objects were formed in a different manner
from hot Jupiters with Mp ! 3MJup.
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2.4.3 Single- Versus Multi-transiting Systems

So far the spin–orbit misalignment is “rare” for multi-transiting systems. This supports
the idea that the initial star–disk alignment as expected for the solar system is common,
because the planets in multi-transiting systems presumably have well-aligned orbits and
thus trace the plane of their natal protoplanetary disk.

Either the sky-projected obliquity or stellar inclination has been constrained for seven
multi-transiting systems. Among these, only one system, Kepler-56, exhibits a clear spin–
orbit misalignment (i⋆ = 47◦ ± 6◦ from asteroseismology by Huber et al., 2013), while
the other six are consistent with the alignment at least in terms of the sky-projected
or line-of-sight component. The spectroscopic transits (Section 2.2) have been observed
for Kepler-89d (λ = −6◦+13◦

−11◦ and −11◦ ± 11◦ by Hirano et al., 2012b; Albrecht et al.,
2013, respectively), Kepler-25c (λ = 7◦ ± 8◦ by Albrecht et al., 2013), and for WASP-
47b (λ = 0◦ ± 24◦ by Sanchis-Ojeda et al., 2015); asteroseismolgy (Chaplin et al., 2013,
see also Section 2.3.1) points to alignments for Kepler-50 (i⋆ = 82◦+8◦

−7◦) and Kepler-65
(i⋆ = 81◦+9◦

−16◦); and λ ! 10◦ is obtained for Kepler-30 (Sanchis-Ojeda et al., 2012) from
the spot anomaly (Section 2.3.4). In Chapter 4, we will report on a new measurement of
true obliquity ψ, rather than λ, for Kepler-25c.

Statistical inferences for the line-of-sight misalignments (i.e., difference between i⋆
and iorb; see Sections 2.3.3 and 2.3.1) also support the alignment in multi-transiting
systems, though only in a relative sense. Morton & Winn (2014) analyzed the sample
of v sin i⋆, R⋆, and Prot for 70 KOIs using a hierarchical Bayesian technique and found
that single-transiting planetary systems have systematically higher obliquities than multi-
transiting systems. The conclusion was further strengthened by adding asteroseismic
samples (Campante et al., 2016). The difference between single- and multi-transiting
systems does not only support the initial star–disk alignment, but also suggests that (a
part of) excess single-transiting systems as revealed by the multiplicity statistics (known as
the Kepler dichotomy, e.g., Lissauer et al., 2011b; Ballard & Johnson, 2016) may actually
represent the dynamically “hotter” (i.e., mutually more inclined) multi-planetary systems.



Chapter 3

Origin of the Misaligned Hot
Jupiters: Nature or Nurture?

What produces the spin–orbit misalignment of hot Jupiters? One natural speculation
would be that it originates from the specific formation and evolution channel of hot
Jupiters, i.e., their orbital migration. The “high-eccentricity migration” scenario, tidal
migration following the eccentricity excitation through few-body dynamical process, can
naturally produce the spin–orbit misalignment along with the highly eccentric orbits as
mentioned in Section 1.1.4. In Section 3.1, we describe the scenario in detail.

The most serious challenge to this (and actually to any other) scenario is the correlation
between the stellar obliquity and effective temperature discussed in Section 2.4.1. The
currently favored scenario attributes it to the different timescales for obliquity damping
in cool and hot stars (Section 3.2). The subsequent studies, however, show that it is
difficult to reproduce the trend at least with the current theory of tides. In addition,
evidence against this “tidal realignment” scenario has recently been presented by new
measurements of obliquities with the Kepler photometry. It has also been pointed out
that it is difficult to produce the most misaligned hot Jupiters within this framework of
migration.

Given the situation, another class of scenarios without resorting to the violent dy-
namical events has also been proposed; this is the topic of Section 3.3. These scenarios
consider the misalignment to be of “primordial” origin, that is, the misalignment between
the stellar spin and protoplanetary disk. They may consistently explain the obliquity
dependence on the host star, as well as the presence of counter-orbiting hot Jupiters.

In this chapter, we summarize both of these “nature” and “nurture” scenarios along
with their strengths and weaknesses, and discuss how the trend can be explained in each
class of scenarios. We also propose several important questions that need to be addressed
to distinguish the two scenarios.

3.1 High-Eccentricity Migration

This class of migration scenarios was proposed right after the first discovery of a hot
Jupiter and the proposal of disk migration scenario to explain its close-in orbit (Lin et al.,
1996). While this alternative was originally motivated by large eccentricities observed
for relatively short-period Jupiters discovered in the early days (cf. Figures 1.3, 1.4),
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the frequent spin–orbit misalignments observed for transiting hot Jupiters later provided
further support for this type of scenario.

3.1.1 The Scenario

While a variety of scenarios has been proposed for the high-eccentricity migration, all of
them consist of the common two processes described below.

First, the planetary orbit (usually assumed to be beyond ∼ AU initially) acquires a
large eccentricity close to unity via some dynamical process. This causes the planet to
have a very small pericenter distance a(1− e), which will eventually be comparable to the
final semi-major axis of the resulting hot Jupiter.1 For example, the eccentricity as large
as ∼ 0.99 is required for a Jupiter at a = 5AU to migrate to a = 0.05AU via this process.
It is usually during this process that the spin–orbit misalignment is produced, because
the process that excites eccentricity often involves the excitation of orbital inclination
that drives the orbit out of the original disk plane. The timescale and condition for the
eccentricity/inclination excitation significantly depends on the specific scenario.

Next, tidal interaction enhanced around the close pericenter shrinks and circularizes
the orbit. During a close encounter around the pericenter, tidal force from the central star
distorts the planet and excites its oscillation, whose energy is eventually dissipated inside
the planet. While the energy dissipation reduces the orbital semi-major axis of the planet,
the conservation of orbital angular momentum,2 which is proportional to

√
a(1− e2) (cf.

Appendix A), requires that e is also reduced, i.e., the orbit is circularized as well.
The final semi-major axis of the circularized hot Jupiter, af , is thus simply related to

the pericenter distance at the onset of circularization, qc, via

af = a(1− e2) = qc(1 + ec) ≃ 2qc, (3.1)

where ec ∼ 1 at the beginning of circularization. This implies that the semi-major axis
distribution of hot Jupiters formed via high-eccentricity migration should have an inner
edge twice the Roche limit aRoche of the central star (Rasio & Ford, 1996). They actually
showed that the observational data favor 2aRoche rather than aRoche as the inner edge.

Below we describe several possible mechanisms for the eccentricity excitation in the
first step. Note that these mechanisms are not necessarily mutually exclusive.

Secular Interaction with a Stellar and Planetary Companion: Kozai–Lidov
Cycles with Tidal Friction

Let us consider a hierarchical three-body astrophysical system, where the inner semi-major
axis, ain, is much smaller than that of the outer orbit, aout.3 Even the weak gravitational
perturbation from such a distant outer object can gradually accumulate to affect the long-
term behavior of the inner orbit. Kozai (1962) found that, if the inner orbit is inclined
with respect to the outer one by more than icrit ∼ 40◦, the inner orbit, even if initially

1As we will see below, the final semi-major axis is actually twice the pericenter distance.
2Assuming that the planetary spin is already synchronized with the orbit; this usually occurs on a

much shorter timescale than the orbit circularization by the ratio of the planetary moment of inertia to
Mpa2 (Correia, 2009).

3For multi-stellar systems, such a hierarchy is a natural consequence of the requirement of dynamical
stability, while it is not necessarily the case for two-planet systems.
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circular, experiences the periodic excursion of orbital eccentricity to a large value coupled
with the oscillation of orbital inclination. This is known as the Kozai cycle.

Because the timescale of such an evolution is much longer than the orbital one, the
long-term behavior of the system can be tracked by considering the potential averaged
over the inner and outer orbits, i.e., interaction between the two rigid “rings” (Gauss’s
method; Murray & Dermott, 1999). In this “secular” approximation, the orbital semi-
major axis (i.e., orbital energy) is conserved because the potential is time-independent.
In addition, to the lowest order in ain/aout (quadrupole approximation), the Kozai integral

H =
√
1− e2 cos i (3.2)

is conserved during the eccentricity/inclination oscillation. This relation represents the
conservation of the semi-major axes and the angular momentum normal to the outer
orbit, the latter of which follows from the axisymmetry of the potential due to the outer
companion. Thus, if the value of H is sufficiently small (i.e., cos i was small when the
orbit was initially circular), the inner orbit can acquire a large eccentricity (or a small
1− e2) when i becomes small in the cycle. The timescale for the oscillation is given by

PKozai =
2

3π

mtot

mout

P 2
out

Pin
(1− e2out)

3/2, (3.3)

where mtot and mout are the masses of the whole system and outer object, respectively
(Kiseleva et al., 1998), and Pin/out are the orbital periods with their subscripts denoting
the inner and outer orbits. The timescale is about 107 yr for a stellar perturber at aout ∼
1000AU, and depends a lot on the system parameters; note the strong a3out dependence.

When combined with the tidal dissipation, this provides a natual mechanism for pro-
ducing the short-period binaries (Mazeh & Shaham, 1979), which is the scenario known
as “Kozai cycles with tidal friction” (KCTF, Kiseleva et al., 1998; Eggleton & Kiseleva-
Eggleton, 2001). Also for planetary systems, there are at least two examples known
for which the Kozai cycle is likely responsible for the observed high orbital eccentricity
(Holman et al., 1997; Wu & Murray, 2003), although the whole eccentricity distribution
cannot be explained by the Kozai mechanism alone (Takeda & Rasio, 2005). Comprehen-
sive studies of hot Jupiter formation via this mechanism have been performed by Fabrycky
& Tremaine (2007) and Wu et al. (2007), who made predictions for the obliquity distri-
butions of hot Jupiters produced in this mechanism.

While the above studies consider the stellar object as an outer perturber, a similar
migration can also occur in a hierarchical two-planet system, where the outer perturber is
a planet (Naoz et al., 2011). In such a case, the Kozai integral (i.e., the angular momentum
normal to the invariant plane) is not necessarily constant due to the higher-order terms
of secular perturbation (e.g., Ford et al., 2000), and so the inner orbit can even flip its
direction. Such a higher-order term (mainly octupole) can also play a significant role when
the outer orbit is eccentric, in which case the large mutual inclination is not necessarily
required to produce a large inner eccentricity (Li et al., 2014a). That is, high-eccentricity
migration is also possible for a coplanar system (Petrovich, 2015), where the resulting
close-in planet can be spin–orbit aligned. Although this mechanism has been proposed
as a viable path to produce “counter-orbiting” planets with ψ ≈ 180◦, (e.g., Naoz et al.,
2011; Li et al., 2014a), the most common outcome seems to be the tidal disruption (Xue
& Suto, 2016). In addition to those higher-order term effects, it has also been pointed
out that the torque due to the rotationally-deformed quadrupole moment of the host star
may add a further complexity in the obliquity evolution (Storch et al., 2014).
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Planet–Planet Scattering

When more than one giant planets are formed on sufficiently close orbits, the long-term
gravitational interaction can lead to the dynamical instability, which results in the close
encounter and scattering between the planets. Some of the scattered planets acquire suf-
ficiently large eccentricities for their pericenter distances to be close enough to tidally
migrate. The process often involves an ejection or excitation of the outer planet’s eccen-
tricity, as well as excitation of the orbital inclination (i.e., spin–orbit misalignment).

While the semi-major axis after the scattering can only be about half of the original
value for the two-planet case (Rasio & Ford, 1996),4 the outcome can be even more diverse
if three or more giant planets are involved (Weidenschilling & Marzari, 1996). The typical
outcome in the three-giant case is the ejection of one planet, while the two survivors are
left in well separated orbits one closer to the star and the other farther away, often with
significant eccentricities and a large mutual inclination (Marzari & Weidenschilling, 2002).

Even though the eccentricity of the inner planet does not reach a sufficiently large value
after one scattering, the secular interaction (i.e., the Kozai effect) due to the scattered
outer planet can further excite the innermost planet’s eccentricity to enhance the chance
of hot Jupiter formation. Especially, Nagasawa et al. (2008) pointed out that the repeated
Kozai cycles during the three-planet orbit crossing, rather than the typical case of the
two-survived planets, significantly contribute to the eccentricity excitation and increase
the formation probability of close-in orbits by a factor of a few compared to the previous
estimates (Marzari & Weidenschilling, 2002; Chatterjee et al., 2008).

Secular Chaos

Wu & Lithwick (2011) showed that secular interaction between two or more well-spaced
planets can lead to the chaotic diffusion of the eccentricity and inclination of the innermost
planet. While the process requires eccentricities/inclinations of O(1) for a system with
two planets, the threshold is much reduced for a system with three or more planets,
especially if the inner planet is the least massive. The scenario could in principle produce
retrograde hot Jupiters depending on the (largely unknown) initial orbits of the system.
It also predicts the presence of companions outside a few AU of hot Jupiters, as well as
the rise in their frequency with increasing stellar age.

3.1.2 Relevant Observational Issues

How does the high-eccentricity migration scenario compare to observations? So far, ob-
servations seem to present both positive and negative results, as summarized below.

Existence of Highly Eccentric Planets

As mentioned in Section 1.1.4, the shear existence of highly eccentric planets seem to argue
for the past dynamical events at least in some systems. Indeed, the observed eccentricity
distribution is well explained by the planet–planet scattering for the sample with e " 0.2,
largely regardless of the system configuration prior to the scattering phase (Chatterjee

4Energy conservation requires that the post-scattering semi-major axis of the innermost planet,
afinal,in, is bounded by 1/afinal,in =

∑N
j=1 1/ainitial,j < N/min(ainitial,j) or afinal,in > min(ainitial,j)/N

(Nagasawa et al., 2008).



3.1 High-Eccentricity Migration 35

et al., 2008; Jurić & Tremaine, 2008). The fact implies that the dynamical instability has
a universal role in sculpting the observed architecture of exoplanetary systems.

Three-Day Pile Up of Hot Jupiters

Radial velocity surveys reported a “pile-up” of Jupiter-sized planets around P = 3days
in their log-period distribution (Cumming et al., 1999; Udry et al., 2003). While the
presence of this pile-up was called into question by the following studies of the Kepler
data (e.g., Howard et al., 2012), Dawson & Murray-Clay (2013) found that the peak is
recovered even in the Kepler sample if only the samples with super-solar metallicities
are considered. In addition, comprehensive RV observations of the Kepler giant planets
recently reported by Santerne et al. (2016) also confirmed the three-day pile-up. Indeed,
this pile-up is the very feature expected from the high-eccentricity migration scenario (Wu
et al., 2007; Fabrycky & Tremaine, 2007; Wu & Lithwick, 2011), except for the case where
a high eccentricity is excited by a single strong planet–planet scattering (Wu & Lithwick,
2011). It should be noted, however, that the peak observed by Santerne et al. (2016) may
be broader than the high-eccentricity migration scenario, and could be accommodated in
the disk migration scenario as well.

Hot Jupiters Are Not So Lonely

The “fact” that hot Jupiters are rarely accompanied by close siblings has often been cited
as evidence for the high-eccentricity migration scenario, which requires the absence of
close companions (e.g., Wu & Murray, 2003) and/or clears away the close companions
during the process. A recent study by Schlaufman & Winn (2016), however, showed that
it is actually not the case. They computed the conditional probability that Jupiter-sized
planets with various orbital periods have another planet in the same system and found
that hot Jupiters are as likely as longer-period Jupiters to have companions inside the
snow line. The fact argues against the high-eccentricity migration scenario except for
some of its variant including the scattering after the inward disk migration (Guillochon
et al., 2011).

As for the Kozai migration, detection of a distant stellar companion provides an indi-
rect support for the theory (e.g., Wu & Murray, 2003). While the high observed tertiary
rate of spectroscopic binaries with periods less than three days (Tokovinin et al., 2006)
seems to support the KCTF as the formation scenario of shortest-period binaries, no sig-
nificant correlation has been found so far between the companion rate and the occurrence
of short-period giant planets exhibiting significant eccentricities and/or spin–orbit mis-
alignments (Knutson et al., 2014; Ngo et al., 2015; Piskorz et al., 2015). The fact may also
indicate that the secular perturbation plays at most a supporting role in the formation of
hot Jupiters.

Difficulty in Producing Counter-Orbiting Hot Jupiters

As shown in Figure 1.5, some hot Jupiters have λ close to 180◦. It has been shown that
even the high-eccentricity migration is difficult to produce such “counter-orbiting” hot
Jupiters with ψ ≈ 180◦ (Xue & Suto, 2016). We should note, however, that λ is a sky-
projection of the true obliquity ψ, and λ for the retrograde orbit with ψ > 90◦ tends
to be larger than the true obliquity ψ (Fabrycky & Winn, 2009). In other words, the
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planets with λ ≈ 180◦ may actually have smaller ψ compatible with the high-eccentricity
migration scenario. We will show that it is indeed the case for at least one of those
systems, HAT-P-7, in Chapter 4.

3.2 Tidal Origin of the Obliquity Trend

Suppose that the high-eccentricity migration is responsible for the spin–orbit misalign-
ments, can it also explain the observed obliquity trends, especially the λ–Teff relation
(Section 2.4.1)? No convincing arguments have been presented that explain why the
above mechanisms for the high-eccentricity migration could produce such a steep depen-
dence of stellar obliquity on the host-star property. Instead, the obliquity trend may be
attributed to the difference in the stellar property. Here we discuss the currently most
popular scenario of this kind, along with its difficulties.

Even after the orbit circularization, tidal evolution continues. Tides raised on the star
by the planet, which are much weaker than the planetary counterpart, instead start to
play a role. As was also the case for planetary tides, stellar tides synchronize the stellar
rotation with the orbital motion, damp the spin–orbit misalignment if any, and lead to
the decay of the semi-major axis.

Winn et al. (2010) proposed that the observed λ–Teff relation may be explained by this
tidal damping. The scenario is based on the fact that the mass of the convective envelope
starts to drop significantly above Teff ∼ 6100K (Pinsonneault et al., 2001). Since the
turbulence in the convective layer is thought to greatly enhance the tidal dissipation
(e.g., Zahn, 2008), the obliquity damping is also pronounced around cooler stars. The
magnetic field produced by the convective envelope, and the resulting braking of the
stellar rotation, may also explain why the stars with low obliquities, if tidally aligned,
are not synchronized with the planetary orbit but rotates more slowly.5 Indeed, the same
temperature also corresponds to the so-called “Kraft break,” below which stellar rotation
speed sharply decreases (Kraft, 1967; Gray, 2005).6

Qualitatively, the trends we have discussed in Section 2.4 are in agreement with the
hypothesis. The correlation with the stellar temperature or age, along with the outliers
with large values of a/R⋆ (Figure 2.5), are consistent with the tidal damping. The lower
obliquities observed for the most massive planets (Figure 2.6) also naturally arise from
the stronger tides raised by more massive planets.

An attempt was made by Albrecht et al. (2012) to establish a single quantitative mea-
sure that explains these trends. Because the current understanding of the tidal dissipation
limits the realistic computation of this timescale from the first principles, they adopted
simple scaling laws for the tidal synchronization timescales by Zahn (1977) and showed
that this timescale beautifully sorts the systems in order of the degree of their spin–orbit
misalignments (their figure 24), although the absolute timescales are rather arbitrarily
chosen.7 The argument suggests that the tidal star–planet interaction plays an impor-

5The orbital periods of hot Jupiters are less than a week, while the rotation periods of their host
stars are typically O(10) days.

6Dawson (2014) advocated that this rapid decrease in the stellar spin angular momentum, rather
than the efficiency of tidal dissipation, is responsible for the trend.

7The computed timescales, in their original forms, are by many orders of magnitudes longer than
the system age. This might be due to the difference in the timescales for spin–orbit synchronization and
circularization.
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Figure 3.1 The values of λ as a function of the semi-major axis divided by the stellar
radius a/R⋆ (the same sample as in the previous figures). Blue circles correspond to
planets around stars with Teff < 6100K, while red ones are those around stars with
Teff > 6100K.

tant role in sculpting the observed obliquity distribution, whether the damping is indeed
responsible or not.

3.2.1 Possible Evidence Against the Tidal Origin

Here we discuss two main difficulties of the tidal scenario for the λ–Teff trend. Neither of
them is decisive, though, mainly due to the unknown nature of tides.

Weak Dependence of Obliquity on the Orbital Distance Around Cool Stars

If the obliquity is really damped by the tidal interaction, planets closer to their host stars
should exhibit better spin–orbit alignments. While this may be the case for the Rossiter-
McLaughlin (RM) sample around cool stars (blue circles in Figure 3.1), the analysis of
spot-modulation amplitudes of Kepler stars (Mazeh et al., 2015b, Section 2.3.5) did not
find any significant difference between the obliquity distributions of planets with periods
1–5 days and those with 5–50 days. Although the more in-depth analysis based on the
same technique (Li & Winn, 2016) identified a statistically significant correlation with
the orbital periods that is qualitatively consistent with the tidal damping (i.e., decreasing
obliquity with the decreasing orbital period), the trend is still quantitatively inconsistent
with the tidal scenario; the trend they found is rather smooth and extends up to the orbital
period of ∼ 30 days, while the tidal scenario predicts a steep decrease in the obliquity at
a much shorter period.
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While these results may be direct evidence against the tidal realignment scenario, we
should note that the property of the sample in the above inferences is not the same as
the RM one. The former sample includes the whole KOIs and so most of the planets
discussed here are smaller than hot Jupiters (cf. Section 1.1). Thus, the tides raised on
the star, which are supposed to be responsible for the tidal damping, are also smaller, and
this weaker tide can be consistent with the weak signature of tidal interaction at least
qualitatively. In any case, the correlation found by Li & Winn (2016) indicates that our
understanding of the obliquity distribution still lacks some important process.

Tidal Realignment Involves Tidal Orbital Decay

Winn et al. (2010) already pointed out that the planet must surrender such large angular
momentum to realign the star that it would be engulfed by the star when the realignment
is completed, at least according to the simplest tidal model. Lai (2012) proposed a solution
to this problem by presenting a new tidal model, where the spin–orbit realignment occurs
on a different timescale from the orbital decay. The evolution simulations based on this
model (Rogers & Lin, 2013; Xue et al., 2014), however, showed that even the revised
model is inconsistent with the current observed distribution of λ, at least in its simple
form. Li & Winn (2016) performed a parameter search and confirmed that it requires fine
tuning for the spin–orbit realignment to occur earlier than the orbital decay. Currently
it is not clear whether this inconsistency is due to the incompleteness of the tidal model
or simply indicates that the tidal realignment scenario is wrong.

3.3 Star–Disk Misalignment

So far, we have discussed the scenarios that the spin–orbit misalignment is “acquired” due
to the orbital evolution after the planet formation, implicitly assuming that the stellar
spin axis is initially well aligned with the axis of the protoplanetary disk, and hence with
the orbital axes of the planets formed in it. The initial star–disk alignment indeed seems
to be the case for our solar system, and conforms well with a naive expectation from
the simple theory of disk formation. In addition, good spin–orbit alignments in multi-
transiting systems (Section 2.4.3) also seem to support the universality of the notion.
Nevertheless, it would still be valuable to investigate alternatives, given the several pieces
of evidence that possibly argue against the high-eccentricity migration (Section 3.1.2) and
the subsequent tidal realignment (Section 3.2.1).

Indeed, several mechanisms have also been proposed to produce the “primordial” mis-
alignment, that is, the misalignment between the axes of stellar spin and protoplanetary
disk. If this really happens, the high-eccentricity migration is not necessarily required
to explain the observed spin–orbit misalignment, and the formation of hot Jupiters may
entirely be explained by the smooth disk migration and/or in-situ formation. In this
section, we comment on this class of scenarios.
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3.3.1 Possible Origins of Primordial Misalignment

Disk Torquing and Magnetic/Gravitational Star–Disk Interaction

If a disk-hosting star has a companion star whose orbit is inclined by angle I with respect
to the initial protoplanetary-disk plane, the perturber’s gravity may torque the disk out
of the stellar equatorial plane (Batygin, 2012). Specifically, both stellar spin and proto-
planetary disk axes precess around the axis of the outer binary, whose orbit dominates
the angular momentum budget of the whole system, and the difference in the precession
rates periodically induces the spin–orbit misalignment by 2I at maximum.

The subsequent study by Batygin & Adams (2013) considered the combined effect
of disk torquing, gravitational disk–star coupling due to the quadrupole moment of the
rapidly-rotating pre main-sequence (PMS) star, disk accretion, and the rotational evolu-
tion of the central PMS star due to gravitational contraction as well as magnetic braking.
They found that resonance between the precession frequencies of disk-torquing and spin-
precession makes it possible to excite the spin–orbit misalignment even from an initially
small value, unlike the previous case where the torquing from a companion alone is con-
sidered.

Furthermore, Spalding & Batygin (2014) and Lai (2014) independently showed that
the torque due to the magnetosphere–disk interaction (Lai et al., 2011), if taken into
account in the above scheme, leads to even more diverse spin-axis evolution. Spalding
& Batygin (2015) proposed that the scenario possibly explains the λ–Teff trend rather as
the correlation with the stellar mass (Figure 3.2). They pointed out that the magnetic
torques act to realign the stellar spin axis, and that massive T-Tauri stars tend to have
weaker magnetic dipole fields than their less-massive counterparts (Gregory et al., 2012);
hence the primordial misalignment is preserved for massive stars while it is washed out
for low-mass stars.

As was the case for the Kozai migration, this scenario also predicts the correlation
between the companion occurrence and spin–orbit misalignment, which appears to con-
tradict the observation (see Section 3.1.2). It is however possible that the companion
responsible for the primordial misalignment is lost before the planet formation, due to
the complex dynamics of stellar clusters that may sometimes lead to dissolution of multi-
stellar systems (Spalding & Batygin, 2014). Additional computational efforts are required
to assess the validity of this explanation.

Chaotic Accretion

Due to the turbulence in the star-forming environment, the angular momentum of the pro-
toplanetary disk, which is usually dominated by the last-accreted gas, may have different
direction from that of the star, which is determined by the sum of the accreted angular
momentum (Bate et al., 2010; Fielding et al., 2015). These simulations, however, do not
take into account the star–disk interaction properly, because of very different time scales
to solve the stellar structure and the disk. Indeed, the semi-analytic model incorporating
this aspect shows that the protoplanetary disk, though occasionally tilted away from the
stellar equator due to turbulence, will eventually be aligned with the stellar equator when
the accretion ceases (Spalding et al., 2014), questioning the viability of the mechanism.
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Internal Gravity Waves8

Rogers et al. (2012) proposed that the angular momentum transport due to the internal
gravity waves (IGWs) modulates the surface rotation of the star to produce apparent
spin–orbit misalignments. The mechanism works preferentially around hot stars because
the IGW is generated at the boundary of convective cores and radiative envelopes of
hot stars. This scenario, however, is not supported observationally because the radial
differential rotation as predicted by this process has not been observed for main-sequence
stars exhibiting spin–orbit misalignments (Benomar et al., 2014, 2015).

3.3.2 Obliquity Trends in the Primordial Misalignment Scenario

Whether the spin–orbit misalignment is primordial or not, the tidal scenario can be in-
voked to explain the observed obliquity trend. On the other hand, the disk-torquing
and IGW scenarios contain the internal mechanisms that produce the correlation. These
scenarios, if more thoroughly investigated, may well be appealing enough given the diffi-
culties in the current tidal scenario and fewer assumptions required. Here let us make brief
comments on the difference in interpreting the obliquity trend as a part of the primordial
misalignment scenario, rather than the tidal scenario in Section 3.2.

First, both disk torquing and IGW scenarios explain the correlation as that with stellar
mass, rather than with effective temperature. This does not affect the overall feature of
the trend, as the two are well correlated for the main-sequence stars (Figure 3.2).

On the other hand, interpretation of the known “exceptions”, or the prediction for the
properties of exceptional cases, is different. In the tidal scenario, planets with large a/R⋆

or small mass are allowed to be exceptions to the trend because of the long timescale
for the tidal damping. In the primordial scenarios, the four clear exceptions need to be
explained in a different manner. Spalding & Batygin (2015) argued that the eccentricities
of their orbits are the imprint of their past dynamical interaction, and some spin–orbit
misalignments would be due to the dynamical origin, rather than primordial; this argu-
ment may be supported by Figure 3.2, in which we distinguish the planets with non-zero
observed eccentricities by open circles.9 Spalding & Batygin (2015) thus predict that the
planets on circular orbits should basically follow the λ–M⋆ trend, while eccentric ones do
not need to be the case. As shown in Figure 3.3, the correlation between λ and eccentricity
is currently unclear, and future observations will confirm or reject this hypothesis.

Finally, the primordial scenarios have no mechanisms to produce the planetary-mass
cut off for the retrograde orbits, at least in their current forms. Additional assumption,
whether it is tidal interaction or different formation, therefore seems necessary in any
case.

3.4 Summary and Outstanding Questions

In this chapter, we have discussed the possible explanations for the spin–orbit misalign-
ment of hot Jupiters and for the observed correlation(s) between the misalignment and
stellar properties. The discussions so far are summarized as follows:

8This mechanism is not exactly to produce the star–disk misalignment, but we discuss it here because
it does not alter the planetary orbit but tilt the stellar spin with respect to the initial disk plane.

9Kepler-63 has only an upper limit e < 0.43 for the eccentricity.
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Figure 3.2 The values of λ as a function of the host-star mass. For planets drawn with
open circles, non-zero eccentricities have been detected at more than 1σ level. Planets
shown with crosses have non-zero upper limits on their eccentricities.

Figure 3.3 The values of λ as a function of the orbital eccentricity. Blue and red colors
show that their host stars are cooler and hotter than 6100K, respectively.
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• High-eccentricity migration, the excitation of a high eccentricity due to few-body
dynamical processes followed by the tidal orbit circularization, explains the existence
of both hot Jupiters and eccentric planets.

• While it may not be a dominant mechanism to produce hot Jupiters given the lack
of observational supports, the scenario provides the most natural explanation for the
current architectures of at least a few systems. It is quantitatively unclear to what
extent the observed misalignments could be due to the high-eccentricity migration.

• Tidal star–planet interaction explains all the known obliquity trends at least quali-
tatively. The scenario is, however, still incomplete quantitatively, mainly due to the
uncertain nature of the tidal star–planet interaction.

• Given the situation, the scenarios that the spin–orbit misalignment is the remnant
of the primordial star–disk misalignment remain to be viable alternatives.

Below we address several questions for future studies that will be of importance for
solving the mysteries.

3.4.1 Are Hot Jupiters Special?

If the spin–orbit misalignment is indeed linked to the high-eccentricity migration, it should
be a property specific to hot Jupiters. If the misalignment is primordial, on the other
hand, it should be observed for any sort of planetary systems, not limited to hot Jupiters.10

To distinguish the two scenarios, therefore, it is crucial to measure obliquities for planets
other than hot Jupiters.

As mentioned in Chapter 2, most of the current obliquity measurements for individual
systems, which are mostly from the RM effect, are for hot Jupiters. Some of the 15 RM
measurements made for planets with orbital periods longer than 7 days or with masses
less than 0.3MJup exhibit spin–orbit misalignments (Figure 3.4). It is, therefore, not yet
clear whether the high obliquity is indeed specific to hot Jupiters. Especially, there are
only few measurements for longer-period planets around hot stars, for which most of the
misalignments are observed (Figure 3.5). If large obliquities are not common in this area,
it becomes unlikely that the misalignment is primordial, because there is no reason in the
primordial scenario that only the close-in planets are preferentially misaligned.

Extending the RM observations to longer-period planets is difficult for two practical
reasons. First, long-period planets rarely transits, and even if it does, it is not guaranteed
whether the transit can be observed from a suitable ground-based facility. Even if the
transit is observable, it may not be enough; the second difficulty comes from the long
transit duration. While the whole shape of the in-transit RV anomaly needs to be captured
for a reliable measurement of λ, transit durations of planets with period longer than
10 days are often comparable to the length of one night (cf. Equation 1.6). If the duration
is too long, therefore, we may need to observe the transit multiple times.

For this reason, it will be of great advantage if the transit data from the Kepler
space telescope can be utilized for the stellar obliquity measurements of longer-period
planets. The low transit probability and rareness of transits are completely compensated

10If the latter is the case, the low stellar obliquity in our solar system turns out to be a coincidence,
rather than the norm.
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Figure 3.4 Histogram of λ for a subset of the RM sample in Figure 1.5 consisting of planets
with orbital periods longer than 7 days or with masses less than 0.3MJup.

by the long-term, continuous observations of a large number of stars, and the long transit
duration does not matter at all for the space-based observations. In this thesis, such
methodologies will be discussed in Chapters 4 and 5.

Stellar Obliquities in Multi-Transiting Systems

The most crucial test for the primordial misalignment scenario would be the stellar obliq-
uity measurements for multi-transiting systems. Since the orbital planes of multiple tran-
siting planets are likely to be well aligned a priori, these planes most likely trace the
original protoplanetary disks. Thus, if a high obliquity is found for any one of the planets
in multi-transiting systems, that will be evidence for the primordial star–disk misalign-
ment (Lai et al., 2011; Albrecht et al., 2012). As mentioned in Section 2.4, such tests
are already underway, and multi-transiting systems so far exhibit low obliquities. Never-
theless, we should note that the number of systems is still small (with one out of seven
systems exhibiting a clear misalignment) and that the alignments for the other six systems
are based on the two-dimensional (i.e., sky-projection or line-of-sight component alone)
measurements; the latter problem is revisited for Kepler-25 in Chapter 4.

There still remain two important questions regarding the exception, Kepler-56, which
is the only multi-transiting system with strong evidence of a spin–orbit misalignment.
First, what is the origin of the misalignment in this system? The simplest answer is the
initial star–disk misalignment as discussed in Section 3.3. However, it has also been pro-
posed that an outer companion detected in the long-term RV trend of Kepler-56 could
have torqued the planetary orbits out of the stellar equatorial plane, if the companion’s
orbit is misaligned with the stellar equator (Huber et al., 2013). A more detailed in-
vestigation of the dynamical scenario that could produce the spin–orbit misalignment
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Figure 3.5 Stellar effective temperature Teff versus scaled semi-major axis a/R⋆. The color
of each circle corresponds to the value of λ, and its area is proportional to the planetary
mass.
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in a multi-transiting system is thus crucial to find the “smoking gun” for the star–disk
misalignment.

Second, are systems like Kepler-56 indeed rare? To answer this question, we note
that the host stars of the other six “aligned” multi-transiting systems basically have Teff

around or below the threshold, 6100K, below which spin–orbit alignments are the norm
(Section 2.4.1). In this regard, it is suggestive that the only exception Kepler-56 is a
slightly massive evolved star with M⋆ = 1.32±0.13M⊙ (Huber et al., 2013), which would
have belonged to the population of “hot” stars in its main sequence phase. Thus it still
seems possible that multi-transiting systems with significant spin–orbit misalignments
more frequently exist around hotter stars, as in the overall trend, and that such systems
currently look rare simply because we are focusing on cool stars, as was the case in the
history of the RM measurements (Winn et al., 2010). If such a trend is confirmed in
future, it will be strong evidence that supports the primordial origin of the spin–orbit
misalignment, as described in Section 3.3.

3.4.2 Are All Planetary Systems Flat?

So far, no multi-planetary system is known to have a significant mutual orbital inclination.
This is partly due to its construction, because most of the known multi-planetary systems
are multi-transiting systems discovered by Kepler, who are unlikely to be observed as such
if their orbits were mutually inclined.

In contrast, the mechanisms involved in high-eccentricity migration scenario (i.e.,
planet–planet scattering, planetary Kozai effect, and secular chaos), if indeed at work,
should produce multi-planetary systems with two planets on mutually inclined (and possi-
bly eccentric and widely separated) orbits. If the innermost planet obtains an eccentricity
close to unity, its orbit is circularized to become a close-in planet, as described in Section
3.1, and decoupled from the outer planet. This also implies that the innermost planet,
if fails to obtain a sufficiently large eccentricity, may not become a close-in planet but
retain a modest hierarchy with the outer planet (e.g., Dong et al., 2014).

While indirect arguments suggest such “orbit–orbit misalignments” for several sys-
tems (Dawson & Chiang, 2014) with the modest hierarchy, no direct detection has been
presented so far. Although it is generally difficult to constrain the mutual orbital incli-
nation, the Kepler data continuously obtained for four years may reveal such systems
through the transit variations due to the gravitational interaction, as has made possible
for hierarchical triple-star systems (e.g., Borkovits et al., 2016, see also Chapter 6). Such
an architecture, if detected, could be an exception that proves the rule.

3.4.3 Initial Distribution of the Star–Disk Misalignment

Even without the perturbing companion, the star–disk misalignment may be acquired
during the disk formation, as mentioned in Section 3.3.1. Eventually, the initial distri-
bution will be needed to give a complete answer to this nature and nurture problem. It
is currently controversial whether the star–disk misalignment is the norm or not, mainly
due to the difficulty in solving the disk formation and star–disk interaction (rotational
evolution of the star) in a consistent manner. Such a simulation is still computationally
too heavy, and some breakthrough might be required for a realistic one.
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Another possible approach is to directly observe the star–disk misalignment. Incli-
nation measurements for 18 debris disks using their resolved images suggest that the
star–disk alignment is the norm (Watson et al., 2011; Greaves et al., 2014), on the basis
of a presumably natural assumption that debris disks share the same plane with proto-
planetary disks. Even the planetesimal belts are resolved by recent observations of HR
8799 with ALMA (Booth et al., 2016), in which orbits of four directly images planets out
to ∼ 100AU (Konopacky et al., 2016), stellar equator (Wright et al., 2011), and the disk
are all co-aligned.

3.4.4 Efficiency of Tides

If the high obliquity is found to be specific to hot stars with hot Jupiters, it becomes more
likely to be related to their migration process. The next question is the origin of the tem-
perature dependence. Tidal realignment discussed in Section 3.2 is one possibility, but its
plausibility is unclear mainly because efficiency of the tidal damping is theoretically quite
uncertain: even the timescale for tidal dissipation is not understood from first principles.
Any observational constraint on the tidal dissipation, or the statistical inference based on
the properties of existing systems, is therefore of great importance.

One possible approach is to monitor the orbital period of a close-in planet with small
a/R⋆ to detect the decrease in the orbital period due to tidal dissipation. Indeed, if the
efficiency of tides is close to the currently expected value or larger, such an “orbital decay”
could be observable over the timescales of a few years for the most favorable targets, as
recently claimed by Maciejewski et al. (2016).

In fact, if the tidal orbital decay and the resulting ingestion of the close-in planet is
common, that may be another explanation for the obliquity trend. Matsakos & Königl
(2015) pointed out that the angular momentum surrendered to the star by an ingested
planet is enough to realign the cool central star, which rotates rather slowly and has
smaller angular momentum, while hotter stars would hardly be affected by the engulfed
planet. This scenario is similar to the one in Section 3.2, although the realignment is
caused by the engulfment rather than dissipation. An advantage of this scenario is that it
is consistent with the universality of the λ–Teff correlation and the lack of strong period
dependence of obliquity around cool stars discussed in Section 2.4. This is because the
degree of realignment does not have to be related to the property of currently existing
planets that survived the engulfment. That feature could also be a weakness because
we do see some correlations between λ and the properties of current planetary systems,
though they are in general less clear than λ–Teff trend. This scenario, as is the case for
the tidal realignment, also relies on the picture that spin–orbit misalignments are initially
universal; both high-eccentricity migration or initial star–disk misalignment thus qualify.



Chapter 4

Three-dimensional Stellar Obliquities
of HAT-P-7 and Kepler-25 from
Joint Analysis of Asteroseismology,
Transit Light Curve, and the
Rossiter–McLaughlin Effect

Chapter based on Benomar, Masuda, Shibahashi, & Suto (2014) PASJ, 66, 94

Measurements of stellar obliquities for transiting systems are usually two-dimensional:
either the sky-projection λ of the true obliquity, or the difference between orbital incli-
nation (almost 90◦) and stellar inclination i⋆, is used to infer the degree of the spin–orbit
misalignment. In this chapter, we develop a detailed methodology for determining true
stellar obliquity ψ, combining the analyses of asteroseismology, transit light curves, and
the Rossiter-McLaughlin effect. We demonstrate the power of such a joint analysis by
applying it for the first time to two real systems, HAT-P-7 hosting a hot Jupiter and
Kepler-25 with two transiting planets and another non-transiting one. We also show
that the joint analysis allows for an accurate and precise determination of the numerous
parameters characterizing the planetary system, in addition to ψ.

4.1 Introduction

4.1.1 A Historical View on Measurements of λ

While the measurement of ψ is not easy, its projection onto the plane of the sky, λ,
has already been measured for about 80 transiting planetary systems via the Rossiter–
McLaughlin (RM) effect (Winn, 2011, see also Section 2.2), and is now established as one
of the most basic parameters that characterize transiting planetary systems; see Figure
1.5 for the summary of current observations.

The RM effect was originally proposed to determine the projected spin–orbit angle
of eclipsing binary star systems (Rossiter, 1924; McLaughlin, 1924). Queloz et al. (2000)
successfully applied the technique for the first discovered transiting exoplanetary system,
HD209458, and obtained λ = ±3.◦9+18◦

−21◦ . In the quest for improving the precision and
accuracy, Ohta et al. (2005) presented an analytic formula to describe the RM effect and
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studied in detail the error budget and possible degeneracy among different parameters.
This allowed Winn et al. (2005) to revisit HD209458 with updated photometric and
spectroscopic data, and to obtain λ = −4.◦4±1.◦4, improving the precision of the previous
measurement by an order of magnitude.

In doing so, Winn et al. (2005) pointed out that the analytic approximation adopted
by Ohta et al. (2005) leads to typically 10 percent error in the predicted velocity anomaly
amplitude, while the estimated λ is fairly reliable. This motivated Hirano et al. (2010)
and Hirano et al. (2011) to take into account stellar rotation, macroturbulence, and ther-
mal/pressure/instrumental broadenings in modeling the stellar absorption line profiles.
Those authors derived an analytic formula for the velocity anomaly of the RM effect by
maximizing the cross-correlation function between the in-transit spectrum and the stellar
template spectrum, i.e., following the same procedure as is actually used to derive RVs
from the spectra. Their analytic formulae reproduce mock simulations within ∼ 0.5 per-
cent, enabling the accurate and efficient multi-dimensional fit of parameters characterizing
the star and planet(s) of an individual system.

More importantly, Winn et al. (2005) clearly demonstrated the potential of the RM
effect to put strong quantitative constraints on the existing and/or future planetary forma-
tion scenarios. Indeed, when HD209458 was the only known transiting planetary system,
Ohta et al. (2005) discussed that “Although unlikely, we may even speculate that a future
RM observation may discover an extrasolar planetary system in which the stellar spin
and the planetary orbital axes are anti-parallel or orthogonal. Then it would have a great
impact on the planetary formation scenario, . . . ”. In reality, however, they were too con-
servative. Among the 80 transiting planetary systems where the RM effect is observed,
more than 30 exhibit significant spin–orbit misalignments with |λ| > 22.◦5 (see Figure
1.5). This unexpected diversity of the spin–orbit angle is not yet properly understood by
the existing theories and remains an interesting challenge, as discussed in Chapter 3.

4.1.2 Aim: Determination of ψ

The main purpose of this chapter is to establish a methodology to determine ψ, instead of
λ, through the joint analysis of asteroseismology, transit light curve, and the RM effect.
We also present specific results for two interesting transiting planetary systems, HAT-P-71

(KIC 10666592) and Kepler-25 (KIC 4349452). HAT-P-7 is the first example of a system
hosting a retrograde or a polar-orbit planet, while Kepler-25 is a multi-transiting system
with three planets. We show that joint analyses of asteroseismology, transit light curve,
and the RM effect provide stringent orbital parameter estimates as well as true stellar
obliquity ψ.

As we noted in Section 2.1 and Figure 2.1, λ differs from the true stellar obliquity ψ
due to the projection onto the sky. Remember that, in addition to λ, ψ also depends on
the orbital inclination iorb and the obliquity of the stellar spin axis i⋆. These angles are
related by the law of cosines in spherical trigonometry,

cosψ = cos i⋆ cos iorb + sin i⋆ sin iorb cosλ, (4.1)

1We would like to emphasize the efforts made by Lund M. N. and his collaborators for their work
on HAT-P-7. This system turned out to be studied simultaneously and independently by our respective
teams.
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Figure 4.1 Schematic illustration of geometric configuration of a star–planet system. We
choose a coordinate system centered on the star, where the XY -plane is in the plane of
the sky and +Z-axis points towards the observer. The +Y -axis is chosen along the sky-
projected stellar spin and the X-axis is perpendicular to both Y - and Z-axes, forming
a right-handed triad. Red and green arrows indicate, on a unit sphere, the angular
momentum vectors of the stellar spin and the planetary orbital motion, respectively. The
stellar and orbital inclinations, i⋆ and iorb, are measured from the +Z-axis and in the
range of [ 0◦, 180◦]. The planetary orbital axis projected onto the sky plane is specified by
the projected spin–orbit angle, λ, which is measured from the +Y -axis and in the range
of [0◦, 360◦]. Note that λ is measured in the direction specified by the arrow. The angle
AOC between the stellar spin and the planetary orbit axis vectors, ψ, is derived from the
law of cosines for the spherical triangles ABC, as given by Equation (4.1).

as best illustrated in Figure 4.1. In the case of transiting planetary systems, iorb can be
estimated from the transit light curve, and in any case is close to 90◦. Given the projected
angle λmeasured from the RM effect, the major uncertainty for ψ therefore comes from the
unknown stellar inclination i⋆. There are several complementary approaches to estimate
i⋆, and hence ψ, as we already described in Section 2.3. In this chapter, we focus on
asteroseismology (Unno et al., 1989; Aerts et al., 2010, see also Section 2.3.1).

In fact, target stars for the exoplanet hunting are often good targets for asteroseis-
mology as well. In both transit and radial velocity surveys, low-mass, cool stars in the
main sequence are usually favored, because their small radii are advantageous for the
transit detection and because they have sharp and narrow absorption lines essential for
the precise velocimetry. As is the case for the sun, such a low-mass, cool star has a
thick convective envelope that sustains pulsations; turbulent motion as fast as the sound
speed near the stellar surface stochastically generates acoustic waves, which propagate
inside the star until they are damped. The oscillations with frequencies close to those of
eigenmodes of the star are eventually sustained as many acoustic modes. Therefore, host
stars with Teff ! 7000K should commonly exhibit solar-like oscillations and allow for the
application of asteroseismology.
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4.1.3 Plan of this Chapter

This chapter is organized as follows. Section 4.2 summarizes the previous RM measure-
ments and radial velocity (RV) data of the two systems. Section 4.3 presents a brief
description on the procedure and results of the asteroseismology analysis, the latter of
which will be used in the following joint analyses. Sections 4.4 and 4.5 analyze the Kepler
transit light curves and the RV anomaly of the RM effect, using the asteroseismology
results as the prior information, and show how the joint analysis improves the estimates
of the system parameters. Section 4.6 is devoted to the summary and further discussion,
and Section 4.7 concludes the chapter.

4.2 Previous Measurements of Stellar Obliquities

4.2.1 HAT-P-7

The HAT-P-7 system comprises a bright (V = 10.5) F6 star and a hot Jupiter transiting
the host star with a 2.2-day period (Pál et al., 2008, hereafter P08). In addition to
the significant spin–orbit misalignment first revealed by the Subaru spectroscopy (Narita
et al., 2009; Winn et al., 2009a), the fact that the system is in the Kepler field makes it
very attractive as an asteroseismology target.

Interestingly, there have been three independent measurements of the RM effect for
the HAT-P-7 system, which all indicate the significant spin–orbit misalignment, but do
not agree quantitatively. Winn et al. (2009a) (hereafter W09) performed the joint analysis
of the spectroscopic and photometric transit of HAT-P-7b to obtain λ = 182.◦5± 9.◦4. For
RVs, they analyzed 17 spectra observed with the High Resolution Spectrograph (HIRES)
on the Keck I telescope as well as 69 spectra observed with the High Dispersion Spectro-
graph (HDS) on the Subaru telescope. Eight of the HIRES spectra were from P08 and
taken in 2007, while the other nine were obtained in 2009. Among 69 HDS spectra, 40
were obtained on 2009 July 1 that spanned a transit.

On the other hand, Narita et al. (2009) (hereafter N09) determined λ = 227.◦4+10.◦5
−16.◦3

(equivalently λ = −132.◦6+10.◦5
−16.◦3) based on the eight HIRES RVs from P08 and 40 HDS

spectra spanning the transit on 2008 May 30. Although they fixed the transit parameters
in the analysis of the RM effect, the systematics from the uncertainties of these parameters
do not seem to explain the mild discrepancy with the W09 result, according to their
discussion (see cases 1 to 4 in section 4 of N09).

Later on, Albrecht et al. (2012) (hereafter A12) reported another measurement of the
RM effect, resulting in λ = 155◦ ± 14◦. They analyzed 49 HIRES spectra spanning a
transit on the night 2010 July 23/24 with the priors on transit parameters and ephemeris
from the Kepler light curves.

In this chapter, we use the same RV data published in each of the three papers. Since
the origin of the possible discrepancy in λ is not clear, we analyze each data set separately
instead of combining the three.

4.2.2 Kepler-25

The Kepler-25 system is one of the few multi-transiting planetary systems with con-
strained λ. It consists of a relatively bright (Kp = 10.7) host star, two short-period
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Neptune-sized planets confirmed with transit timing variations (TTVs) (Steffen et al.,
2012), and one outer non-transiting planet detected in a long-term RV trend (Marcy
et al., 2014). Albrecht et al. (2013) (hereafter A13) measured λ = 7◦ ± 8◦ for the larger
transiting planet Kepler-25c based on the HIRES spectra observed for two nights (2011
July 18/19 and 2012 May 31/June 1). Since the signal-to-noise ratio of the RV anomaly
was small due to the relatively small radius of Kepler-25c, they also analyzed the time-
dependent distortion of the spectral lines directly (i.e., Doppler tomography method in
Section 2.2.2) and obtained a consistent result, λ = −0.◦5± 5.◦7.

In this chapter, we analyze the RVs around the above two transits from A13 alone
because our focus is the determination of ψ.

4.3 Information from Asteroseismology Analysis

In Sections 4.4 and 4.5 below, we complement the analysis of the RM effect and transit
light curve with the constraints on i⋆, ρ⋆, and v sin i⋆ from asteroseismology to determine
true obliquity ψ. This section briefly summarizes how those constraints are obtained
from asteroseismic analyses; more detail is found in sections 3 through 5 of Benomar
et al. (2014).

4.3.1 Mode Identification and Frequency Measurements

In a convective envelope of a Sun-like star, turbulent motion stochastically generates
acoustic waves. While the waves gradually damp as they propagate, the oscillations with
frequencies close to the eigenmodes of the star are sustained as acoustic modes. These
oscillation modes can be observed in the power spectrum of the stellar light curves, as
shown in Figures 4.2 and 4.3 for HAT-P-7 and Kepler-25, respectively. Note that the
oscillation modes cannot be seen in the time-domain (i.e., light curves), because they are
not the coherent oscillations inherently to their stochastic nature of excitation.

Assuming a spherical star, each mode is labeled with three quantum numbers (n, l,m),
in an analogous manner to the energy eigenstates of a hydrogen atom in quantum me-
chanics. The shape of each oscillation mode is given by the Lorentzian profile, whose
height and width are determined by specific mechanisms of, e.g., mode excitation and
damping. The frequencies of each oscillation mode can be derived by fitting this profile
to the observed power spectra.

In the absence of stellar rotation, spherical symmetry assures that the frequency of
each eigenmode ν depends on n and l alone. For the low angular degrees of high order
modes near the surface, which satisfy n ≫ l ∼ 1, ν is almost equally spaced as

ν(n, l) = ∆ν

(
n+

l

2
+ α

)
+ εn,l. (4.2)

Here ∆ν is a characteristic frequency of the oscillation called the frequency spacing, α is a
constant of order unity, and εn,l is the correction related to the detailed interior structure
of the star. Equation (4.2) assures that, if the power spectrum (as in Figures 4.2 and 4.3)
is divided into the chunks of width ∆ν and lined up vertically after aligning the central
frequency of each chunk, the modes (or frequency peaks) with the same (n, l) should
appear as nearly vertical lines, within the small correction of εn,l. Figures 4.4 and 4.5
created in such a way are called Échelle diagram and help the mode degree identification.
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Figure 4.2 Power spectrum of HAT-P-7 showing the three radial orders of modes with high-
est signal-to-noise ratio. The spectrum is shown after a boxcar smoothing over 0.08µHz
(gray) and 0.24µHz (black). The best-fit model is the solid red line. The inset shows all
the extracted modes.

Figure 4.3 Power spectrum of Kepler-25 showing the three radial orders of modes with
highest signal-to-noise ratio. The spectrum is shown after a boxcar smoothing over
0.21µHz (gray) and 0.83µHz (black). The best-fit model is the solid red line. The
inset shows all the extracted modes.
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Figure 4.4 (Left) Difference between the observed frequencies νobs of HAT-P-7 and the
best model frequencies νm. The modes with l = 0, 1, 2 are shown by orange, red, and black
diamonds, respectively. (Right) Échelle diagram showing the observed power spectrum
(background), observed frequencies (diamonds), and the frequencies from the best model
(white circles).

Figure 4.5 The same as Figure 4.4 for Kepler-25.
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Table 4.1 Stellar parameters of HAT-P-7 and Kepler-25 derived from the modeling with
the “astero” module of the Modules for Experiments in Stellar Astrophysics (MESA,
Paxton et al., 2011, 2013). The mean stellar density derived from the scaling relation
(4.4), ρ⋆,s, is also listed for comparison with the value from the model, ρ⋆,m.

Parameter HAT-P-7 Kepler-25

M⋆ (M⊙) 1.59± 0.03 1.26± 0.03
R⋆ (R⊙) 2.02± 0.01 1.34± 0.01
[Fe/H] 0.32± 0.04 0.11± 0.03
Teff (K) 6310± 15 6354± 27
Age (Myr) 1770± 100 2750± 300
αov 0.000+0.002

−0.000 0.007± 0.003
L⋆ (L⊙) 5.84± 0.05 2.64± 0.07
log g (cgs) 4.029± 0.002 4.285± 0.003
ρ⋆,m (103 kgm−3) 0.2708± 0.0035 0.7367± 0.0137
ρ⋆,s (103 kgm−3) 0.2696± 0.0011 0.7356± 0.0030

4.3.2 Derivation of Fundamental Stellar Properties

The frequency spacing ∆ν in Equation (4.2) is given by

∆ν =

(
2

∫ R⋆

0

1

c(r)
dr

)−1

, (4.3)

where c(r) is the sound speed at radius r: that is, ∆ν is the inverse of the sound-crossing
time within the star. For a star in hydrostatic equilibrium, the latter timescale is the
same as the free-fall timescale, and so ∆ν scales as the square root of the mean stellar
density.2 The scaling allows for the estimate of mean stellar density by scaling the solar
values ρ⊙ = (1.4060± 0.0005)× 103 kgm−3 and ∆ν⊙ = 135.20± 0.25 µHZ (Garćıa et al.,
2011) as

ρ⋆,s = ρ⊙

(
∆ν

∆ν⊙

)2

. (4.4)

While the scaling law (4.4) is known to hold well, this assumes that the overall internal
property is similar to that of the sun, which is not the case in general. A more physically
motivated (though model dependent) constraint can be obtained by fully modeling the
stellar internal structure, computing the eigenfrequencies for the model, and directly
comparing them to the observed oscillation frequencies. Such an analysis does not only
yield model-based mean stellar density, ρ⋆,m, but also give precise constraints on other
fundamental properties of the star. They are listed in Table 4.1. In Table 4.2, we list the
atmospheric parameters of the star from spectroscopy, which are also used in the above
modeling of mode frequencies.

2Since the pressure gradient supports the gravity, (1/ρ)(p/R⋆) ∼ c2/R⋆ ∼ GM⋆/R2
⋆ or c/R⋆ ∼

√
Gρ⋆.
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Table 4.2 Non-seismic observables of HAT-P-7 and Kepler-25. All but v sin i⋆ are used for
stellar modeling.

Parameter HAT-P-7 Kepler-25

Teff (K) 6350± 80 6270± 79
[Fe/H] 0.26± 0.08 −0.04± 0.10
L⋆ (L⊙) 4.9± 1.1 · · ·
log g (cgs) 4.070± 0.06 4.278± 0.03
v sin i⋆ (km s−1) 3.8± 0.5 9.5± 0.5

Source Pál et al. (2008) Marcy et al. (2014)

4.3.3 Geometry from the Rotational Splitting

So far we have focused on the frequency information of each mode. In contrast, relative
heights of the different modes tell us about the stellar rotation through the geometric
effect.

In the absence of stellar rotation, the modes with the same l but with different m
have the same oscillation frequencies. Stellar rotation breaks this (2l+1)-fold degeneracy
by splitting these modes, again analogously to the Zeeman splitting. Assuming a rigid
rotation, the effect of rotational splitting is simply given by

ν(n, l,m) = ν(n, l) +m δνs(n, l), (4.5)

where the rotational splitting δνs(n, l) is the inverse of the stellar rotation period (e.g.,
Appourchaux et al., 2008; Benomar et al., 2009; Chaplin et al., 2013). Furthermore, the
relative heights of the 2l+1 split modes depend on the stellar inclination through Equation
(2.3), as we described in Section 2.3.1. Thus, both stellar rotation and inclination can be
derived by fitting the spectrum with the sum of Lorentzians with different m, weighted
and shifted accordingly to Equations (2.3) and (4.5), respectively. The red solid lines in
Figures 4.2 and 4.3 show the best-fit spectrum models obtained in this way.

Ideally, Equations (2.3) and (4.5) contain enough information to specify both rotation
period and stellar inclination separately. In reality, however, it is often the case for Sun-like
stars as analyzed here that the splitting of the modes is not clear (see the power spectra
in Figures 4.2 and 4.3). For this reason, the amount of frequency splitting and mode
amplitudes are degenerate, which produces the strong correlation between the resulting
rotation frequency and inclination. This situation is clearly illustrated in Figures 4.6 and
4.7, which show joint probability distributions of the rotation frequency and inclination
of two stars.

In the joint analyses below, we use the joint probability distribution for i⋆ and v sin i⋆
computed from the rotation period, i⋆, and R⋆ from the stellar modeling, because v sin i⋆
is more directly related to the observable of the RM effect than the rotation period.
We also incorporate the constraint on ρ⋆ as an independent Gaussian. This treatment is
justified because the constraints on geometric parameters are essentially independent from
those on the parameters describing the interior structure, which come from the frequency
information alone.
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Figure 4.6 (Upper right) Joint posterior probability distribution of the stellar inclination
and the rotation frequency of HAT-P-7. The red and blue colors represent the regions
of the highest and lowest probabilities. The gray dotted line denotes the spectroscopic
v sin i⋆ from P08 with its 1σ uncertainty intervals shown with the light-gray dotted lines.
(Upper left) Marginalized probability density function for the rotational splitting. (Lower
right) Marginalized probability density function for the stellar inclination. (Lower left)
Marginalized probability density function for the v sin i⋆ inferred from those of the ro-
tational splitting, stellar inclination, and stellar radius. Green and orange lines in the
marginalized probability densities show the median and 68.3% credible interval, respec-
tively.

Figure 4.7 The same as Figure 4.6 for Kepler-25.
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4.3.4 Comments on the Results for Each System

In the case of HAT-P-7, splitting of the modes with differentm is not clear at all, as shown
in Figure 4.2. This means that the solutions including (i) relatively fast rotation with
the stellar inclination close to 0◦, and (ii) very slow rotation with an arbitrary inclination
are both allowed; this explains the correlation between rotation frequency and inclination
in Figure 4.6. Since the solution (ii) has a larger volume in the parameter space, slow
rotation (i.e., small rotation frequency) is more pronounced in the marginalized posterior
(cf. Appendix C). In other words, it does not mean that the faster rotation is clearly
excluded by the data.

The situation is better for Kepler-25, for which the splitting is better observed, though
not clear, as perceived by the red solid lines in Figure 4.3.

4.4 Joint Analysis of the HAT-P-7 System

In this section and the next, we combine i⋆ from asteroseismology and λ from the RM
effect to constrain the three-dimensional spin–orbit angle ψ. Since the seismic v sin i⋆
and ρ⋆ are also complementary to those from the RM effect and transit photometry,
we reanalyze the RM effect and the whole available Kepler light curves simultaneously,
incorporating the constraints on i⋆, v sin i⋆, and ρ⋆ described in the previous sections as
the prior knowledge. The method and results are presented in this section for HAT-P-7
and in the next section for Kepler-25.

For the HAT-P-7 system, the combination of asteroseismology and Kepler light curves
provides a unique opportunity to tightly constrain the orbital eccentricity of HAT-P-7b,
especially because the occultation (secondary eclipse) is clearly detected for this giant and
close-in planet. Therefore, we first describe how the transit and occultation light curves
constrain the planetary orbit in Section 4.4.1, before reporting the joint analysis for ψ in
Section 4.4.2.

4.4.1 Analysis of Transit and Occultation Light Curves

Data Processing and Revised Ephemeris

In the following analysis, we use the Kepler short-cadence Pre-search Data Conditioned
Simple Aperture Photometry (PDCSAP) fluxes through Q0 to Q17 retrieved from the
NASA exoplanet archive.3

First, light curves are detrended and normalized by fitting a third-order polynomial to
the out-of-transit fluxes around ±0.5 days of every transit center. Here, the central time
and the duration of each transit are determined from the central time of the first observed
transit calculated from the linear ephemeris, t0, the orbital period, P , and the duration
taken from the archive. We iterate the polynomial fit until all the outliers exceeding the
5σ level are excluded. In this process, we remove the transits whose baselines cannot be
determined reliably due to the data gap around the ingress or egress.

Second, we fit each detrended and normalized transit with the analytic light curve
model by Ohta et al. (2009) to determine its central time. We fix the planet-to-star radius
ratio, Rp/R⋆, the ratio of the semi-major axis to the stellar radius, a/R⋆, the cosine of

3http://exoplanetarchive.ipac.caltech.edu



58 Chapter 4 Three-dimensional Stellar Obliquities of HAT-P-7 and Kepler-25 from
Joint Analysis of Asteroseismology, Transit Light Curve, and the Rossiter–McLaughlin
Effect

the orbital inclination, cos iorb, at those values from the archive, adopt the coefficients
for the quadratic limb-darkening law, u1 and u2, from Jackson et al. (2012), and assume
zero orbital eccentricity (e). Since only the out-of-transit outliers were removed in the
first step, we also iteratively remove in-transit outliers using the same 5σ threshold. The
resulting transit times are used to phase fold all the transits and to improve the transit
parameters and orbital period P .

Using these revised transit parameters, we again fit each transit light curve for its cen-
tral time and total duration. Here we assume e = 0, fix the values of u1, u2, a/R⋆, Rp/R⋆,
and P , and float only central transit time and cos iorb. From these transit times, we calcu-
late the revised ephemeris t0(BJD)−2454833 = 121.3585049(49) and P = 2.204735427(13)
days by linear regression. Since we find no systematic TTVs, hereafter we assume that
the orbit of HAT-P-7b is described by the strictly periodic Keplerian orbit with t0 and P
obtained above.

Orbital Eccentricity and Mean Stellar Density from the Phase-Folded Transit
and Occultation

The top and middle panels of Figure 4.8 respectively show the transit and occultation
light curves stacked using the revised ephemeris. The light curves are averaged into 1-
minute bins and the uncertainty of the flux in the i-th bin, σi,MAD, is calculated as 1.4826
times median absolute deviation divided by the square root of the number of data points
in the bin (Bevington, 1969). Solid lines are the best-fit light curves obtained from the
simultaneous fit to both light curves. We use the transit model by Mandel & Agol (2002),
and binned model fluxes are calculated by averaging fluxes sampled at 0.1-minute interval.
In this figure, the transit and occultation are shifted in time by tc, tra and P/2 + tc, tra,
respectively, where tc, tra is the central time of the phase-folded transit light curve. This
parameter is introduced to take into account the uncertainty in t0, and the best-fit value
of tc, tra is indeed within that uncertainty (see Table 4.3). In the transit residuals (top
panel), we reproduce the anomaly first reported by Morris et al. (2013), who attributed
it to the planet-induced gravity darkening. We will analyze this anomaly in Section 5.5.

Since the asymmetry of the planetary orbit alters the relative duration of the tran-
sit and occultation, as well as their time interval, one can tightly constrain the orbital
eccentricity from the combination of transits and occultations; see Appendix B.3.3. The
bottom panel of Figure 4.8 illustrates this subtle effect by comparing the best-fit transit
and occultation light curves. Here the depth of the occultation is scaled by δ, the occul-
tation depth divided by (Rp/R⋆)2, for ease of comparison. In this panel, the egress of the
occultation occurs slightly later than that of the transit, while the difference is smaller for
their ingresses. In other words, our best-fit model indicates that the occultation duration
is longer than the transit one and that the center of occultation deviates from P/2. These
are most likely due to the asymmetry of the orbit introduced by the slight but non-zero ec-
centricity, as well as the time delay of 4.5×10−4 days due to the finite speed of light (twice
the orbital semi-major axis divided by the speed of light; calculated for M⋆ = 1.59M⊙).
In fact, with the non-zero eccentricity and the above light-travel time included, the simul-
taneous fit to the phase-folded transit and occultation light curves give tight constraints
on the planet’s eccentricity, e cosω = 0.00026 ± 0.00015 and e sinω = 0.0041 ± 0.0022,
where ω is the argument of periastron measured from the plane of the sky.

Since e sinω and a/R⋆ are degenerate in determining the transit durations, the tight
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constraint on e sinω also allows for the accurate determination of a/R⋆, and hence the
mean stellar density ρ⋆ independently from asteroseismology (Seager & Mallén-Ornelas,
2003). We obtain a/R⋆ = 4.131± 0.009 from the above fit, and then derive ρ⋆ = (0.275±
0.002)× 103 kgm−3 from Kepler’s third law,

ρ⋆ =
3π

GP 2

(
a

R⋆

)3(
1 +

Mp

M⋆

)−1

, (4.6)

where G denotes the gravitational constant, and Mp/M⋆ ∼ 10−3 can be neglected. This
value is larger than ρ⋆,s based on the seismic scaling relation by 2.4σ, but consistent with
ρ⋆,m from the stellar model at the 1σ level (see Table 4.1). For this reason, we adopt
the constraints from the stellar model as the prior information in the following joint fit.
The choice of the prior, however, does not affect the spin–orbit angle determination, but
only slightly changes the values of a/R⋆, ρ⋆, cos iorb, and e sinω. The slight discrepancy
between ρ⋆ from the seismic scaling relation (ρ⋆,s) and that from transit and occultation
implies that the current precision of the Kepler photometry even enables an independent
test of the seismic scaling relation for the mean stellar density.

4.4.2 Joint Analysis

Method

In this subsection, we report the joint MCMC analysis of phase-folded transit and occul-
tation light curves (cf. Section 4.4.1) and RVs (cf. Section 4.2.1) making use of the prior
constraints on the mean stellar density ρ⋆, projected stellar rotational velocity v sin i⋆,
and stellar inclination i⋆ obtained from asteroseismology in Section 4.3. As discussed in
Section 4.4.1, the precise constraint on ρ⋆ (equivalent to that on a/R⋆) helps to lift the
degeneracy between a/R⋆ and e sinω, thus resulting in improved constraints on these two
parameters. In addition, v sin i⋆ is the key parameter for the RM effect along with λ, and
so the constraint on v sin i⋆ helps us to better determine λ from the observed RM signal.
Finally, i⋆ is crucial in determining the three-dimensional spin–orbit angle ψ via Equation
(4.1), which is the major goal of this chapter.

In order to properly handle the possible correlation among λ, v sin i⋆, and i⋆, we adopt
the joint probability distribution for v sin i⋆ and i⋆ as the prior in our MCMC analysis
and directly calculate the posterior distribution for ψ by floating i⋆ as well. It should be
noted here that our observables do not determine the sign of cos i⋆ or cos iorb, due to the
symmetry with respect to the plane of the sky. In order to take into account this inherent
degeneracy, we randomly change the sign of the first term in Equation (4.1) in computing
ψ. Since the probability distribution of ρ⋆ is almost independent of those of v sin i⋆ and i⋆,
we include the constraint on this parameter as an independent Gaussian with the central
value and width of ρ⋆,m listed in Table 4.1.

We adopt the same model (including non-zero eccentricity and light-travel time) for
transit and occultation as in Section 4.4.1. The observed RVs are modeled as

v⋆,model(t) = v⋆,orb(t) + v⋆,RM(t) + γi + γ̇(t− t0). (4.7)

Here,
v⋆,orb = K⋆ [cos(ω + f) + e cosω] (4.8)
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Figure 4.8 Phase-folded transit (top) and occultation (middle) light curves. Points are
the binned fluxes (1min) and solid lines show the best-fit model light curves. Vertical
dashed and dotted lines correspond to the four “contact points” where the planetary disk
is tangent to the stellar limb. In the bottom panel, we compare the durations and central
times of best-fit transit and occultation light curves. Occulation is shifted by P/2 in time
in the middle and the bottom panels, and its depth is scaled by δ in the bottom panel for
ease of comparison.
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is the stellar orbital RVs for the Keplerian orbit, where K⋆ is the RV semi-amplitude
(cf. Equation 1.4) and f is the true anomaly of the planet. The γi (i = 1, 2) are the
constant offsets for RVs from Keck/HIRES (i = 1) and Subaru/HDS (i = 2), and γ̇
accounts for the linear trend in the observed RVs in the W09 data set (Winn et al.,
2009a; Narita et al., 2012; Knutson et al., 2014). Finally, anomalous RVs due to the
RM effect, v⋆,RM, are modeled using the analytic formula by Hirano et al. (2011). The
parameters characterizing the RM model include v sin i⋆ (projected rotational velocity of
the star), β (Gaussian dispersion of spectral lines), γ (Lorentzian dispersion of spectral
lines), ζ (macroturbulence dispersion of spectral lines), u1RM + u2RM, and u1RM − u2RM

(coefficients for the quadratic limb-darkening law in the RM effect). We do not take
into account the effect of convective blueshift (Shporer & Brown, 2011), as its typical
amplitude (∼ 1m s−1) is smaller than the precision of the RVs analyzed here.

We impose the non-seismic priors as well on some of the model parameters. For the
ephemeris, we use the Gaussian priors t0(BJD)−2454833 = 121.3585049±0.0000049 and
P = 2.204735427 ± 0.000000013 days obtained from the transit light curves. The priors
on the RM parameters (β, γ, ζ, u1RM + u2RM, and u1RM − u2RM) are almost the same
as in A12. Namely, we fix β = 3km s−1 and γ = 1km s−1, and assume Gaussian prior
ζ = 5.18±1.5 km s−1. We fix the value of u1RM−u2RM at −0.023 from the tables of Claret
(2000) for the Johnson V band and the ATLAS model. The value is obtained using the
jktld tool4 for the parameters Teff = 6350K, log g (cgs) = 4.07, and [Fe/H] = 0.3. The
value of u1RM+u2RM is floated around the tabulated value of 0.70 assuming the Gaussian
prior of width 0.10. In addition, we impose an additional Gaussian prior on v sin i⋆ based
on the spectroscopic value in Table 4.2, because the seismic constraint on this parameter
is independent of the spectroscopic v sin i⋆. We assume uniform priors for the other 13
fitting parameters listed in Table 4.3 (top and middle blocks).

In the joint fit, we assume the same values of stellar jitter as used in the original
papers; 9.3m s−1 for the W09 set, 3.8m s−1 for the Keck/HIRES RVs of the N09 set, and
6.0m s−1 for the A12 set. In order to prevent the transit and occultation light curves
from placing unreasonably tight constraints compared to RVs, we also increase the errors

quoted for photometric data (evaluated in Section 4.4.1) as σi =
√
σ2
i,MAD + σ2

r . Here,

σr = 5.8× 10−6 is a parameter analogous to the RV jitter and chosen so that the reduced
χ2 of the light curve fit becomes unity. This prescription is also motivated by the following
two facts. First, σi,MAD tends to underestimate the true uncertainty because it neglects
the effect of correlated noise. Indeed, when the number of data points is sufficiently large,
uncertainties are dominated by the correlated or “red” noise component (Pont et al.,
2006). Second, the systematic residuals of the best-fit transit model (top panel of Figure
4.8) suggest other effects that are not taken into account in our model (see Section 5.5
for the detailed analysis of this feature). Placing too much weights on such features could
bias the transit parameters.

Results

Constraints on the system parameters from the joint analysis are summarized in Table
4.3. The corresponding joint posterior distributions are shown in Figures D.1 through D.3
in Appendix D to elucidate the parameter correlations. The “parameters mainly derived

4http://www.astro.keele.ac.uk/jkt/codes/jktld.html
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from light curves/RVs” are the model (fitted) parameters, while the “derived quantities”
are the parameters derived from the fitted parameters (along with M⋆ and R⋆ in Table
4.1 for Mp, Rp, and ρp). While our result is in a reasonable agreement with previous
studies (cf. Morris et al., 2013; Esteves et al., 2013; Van Eylen et al., 2013), it provides
two major improvements.

First, we determine the orbital eccentricity of HAT-P-7b essentially from the pho-
tometry (i.e., transit, occultation, and asteroseismology) alone. A similar method has
recently been employed by Van Eylen et al. (2014) to constrain the planet’s orbital ec-
centricity using the seismic stellar density (see also Dawson & Johnson, 2012; Kipping,
2014), but here we show that this method is also useful for such a low-eccentricity orbit.
Furthermore, our result is even more precise and reliable because it takes into account
the independent constraint on ρ⋆ and e from the occultation light curve.

Second, we obtain the probability distribution for the true obliquity ψ, rather than
the sky-projected one λ, in a consistent manner. In the case of HAT-P-7, the constraint
on ψ is not very strong because the modest splitting of the azimuthal modes only allows
a weak constraint on i⋆ (see Figure 4.6). Nevertheless, we find that the peak values of
ψ shift towards 90◦ compared to those obtained from the “random” i⋆ uniform in cos i⋆
(i.e., without the knowledge from asteroseismology) in all three data sets, as shown in
Figure 4.9. Moreover, the methodology presented here can be applied to other systems,
for some of which asteroseismology may be able to tightly constrain i⋆ unlike HAT-P-7.
We will show that this is indeed the case for the Kepler-25 system in the next section.

4.5 Joint Analysis of the Kepler-25 System

4.5.1 Method

We repeat almost the same analysis for Kepler-25c as in Section 4.4. There are, however,
several differences in the light curve and RV analyses as described below, mainly due to
the multiplicity of the Kepler-25 system and relatively small signal-to-noise ratio of the
Kepler-25c’s transit:

1. We phase-fold the transits using the actually observed transit times rather than
those calculated from the linear ephemeris. This is because the transit times of
Kepler-25c (P = 12.7 days) exhibit significant TTVs due to the proximity to the
2 : 1 mean-motion resonance with Kepler-25b (P = 6.2 days). This is why we do
not allow tc, tra, the central time of the phase-folded transit, to be a free parameter.
We adopt σr = 1.6× 10−5 based on the χ2 of the light curve fit.

2. The occultation of Kepler-25c was not detected and not taken into account in the
following analysis.

3. As the quality of the transit light curve of Kepler-25c is not so good as that of
HAT-P-7b, we could not determine the limb-darkening coefficients very well. For
this reason, we impose the prior u1 − u2 = −0.0015 ± 0.50 based on the tables
of Claret (2000), and choose u1 + u2 and u1 − u2, instead of u1 and u2, as free
parameters. We made sure that the choice of the prior width for u1 − u2 does not
affect the constraint on ψ.
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Table 4.3 Parameters of the HAT-P-7 System from the Joint Analysis.

Parameter Value (W09) Value (N09) Value (A12)

Parameters mainly derived from light curves (transit, occultation, asteroseismology)

t0(BJD)− 2454833 121.3585049± 0.0000049
P (day) 2.204735427± 0.000000013
e cosω 0.00024± 0.00020 0.00024± 0.00020 0.00025± 0.00020
e sinω 0.0053+0.0022

−0.0021 0.0057+0.0025
−0.0026 0.0049+0.0026

−0.0030
u1 0.3540± 0.0034 0.3544+0.0033

−0.0034 0.3545+0.0034
−0.0035

u2 0.1670+0.0055
−0.0054 0.1663+0.0055

−0.0053 0.1661+0.0056
−0.0055

ρ⋆ (103 kgm−3) 0.2736± 0.0016 0.2731+0.0021
−0.0018 0.2737+0.0024

−0.0018
cos iorb 0.12149+0.00056

−0.00057 0.12166+0.00063
−0.00068 0.12145+0.00061

−0.00081
Rp/R⋆ 0.077589+0.000020

−0.000021 0.077593± 0.000020 0.077591+0.000020
−0.000021

δ 0.01171± 0.00010
tc, tra (day) −0.0000044+0.0000041

−0.0000042
i⋆ (◦) 31+33

−16 33+34
−20 33+34

−20

Parameters mainly derived from RVs

K⋆ (m s−1) 211.7± 2.3 213.2± 1.8 214.0± 4.6
γ1 (m s−1) −15.5± 3.0 −37.5± 1.5 10.4+1.5

−1.6
γ2 (m s−1) −9.7± 1.7 −16.9± 1.4 –
γ̇ (m s−1 yr−1) 21.5± 2.5 – –
λ (◦) 186+10

−11 220.3+8.2
−9.3 157+14

−13
v sin i⋆ (km s−1) 4.15+0.38

−0.39 3.17± 0.33 3.17+0.33
−0.34

β (km s−1) 3.0 (fixed)
γ (km s−1) 1.0 (fixed)
ζ (km s−1) 5.3± 1.5 5.5± 1.5 5.5± 1.5
u1RM + u2RM 0.70± 0.10
u1RM − u2RM −0.23 (fixed)

Derived quantities

ψ (◦) 122+30
−18 115+19

−16 120+26
−18

a/R⋆ 4.1269+0.0082
−0.0078 4.1245+0.0103

−0.0092 4.1277+0.0121
−0.0090

impact parameter
of transit (R⋆) 0.4987± 0.0013 0.4989± 0.0013 0.4988+0.0013

−0.0014

T14,tra (day) 0.164301± 0.000022 0.164303± 0.000023 0.164300± 0.000023
T23,tra (day) 0.133042+0.000049

−0.000048 0.133034+0.000047
−0.000048 0.133037+0.000052

−0.000048
Ttra (day) 0.148672+0.000025

−0.000024 0.148668± 0.000024 0.148669+0.000025
−0.000024

impact parameter
of occultation (R⋆)

0.5040+0.0022
−0.0023 0.5047+0.0025

−0.0028 0.5039+0.0024
−0.0033

T14,occ (day) 0.16555+0.00051
−0.00050 0.16566+0.00058

−0.00061 0.16547+0.00060
−0.00070

T23,occ (day) 0.13385+0.00034
−0.00033 0.13392+0.00039

−0.00040 0.13379+0.00041
−0.00046

Tocc (day) 0.14970+0.00042
−0.00041 0.14979+0.00048

−0.00051 0.14963+0.00050
−0.00058

occultation depth (ppm) 70.5± 0.6
Mp(MJ) 1.86± 0.03 1.87± 0.03 1.88± 0.05
Rp(RJ) 1.526± 0.008
ρp (103 kgm−3) 0.65± 0.01 0.66± 0.01 0.66± 0.02

Note — The quoted best-fit values are the medians of their MCMC posteriors, and uncertainties
exclude 15.87% of values at upper and lower extremes. The Tij (i, j = 1, 2, 3, 4) is the duration
between the two contact points i and j [see figure 2 of Winn (2011) for their definitions], and
T = (T14 + T23)/2. The subscript “tra” refers to transits and “occ” to occultations.
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Figure 4.9 Probability distributions for the three-dimensional spin–orbit angle ψ of HAT-
P-7b for the W09 (top), N09 (middle), and A12 (bottom) data sets. Solid red lines show
the posteriors from the joint analysis, while the black ones are the probability distributions
obtained from uniform cos i⋆ and the posteriors of λ and iorb from the joint analysis (Table
4.3). The median, 1σ lower limit, and 1σ upper limit for each distribution are shown with
vertical dotted lines. A small bump around ψ ≈ 95◦ in each panel originates from the
fact that each posterior shown here is the superposition of the two inherently degenerate
configurations with the opposite signs of cos i⋆ cos iorb; see the discussion in the second
paragraph of Section 4.4.2.
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Figure 4.10 Probability distributions for the three-dimensional spin–orbit angle ψ of
Kepler-25c. The solid red line shows the posterior from the joint analysis, while the
black one is the probability distribution obtained from λ and iorb in Table 4.4 and uni-
form cos i⋆. The median, 1σ lower limit, and 1σ upper limit for each distribution are
shown with vertical dotted lines.

4. In order to take into account the other planets in the RV fit, we allow the orbital
semi-amplitude K⋆ and RV offset γ for each of the nights in 2011 and 2012 to be
free parameters, as in A13. RV jitters are fixed at 3.3m s−1.

5. We do not fit the orbital eccentricity but fix e = 0, because we do not analyze the
occultation nor RVs throughout the orbit (Marcy et al., 2014).

6. We assume the independent Gaussian priors u1RM + u2RM = 0.69 ± 0.10 and ζ =
4.85±1.5 km s−1 from A13, and fix u1RM−u2RM = −0.0297 from the tables of Claret
(2000).

4.5.2 Results

In the case of the Kepler-25 system, the uncertainty in ψ is significantly reduced by
virtue of the seismic information. This situation is clearly illustrated in Figure 4.10,
which compares the posterior probability distribution for ψ from the joint fit (solid red
line) to that based on λ and iorb from the joint fit and the uniform cos i⋆ (solid black
line). The corresponding system parameters are summarized in Table 4.4, and the joint
posterior distribution can be found in Figure D.4. They are basically consistent with
those obtained by A13, except for the increased precision in the transit parameters.

Interestingly, our result suggests a spin–orbit misalignment for Kepler-25c with more
than 2σ significance. In order to check the robustness of this result, we also calculate the
probability distribution of ψ for the seismic i⋆ and an independent Gaussian λ = −0.◦5±5.◦7
from the Doppler tomography. We obtain ψ = 23.◦7+8.◦0

−11.◦3 in this case, which still points
to the spin–orbit misalignment marginally. If confirmed, this will be the first example of
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the spin–orbit misalignment in the multi-transiting system around a main-sequence star.5

The implication of this result will be discussed in Section 4.6.2, along with some caveats
in Section 4.6.3.

4.6 Summary and Discussion

4.6.1 HAT-P-7

From asteroseismology alone, we obtain i⋆ = 27◦+35◦

−18◦ for HAT-P-7 (Figure 4.6). This
constraint, combined with the Kepler light curves and the three independent RM mea-
surements, yields ψ = 122◦+30◦

−18◦ and i⋆ = 31◦+33◦

−16◦ , ψ = 115◦+19◦

−16◦ and i⋆ = 33◦+34◦

−20◦ , and
ψ = 120◦+26◦

−18◦ and i⋆ = 33◦+34◦

−20◦ for the RVs from W09, N09, and A12, respectively (Figure
4.9 and Table 4.3). Although the resulting constraints are not very strong due to the
modest splittings of azimuthal modes (see Figure 4.6), our results suggest that the orbit
of HAT-P-7b is closer to the polar configuration rather than retrograde as λ may imply.

It is worth noting that the suggested discrepancies in λ and v sin i⋆ in three data sets
(cf. Section 4.2.1) still persist in our analysis. For a fair comparison with the A12 result,
we repeat the same analyses for the W09 and N09 data only including RVs taken over
the same night, but the values of λ and v sin i⋆ do not change significantly. Since we have
used the same model of the RM effect and the same priors from the Kepler photometry
for the three sets of data, our results confirm that the discrepancy comes from the RV
data themselves. As A12 discussed, such a discrepancy may originate from some physics
that is not included in the current model of the RM effect, but its origin is beyond the
scope of this chapter.

As a by-product of the spin–orbit analysis, we have found that HAT-P-7b has a small
but non-zero orbital eccentricity, e = 0.005 ± 0.001 (weighted mean of the three data
sets), which is consistent with e = 0.0055+0.007

−0.0033 obtained by Knutson et al. (2014). Our
constraint on e comes from the duration and mid-time of the occultation of HAT-P-7b
relative to those of the transit, along with the constraint on the mean stellar density ρ⋆
from asteroseismology. This approach is justified by the fact that ρ⋆ from the transit
and occultation alone shows a reasonable agreement with the model stellar density ρ⋆,m
derived independently from asteroseismology. The origin of this non-zero e may deserve
further theoretical consideration because the tides are expected to damp e rapidly for
such a close-in planet as HAT-P-7b.

4.6.2 Kepler-25

For Kepler-25, we obtain i⋆ = 65.◦4+10.◦6
−6.◦4 from the joint analysis. The constraint is slightly

better than i⋆ = 66.◦7+12.◦1
−7.◦4 from asteroseismology alone (Figure 4.7), mainly due to the

prior on v sin i⋆ from spectroscopy. The constraint on i⋆ is better than HAT-P-7 despite the
lower signal-to-noise ratio of the oscillation spectrum, because of the greater rotational
splitting (see Figure 4.7). This allows us to tightly constrain the spin–orbit angle of
Kepler-25c as ψ = 26.◦9+7.◦0

−9.◦2 (Figure 4.10). Our finding is important in two aspects: 1)
this is the first quantitative measurement of ψ, instead of λ, for multi-planetary systems,

5The first spin–orbit misalignment in the multi-transiting system was confirmed by Huber et al.
(2013) around a red giant star Kepler-56 using asteroseismology, as mentioned in Sections 2.4.3 and 3.4.
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Table 4.4 Parameters of the Kepler-25 System from the Joint Analysis.

Parameter Value (A13)

Parameters mainly derived from light curves (transit, asteroseismology)

t0(BJD)− 2454833 127.646558+0.000096
−0.000094

P (day) 12.7203724+0.0000014
−0.0000013

u1 + u2 0.550± 0.018
u1 − u2 −0.27± 0.44
ρ⋆ (103 kgm−3) 0.733+0.013

−0.012

cos iorb 0.04788+0.00036
−0.00038

Rp/R⋆ 0.03590+0.00054
−0.00046

i⋆ (◦) 65.4+10.6
−6.4

Parameters mainly derived from RVs

K⋆,2011 (m s−1) −13± 22
K⋆,2012 (m s−1) −37± 30
γ2011 (m s−1) −3.5± 1.3
γ2012 (m s−1) 2.0± 1.4
λ (◦) 9.4± 7.1
v sin i⋆ (km s−1) 9.34+0.37

−0.39

β (km s−1) 3.0 (fixed)
γ (km s−1) 1.0 (fixed)
ζ (km s−1) 4.9± 1.5
u1RM + u2RM 0.69± 0.10
u1RM − u2RM −0.0297 (fixed)

Derived quantities

ψ (◦) 26.9+7.0
−9.2

a/R⋆ 18.44± 0.11
transit impact parameter (R⋆) 0.8826± 0.0018
T14,tra (day) 0.11925± 0.00025
T23,tra (day) 0.08528+0.00065

−0.00069

Ttra (day) 0.10226+0.00036
−0.00037

Note — The quoted best-fit values are the medians of their MCMC
posteriors, and uncertainties exclude 15.87% of values at upper and
lower extremes. The Tij (i, j = 1, 2, 3, 4) is the duration between the two
contact points i and j [see figure 2 of Winn (2011) for their definitions],
and T = (T14 +T23)/2. The subscript “tra” refers to transits and “occ”
to occultations.



68 Chapter 4 Three-dimensional Stellar Obliquities of HAT-P-7 and Kepler-25 from
Joint Analysis of Asteroseismology, Transit Light Curve, and the Rossiter–McLaughlin
Effect

except for the solar system. 2) Kepler-25 is the first system that exhibits a possible
spin–orbit misalignment among the multi-transiting systems with a main-sequence host
star, while it is the second example if we consider the system with a red-giant host star,
Kepler-56.

The spin–orbit misalignment, if real, is particularly interesting because it may be
evidence for the initial star–disk misalignment, as discussed in Chapters 2 and 3. In this
context, the orbital inclinations of the other two planets (Kepler-25b and Kepler-25d)
relative to that of Kepler-25c would be of interest to further test whether the misalignment
is primordial or not. They may be constrained from the analysis of TTVs and transit
duration variations, combined with orbital RVs to constrain the orbit of the outer non-
transiting planet d. In this chapter, we did not model these phenomena because our main
concern is the determination of the spin–orbit misalignment.

It is also interesting to note that both HAT-P-7 and Kepler-25 are relatively hot stars
with Teff " 6300K and in line with the observed trend that the spin–orbit misalignments
are preferentially found around hot stars (Section 2.4). Although Rogers et al. (2012)
suggested that temporal variations of the stellar rotation due to internal gravity waves
could explain this empirical trend (Section 3.3.1), we found no evidence to support this
scenario for the two systems. Regarding HAT-P-7, we compared the rotational splitting
from Figure 4.6 with that from Q0 to Q2 (results from the study of Oshagh et al., 2013),
but found no evidence of significant variations. Although results using only Q0 to Q2
have large uncertainties, this may indicate that the rotation remains constant over time.
Moreover, we tightly constrained the rotation of Kepler-25 and showed that outer layers
certainly rotate at constant velocity. This is incompatible with the scenario suggested by
Rogers et al. (2012), which predicts the radial differential rotation.

4.6.3 Note on the Result for Kepler-25

After the results in this chapter were published in Benomar et al. (2014), Campante et al.
(2016) independently performed a similar analysis for the sample of Kepler stars including
HAT-P-7 and Kepler-25, but adopting a different procedure for generating the light curve
from the original photometry data. While their results are consistent with ours, they found
i⋆ peaked closer to 90◦ for Kepler-25, thus obtaining ψ = 12.◦6+6.◦7

−11.◦0 rather consistent with
a spin–orbit alignment. Campante et al. (2016) also found an opposite shift for the multi-
planet host Kepler-50; a slight misalignment like we found for Kepler-25 is favored in
their analysis, while the previous study by Chaplin et al. (2013) found i⋆ peaked around
90◦. These examples show that the current asteroseismic inference of i⋆ is susceptible to
systematics associated with the data processing, and the results of marginal significance,
including ours for Kepler-25, need to be taken with care.

4.7 Conclusion

The major purpose of the present chapter is two-fold. The first is to develop and describe
a detailed methodology of determining the three-dimensional spin–orbit angle ψ for tran-
siting planetary systems. The other is to demonstrate the power of the methodology by
applying it to the two specific systems, HAT-P-7 and Kepler-25.
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We find a near-polar orbit for HAT-P-7b, rather than a counter-orbiting one as naively
expected from the observed λ ≈ 180◦. The result implies that the orbit of HAT-P-7b
could naturally be formed within the current framework of high-eccentricity migration,
as discussed in Section 3.2.1. It will be of interest to apply similar analyses to systems
with measured λ ≈ 180◦ to test whether any of them indeed has ψ ≈ 180◦.

The true obliquity ψ of Kepler-25 is constrained for the first time in a multi-transiting
system. The determination of ψ is important for multi-transiting planetary systems, where
all the planets are supposed to share the same orbital plane; a large ψ in such a system
indicates that the stellar spin was significantly tilted with respect to the protoplanetary
disk plane, which would eventually become the orbital planes of the planets. While we find
tentative evidence for such a primordial misalignment (cf. Section 3.3), the asteroseismic
inference is currently not robust for this system and further investigation is required for
a more decisive conclusion.

In addition to the determination of ψ, the joint analysis improves the accuracy and
precision of numerous system parameters of a specific target. In turn, any discrepancy
among the separate analyses strongly points to a certain physical process that needs to
be taken into account in the detailed modeling. Such analyses would therefore open a
new window for the exploration of the origin and evolution of planetary systems.





Chapter 5

Spin–Orbit Misalignments of
Kepler-13Ab and HAT-P-7b from
Gravity-Darkened Transit Light
Curves

Chapter based on Masuda (2015) ApJ, 805, 28

In Section 3.4, we discussed the importance of individual obliquity measurements for
long-period planets around hot stars. Such measurements may be possible by applying the
gravity-darkening method (Section 2.3.2) to existing data of transiting systems obtained
by the Kepler space telescope. The methodology, however, is not fully established, given a
discrepancy between this method and the spectroscopic one recently reported for the hot
Jupiter system Kepler-13A. In this chapter, we discuss the origin of the discrepancy and
present a possible solution. In addition, we show that the solution can be tested by future
follow-up observations, on the basis of detailed dynamical modeling of transit variations
observed in this system. The revised methodology is then applied for the first time to
the HAT-P-7 system, providing a useful cross-check between the gravity-darkening result
and the measurement made in Chapter 4. The results presented in this chapter is to
clarify the validity and limitation of the gravity-darkening method, as well as to expand
the capability of the space-based photometry data.

5.1 Introduction

Stellar obliquity or the spin–orbit angle, ψ, the angle between the stellar spin axis and the
orbital axis of its planet, serves as a unique probe of the dynamical history of planetary
systems. Especially, its connection with the hot-Jupiter migration has been extensively
studied, but the relationship between the observed samples and the migration process is
not straightforward for various reasons (see Chapter 3 for more detail). First of all, the
initial distribution of the stellar obliquity is not known. Some studies do suggest that
the protoplanetary disk may have already been misaligned with the stellar equator due
to the chaotic gas accretion (e.g., Bate et al., 2010; Fielding et al., 2015) or the magnetic
star–planet interaction (e.g., Lai et al., 2011). In these cases, the spin–orbit misalignment
is primordial, rather than due to the migration. Even after the disk dissipation or the
completion of migration, stellar obliquity can evolve due to the gravitational perturbation
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from the companion (e.g., Storch et al., 2014; Li et al., 2014b). As suggested by the
observed correlation between the spin–orbit misalignment and stellar effective temperature
(Winn et al., 2010; Albrecht et al., 2012, see also Section 2.4), spin–orbit angle may also
be affected by the tidal star–planet interaction (e.g., Xue et al., 2014), whose mechanism
is not well understood. To partially resolve these issues, it is beneficial to measure stellar
obliquities for systems with various host-star and orbital properties. For instance, planets
on distant orbits or around hot/young stars are valuable targets because we expect that
tides have not significantly affected the primordial spin–orbit configuration.

This chapter focuses on a relatively new method for the spin–orbit angle determina-
tion in transiting systems, which utilizes the gravity darkening of the host star owing to
its rapid rotation (Barnes, 2009, see also Section 2.3.2). Stellar rotation makes the effec-
tive surface gravity at the stellar equator smaller than that at the pole by a fractional
order of γ ≡ Ω2

⋆R
3
⋆/2GM⋆ ∼ (Pbr/Prot)2, where Ω⋆, R⋆, M⋆, Pbr, and Prot are angular

rotation frequency, radius, mass, break-up rotation period, and rotation period of the
star, respectively. According to von Zeipel’s theorem (von Zeipel, 1924), this results in
the inhomogeneity of the stellar surface brightness through the relation Teff ∝ gβeff . Here,
Teff and geff are the effective temperature and surface gravity at each point on the stellar
surface, and gravity-darkening exponent β characterizes the strength of the gravity dark-
ening, which is theoretically 0.25 for a barotropic star with a radiative envelope. When a
planet transits a star with such an inhomogeneous and generally non-axisymmetric bright-
ness distribution, an anomaly of O(γδ) appears in the light curve, where δ is the transit
depth. Since the shape of the anomaly depends on the position of the stellar pole relative
to the planetary orbit, the stellar spin obliquity ψ can be estimated with the light-curve
model taking into account the effect of gravity darkening.

Indeed, this “gravity-darkening method” has many unique aspects. So far, it is the
only known method that is sensitive to both components of ψ, the sky-projected spin–orbit
angle λ and stellar inclination i⋆ (cf. Equation (5.2) and Figure 2.1). Moreover, obliquity
analysis is possible essentially with the photometric data alone, and its application is not
necessarily limited to short-period planets, as far as the transit is observed with sufficient
signal-to-noise ratio (Zhou & Huang, 2013). It is also interesting to note that the method
is (only) applicable to fast-rotating (i.e., young or hot) stars, for which anomalies of
larger amplitudes result. Since rapid rotators are not suitable for the precise spectroscopic
velocimetry because of their broad spectral lines, this method is complementary to the
conventional spin–orbit angle measurement using the Rossiter-McLaughlin (RM) effect.
All these properties make the method suitable for sampling stars for which tidal effect is
not so significant that the primordial information is expected to be well preserved in the
current spin–orbit configuration.

Although the gravity-darkening method is valuable in many aspects, the procedure for
obtaining ψ may not be fully established. In a representative example of its application,
Kepler-13A, the constraint from the gravity-darkening method (Barnes et al., 2011, here-
after B11) is known to be in disagreement with the later spectroscopic measurement of λ
with the Doppler tomography (Johnson et al., 2014, see also Section 2.2,). In addition,
inconsistent results arise even within the gravity-darkening analyses, depending on the
choice of the limb-darkening coefficients or β (Zhou & Huang, 2013; Ahlers et al., 2014).
For these reasons, it is worth revisiting the reliability and limitation of this method more
carefully, in order for this unique method to be applied to more systems in future and
provide credible results.
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In this chapter, we reanalyze a well-known example of the gravity-darkened transit of
Kepler-13Ab, with more data than used in the previous analysis by B11. We investigate
the systematic effects in the spin–orbit angle determination, and propose a joint solution
that may solve the discrepancy with the Doppler tomography measurement (Section 5.3).
We will also show that the spin–orbit precession observed in this system can be used to
test the validity of our solution, as well as to determine the stellar quadrupole moment
J2 (Section 5.4).

In addition, we apply the gravity-darkening method for the first time to an F-type
dwarf star, HAT-P-7, where the anomaly in the transit light curve has been reported in
several studies (e.g., Esteves et al., 2013; Van Eylen et al., 2013; Esteves et al., 2015,
see also Chapter 4). While the RM measurements (Winn et al., 2009a; Narita et al.,
2009; Albrecht et al., 2012) have established that λ > 90◦, suggesting a retrograde orbit,
the following asteroseismic inferences (Chapter 4; Lund et al., 2014) have revealed that
a pole-on orbit is actually favored. In Section 5.5, we show that a similar conclusion is
also obtained from the gravity-darkening method and discuss the consistency of our result
with other constraints on the host-star properties.

5.2 Method

5.2.1 Model

We basically follow Barnes (2009) in modeling the gravity-darkened transit light curve.
The model includes the following 14 parameters, which are listed as “fitting parameters”
in Tables 5.1 and 5.3:

1. mean stellar density, ρ⋆ = 3M⋆/4πR3
⋆, which corresponds to the semi-major axis

scaled by the stellar equatorial radius, a/R⋆
1

2. limb-darkening coefficient for the quadratic law, c1 = u1 + u2,

3. limb-darkening coefficient for the quadratic law, c2 = u1 − u2,

4. time of the inferior conjunction (where the planet is closest to the observer), tc,

5. orbital period, P ,

6. cosine of orbital inclination, cos iorb,

7. planetary radius normalized to the stellar equatorial radius, Rp/R⋆

8. normalization of the out-of-transit flux, F0

9. stellar mass, M⋆,

10. stellar rotation frequency, frot

11. stellar effective temperature at the pole, T⋆,pole

12. gravity-darkening exponent, β,
1In this chapter, R⋆ denotes the equatorial radius of the star.
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13. stellar inclination, i⋆

14. sky-projected spin–orbit angle, λ.

See also Appendix B.4 for the justification of these choices.
The first eight parameters are common with the light-curve model without gravity

darkening. We assume circular orbits for the two targets because the orbital eccentricities
are constrained to be very small, if any, from the occultation light curves (Chapter 4,
Shporer et al., 2014).

Following the gravity-darkened model by Barnes (2009), the shape of the star is ap-
proximated by the spheroid with the oblateness γ = Ω2

⋆R
3
⋆/2GM⋆ = 3πf 2

rot/2Gρ⋆. The
surface brightness at each point is modeled as the blackbody emission of the temperature
T⋆ = T⋆,pole (geff/geff,pole)

β , where geff/geff,pole is the effective surface gravity normalized
by its value at the stellar pole. The surface gravity at point r on the stellar surface is
calculated by geff = −GM⋆r−2r̂+4π2f 2

rotr⊥r̂⊥. Here r and r̂ are the norm and unit vector
of the radius vector r, respectively. Similarly, r⊥ and r̂⊥ are those of r⊥, the projection of
r onto the stellar equatorial plane. The Planck function Bλ(T⋆) at each point is convolved
with the “high-resolution” Kepler response function2 using the table of the wavelength-
and temperature-dependent factor calculated prior to the fitting. The convolved flux is
then multiplied by the limb-darkening function

I(µ) = 1− u1(1− µ)− u2(1− µ)2, (5.1)

with µ being the cosine of the angle between −geff and our line of sight,3 and integrated
over the visible surface of the star to give the total flux. We fix T⋆,pole at the observed
effective temperature assuming that the difference between T⋆,pole and the disk-integrated
effective temperature is small. Note that the gravity-darkened transit light curve gives ρ⋆
alone and cannot constrain M⋆ and R⋆ separately, as is the case for the transit without
gravity darkening (cf. Appendix B.4).

The configuration of the planetary orbit and stellar spin is specified by three angles,
iorb, i⋆, and λ, which are defined in Figure 2.1 (see also Figure 4.1). The orbital and
stellar inclinations, iorb and i⋆, are measured from the line of sight and defined to be in
the range [0, π]. The sky-projected spin–orbit angle, λ, is the angle between the sky-
projected stellar spin and planetary orbital axes. It is measured from the former to the
latter counterclockwise in the sky plane, and is in the range [0, 2π]. With these definitions,
the true spin–orbit angle, or the stellar obliquity, ψ, is given by Equation (4.1):

cosψ = cos i⋆ cos iorb + sin i⋆ sin iorb cosλ. (5.2)

Throughout the chapter, we restrict i⋆ to be in the range [0, π/2] making use of the intrinsic
symmetry with respect to the sky plane. We do not lose any physical information of the
system with this choice because any of the relative star–planet configurations with i⋆ in
[π/2, π] is the same as one of those with i⋆ in [0, π/2]. In other words, the configurations
(i⋆, iorb,λ) and (π − i⋆, π − iorb,−λ) are equivalent. This transformation corresponds to
looking at the system from the other side of the plane of the sky.

2http://keplergo.arc.nasa.gov/CalibrationResponse.shtml
3Although this vector −geff is not exactly parallel to the surface normal of the spheroid we assume,

the difference is O(γ2) and thus negligible.
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In the following, we also adopt the constraint on the stellar line-of-sight rotational
velocity v sin i⋆ from spectroscopy, which is related to the above model parameters by

v sin i⋆ = 2πfrot

(
3M⋆

4πρ⋆

)1/3

sin i⋆. (5.3)

This, in principle, allows us to break the degeneracy between M⋆ and R⋆, enabling the
determination of the absolute dimension of the system. Nevertheless, the constraint on
M⋆ is usually weak due to the M1/3

⋆ dependence, and so we fix M⋆ at the observed value.

5.2.2 Data Processing

We detrend and normalize the transit light curves of each target along with the consistent
determination of the transit times and transit parameters. We first normalize the light
curve of each quarter using its median, and then iterate the following two steps (typically
10–20 times) until the resulting transit times tc and transit parameters converge:

1. Light curve around each transit (±0.2 days for Kepler-13A and ±0.15 days for HAT-
P-7) is modeled as the product of a quadratic polynomial4 a0+a1(t−tc)+a2(t−tc)2

(t: time) and the analytic transit light-curve model by Mandel & Agol (2002). We
use the Levenberg-Markwardt (LM) method (Markwardt, 2009) to fit a0, a1, a2,
and tc iteratively removing 5σ outliers, while the other parameters are fixed. The
filtered data are then divided by the best-fit polynomial to give a normalized and
detrended transit light curve. We discard the transits with data gaps of more than
50%.

2. Using the set of tc obtained in the first step, we calculate the mean orbital period
P and transit epoch t0 by linear fit and use them to phase-fold the normalized and
detrended transits. The phase-folded light curve is averaged into one-minute bin
and then fitted with the Mandel & Agol (2002) model using an LM algorithm. We
fit c1, c2, ρ⋆, cos iorb, Rp/R⋆, and F0, whose best-fit values are used in the step 1
of the next iteration. In this step, the orbital period P is fixed to be the value
obtained from the linear fit and the central time of the phase-folded transit is fixed
to be zero.

In the following analysis, we use the one-minute binned, phase-folded light curve ob-
tained in the second step of the final iteration. For each bin, the flux value is given by its
mean and the error is estimated as the standard deviation within the bin divided by the
square root of the number of data points.

5.2.3 Fitting Procedure

In fitting the observed light curves, the likelihood L of the model is computed by L ∝
exp(−χ2/2), where

χ2 =
∑

i

(
fi − fmodel,i

σi

)2

+
∑

j

(
pj − pmodel,j

δpj

)2

. (5.4)

4Use of the quadratic polynomial helps the better removal of flux variation not due to the transit,
i.e., planetary light, ellipsoidal variation, and Doppler beaming.
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In the first term, fi, fmodel,i, and σi are the observed value, modeled value, and error of
the ith flux data. The second term is introduced to take into account the constraints
from other observations on some (functions) of the model parameters pj. In the following
analysis, p is read to be v sin i⋆ and, in some cases, λ.5 For each pj, we assume a Gaussian
constraint of the form pj ± δpj and the value obtained from the model is denoted by
pmodel,j.

The maximum likelihood solution is found by minimizing Equation (5.4) with the LM
method using the cmpfit package (Markwardt, 2009). Since the complex dependence of
χ2 on i⋆ and λ is expected, we repeat the fitting procedure from the initial i⋆ in [0, 90◦]
and λ in [−180◦, 180◦] at 10◦ intervals. Initial values of the other parameters are chosen
close to the best-fit values obtained from the model without gravity darkening. We also
try both positive and negative cos iorb as an initial value to search the whole domain of
iorb, which is now [0◦, 180◦].

5.3 Transit Analysis of Kepler-13Ab

In this section, we report the analysis of the gravity-darkened transit of Kepler-13Ab. We
first analyze the whole available data using the same stellar parameters as in B11 to test
the validity of our method (Section 5.3.1). Motivated by the recently reported disagree-
ment with λ from the Doppler tomography, we also investigate the possible systematics in
the spin–orbit determination arising from the choice of stellar parameters. We show that
the discrepancy can be solved by adjusting the value of c2 and present a joint solution
that is compatible with all of the observations made so far.

5.3.1 Reproducing the Results by B11

In this subsection, we analyze the short-cadence (SC), Pre-search Data Conditioned Sim-
ple Aperture Photometry (PDCSAP) fluxes from Q2, 3, and 7–17. Note that only the
Q2 data were available when B11 analyzed this system. Given the clear transit duration
variation (TDV) reported by Szabó et al. (2012) and Szabó et al. (2014), we separately
analyze the transits from each quarter, rather than folding all the available data. Since
we do not detect significant temporal variations in the parameters other than cos iorb (see
Section 5.4), we report the mean and standard deviation of the best-fit values from the
above 13 quarters for each parameter.

First, we use the same stellar parameters as in B11 and obtain the results in the
second column of Table 5.1. Namely, we subtract a constant value Fc = 0.45 from the
normalized flux to remove the flux contamination from the companion star, and impose
the constraint v sin i⋆ = 65±10 km s−1 based on Szabó et al. (2011). We fix M⋆ = 1.83M⊙
and T⋆,pole = 8848K from Borucki et al. (2011), and c2 = 0. In Figure 5.1, the best-fit
model is overplotted with the data for Q2, which is to be compared with figure 2 of B11.

Basically, we find a very good agreement with the result by B11 using about 12 times
more data. Although the values of cos iorb, i⋆, and λ we report here appear different from
those in B11, that is simply because we choose i⋆ to be in the range [0, π/2]. This is
physically the same configuration as theirs and corresponds to the top-left situation in
figure 3 of B11. That is, λ in our solutions with cos iorb < 0 should be read as −λ in the

5Only in Section 5.4.1, ρ⋆, c1, c2, Rp/R⋆, and frot are also included.
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conventional definition, because λ is usually defined for the orbit with cos iorb > 0 (see
also the discussion after Equation 5.2).

In addition to the solution in Table 5.1, we also find a retrograde solution with λ > 90◦

as noted in B11. Here we do not discuss this solution, however, because the Doppler
tomography observation has already excluded the retrograde orbit with high significance
(Johnson et al., 2014).

5.3.2 Systematics due to Stellar Parameters

Although we find consistent values of λ and i⋆ as obtained by B11, those of λ significantly
differ from λ = 58.◦6 ± 2.◦0, the value obtained from the Doppler tomography (Johnson
et al., 2014). Motivated by this discrepancy, we investigate the possible origins of system-
atics in the spin–orbit angle determination with gravity darkening in this subsection.

First, we examine the systematics due to the choice of M⋆, v sin i⋆, T⋆,pole, and Fc,
which are the stellar properties not derived from the light curve modeling.6 We perform
the same analysis as in Section 5.3.1, but adopting the following parameters from the
most recent photometric and spectroscopic study by Shporer et al. (2014, hereafter S14):
v sin i⋆ = 78 ± 15 km s−1, M⋆ = 1.72M⊙, T⋆,pole = 7650K, and Fc = 0.47726. The
corresponding results are shown in the third column of Table 5.1. We find that i⋆ and λ
can differ by as large as 10◦ due to the choice of the above parameters, but the difference
is not so large as to explain the disagreement with the Doppler tomography. The main
difference from the B11 case with this new set of parameters is the different constraint on
frot sin i⋆, which is proportional to the combination (ρ⋆/M⋆)1/3v sin i⋆ (cf. Equation 5.3).
With smaller M⋆ and larger v sin i⋆, the stellar rotation rate slightly higher than the B11
case is favored. We find that the difference in T⋆,pole is less important compared to the
above effect. We also find that larger Fc yields larger Rp/R⋆, which makes the impact
parameter or | cos iorb| smaller to give the same ingress/egress duration.

Next, we allow c2 = u1 − u2 to be free, and find that the resulting spin–orbit angle is
very sensitive to this parameter. When c2 is floated, the constraints on i⋆ and λ become
much weaker than the c2 = 0 case, as shown in the fourth and fifth columns of Table 5.1.
The strong dependence on c2 is illustrated in Figure 5.2, which shows that λ and i⋆ vary
by several tens of degrees depending on c2; see also the joint MCMC posterior distribution
in Figure D.5 for the same data. In fact, the result indicates that the gravity-darkened
light curve is actually compatible with the Doppler tomography solution if we choose
c2 ∼ 0.25; such a solution will be discussed in Section 5.3.3.

5.3.3 Joint Solution

In Section 5.3.2, we found that the gravity-darkened light curve is compatible with the
value of λ estimated from the Doppler tomography if c2 ∼ 0.25. Thus we repeat the
analysis treating c2 as a free parameter for both stellar parameters by B11 and S14, but
this time imposing additional constraint λ = 58.◦6 ± 2.◦0 from the Doppler tomography.
The results are summarized in the last two columns in Table 5.1, and the joint posterior
distribution from the MCMC fitting to the Q2 data is shown in Figure D.6 for the B11

6We do not examine the dependence on β here because B11 have already shown that a different
choice of β = 0.19, suggested by the interferometric observation of Altair (Monnier et al., 2007), does not
change the result significantly.
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Figure 5.1 Fitting the gravity-darkened model to the Q2 transit of Kepler-13Ab. (Middle)
Black dots are the phase-folded and binned fluxes from Q2. The thick red line shows our
best-fit gravity-darkened model, while the thin blue line is the best-fit model without
gravity darkening. (Bottom) Black dots are the residual of the best-fit gravity-darkened
model. Gray open circles are those for the joint solution, where c2 is fitted with the
constraint λ = 58.◦6±2.◦0 from the Doppler tomography. (Top) Black dots are the residuals
of the best-fit model without gravity darkening. Thick red line is the difference between
the best-fit model with gravity darkening and that without gravity darkening. Dashed red
line shows the same result for the joint solution. The difference between the two gravity-
darkened solutions is only barely visible just after the ingress and before the egress.
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Figure 5.2 Constraints on (λ, i⋆) from the gravity-darkened transit of Kepler-13Ab for the
different choices of c2. In this illustration, data from Q2 are used and stellar parameters
from B11 are adopted. The solid, dashed, and dotted contours respectively show 1σ,
2σ, and 3σ confidence regions for (λ, i⋆) obtained from 200000 Markov Chain Monte
Carlo (MCMC) samples for three fixed values of c2 (0, 0.12, and 0.25). The shaded
areas bounded by the vertical solid, dashed, and dotted lines respectively denote 1σ, 2σ,
and 3σ confidence regions for λ obtained from the Doppler tomography (Johnson et al.,
2014). The sign of λ is opposite to their quoted value because we are now dealing with
the solution with cos iorb < 0 (i.e., π/2 < iorb < π); see also the discussion in the third
paragraph of Section 5.3.1.
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stellar parameters. The resulting value of i⋆ = 81◦ ± 5◦ indicates that the star is close to
equator-on, and ψ = 60◦ ± 2◦ is slightly larger than the previous estimate. In terms of
χ2
min, these solutions equally well reproduce the transit anomaly as the solutions discussed

so far, and still they are consistent with the Doppler tomography result. Moreover, we
obtain a slightly longer Prot, which better agrees with Prot = 25.43± 0.05 h estimated by
Szabó et al. (2012) and Szabó et al. (2014) than the solution with the gravity darkening
alone. For these reasons, the joint solution is most favored from the current observations.

We note, however, that the likelihood for the joint solution is not so high as to sta-
tistically justify the introduction of the additional free parameter c2. Furthermore, the
plausibility of the value of c2 in our joint solution is theoretically unclear. We obtain the
theoretical values of c1,th ≃ 0.6 and c2,th ≃ 0.0 from the table of Sing (2010) if we adopt
the effective temperature and surface gravity by S14. Hence the value of c2 from our joint
solution is discrepant from c2,th. Nevertheless, it is also true that theoretical values often
disagree with the observed ones (e.g., Southworth, 2008); in fact, c1 in the light-curve
solution with c2 = 0 is also different from c1,th. Therefore, we do not consider the possible
deviations from the theoretical values crucial, and regard it as an open question.7 An
alternative approach to independently assess the validity of our solution is discussed in
the next section.

5.4 Spin–Orbit Precession in the Kepler-13A System

The shape of Kepler-13Ab’s transit is known to exhibit a long-term variation, which is
likely due to the spin–orbit precession induced by the quadrupole moment of the rapidly
rotating host star (Szabó et al., 2012, 2014). Indeed, we find the monotonic decrease in
| cos iorb| from the quarter-by-quarter analysis in Section 5.3; the constant-value model is
rejected at the p-value of 0.5% for this parameter using a simple χ2 test. On the other
hand, the other model parameters are found to be consistent with the constant value
using the same criterion. Therefore, our analysis confirms that the observed TDVs are
actually due to the variation in cos iorb,8 further supporting the precession scenario with
the more realistic model of the asymmetric transit light curve.

In this section, we further examine this scenario with the gravity-darkened transit
model. Unlike the above previous studies (Szabó et al., 2012, 2014) that focused on iorb,
the gravity-darkened model allows us to additionally study the (non-)variations in the
other two angles, λ and i⋆, which should also be induced if the system is precessing.9

By fitting the analytic precession model to the time series of cos iorb, λ, and i⋆ obtained
from the light curves, we constrain the stellar quadrupole moment J2 and its moment of
inertia coefficient C. On the basis of these constraints, we predict the future evolution of
the system configuration and argue that the follow-up observations of such a long-term
modulation can distinguish the light-curve and joint solutions discussed in Section 5.3.
In the following, we mainly discuss the results obtained with the stellar parameters from

7For reference, we find c2 = 0.1-0.2 if we adopt the model without gravity darkening (Mandel & Agol,
2002), which suggests that the choice of c2 = 0 is not indispensable.

8Note that, in Szabó et al. (2012), the degeneracy between a/R⋆ (or ρ⋆) and cos iorb was not solved.
9If either of the angular momenta of the stellar spin or the orbital motion dominates, iorb or i⋆ is

almost constant. In the Kepler-13A system, the two angular momenta have comparable magnitudes and
so all three angles modulate due to the precession. A similar case, the PTFO 8-8695 system, has been
studied by Barnes et al. (2013) and Kamiaka et al. (2015).
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S14, though the conclusions remain the same for the B11 parameters.

5.4.1 Model Parameters from Each Transit

To examine the temporal variations in cos iorb, i⋆, and λ, we fit individual transit light
curves, rather than the phase-folded ones, for these parameters. We use the same two
models (“light-curve solution” with c2 = 0 and “joint solution” with c2 fitted) as discussed
in Section 5.3. In order not to underestimate the errors in the three angles, we fit all the
other model parameters, ρ⋆, c1, c2 (for the joint model), tc, Rp/R⋆, frot, and F0 as well,
which should not vary temporally in our model. Using the best values in Table 5.1, we
impose the constraints on these parameters except for tc and F0, through the second term
of Equation (5.4). In fitting much noisier individual transits, this prescription assures
that the parameters converge to the values consistent with those from the phase-folded
light curves, while preserving their differences from transit to transit. We also discard the
transits for which the fit does not converge due to the data gaps and/or short brightening
features sometimes found in the light curves. The resulting sequences of the transit
parameters are plotted in Figure 5.3.

As mentioned above, we again find the clear linear trend in cos iorb from individual
transits. We fit the linear model to the time series of cos iorb using a Markov Chain Monte
Carlo (MCMC) algorithm and obtain the rates of change in the upper part of Table 5.2.
Here we only report the slopes for absolute values of cos iorb because its actual sign depends
on the sign of cos i⋆, which can never be determined with the current observations (we
arbitrarily choose cos i⋆ > 0 in this chapter, as discussed after Equation 5.2). Comparing
the light-curve solution and joint solution, we find that the rate of | cos iorb| change is
insensitive to λ or c2 because | cos iorb| is mainly determined from the transit duration.
With a/R⋆ calculated from ρ⋆, our value for d| cos iorb|/dt is found to be consistent with
db/dt = (−4.4 ± 1.2) × 10−5 day−1 by Szabó et al. (2012), but our constraint is several
times better.

Figure 5.3 also shows the abrupt systematic changes in Rp/R⋆. These changes occur
exactly in phase with the border of different quarters indicated with different colors (black
and gray). For this reason, they are unlikely to be of physical origin, but are probably
due to the seasonal transit depth variations similar to those reported by Van Eylen et al.
(2013) for HAT-P-7. In addition, some of the parameters (most notably ρ⋆ and frot)
show the long-term modulation of the period ∼ 400 days. Origins of these systematics
are beyond the scope of this chapter, and they are just treated as the additional scatter
in the data.

5.4.2 Fit to the Observed Angles and Future Prediction

Among the observed time series of transit parameters in Figure 5.3, those of cos iorb, λ,
and i⋆ are fitted using an MCMC algorithm to observationally constrain J2 and C. We
utilize the same analytic precession model as in Barnes et al. (2013), which constitutes
an analytic solution of the secular equations of motion derived by Boué & Laskar (2009).
In this model, the orbital and spin angular momenta precess around the total angular
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Figure 5.3 Best-fit model parameters from each transit. The left panels are the results for
the light-curve solution with c2 = 0, while the right ones are for the joint solution. Errors
are from the outputs of the cmpfit package. Parameters from even quarters (2, 8, 10, 12,
14, and 16) are shown in black, while those from odd quarters (3, 7, 9, 11, 13, 15, and 17)
are in gray. For the times of inferior conjunctions, tc, the residuals of the linear fit (i.e.,
TTVs) are plotted for clarity. Solid lines in cos iorb panels are the best-fit linear models.
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momentum at the same angular rate given by

Ω̇ = Ω̇p

√(
L

S
+ cosψ

)2

+ sin2 ψ, (5.5)

where Ω̇p is the precession rate of the orbital angular momentum around the stellar spin,
and explicitly given by

Ω̇p = −3

2
J2

2π

P
cosψ

(
R⋆

a

)2

(5.6)

with J2 being the stellar quadrupole moment. In the Kepler-13A system, the spin angular
momentum, S, is comparable to the orbital one, L, owing to the small semi-major axis
and rapid stellar rotation. As a consequence, Ω̇ also depends on the ratio of the two,

L

S
=

1

C
Mp

M⋆

1

Pfrot

(
a

R⋆

)2

, (5.7)

where C is the moment of inertia coefficient of the host star. Thus, the independent model
parameters are ρ⋆, frot, J2, C, P , Mp/M⋆, and three angles cos iorb, λ, i⋆ at some epoch
(here taken to be BJD = 2454833 + 800). We do not relate J2 to the other parameters
like the stellar oblateness as done in Barnes et al. (2013).

To realistically evaluate the credible intervals of J2 and C by marginalization, uncer-
tainties in ρ⋆, frot, P , and Mp/M⋆ should also be taken into account. However, these
parameters are not well determined from the data of cos iorb, λ, and i⋆. Thus, they are
floated with the following Gaussian priors. The first three are assigned the same central
values and widths as in Table 5.1. For the mass ratio, we take the mean and standard de-
viation of the results reported by S14, Esteves et al. (2015), and Faigler & Mazeh (2015),
which come from the amplitudes of the ellipsoidal variation and Doppler beaming. We
also impose the Gaussian prior on C centered on 0.0776 (the value for n = 3 polytrope by
Szabó et al., 2012) and with the width of 0.02, which is chosen to enclose the solar value,
0.059.

The constraints from the MCMC fit are summarized in the middle and bottom parts of
Table 5.2 and the best-fit models are plotted with the solid lines in Figure 5.4. Basically,
the precession model is compatible with the observations both for the light-curve solution
and the joint solution. The value of J2 and the corresponding precession period, however,
are different by a factor of a few, in spite of the similar observed slopes in cos iorb. While
J2 = (1.66±0.08)×10−4 for the light-curve solution is consistent with the earlier estimate
by Szabó et al. (2012), J2 = (2.1± 0.6)× 10−4 from observed TDVs and J2 = 1.7× 10−4

from the stellar model, the joint solution yields a smaller value, J2 = (6.1± 0.3)× 10−5.
The difference comes from the different three-dimensional architectures of the system

described by the two solutions. Since all of cos iorb, λ, and i⋆ are constrained from the
gravity-darkened light curves, relative configuration of the stellar spin and orbital angular
momenta are completely specified in three dimensions. This means that the phase of the
precession during the Keplermission, which corresponds to the left end in the right column
of Figure 5.5, is observationally constrained; from the top panel, we find that cos iorb is
closer to the bottom of the sine curve for the light-curve solution (blue dashed line), while
that for the joint solution (red solid line) resides in the phase of a rapid increase. For
this reason, a larger precession rate (i.e., shorter precession period) is required for the
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Figure 5.4 Simultaneous fit to the observed cos iorb, λ, and i⋆. (Left) light-curve solution
with c2 = 0. (Right) joint solution. Black points are from the light-curve fit (same as
Figure 5.3), and colored solid lines denote the best-fit precession models, which are not
the linear fits.

light-curve solution to match the observed change in cos iorb. According to Equations
(5.5) and (5.6), the larger precession rate can be achieved by increasing either J2 or L/S.
However, the larger precession rate also induces faster variations in λ and i⋆, contradicting
their almost constant observed values (middle and bottom panels in Figure 5.4). The only
way to mitigate this conflict is to make J2 larger (i.e., increase the precession rate) while
keeping L/S small, making it more difficult to move stellar spin axis. With Equation
(5.7), this explains why Mp/M⋆ is smaller and C is larger for the light-curve solution than
for the joint solution in Table 5.2. Accordingly, the bottom panel of the right column in
Figure 5.5 exhibits the smaller precession amplitude for i⋆ in the former solution (blue
dashed line) than the latter (red solid line).

The approximately three times difference in the precession period would be apparent
even on the short time scale (left column in Figure 5.5). As shown in the middle panel,
as large as ∼ 10◦ change in λ is expected within the next ∼ 10 yr for the light-curve
solution, which is well detectable given the current precision of the sky-projected obliquity
measurement with Doppler tomography (nominally down to a few degrees). On the other
hand, λ for the joint solution is almost constant. From this point of view, the joint solution
may slightly be favored even with the current data, because the nearly-constant values
observed for λ and i⋆ are more natural for the joint solution than for the light-curve one,
for the reasons discussed in the previous paragraph. This indication also manifests itself
in the fact that the resulting Mp/M⋆ and C better agree with our prior knowledge in the
joint solution.
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Figure 5.5 Future evolutions of cos iorb, λ, and i⋆ predicted for the best-fit models in Table
5.2 and Figure 5.4. From top to bottom, the evolutions of cos iorb, λ, and i⋆ are plotted for
the solution from the light-curve alone (blue dashed line) and joint solution (red solid line)
obtained with the S14 stellar parameters. The left panels show the short-term (∼ 14 yr,
until 2022) behavior, while the right ones are for the long-term (∼ 1600 yr) variation.



88 Chapter 5 Spin–Orbit Misalignments of Kepler-13Ab and HAT-P-7b from
Gravity-Darkened Transit Light Curves

The more decisive conclusion will be obtained with the future follow-up observations
of λ using Doppler tomography, as well as the transit duration observations to better
constrain cos iorb, and hence the precession rate. If our joint solution is correct, variations
in λ will not be detected in near future. On the other hand, if the light-curve solution is
actually correct and λ from the Doppler tomography is somehow systematically biased, λ
should change; this temporal variation would be observable with the Doppler tomography
even if it were biased. Or, it may even turn out that the precession scenario is wrong.
In any case, tracking the future evolution of the system configuration can be used for an
independent test of our solution, not to mention for better constraining stellar internal
structure via J2 and C.

5.5 Anomaly in the Transit Light Curve of HAT-P-7

Armed with the methodology established using the distinct anomaly in Kepler-13A (Sec-
tion 5.3), we discuss another, more subtle anomaly in this section. Here the methodology
is further extended to include the information from asteroseismology as well as from the
RM effect, and applied to an F-type star.

It has been pointed out in several studies, including the one in Chapter 4, that the tran-
sit light curve of HAT-P-7 exhibits a small anomaly of O(10−5). Morris et al. (2013), who
reported this anomaly first, attributed it to the local spot-like gravity darkening induced
by the gravity of the Jupiter-mass companion HAT-P-7b. They ruled out the gravity
darkening of stellar rotational origin on the basis of the inspection that the anomaly is
localized in a part of the transit. Later analyses with more data (e.g., Esteves et al.,
2013; Van Eylen et al., 2013; Esteves et al., 2015, and the one in Chapter 4), however,
have shown that the anomaly is seemingly correlated over the whole transit duration, as
in the top panel of Figure 5.7. Moreover, the amplitude of the observed anomaly may be
too large to be explained by the spot scenario. According to Jackson et al. (2012), the
planet’s gravity induces the surface temperature variation of “a few 0.1K,” which leads to
the surface brightness variation of ∆F ∼ several 100 ppm. If a planet crosses over a spot
fainter by ∆F than the other part of the stellar disk, amplitude of the expected anomaly
in the relative flux is about ∆F × (Rp/R⋆)2 ∼ O(ppm), which is order-of-magnitude
smaller than the observed one. We therefore analyze this anomaly assuming that it is
originated from the gravity darkening induced by stellar rotation, whose effect should not
be localized but manifest during the whole transit duration.

Unlike the case of Kepler-13A, anomaly in the transit light curve is not clear on a
quarter-by-quarter basis for HAT-P-7. In addition, no TTVs/TDVs have been detected
for this planet. For these reasons, we deal with the light curve obtained by folding all the
available SC, PDCSAP fluxes (Q0–17) processed as described in Section 5.2.2. We use
the spectroscopic constraint v sin i⋆ = 3.8±1.5 km s−1 throughout this section. This value
is based on Pál et al. (2008), though its error bar is enlarged to take into account other
estimates for this quantity that give slightly different values (e.g., Winn et al., 2009a).

5.5.1 Robustness of the Observed Anomaly

If the observed anomaly is really due to gravity darkening, it should be persistent over
all observation span, unlike the case of sporadic events including the spot crossing. It is
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important to confirm the property because Morris et al. (2013) only reported the bump
before the mid-transit time. Thus, we divide the transits into four consecutive groups (Q0–
4, 5–9, 10–13, 14–17), phase-fold and fit each of them with the model without gravity
darkening separately, and examine the shapes of the residuals. Although fewer numbers
of transits lead to noisier phase-folded light curves, ten-minute binned residuals in the
left column of Figure 5.6 exhibit a similar feature (brightening before mid-transit and
dimming after it) in every span of data.

Besides, Van Eylen et al. (2013) reported seasonal variation in the transit depth de-
pending on the quarter, which is reproduced in our analysis with Q0–17 data.10 To confirm
that the anomaly is not an artifact related to this seasonal variation, we also perform a
similar analysis as above but this time grouping the transits that have similar depths.
As shown in the right column of Figure 5.6, we find that the same feature is apparent
regardless of the season and the anomaly is not affected by the systematic depth variation.
For this reason, along with its unconstrained origin, we do not try to make corrections
for this systematic in the following analyses.

5.5.2 Results

As in Section 5.3, we consider both light-curve solution and joint solution that takes
into account the constraints from other observations. First, the light-curve solution is
obtained with c2 fixed to be zero (Figure 5.7, second and third columns in Table 5.3). In
this case, we find two solutions with different signs of cos iorb, which are indistinguishable
in terms of the minimum χ2.11 The values quoted in Table 5.3 are the median, 15.87, and
84.13 percentiles of the MCMC posteriors sampled with emcee (Foreman-Mackey et al.,
2013).12 Our model reasonably reproduces the global feature of the anomaly (positive
before the mid transit and negative after it), yielding ∆χ2 ≃ 166 for ∼ 420 degrees of
freedom. We compute the Bayesian information criterion (BIC) for the best-fit models
with and without gravity darkening, and find ∆BIC = 129, which formally indicates that
the gravity-darkened model is strongly favored.

Our solution points to a nearly pole-on configuration with i⋆ ≃ 0◦. This conclusion
is consistent with the asteroseismic analyses in Chapter 4 (Benomar et al., 2014) and by
Lund et al. (2014), but the nominal constraint on i⋆ from the gravity-darkened model
is much tighter. On the other hand, λ is not constrained very well with the light curve
asymmetry alone. The difficulty is inevitable in the pole-on configuration, where the
brightness distribution on the stellar disk is almost axisymmetric even in the presence of
gravity darkening. In such a case, ψ is always close to 90◦ regardless of λ.

One remaining issue regarding our solution is that the resulting rotation frequency
may be too large. Given the age (≃ 2Gyr) and B−V (= 0.495±0.022; Lund et al., 2014)

10We also reported a similar phenomenon in Kepler-13A; see Section 5.4.1 and Figure 5.3.
11The existence of the two solutions in this case should be distinguished from the degeneracy intrinsic

to the gravity-darkening method. For each of the two solution listed here, there additionally exists the
model that yields exactly the same light curve, where cos iorb is replaced with − cos iorb and λ with π−λ.
These intrinsically-degenerate solutions are not discussed here because they are in any case rejected in
the joint solution, where λ is constrained by the prior. This is the same logic as used in the last paragraph
of Section 5.3.1.

12We also applied the residual permutation method described in Winn et al. (2009b) for another
estimate of the parameter uncertainties, and confirmed that they are not significantly affected by the
correlated noise component.
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of the host star, the rotation frequency from the light-curve solution, frot = 7.7± 0.2µHz
(equivalent to Prot ≃ 1.5 days), is consistent with the gyrochronology relation by Meibom
et al. (2009); see Section 6 of Lund et al. (2014). However, our value of frot is much
larger than those from asteroseismology, 0.70+1.02

−0.43 µHz (68% credible interval obtained
in Chapter 4) and < 0.8748µHz (1σ upper limit by Lund et al., 2014). In fact, the
prior used in these analyses, |frot| < 8µHz, does not fully cover the range we investigate
here with the gravity-darkened light curve. Still, the discrepancy is only weakly reduced
even with the new analysis adopting the prior range extended up to 17µHz, which yields
frot = 0.82+2.02

−0.50 µHz as the 68% credible interval (by courtesy of Othman Benomar; see
also Benomar et al., 2014).

To examine if the gravity-darkened model is compatible with the seismic analysis, we
then search for a joint solution including the constraints both from the RM measurement
and asteroseismology. From the RM effect, we incorporate the constraint λ = 172◦ ± 32◦,
which comes from the average and standard deviation of the analyses of the three different
radial velocity data (Table 4.3 in Chapter 4). From asteroseismology, we adopt the above
updated posterior for frot as the prior, and performed an MCMC sampling with emcee.
To properly take into account the uncertainty from the limb-darkening profile, c2 is also
floated. The resulting credible intervals are summarized in the fourth and fifth columns in
Table 5.3, and the model that maximizes the likelihood multiplied by the prior on frot is
plotted with a dashed line in Figure 5.7. The corresponding joint posterior distributions
are also shown in Figures D.7 and D.8. We again find two equally good solutions, both of
which indicate nearly pole-on configurations with slightly prograde and retrograde orbits,
ψ = 101◦ ± 2◦ and ψ = 87◦ ± 2◦. Although the resulting frot still prefers a higher
rotation rate than that from asteroseismology, their difference is now mitigated to the
2σ level: we construct the probability distribution for ∆frot, frot from out joint analysis
minus frot from asteroseismology, using their posteriors and find its 2σ credible region as
∆frot = 4.9+4.0

−5.0 µHz. We argue that the level of discrepancy is acceptable, considering that
the rotational mode splitting is not clearly detected in the power spectrum for HAT-P-7.

Finally, it is also worth considering the case where β ̸= 0.25, given the unconstrained
nature of the gravity darkening in F dwarfs. Smaller values of β ∼ 0.08 are usually
expected for solar-like stars with convective envelopes (e.g., Lucy, 1967; Claret, 1998),
while Espinosa Lara & Rieutord (2011) and Espinosa Lara & Rieutord (2012) argue that
β is close to 0.25 in the limit of slow rotation under several assumptions. We repeat
the above joint analysis floating β with the prior uniform between 0 and 0.3, and obtain
β = 0.26+0.03

−0.05 for both solutions in Table 5.3. On the one hand, the fact may support the
claims by Espinosa Lara & Rieutord (2011) and Espinosa Lara & Rieutord (2012); on the
other hand, it may simply indicate some incompleteness in our gravity-darkening model,
as also suggested by the tension in frot and the still correlated residuals before the mid
transit (bottom panel of Figure 5.7). Indeed, if β = 0.08 is adopted, we find that even
higher rotation rate (> 10µHz) is favored, making the discrepancy with asteroseismology
more serious. Although the validity of β we obtain is beyond the scope of this chapter,
we note that our conclusion for a pole-on orbit is robust against the adopted value of β;
in both analyses where β is fitted and β is fixed to be 0.08, the constraints on ψ differ
less than 1σ from the results in Table 5.3.
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Figure 5.6 Robustness of the detected anomaly. Residuals of the model fits (without grav-
ity darkening) to the phase-folded transit light curves are plotted. Gray dots are residuals
for the one-minute binned data, and black ones with error bars are the residuals averaged
into ten-minutes bins. Vertical dashed and dotted lines correspond to the beginnings and
ends of the ingress and egress. (Left column) Transits folded over different epochs. From
top to bottom, light curves from Quarters 0–4, 5–9, 10–13, and 14–17 are folded. (Right
column) Transits grouped by the CCD module used to observe the target. From top to
bottom, light curves taken with the modules 17, 19, 9, and 7 are folded.
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Figure 5.7 Fitting the gravity-darkened model to the phase-folded transit of HAT-P-7b.
The meanings of the symbols are the same as those in Figure 5.1, but this time the joint
solution incorporates the constraints on λ from the RM measurement and on frot from
asteroseismology. The light-curve solution and joint solution are almost indistinguishable
in this case, as expected from the similar values of χ2.
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Table 5.3. Results for the transit of HAT-P-7b

light-curve solution (c2 = 0) joint solution (c2 fitted)

Solution 1 Solution 2 Solution 1 Solution 2

(Constraints)
v sin i⋆ (km s−1) 3.8± 1.5 3.8± 1.5 3.8± 1.5 3.8± 1.5
λ (deg) · · · · · · 172± 32 172± 32

(Fitted Parameters)
M⋆ (M⊙) 1.59 (fixed) 1.59 (fixed) 1.59 (fixed) 1.59 (fixed)
T⋆,pole (K) 6310 (fixed) 6310 (fixed) 6310 (fixed) 6310 (fixed)
ρ⋆ (g cm−3) 0.2789± 0.0006 0.2789± 0.0006 0.2790± 0.0005 0.2784± 0.0005
c1 0.498± 0.003 0.498± 0.003 0.507+0.008

−0.016 0.508+0.007
−0.015

c2 0 (fixed) 0 (fixed) 0.07+0.06
−0.12 0.08+0.05

−0.11
tc (10−5 day)∗ −1.5± 0.4 −1.5± 0.4 −1.6± 0.4 −1.1± 0.4
P (day) 2.204735471 (fixed)
cos iorb −0.1195± 0.0004 0.1195± 0.0004 −0.1194± 0.0003 0.1198± 0.0003
Rp/R⋆ 0.07757+0.00005

−0.00009 0.07757+0.00005
−0.00009 0.07759± 0.00003 0.07749+0.00003

−0.00004
F0 0.9999998± 0.0000005
frot (µHz) 7.7± 0.2 7.7± 0.2 6.1+2.6

−1.7
∗∗ 5.6+2.4

−1.7
∗∗

i⋆ (deg)∗∗∗ 3.3+1.2
−1.0 3.3+1.3

−1.0 5.3+3.3
−2.0 5.3+3.7

−2.1

λ (deg) 133+19
−88 49+92

−21 142+12
−16 136+16

−22
β 0.25 (fixed) 0.25 (fixed) 0.25 (fixed) 0.25 (fixed)

(Derived Parameters)
Prot (day) 1.51± 0.03 1.51± 0.03 1.9+0.7

−0.6 2.1+0.9
−0.6

ψ (deg) 99+2
−4 81+4

−2 101± 2 87± 2
impact parame-
ter

0.496± 0.001 0.496± 0.001 0.496± 0.001 0.497± 0.001

oblateness 0.0149± 0.0006 0.0149± 0.0007 0.009+0.010
−0.005 0.008+0.008

−0.004

χ2
min/dof 453/424 455/424 450/424 451/424

Note. — The quoted values and uncertainties are 50, 15.87, and 84.13 percentiles of the
marginalized MCMC posteriors. For the light-curve solution, χ2

min is the value of χ2 computed
from Equation (5.4) for the maximum likelihood model. Equation (5.4) is also used for the joint
solution, but χ2

min in this case is computed for the model that maximizes the likelihood function
multiplied by the prior on frot.

∗Measured from the transit epoch t0(BJD− 2454833) = 120.358522±0.000005 obtained with
the transit model without gravity darkening.

∗∗Posterior from the seismic analysis is used as the prior.
∗∗∗We impose the prior uniform in cos i⋆, rather than in i⋆, which corresponds to the isotropic

distribution for the spin direction.
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5.6 Summary

5.6.1 Kepler-13A

First, we analyze the gravity-darkened transit light curve of Kepler-13A adopting the
same model and stellar parameters as in the previous study by B11. We reproduce the
spin–orbit angles obtained by B11 with more data (called “light-curve solution” in this
chapter) and also find that the choice of the stellar mass, stellar effective temperature,
v sin i⋆, or contaminated flux affects λ or i⋆ by less than about 10◦. If we fit c2 = u1 − u2

as well as c1 = u1 + u2 in the quadratic limb-darkening law, on the other hand, a broader
range of the spin–orbit angle is allowed. In fact, this additional degree of freedom may
explain the discrepancy between the solution by B11 and the Doppler tomography result
by Johnson et al. (2014). Our new “joint solution” includes i⋆ = 81◦ ± 5◦, λ = −59◦ ± 2◦,
ψ = 60◦ ± 2◦, and Prot = 24± 2 hr. Although the joint solution is compatible with all of
the observations made so far, introducing additional free parameter c2 is not statistically
justified, nor is it clear if the best-fit value for c2 is physically plausible.

To examine the above issues from a dynamical point of view, we also analyze the
spin–orbit precession in this system. By analyzing the light curves from each quarter
separately, we confirm that the variation in | cos iorb| causes the transit duration variations
first reported by Szabó et al. (2012), with more elaborate model taking into account the
gravity darkening. This variation is consistent with the precession of the stellar spin and
orbital angular momenta around the total angular momentum of the system, induced
by the oblateness of the rapidly rotating host star. We thus fit each transit with the
gravity-darkened model to determine cos iorb, λ, and i⋆ as a function of time, and then fit
them with the precession model to constrain the stellar quadrupole moment J2. For the
light-curve solution and the joint solution, we respectively find J2 = (1.66± 0.08)× 10−4

and J2 = (6.1± 0.3)× 10−5, which are different by a factor of a few. Our results predict
detectable variations in λ on 10-yr timescale for the light-curve solution, while it should
be almost constant for the joint solution. The difference suggests that the future follow-up
observations can be used to confirm or refute the joint solution we proposed, as well as
to improve the constraint on J2.

5.6.2 HAT-P-7

Although the anomaly in the transit light curve is much more subtle compared to Kepler-
13Ab, we confirm that the asymmetric residual (not only the bump reported by Morris
et al. (2013) but also the dip) exists continuously in the transits of HAT-P-7b. Thus, we
perform the analysis assuming that the gravity-darkening is a viable explanation for the
anomaly. Gravity-darkened transit model favors a nearly pole-on orbit (ψ = 101◦ ± 2◦ or
ψ = 87◦ ± 2◦) and the gravity-darkening exponent β close to 0.25, consistently with the
asteroseismic inference in Chapter 4. The constraint on ψ is insensitive to the choice of
the limb-darkening parameters or the gravity-darkening exponent.

On the other hand, the stellar rotation rate from the gravity-darkening analysis is
about 2σ higher than the value from asteroseismology. In addition, the value of β ≃ 0.25
we obtained may be too large for a star with a convective envelope, although the theory
of gravity darkening may not be full-fledged for that case. These facts may suggest some
incompleteness in the current modeling or other origins for the anomaly, and should be
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addressed in future studies.

5.7 Conclusion

Our present analysis reproduces the results by B11 with more data and thus strengthens
the reliability of the gravity-darkening method for the spin–orbit angle determination.
In contrast, we also find that the spin–orbit angle obtained from the gravity-darkened
transit light curve strongly depends on the assumed limb-darkening profile. Depending
on its choice, the resulting spin–orbit angle can vary by several tens of degrees. Thus, the
reliable modeling of the limb-darkening effect is crucial for this method.

Nevertheless, if λ is constrained from other observations, i⋆ is well determined along
with the limb-darkening parameters. Hence the gravity-darkening method still provides
valuable information on the true stellar obliquity ψ, which is complementary to λ from
the RM effect or Doppler tomography. Indeed, such an example is already seen in an
eclipsing binary system DI Her (Philippov & Rafikov, 2013). In addition, synergy with
asteroseismology is also promising because it constraints frot and i⋆, which are both es-
sential in the modeling of gravity darkening. The joint analyses of these kinds may in
turn help us to better understand the mechanisms of gravity darkening itself, since they
enable the measurements of β for stars not in close binary systems and hence free from
the strong tidal distortion.

If combined with continuous, high-precision photometry as achievable with space-
borne instruments, the gravity-darkening method also provides a way to monitor the
angular momentum evolution in the system. Modeling of the spin–orbit precession allows
us to access the internal structure of the rotating star through its quadrupole moment
or moment of inertia. It is also possible to precisely determine the three-dimensional
configuration of the system from a dynamical point of view (cf. Philippov & Rafikov,
2013; Barnes et al., 2013). Such information will be valuable in simulating the dynamical
histories of individual systems to decipher the origin of the spin–orbit misalignment.
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Probing the Architecture of
Hierarchical Multi-Body Systems:
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Triply-Eclipsing Triple-Star System
KIC 6543674

Chapter based on Masuda, Uehara, & Kawahara (2015) ApJL, 806, 37

It is mainly due to the unknown initial distribution of stellar obliquity that the spin–
orbit misalignment cannot be immediately interpreted as a sign of the past dynamical in-
teraction. In contrast, the misalignment between planetary orbits in the same system will
serve as more direct evidence for the past dynamical event and may also complement the
interpretation of obliquity measurements. Indeed, the scenarios for the high-eccentricity
migration discussed in Section 3.1 all involve the excitation of the mutual orbital incli-
nation, as well as the inclination from the initial disk plane. Moreover, these processes
themselves are more generic than the hot Jupiter formation and their signature may also
be observed in systems without hot Jupiters. Such systems, if identified and characterized
in detail, will serve as direct evidence for the dynamical scenario and/or useful test beds
for studying how it works in real systems.

The high-eccentricity scenario often involves a hierarchical configuration (see Section
3.1), where the orbit of an outer planet/star is much wider than that of the inner planet.
For this reason, characterization of hierarchical systems will be a key for the purpose
described above. As the first step of such an effort, we present the characterization of a
hierarchical triple-star system based on the Kepler photometric data in this chapter. We
determine the three-dimensional orbits and physical dimensions of all three stars in the
system by a joint modeling of the eclipse light curves and mutual gravitational interaction:
the technique also applicable to a hierarchical planetary system with a massive outer
planet. We also discuss the implication for the very close inner orbit of this system,
whose origin may be similar to those of hot Jupiters.

97



98 Chapter 6 Probing the Architecture of Hierarchical Multi-Body Systems:
Photometric Characterization of the Triply-Eclipsing Triple-Star System KIC 6543674

6.1 Introduction

Among over 2000 eclipsing binaries discovered in the Kepler mission (Prša et al., 2011;
Slawson et al., 2011), more than 200 are suggested to host tertiary (third body) com-
panions through their eclipse timing variations (ETVs; Conroy et al., 2014). Many of
them are hierarchical triples consisting of a short-period binary and an outer third body
on a wide orbit. The hierarchy is often attributed to the perturbation from the third
body, as in the KCTF (Kozai cycles with tidal friction) scenario (Kozai, 1962; Kiseleva
et al., 1998; Eggleton & Kiseleva-Eggleton, 2001) described in Chapter 3.1.1. Indeed,
recent ETV analyses (Rappaport et al., 2013; Borkovits et al., 2015) have revealed many
hierarchical triples with misaligned tertiary orbits, whose mutual inclination distribution
exhibits a suggestive peak around ∼ 40◦ as predicted by the KCTF scenario (Fabrycky &
Tremaine, 2007).

On the other hand, at least 10 or more hierarchical triples seem to have well-aligned
orbits, as suggested by eclipses due to tertiary companions (Carter et al., 2011; Orosz,
2015, figure 7). Three-dimensional geometry and absolute dimensions of those systems
are also of interest because their hierarchy may argue for mechanisms of orbital shrinkage
that do not require high mutual inclinations between the inner and outer binary planes
(e.g., Petrovich, 2015).

In this chapter, we focus on a tertiary event observed only once in the KIC 6543674
system, which involves three tertiary eclipses around a single inferior conjunction of the
third body (Figure 6.1). Although this event has already been reported (Slawson et al.,
2011; Thackeray-Lacko et al., 2013; Conroy et al., 2014), it has not yet been clarified
whether it is indeed explained by the tertiary eclipse, nor what information is obtained
from its detailed modeling. Below we will show that the tertiary event plays two crucial
roles in determining the system configuration. First, it constrains the mutual inclination
between the inner and outer binary orbits very precisely, in a similar way to the “planet–
planet eclipse” known in the Kepler multi-transiting planetary system(s) (Hirano et al.,
2012b; Masuda et al., 2013; Masuda, 2014). Secondly, and less trivially, it fixes the mass
ratio of the inner binary and velocity of the third body even without spectroscopy.

The present chapter reports precise geometry and absolute dimensions of the KIC
6543674 system. We combine the above information from the tertiary event with the
complementary constraints from ETVs and eclipses of the inner binary. To obtain a
consistent solution, we fit the three components simultaneously using a Markov Chain
Monte Carlo (MCMC) method. Section 6.2 presents individual analyses of the ETVs and
eclipse curves of the inner binary. We then model the two components jointly with the
tertiary eclipses in Section 6.3 to determine the parameters of the whole system. Section
6.4 discusses the implication of the resulting system architecture and the prospects for
the follow-up observations to better understand this valuable system.
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Figure 6.1 Tertiary event observed in the KIC 6543674 system and its interpretation.
(a) Schematic illustration of the system configuration during the event. (b) Fit to the
Kepler light curve around the tertiary eclipses (see Section 6.3). (Top) Black circles are
the observed fluxes and red solid line denotes our best-fit model. (Bottom) Residuals of
our fit. Typical uncertainty estimated from our analysis (≃ σLC,tertiary) is shown at the
upper left.

6.2 Constraints from ETVs and Phase Curve of the
Inner Binary

The KIC 6543674 system consists of the inner eclipsing binary with the orbital period of
Pin ≃ 2.39 days and outer eccentric binary with Pout ≃ 1100 days; here the “outer” binary
refers to the “binary” system consisting of the third body and the center of mass of the
inner binary. In this section, we present individual MCMC analyses of the phase curve
and ETVs of the inner binary, which allow us to constrain the orbital geometries of the
inner and outer binaries, respectively. Since Pin/Pout is small, both inner and outer binary
orbits are approximately Keplerian. We adopt the approximation throughout the chapter
and define all the orbital elements in Jacobi coordinates (with subscripts “in” and “out”),
which are in this case constant over time.
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Table 6.1. System parameters from the Kepler light curves.

Parameter ETVs phase curve ETVs + phase + tertiary ETVs + phase + tertiary
(with the prior on MA)

(Inner binary)
t0,in (BJD− 2454833) 132.3070± 0.0002 · · · 132.3071± 0.0001 132.30704± 0.00009

tphase0,in (BJD− 2454833) · · · 132.30372± 0.00004 132.30372± 0.00003 132.30372+0.00002
−0.00003

Pin (day) 2.3910305± 0.0000003 2.3910305 (fixed) 2.3910305± 0.0000003 2.3910305± 0.0000002
ain/RA · · · 5.49± 0.02 5.494+0.007

−0.006 5.494+0.006
−0.007

cos iin · · · 0.021± 0.002 0.022± 0.002 0.022± 0.002
ein cosωin · · · (0.2± 3.3)× 10−5 0 (fixed) 0 (fixed)
ein sinωin · · · −0.0005+0.0021

−0.0020 0 (fixed) 0 (fixed)
RB/RA · · · 0.781± 0.004 0.781± 0.002 0.781± 0.002
MB/MA · · · · · · 0.93± 0.02 0.93± 0.02
Cphase · · · 1.00259± 0.00002 1.00259± 0.00002 1.00259± 0.00002
TB/TA · · · 1.012± 0.002 1.0107± 0.0004 1.0107± 0.0004
uA · · · 0.45± 0.04 0.434± 0.009 0.434± 0.009
uB · · · 0.46± 0.03 0.47± 0.02 0.46± 0.02
A0 · · · 0.041± 0.007 0.037± 0.006 0.037± 0.006
A1c · · · 0.00034± 0.00005 0.00035± 0.00005 0.00035± 0.00005
A1s · · · 0.00096± 0.00004 0.00096± 0.00004 0.00096± 0.00004
A2c · · · −0.00720± 0.00007 −0.00716± 0.00006 −0.00716± 0.00006
RA (R⊙) · · · · · · 2.1+3.2

−0.8
† 1.8± 0.1†

RB (R⊙) · · · · · · 1.6+2.5
−0.7

† 1.4± 0.1†

MA (M⊙) · · · · · · 1.8+27.5
−1.4

† 1.2± 0.3

MB (M⊙) · · · · · · 1.7+25.5
−1.3

† 1.1+0.3
−0.2

†

(Third body)
t0,out (BJD− 2454833) 199± 10 · · · 191.246± 0.003 191.246± 0.003
Pout (day) 1086+8

−7 · · · 1090± 6 1090± 5
eout cosωout 0.13± 0.05 · · · 0.16± 0.03 0.16± 0.03
eout sinωout 0.58± 0.03 · · · 0.58± 0.02 0.572± 0.008
aout/RA · · · · · · 345+15

−13 348± 2†

cos iout · · · · · · 0.0030± 0.0003 0.0029+0.0001
−0.0002

∆Ω (deg) · · · · · · 3.2± 0.6 3.1± 0.6
AETV (s) 264± 6 · · · 266± 5 265± 5†

Ctertiary · · · · · · 1.0070± 0.0003 1.0070± 0.0003
γtertiary (day−1) · · · · · · 0.00004± 0.00021 0.00005+0.00021

−0.00022
RC/RA · · · · · · 0.277± 0.003 0.277± 0.003
MC/MA · · · · · · 0.4+0.3

−0.2
† 0.43+0.04

−0.03

TC/TA · · · · · · 0.84+0.03
−0.04

† 0.84+0.03
−0.04

†

RC (R⊙) · · · · · · 0.6+0.9
−0.2

† 0.50± 0.04†

MC (M⊙) · · · · · · 0.7+3.3
−0.4

† 0.50+0.07
−0.08

†

mutual inclination (deg) · · · · · · 3.3± 0.6† 3.3+0.5
−0.6

†

(Jitters)
σETV (s) 56± 3 · · · 56± 3 56± 3
σLC,phase · · · 0.00048± 0.00001 0.00049± 0.00001 0.00049± 0.00001
σLC,tertiary · · · · · · 0.0023± 0.0002 0.0023+0.0002

−0.0001

Note. — The quoted values and uncertainties are the median and 68.3% credible interval of the marginalized posteriors. Values
marked with daggers are derived from the posteriors of other fitted parameters.
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6.2.1 ETV Analysis

The inner binary exhibit ETVs, which were used to infer the existence of the third body in
this system (Conroy et al., 2014). They are caused by the finite light-travel time (Rømer
delay) and the variation in the line-of-sight distance due to the outer binary motion.
Under our assumption, the ith eclipse time of the inner binary ti can be modeled as
(Rappaport et al., 2013)1

tmodel
i = t0,in + Pini+ AETV

{√
1− e2out sinEout(ti) cosωout + [cosEout(ti)− eout] sinωout

}
.

(6.1)

Here, t0,in is the eclipse epoch (time of inferior conjunction) of the inner binary, and eout,
ωout, and Eout are the eccentricity, argument of pericenter, and eccentric anomaly of the
third body. The amplitude of ETVs, AETV, is given by the projected semi-major axis of
the outer binary aout sin iout divided by the speed of light c:

AETV =
(GMA)1/3

c(2π)2/3
(MC/MA) sin iout

(1 +MB/MA +MC/MA)2/3
P 2/3
out , (6.2)

whereM denotes the stellar mass, with the subscripts A, B, and C specifying the primary,
secondary, and tertiary stars, respectively. In such a hierarchical system as KIC 6543674,
dynamical effects that change Pin are sufficiently smaller than the above effect and so are
neglected (Rappaport et al., 2013).

We use Equation (6.1) to model the primary eclipse times tobsi in table 1 of Conroy
et al. (2014) obtained by fitting the light curve over the entire phase (flagged as “entire”).
The observed ETVs also exhibit short-term modulations (see Figure 6.2a), which can be
explained by star spots if the stellar rotation is nearly (but not exactly) synchronized with
the inner binary motion (see, e.g., figure 3 of Orosz, 2015). Instead of modeling them,
we include an additional scatter σETV to the formal eclipse-time error σi in quadrature to
define the following likelihood for the ETV fit:

LETV =
∏

i

1√
2π(σ2

i + σ2
ETV)

exp

[
(tobsi − tmodel

i )2

2(σ2
i + σ2

ETV)

]
. (6.3)

By optimizing σETV along with the other physical model parameters and marginalizing
over it, we can obtain more realistic constraints taking into account the additional vari-
ation due to star spots. The likelihood in Equation (6.3) is used to perform an MCMC
sampling (emcee by Foreman-Mackey et al., 2013) of the posteriors of the parameters in
the second column of Table 6.1. The best-fit model is compared with the observed values
in Figure 6.2a.

6.2.2 Phase-Curve Analysis

The linear ephemeris of the inner binary (t0,in and Pin) obtained in Section 6.2.1 is used
to phase-fold the light curve taken from the Kepler eclipsing binary catalog,2 whose in-
strumental trend has been removed (“flattened”) using polynomials (Conroy et al., 2014).

1The sign is opposite to their equation (6) because we take +z-axis in the observer’s direction.
2http://keplerebs.villanova.edu
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Figure 6.2 (a) Fit to the eclipse times. (Top) Black circles are the observed eclipse
times and red solid line denotes our best-fit model. Only the deviations from the linear
ephemeris, i.e., variations in the eclipse times, are shown for clarity. (Bottom) Residuals
of our fit. Typical (jitter-included) uncertainty is shown at the upper right. (b) Fit to the
folded phase curve. (Top) Black circles are the observed fluxes and red solid line denotes
our best-fit model. (Bottom) Same as panel (a).

Since AETV is shorter than the data cadence (29.4minutes), we do not correct for ETVs
here and in the following light-curve fitting (Section 6.3). The folded fluxes are averaged
into three minute bins, and the flux value and error in each bin are estimated as the
median and 1.4826 times median absolute deviation divided by the square root of the
number of points in the bin.

We model the flux over the entire phase as

fphase(t) =
Cphase

1 + FB/FA + A0

[
fA(t) +

FB

FA
fB(t) + A0 + A1c cosφ+ A1s sinφ+ A2c cos 2φ

]
.

(6.4)
Here, fA,B(t) is the normalized stellar flux computed with the analytic eclipse model by
Mandel & Agol (2002) for the linear limb darkening law. They are determined from the
orbital ephemeris, scaled semi-major axis ain/RA, cosine of the orbital inclination cos iin,
radius ratio RB/RA, and linear limb-darkening coefficients uA and uB. The flux ratio,
FB/FA, is computed by (RB/RA)2(TB/TA)4, where T is the stellar effective temperature
in the Kepler band. The constants A0, A1c, A1s, and A2c are the phenomenological
parameters to describe the phase-curve modulation, and φ = 2π(t−t0,in)/Pin is the orbital
phase.3 These amplitudes, in principle, can be related to the masses of the two bodies with
the physical model of ellipsoidal variation and Doppler beaming (Morris & Naftilan, 1993;
Loeb & Gaudi, 2003). We do not use them for the mass estimates, however, because our
quarter-by-quarter analysis reveals the temporal variation in the shape of the phase curve.
This variation is also consistent with the star-spot modulation nearly synchronized with

3Since ETVs we neglected may shift the center of the phase curve, we allow t0,in used for the phase-

curve fitting (denoted as tphase0,in ) to be different from t0,in in Equation (6.1). The resulting difference

(
∣∣∣tphase0,in − t0,in

∣∣∣ ≃ 5minutes) is actually comparable to AETV and consistent with the ETV origin.



6.3 Geometry and Absolute Dimensions from the Tertiary Event 103

the orbital motion. Finally, Cphase is the overall normalization. In fitting the observed
data, fphase(t) is averaged over 30 minutes around each time to take into account the
long-cadence sampling. The light-travel time effect is neglected in computing fphase(t)
because it is shorter than the data cadence.

As in Section 6.2.1, we use an MCMC algorithm to fit the phase-folded light curve
for the above parameters. We again include the “jitter” term σLC,phase in the likelihood
Lphase defined in the same way as in Equation (6.3). The resulting constraints are in the
third column of Table 6.1, and the best-fit light curve is shown in Figure 6.2b. We also
try floating ein and ωin, only to find that the inner orbit is very close to circular. Hence
we fix ein = 0 in the following analyses.

The residuals in the bottom panel of Figure 6.2b exhibit an out-of-eclipse warp and
a larger in-eclipse scatter (similar to the one in Bass et al., 2012). The former does not
affect our analysis significantly because we do not extract any physical information from
the out-of-eclipse modulation. On the other hand, the latter points to systematics that
affect the shape of eclipses and thus may bias the resulting system parameters. While it
may be due to the spot occultation, ETVs we neglected could also affect the eclipse signal
by a similar amount (AETV/(ingress duration) ∼ O(1%)). Although unlikely to explain
the random scatter, we also note that the Mandel & Agol (2002) model is exact only
for spherical stars and so neglects the tidal distortion of O(1%) suggested by the value
of A2c. In any case, the results of the following analyses could suffer from that level of
systematics, though the main conclusions remain unchanged.

6.3 Geometry and Absolute Dimensions from the Ter-
tiary Event

In this section, we analyze the light curve of the tertiary event jointly with the two com-
ponents in the previous section. The outer binary motion of the third body is converted
to the motions relative to the primary and secondary, which are used to compute their
normalized fluxes including the tertiary eclipses, fA,tertiary(t) and fB,tertiary(t), with the
Mandel & Agol (2002) model. This requires aout/RA, cos iout, RC/RA, ∆Ω (difference in
the longitudes of ascending node between inner and outer orbits) and MB/MA in addition
to the parameters in Section 6.2. They are incorporated in the model flux during the
tertiary event as

ftertiary(t) =
Ctertiary + γtertiary(t− t∗)

1 + FB/FA + A0

×
[
fA,tertiary(t) +

FB

FA
fB,tertiary(t) + A0 + A1c cosφ+ A1s sinφ+ A2c cos 2φ

]
,

(6.5)

where Ctertiary is the normalization, γtertiary models the residual instrumental trend around
the tertiary event, and we choose t∗(BJD− 2454833) = 191.25. The model likelihood for
the tertiary-event light curve Ltertiary is defined in the same way as in Lphase, again includ-
ing an additional jitter σLC,tertiary. We first seek for the solution that maximizes Ltertiary

with σLC,tertiary = 0 for various t0,out using the Levenberg-Marquardt method (Markwardt,
2009). Here the above seven new parameters are fitted, while the others are floated within
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the 3σ boundaries from the ETVs and phase curve (Table 6.1). We then perform an
MCMC run from the solution, fitting all the model parameters simultaneously with the
joint likelihood L ∝ LETV · Lphase · Ltertiary. The resulting constraints are summarized in
the fourth column of Table 6.1 along with other derived parameters. As shown in Figure
6.1, our model well reproduces the observed tertiary eclipses. In the following subsections,
we discuss the information newly derived from the tertiary eclipses.

6.3.1 Mutual Inclination

Tertiary eclipses on both of the inner two stars suggest a good alignment between inner
and outer binary planes. This naive expectation is quantified by our modeling. We obtain
iout = 89.◦83±0.◦02 and ∆Ω = 3.◦2±0.◦6 (see Figure 6.3b) as the line-of-sight and sky-plane
inclinations of the tertiary orbit. Combined with iin = 88.◦7 ± 0.◦1, these results indicate
an extremely flat orbital configuration, with the 3σ upper limit on the mutual inclination
being 5◦.

6.3.2 Relative Dimensions

Another role of the tertiary event is to determine the mass ratio MB/MA and the tertiary-
to-primary velocity ratio VC/VA during the event, where V is the orbital velocity relative
to the center of mass of the inner binary. The constraints are invaluable because they
allow us to determine the mass ratios of all three bodies. It is even possible, in principle,
to combine them with the ETV amplitude to fix the absolute dimensions of the whole
system from photometry alone.

The two quantities, MB/MA and VC/VA, are closely related to the timings and du-
rations of the three tertiary eclipses. The bottom panel of Figure 6.3a shows the ap-
proximately one-dimensional motion of the inner binary in the sky plane with respect
to its center of mass (red and blue sinusoidal lines). Here the motion of the third body
(green line) is represented by an almost straight line owing to its long orbital period. For
∆Ω ≃ 0◦, eclipses occur at the intersections of the two lines in this diagram. Thus, the
green line should cross either of the red or blue sinusoids at the times of three tertiary
eclipses (vertical dashed lines), roughly within the primary/secondary radii (vertical error
bars). The condition essentially fixes the amplitude of the blue sinusoid and the slope of
the green line, which correspond to MA/MB and VC/VA, respectively. The ratio VC/VA is
further constrained by the relative durations of the first and third tertiary eclipses, where
the relative velocities between the two stars are VA − VC and VA + VC, respectively.

These ratios yield the relative mass of the third body as well. Using Pin, ain/RA, t0,out,
Pout, eout, and ωout we already derived, VC/VA is converted to aout/RA. Since this aout
should satisfy Kepler’s third law, we obtain

(
aout/RA

ain/RA

)3( Pin

Pout

)2

= 1 +
MC/MA

1 +MB/MA
, (6.6)

which can be solved for MC/MA as

MC

MA
=

[(
aout/RA

ain/RA

)3( Pin

Pout

)2

− 1

](
1 +

MB

MA

)
. (6.7)
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Figure 6.3 (a) Relationship between the timings of three tertiary eclipses and motions
of three stars. (Top) The black dots denote the detrended Kepler light curve. The red
and blue lines are the best-fit tertiary eclipse models for stars A and B, respectively.
The vertical dashed lines denote the rough central times of the tertiary eclipses. (Bottom)
One-dimensional motion of the three stars (primary: red, secondary: blue, tertiary: green)
with respect to the center of mass of the inner binary. The X-axis is defined to coincide
with the line of nodes of the inner binary, with its positive direction shown in panels
(b) and (c). The amplitude of the primary motion is normalized to unity, while that of
the secondary depends on MB/MA (notice that only the relative scale affects the light
curve). The vertical bars denote the normalized radii of stars A (red) and B (blue). (b)
Sky-plane view and (c) bottom view of the system. Definitions of ∆Ω and X-axis are
shown schematically.
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The mass ratios derived in this way are listed in Table 6.1. These values indicate that the
system is dynamically stable, according to the criterion by Mardling & Aarseth (2001).

In fact, the timings of the three eclipses alone allow for other configurations, though
they do not fit the eclipse shapes well and hence are rejected (Figure 6.4).4 Those in
panels (c) and (d) yield too short durations for the third eclipse due to the head-on
crossing with one of the inner binary. Moreover, the solutions are unphysical because
the values of aout/RA are so small that MC/MA < 0 is required in Equation (6.6). The
solution in panel (b), which is the retrograde version of the best solution, fits the light
curve better than those in (c) and (d); however, large residuals remain around the first
and third tertiary eclipses because RB is slightly smaller than RA.

Similarly to FB/FA, the constant A0 could also be related to the third-body tem-

perature by TC/TA = A1/4
0 (RC/RA)−1/2, which is also listed in Table 6.1. The value of

TC/TA thus determined, however, should be considered as a rough upper limit because
A0 includes contaminations from nearby sources and/or systematics in the phase-curve
modulation.

6.3.3 Absolute Dimensions

Combined with the ETV amplitude in Equation (6.2), the mass ratios above can be
further used to determine the absolute masses of the system via

MA = 1.074× 10−3M⊙

(
AETV

s

)3(Pout

day

)−2 (1 +MB/MA +MC/MA)2

(MC/MA)3 sin
3 iout

. (6.8)

Correspondingly, absolute radii are obtained from ain = [P 2
inGMA(1 + MB/MA)/4π2]1/3

and ain/RA. The constraints on the absolute dimensions, however, are very weak (see
Table 6.1) due to the strong correlation MA ∼ (MC/MA)−3 ∼ (aout/RA)−9 as implied by
Equations (6.7) and (6.8).

The constraints are significantly improved with a better constraint on either MA or
MC/MA. To demonstrate this, we repeat the above joint analysis with the Gaussian prior
on the primary mass MA = 1.15±0.28M⊙ based on the value in the Kepler Input Catalog
(KIC). Here MA and MC/MA are chosen to be fitting parameters instead of aout/RA and
AETV, where the former two are converted to the latter using Equations (6.2) and (6.6).
The results are summarized in the last column of Table 6.1, and the parameter correlations
for this fiducial solution are illustrated in the joint posterior distribution in Figure D.9.
While the constraints on the geometry and relative dimensions are almost unchanged, the
absolute masses and radii of all three stars are now determined to the precision similar to
the prior constraint. If we also adopt the KIC effective temperature for the primary, we
obtain TA = TB = 6100±200K and TC < 5000K. The dimensions are consistent with the
Dartmouth isochrone (Dotter et al., 2008) of ∼ 7-8Gyr and suggest that the inner two
stars have entered the subgiant branch and that the third body is an M dwarf (Lépine
et al., 2013), though the conclusion is sensitive to the priors on MA and TA.

4Since these solutions include different MB/MA, a radial velocity follow-up is also useful to confirm
our solution independently of the possible systematics discussed in Section 6.2.2.
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Figure 6.4 Comparison between the best-fit solution (panel a) and other solutions allowed
from the timings of the three eclipses alone (panels b, c, and d). The meaning of each
panel is basically the same as Figure 6.3a, but this time the residuals are shown in the
middle panels using the same scales.
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6.4 Summary and Discussion

In this chapter, we determine the geometry and physical properties of the hierarchical
triple system KIC 6543674 using the Kepler photometry alone. Especially, the tertiary
event analyzed here enables us to obtain (i) mutual inclination between the inner and
outer binary planes, and (ii) mass ratio of the inner binary and instantaneous orbital
velocity of the third body. Our analysis clarifies the value of the tertiary eclipses in
hierarchical systems with the clear and textbook-like example of the event. The method-
ology presented here is basically applicable to other hierarchical systems involving tertiary
eclipses on both of the inner stars, though more sophisticated models of the eclipse light
curve and/or ETVs may be required to accurately model those systems with smaller Pin

and/or Pout/Pin. Here it is worth noting that the KIC 6543674 system has the longest
Pout among the known triply eclipsing hierarchical triples.

The flatness of the system we find (within a few degrees) may have interesting impli-
cations for the the origin of the closest binaries, though it is not clear at this point how
it compares to the large sample of misaligned triples (Rappaport et al., 2013; Borkovits
et al., 2015) as predicted by the KCTF scenario. In this context, a large eccentricity of
the third body is intriguing because it may argue for the excitation of the inner orbit’s
eccentricity by the octupole-order effect (e.g., Li et al., 2014a; Petrovich, 2015, see also
Section 3.1.1). In any case, the relative/absolute dimensions of the system as constrained
here will be useful for testing those possible alternatives.

Although the absolute dimensions derived above are based on the KIC value, which is
of limited reliability, they can be made more accurate with the follow-up spectroscopy to
better constrain the stellar photospheric parameters and/or to measure radial velocities,
even if they only cover the inner binary orbit. In addition, follow-up photometry of another
tertiary event will pin down Pout far more precisely, and can also give us some insight
into the dynamical interaction in the system. In fact, the non-detection of the second
tertiary event in the Kepler data, which would have occurred around BJD = 2456114± 5
from our result, suggests that the actual period is ∼ 2σ longer than our estimate and
that the second event was hidden in the data gap of about six days centered around
BJD = 2456126. The fact also motivates the ground-based observation of the next event,
which would be around July in 2015.



Chapter 7

Summary and Future Prospects

7.1 Summary

This thesis presented the measurements of stellar obliquities in transiting exoplanetary
systems using high-precision photometric data obtained by the Kepler space telescope. We
also discussed various techniques to determine the architecture of planetary systems not
limited to stellar obliquity, which are made possible by, and will expand the potential of,
the space-based photometry data. The specific results and achievements in each chapter
are summarized as follows.

Chapter 4

• We established a consistent methodology to determine the true stellar obliquity
by combining asteroseismology, transit light curves, and the RM effect. Such a
methodology was applied for the first time to real systems.

• In the first system, HAT-P-7, the true obliquity of the hot Jupiter HAT-P-7b was
found to be close to polar, rather than 180◦ as implied from the RM measurement.
The result relaxes the difficulty in the dynamical origin of this hot Jupiter and its
spin–orbit misalignment, because polar orbits are more easily formed than counter-
orbiting ones.

• The second system, Kepler-25, hosts two transiting planets with presumably aligned
orbits. The equator of the host star was estimated to be slightly tilted with the orbits
of two planets, though with a weak significance, in contrast to the RM measurements
that concluded a spin–orbit alignment. The result, if true, shows the first spin–orbit
misalignment in a multi-planetary system around a main-sequence star, and points
to the initial misalignment between the stellar spin and the protoplanetary disk.

• The conclusion for Kepler-25 is not robust at this point, however, as the recent
study by Campante et al. (2016) showed that asteroseismology result of this system
(and some others) is rather sensitive to the difference in the light-curve processing.

Chapter 5

• We reanalyzed the gravity-darkened transit light curve of Kepler-13A with our own
model and obtained an updated solution. We provided a possible solution to the
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known discrepancy between the gravity-darkening and spectroscopic methods by
fully taking into account the uncertainty of the limb-darkening coefficients.

• We performed the most precise modeling of the transit shape variation caused by the
spin–orbit precession ever performed, making the most of gravity-darkened transit
model. The model allowed for the empirical determination of the gravitational
quadrupole moment of the rotationally deformed host star, and showed that future
follow-up observations of λ can be used to test, and even refine, our updated solution.

• We analyzed a similar transit anomaly in the transit light curve of HAT-P-7b for the
first time with the gravity-darkened model. We found a near-polar orbit, validating
the result in Chapter 4.

Chapter 6

• We showed that three irregular dips in the light curves of the short-period eclipsing
binary KIC 6543674 are due to the eclipses caused by the third star gravitationally
bound to the inner binary. The orbit of the tertiary star was found to be aligned
with the inner one within a few degrees, as expected from the occurrence of such
eclipses.

• We combined the modeling of the above tertiary eclipses with the analysis of eclipse
timing variations and eclipse light curves of the inner binary, to determine the
relative and absolute masses and radii of all three stars in the system from the
photometric data alone. The system was found to consist of two F sub-giants and
outer M dwarf, roughly at the age of 8Gyr.

• The inferred configuration may be inconsistent with the standard scenario for the
close binary formation, which combines the Kozai mechanism up to the quadrupole
order and tidal dissipation.

The methods of obliquity measurements established in Chapters 4 and 5 allow us
to probe the spin–orbit misalignment of planets with qualitatively different properties
than ever explored. They also provide the information complementary to the traditional
spectroscopy-based method. The analysis presented in Chapter 6 will be a useful test
case to identify and characterize multi-planetary systems that have experienced violent
dynamical events and/or experienced the tidal migration following such processes. These
efforts will eventually lead to the comprehensive understanding of the origin of the spin–
orbit misalignment and its relation to the dynamical history of exoplanetary systems.
Indeed, the analyses presented here will also contribute to the future space-based tran-
sit surveys planned in the next decade, including TESS (Transiting Exoplanet Survey
Satellite, Ricker et al., 2014; Sullivan et al., 2015) and PLATO (PLAnetary Transits and
Oscillations of stars, Rauer et al., 2014).

7.2 Future Prospects — Beyond Hot Jupiters

Originally, the spin–orbit misalignment was a problem specific to hot Jupiters, a rare
population of exoplanets. Throughout this thesis, however, we have seen that the prob-
lem is beginning to be put in a more general context, motivated by recent obliquity



7.2 Future Prospects — Beyond Hot Jupiters 111

measurements for planets other than hot Jupiters using photometric techniques. This
change seems to remind us that the spin–orbit misalignment should eventually be under-
stood coherently with other properties of exoplanetary systems, as an integral part of the
comprehensive picture of planet formation and evolution.

We conclude the thesis with presenting possible directions of future studies. In Section
7.2.1, we discuss how the methodologies established in this thesis can help to address the
key question raised in Chapter 3: is the observed spin–orbit misalignment primordial,
or due to dynamical evolution? In Sections 7.2.2 and 7.2.3, we revisit another problem
discussed in Section 3.4.2, namely the flatness and mutual orbital misalignment of multi-
planetary systems. Here we pursue possible connections between this issue and the stellar
obliquity of more generic planetary systems not limited to hot Jupiters, both in terms of
characterization of individual systems and analysis of a statistical sample.

7.2.1 Obliquity of Longer-Period Planets around Hot Stars

To understand whether the high stellar obliquity of hot Jupiters is primordial or acquired,
the obliquity measurements of longer-period planets around hot stars (top-right region of
Figure 3.5) will be crucial. If it is of primordial origin, such high obliquities as observed
for hot Jupiters around hot stars should occasionally be observed in this region as well.
Any difference in the stellar obliquity distributions of hot Jupiters and more distant plan-
ets, on the other hand, indicates the important role of dynamical evolution in sculpting
the observed obliquity distribution. Note that hot stars are more suited to this sort of
inference than cool stars because the close-in planets around hot stars already exhibit
high stellar obliquities: the fact implies that any star–planet interaction that damps the
stellar obliquity (including tidal dissipation discussed in Section 3.2), if present, is far less
significant for hot stars than cooler ones, for which close-in planets do not exhibit large
spin–orbit misalignments.

Currently, this region is almost empty due to the lack of a suitable technique; remember
that the obliquity measurement is always challenging for longer-period planets. Moreover,
hot stars often have broad spectral lines due to their rapid rotation, or even show no
absorption lines at all; these features of hot stars present additional impediments to
precise determination of RVs, and hence to the RM measurements. This situation will
surely be improved by systematically applying the gravity-darkening method discussed in
Chapter 5 to transiting systems observed with Kepler and future space telescopes.

The following estimate shows that the sample of long-period transiting planets around
hot stars observed with Kepler would already be sufficient to make a meaningful compar-
ison with hot Jupiters. Promising targets of the gravity-darkening analysis should satisfy
the following two conditions for a reliable obliquity measurement:

1. the transit signal-to-noise ratio (S/N) is large enough for the anomaly due to gravity
darkening, if present, to be detectable, and

2. the host star is not too faint and its rapid rotation can be confirmed with a spec-
troscopic measurement of v sin i⋆.1

1Note that such measurements are not time critical at all and thus far less demanding than the
measurement of λ by observing a spectroscopic transit.
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We choose S/N > 100 for the first condition, considering that the typical anomaly is
O(1%) of the transit depth (cf. Section 5.1) and that the phase folding increases the
transit S/N by at least a factor of a few (i.e., square root of the number of observed
transits). The second condition would be satisfied by stars with Kp < 14.5, with Kp being
the magnitude in the Kepler band, which provide the spectrum of roughly S/N ∼ 50 for a
30-minute exposure with Subaru/HDS. Currently, 98 Kepler transiting planet candidates
(i.e., KOIs) that fall into the top-right region of Figure 3.5 (i.e., Teff > 6100K and
a/R⋆ > 10) satisfy these criteria. On the basis of McQuillan et al. (2014), we estimate
the stellar rotation is rapid enough to exhibit significant gravity darkening for about 20%
of the sample.2 Thus, we expect that the stellar obliquity measurement with the gravity-
darkening method will be possible for about 20 Kepler planets in the top-right region of
Figure 3.5. The value is comparable to the current number (" 30) of hot Jupiters around
hot stars (i.e., top-left region of Figure 3.5). Also considering the additional sample
expected from future surveys, we conclude that the statistical comparison between short-
and long-period planets around hot stars using this method is indeed realistic.

We emphasize that any detection of a large spin–orbit misalignment in the above sys-
tematic analysis of long-period planets has a significant implication, if the system exhibits
no clear signature of the past dynamical interaction (e.g., orbital planes of multiple plan-
ets are well aligned, and/or the orbit is circular; see also Section 3.4.1). Such systems,
if found, provide the most direct evidence that the primordial spin–orbit misalignment
does exist. They can further be used to estimate the fraction of the primordial spin–
orbit misalignment, and thus will play an even more important role if it turns out that
the observed spin–orbit misalignment is actually caused by a mixture of the dynamical
evolution and initial condition.

We note that the same is also true for longer-period planets around cool stars, whose
obliquities can be probed with asteroseismology. Here it is interesting to point out that
the non-zero eccentricity and the large spin–orbit misalignment are apparently correlated
around cool stars (cf. Figures 3.2 and 3.3), and that no planet on a circular orbit around a
cool star has yet been reported to exhibit a significant spin–orbit misalignment. If such a
system is identified by asteroseismology, combined with the eccentricity measurement as
performed in Section 4.4.1, it would also serve as supporting evidence for the primordial
misalignment.

7.2.2 Warm Jupiters as Failed Hot Jupiters?

Formation of warm Jupiters is another puzzle similar to the one presented by hot Jupiters,
since they are also closer to the host star than theoretically expected. At least several
warm Jupiters, such as Kepler-89d (Hirano et al., 2012b; Masuda et al., 2013) and Kepler-
30d (Sanchis-Ojeda et al., 2012), have other low-mass planets in well-aligned orbits in the
same system, and thus are likely to have experienced the gentle disk migration or formed
in situ (Huang et al., 2016). On the other hand, there also exists observational evidence
suggesting that some warm Jupiters are formed through, or currently experiencing, the
high-eccentricity migration as described in Section 3.1.

2They measured the rotation periods of 34030 main-sequence stars in the Kepler field, including 2849
stars with Teff > 6100K. Among this “hot-star” sample, 569 were found to have rotation periods less
than two days; this yields the fraction of 0.2.
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Figure 7.1 Host star radius versus semi-major axis of known exoplanets. Here the systems
without stellar radius measurements are excluded from the sample in Figure 1.1.

As we mentioned in Section 1.1.4, warm Jupiters around metal-rich stars have larger
orbital eccentricities than metal-poor counterparts, which suggests the past dynamical
interaction (Dawson & Murray-Clay, 2013). The same study also showed that three-day
pile up (see Section 3.1) that seemed absent from the Kepler sample is recovered if only
the metal-rich sample is considered; this may be a clue that the dynamical interaction
enhanced the hot Jupiter formation via the high-eccentricity migration. Dawson & Chi-
ang (2014) then presented a class of warm Jupiter systems whose orbital signatures are
consistent with what we expect from the Kozai migration induced by the close companion
planet on a misaligned orbit.

Another intriguing feature to note, though its interpretation is rather speculative, is
the paucity of warm Jupiters around evolved stars. The trend is clearly shown in Figure
7.1, in which planets detected with radial velocities (blue circles) are lacking at a ! 0.5AU
around stars with radii larger than a few R⊙. Given that many planets with larger semi-
major axes are detected, this trend is unlikely to be an observational bias. While the lack
of hot Jupiters can be due to the tidal engulfment (e.g., Kunitomo et al., 2011), warm
Jupiters seem to be too distant from the host star to be tidally distrupted, unless the
efficiency of tidal dissipation increases dramatically as the star evolves (Schlaufman &
Winn, 2013). This conundrum may be solved if the warm Jupiters are experiencing the
slow tidal migration due to the Kozai cycle. If their eccentricities are frequently excited
to a large value, tidal friction can be significant enough around the pericenter at the
high-eccentricity phase to pull the planet into the star (Frewen & Hansen, 2016).
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If the intermediate orbits of a warm Jupiter is due to the Kozai migration, it can
be shown that the companion must be close, or the orbit rapidly shrinks to become a
hot Jupiter as the general relativistic precession terminates the Kozai cycle as the orbit
shrinks (Dong et al., 2014). In this case, we expect a similar hierarchical architecture to
the one discussed in Chapter 6. Because of their proximity, transiting warm Jupiters may
be easier targets to search for such companions responsible for the close-in orbits, than
hot Jupiters.

In fact, the systems presented by Dawson & Chiang (2014) are all this type of systems,
although they are non-transiting systems confirmed with radial velocities and are not
amenable to more detailed characterization (e.g., obliquity or mutual orbital inclination).
If the inner warm Jupiter is transiting, we could measure the stellar obliquity and discuss
its relationship with the system architecture, and could even constrain the mutual orbital
inclination. Such inferences are also applicable to warm Jupiters that will be found more
in future transit surveys.

7.2.3 Stellar Obliquity Trend as the Difference in the Planetary
System Architecture

Any of the scenarios discussed in Chapter 3, including the primordial ones, attributes the
observed λ–Teff trend to the difference in the stellar property. Meanwhile, it may also be
reasonable to review this trend as something associated with the difference in the orbital
architecture of planets, given the generality of the trend and weak period dependence of
obliquities around cool stars (see Section 3.2.1).

In this context, the difference in the obliquities in single- and multi-transiting sys-
tems may deserve a more in-depth study. Morton & Winn (2014) argued that (some
of) single-transiting systems may be parts of multi-planetary systems with large mu-
tual orbital inclinations, unlike the “pancake-flat” multi-planetary systems observed as
multi-transiting systems. The excess of single-transiting systems in the Keplermultiplicity
statistics, known as the Kepler dichotomy, may also originate from the same “dynamically
hot” population as discussed in Section 2.4.3.

If a fraction of dynamically hot systems increases with the stellar effective temper-
ature, that may explain both the weak period dependence and generality of the trend
resulting from the spot-amplitude analysis (Section 2.3.5). While this interpretation is
still speculative, Figure 7.2 shows a suggestive trend: a fraction of multi-transiting sys-
tems among the KOI sample starts to decrease for Teff " 6000K. The trend is at least
quantitatively consistent with the above speculation, because systems with larger mutual
orbital inclinations are less likely to be observed as multi-transiting systems for the same
number of planets.

The above result is still tentative in many aspects. For example, the detection bias is
not handled very carefully in this analysis; multi-planetary systems may indeed be rare
around early-type stars, in which case their decrease is not due to the increasing mutual
inclination; or false-positive rates may depend on the stellar mass. A more decisive
conclusion will be obtained if the trend is combined with independent information on the
number statistics from radial velocity observations, or with different statistics of multi-
transiting systems including the period spacing and multiplicity distribution. In any case,
this working hypothesis illustrates the possible advantage to study stellar obliquities as an
integral part of the planetary system architecture, which should eventually be understood
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Figure 7.2 Fraction of multi-transiting KOIs as a function of host-star temperature. The
KOIs classified as clear false positives by the Kepler team are all excluded. To attenuate
the detection bias against the small planets, the samples are limited to KOIs detected
with sufficiently large (> 15) signal-to-noise ratios. We also exclude the KOIs with radii
larger than 20R⊕ or with impact parameter b larger than 0.5. The latter condition is
to exclude the possible eclipsing binaries, which produce V -shaped eclipses; they usually
result in large b when fitted with the transit model. The blue filled circles with error
bars are the fractions averaged into 500K bins, where the number denotes the number of
samples in each bin and the error bars simply show the Poisson error. The blue dotted
line is the running median with the same window size. The black horizontal dashed line
shows the average fraction of multi-transiting systems in this sample.
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coherently with the physical properties of the planets. Indeed, such a link between the
architecture and the physical property has already begun to be pursued (e.g., Dawson
et al., 2016).
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Appendix A

Planetary Orbit

This appendix summarizes the basic property of the planetary orbit in the two body problem,
and describes the definition of the six orbital elements and coordinate system adopted in this
thesis.

A.1 Orbital Elements in the Kepler Problem

First, let us define the orbital elements for the two-body problem under the Newtonian gravity.
The equations of motion in this case are

m1r̈1 = +G
m1m2

|r|3 r, (A.1)

m2r̈2 = −G
m1m2

|r|3 r, (A.2)

where mj and rj are the mass and position vector of the j-th body, G is Newton’s gravitational
constant, and we define the relative motion

r = r2 − r1. (A.3)

The sum of Equations (A.1) and (A.2) implies the conservation of the total linear momentum:

P ≡ m1ṙ1 +m2ṙ2 = const, (A.4)

and their difference gives the equation for the relative motion:

r̈ = −GM

r3
r, (A.5)

where M ≡ m1 +m2 and r ≡ |r|. Since the right-hand side of Equation (A.5) is parallel to r,
this equation leads to the (specific) angular momentum conservation:

h ≡ r × ṙ = const. (A.6)

This means that the relative motion is confined in a plane that is perpendicular to h (orbital
plane). Integration of Equation (A.5) also derives the energy conservation:

1

2
|ṙ|2 − GM

r
= E , (A.7)

where E is a constant.
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120 Chapter A Planetary Orbit

A.1.1 Shape of the Orbit

The trajectory in the orbital plane is obtained by integrating Equation (A.7) in a polar coordinate
system (r, θ). Using r2θ̇ = h ≡ |h|, Equation (A.7) reduces to

ṙ2

2
+

h2

2r2
− GM

r
= E . (A.8)

Below we only consider the case of E < 0, i.e., the motion is confined in a finite range of r

(bound orbit). Note that E also has a lower bound, −E ≤ 1
2

(
GM
h

)2
, below which r satisfies

Equation (A.8). Again with h ≡ |h| = r2θ̇, Equation (A.8) is integrated as

θ =

∫
dθ =

∫
(h/r2)dr√

2E + 2GM/r − h2/r2
= arccos

⎛

⎝
h
r − GM

h√
2E +

(
GM
h

)2

⎞

⎠+ ω, (A.9)

where ω is a constant. Defining

a ≡ −GM

2E , e ≡
√

1 +
2Eh2
G2M2

, (A.10)

Equation (A.9) reduces to

r(θ) =
a(1− e2)

1 + e cos(θ − ω)
. (A.11)

Since 0 ≤ e < 1, Equation (A.11) denotes an ellipse with semi-major axis a and eccentricity
e. The angle ω, the argument of pericenter, specifies the point where r becomes minimum
(pericenter or periapsis). So far the reference direction for θ and ω is arbitrary; we will define it
in Section A.1.3. The angle f ≡ θ − ω is called the true anomaly.

A.1.2 Solution of the Kepler Problem

The motion as a function of time t is also obtained by directly integrating Equation (A.8), this
time without converting dt to dθ:

t =

∫
dt =

∫
dr√

2E + 2GM/r − h2/r2

=

∫
dr√

−GM/a+ 2GM/r −GMa(1− e2)/r2

=

√
a

GM

∫
rdr√

[ae+ (r − a)][ae− (r − a)]
. (A.12)

Here we introduce the eccentric anomaly E via

r − a = −ae cosE. (A.13)

Then Equation (A.12) can be integrated analytically:

t =

√
a3

GM
(E − e sinE) + τ, (A.14)

where τ is a constant.1 This means that the orbital period P , which is the time for E to increase
by 2π, is given by

P = 2π

√
a3

GM
, or n2a3 = GM, (A.15)

1Since a(1− e) < r < a(1+ e) from Equation (A.11), we can define E in the range [−π,π). Note that
r is a decreasing function of E for E = −π → 0 (i.e., sinE < 0), while it is increasing for E = 0 → π
(i.e., sinE > 0). This distinction is required for correctly integrating Equation (A.12).
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where n ≡ 2π/P is usually called the mean motion. This relation is known as Kepler’s third
law. Using the mean motion, Equation (A.14) is rewritten as the Kepler equation,

M = E − e sinE, (A.16)

where

M ≡ n(t− τ) (A.17)

is the mean anomaly. Note that τ is the time at which E = 0 or r = a(1− e). Thus τ actually
denotes the time of pericenter passage.

The above discussion yields a procedure for specifying the motion for a given orbital plane,
total mass M , and elements (a, e,ω, τ). At each time t, we compute M using Equations (A.15)
and (A.17). Then we solve the Kepler equation (A.16) numerically to determine E(t). The
eccentric anomaly E(t) is related to r via Equation (A.13), from which θ or f can also be
specified with Equation (A.11). The explicit relationship between E and f is simply given by

tan
f

2
=

√
1 + e

1− e
tan

E

2
. (A.18)

A.1.3 Orientation in Three Dimensions

To completely describe the orbital motion in three dimensions, we also need to specify the
direction of the orbital plane, or vector h. Throughout the thesis, we adopt right-handed
coordinates (XY Z) with +Z-axis pointing toward the observer and XY -plane being the sky
plane (Figure A.1).2 Directions of the XY -axes can be defined arbitrarily. In this coordinate
system, we need two angles corresponding to the polar and azimuth angles to describe the
direction of h. Let us define these angles so that ĥ, the unit vector of h, is given as follows:

ĥ =

⎛

⎝
sinΩ sin i

− cosΩ sin i
cos i

⎞

⎠ , (A.19)

where Ω and i are called the longitude of the ascending node and orbital inclination, respectively.
The meanings of i and Ω are also illustrated in Figure A.1. The Z-component of Equation

(A.19) shows that i is the angle between the orbit normal and our line of sight (Z-axis); that is, it
is the inclination of the orbital plane with respect to the plane of the sky. The XY -components,
on the other hand, indicate that Ω corresponds to the direction of the ascending node, where
the planet crosses the sky plane with Ż > 0 (i.e., from Z < 0 to Z > 0), measured from the
+X-axis. Conventionally, the ascending node is used as a reference direction for θ and ω in
Equation (A.11).

In terms of ω, Ω, and i, the orbit in three dimensions is given by

⎛

⎝
X
Y
Z

⎞

⎠ =

( cosΩ cosω − sinΩ sinω cos i − cosΩ sinω − sinΩ cosω cos i sinΩ sin i

sinΩ cosω + cosΩ sinω cos i − sinΩ sinω + cosΩ cosω cos i − cosΩ sin i

sinω sin i cosω sin i cos i

)( r cos f

r sin f

0

)

= r

⎛

⎝
cosΩ cos(ω + f)− sinΩ sin(ω + f) cos i
sinΩ cos(ω + f) + cosΩ sin(ω + f) cos i

sin(ω + f) sin i

⎞

⎠ ≡

⎛

⎝
PX QX RX

PY QY RY

PZ QZ RZ

⎞

⎠

⎛

⎝
r cos f
r sin f

0

⎞

⎠ .

(A.20)

2Note that the coordinate system with +Z-axis pointing away from us is often used as well.
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Y
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observer’s line of sight

ascending 
node

Ω
i

star
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ascending node

(reference direction)

pericenter

ω
argument of pericenter

Figure A.1 Definition of the coordinate system in this thesis and meanings of the longitude
of ascending node Ω, orbital inclination i, and argument of pericenter ω.

A.1.4 Summary and Remarks

The meanings of the six orbital elements (upper part of Table A.1) are summarized as follows:

• The shape of the orbit is defined by the orbital semi-major axis a and eccentricity e. The
former is uniquely related to the orbital energy, while the latter is determined by the
energy and angular momentum of the orbital motion.

• The direction of the orbit in three dimensions is specified by three angles: argument of
pericenter ω, longitude of ascending node Ω, and orbital inclination i. The latter two are
essentially the azimuth and polar angles of the angular momentum vector.

• The position in the orbit at a given time is specified by the time of pericenter passage τ .
Equivalently, we can fix the values of the anomalies at any given time, including M , E,
and f .

The anomaly angles defined above are all referred to the pericenter. They are therefore
independent of the definition of the coordinate system. In contrast, Ω and i, as well as ω
referred to the ascending node, all depend on the specific definition of the coordinate system,
or the reference plane, to which all these angles are referred. For example, it is often useful to
define the ascending node with respect to the invariant plane of the system (plane normal to
the total angular momentum), instead of the plane of the sky as we did above. In this case, the
ascending node is the intersection between the orbit and the invariant plane (reference plane in
this case), and i is the inclination with respect to this plane. For another example, if we define
+Z-axis away from the observer’s direction, as mentioned above, Ω and ω change by π as the
ascending and descending nodes are swapped.

Also note that the direction of the pericenter, to which all the anomalies are referred, is
not generally constant when the non-Keplerian forces (e.g., general relativity, aspherical star,
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Table A.1. Symbols for the Orbital Elements and their Relevant Quantities

Symbol Definition

a Semi-major axis
e Eccentricity
i Inclination
ω Argument of periastron
Ω Longitude of ascending node
τ Time of periastron passage

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
E Eccentric anomaly

ϖ = ω + Ω Longitude of periastron
f True anomaly

θ = f +ϖ True longitude
M Mean anomaly

λ = M +ϖ Mean longitude

perturbation from other planets) exist. In this case, the orbital motion may be better represented
by the longitudes, the angles referred to the axes fixed in an inertial frame.3 The examples are
the longitude of pericenter ϖ ≡ ω+Ω, mean longitude λ ≡ M+ϖ, and true longitude θ ≡ f+ϖ.
They can also be useful when the orbit is (nearly) circular and the pericenter is not well defined.
Even so, the ascending node, and hence longitudes, can always be well defined, unless the orbital
plane coincides with the reference plane.

A.2 Osculating Orbital Elements

In Appendix A.1, we define the six orbital elements for the Kepler problem, in which the motion
is perfectly periodic and the orbit does not vary over time. Even in the presence of non-
Keplerian forces and the resulting orbit variation, on the other hand, the orbital elements can
still be defined at each moment of time, because there exists one-to-one correspondence between
six coordinates in the phase space (i.e., three positions and velocities) and the six elements.
Such orbital elements as a function of time are called osculating orbital elements. In this sense,
the osculating elements defined at time t would be usual Keplerian orbital elements if all the
non-Keplerian forces vanished at time t. Below we summarize the conversion relationships from
R ≡ (X,Y, Z) and V ≡ Ṙ to the osculating elements.

First, note that the following quantities can be written in terms of R and V :

h = (Ẏ Z − ZẎ , ZẊ −XŻ,XẎ − Y Ẋ) ≡ (hX , hY , hZ), (A.21)

Ṙ = ±
√

V 2 − h2

R2
(same sign as R · V ). (A.22)

Since the rotation does not alter the vector norms, Equations (A.7) and (A.10) yield the

3Remember that the longitude of ascending node Ω is defined with respect to +X-axis; this is why
we call Ω a longitude.
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semi-major axis

a =

(
2

R
− V 2

GM

)−1

. (A.23)

Equation (A.13) and its derivative then yield

e cosE = 1− R

a
, e sinE =

RṘ

na2
=

RṘ√
GMa

, (A.24)

where we used
Ė(1− e cosE) = n or Ė =

na

R
(A.25)

derived from Equation (A.16). Equation (A.24) gives both e and E. This E can be translated
into the time of the periastron passage τ or mean anomaly M via

τ = t− M

n
= t− E − e sinE√

GM/a3
. (A.26)

The three angles (ω,Ω, i) are determined from P ≡ (PX , PY , PZ) and Q ≡ (QX , QY , QZ) in
Equation (A.20). Equation (A.20) and its derivative can be given in terms of a, e, and E above
as

R = a
[
(cosE − e)P + (

√
1− e2 sinE)Q

]
, V =

√
GMa

R

[
(− sinE)P + (

√
1− e2 cosE)Q

]
.

(A.27)

Inverting Equation (A.27), we obtain P and Q as

P =
cosE

R
R−

√
a

GM
sinEV , Q =

1√
1− e2

[
sinE

R
R+

√
a

GM
(cosE − e)V

]
(A.28)

They can be used to derive (ω,Ω, i) via the following relationships:

cosω =
QZ√

P 2
Z +Q2

Z

, sinω =
PZ√

P 2
Z +Q2

Z

, (A.29)

cosΩ =
PXQZ − PZQX√

P 2
Z +Q2

Z

, sinΩ =
PY QZ − PZQY√

P 2
Z +Q2

Z

, (A.30)

and

cos i = PXQY − PY QX , sin i =
√

P 2
Z +Q2

Z . (A.31)



Appendix B

Summary of the Transit Method

This appendix provides a more detailed review of the transit method than in Section 1.2.3.
In observing a transit, we perform a differential photometry; that is, all what we observe is
the variation in the relative flux of the star as a function of time, and its absolute value does
not matter. For this reason, all we can learn from the transit light curve is the geometric
properties (i.e., non-dimensional parameters) of a system except for the timescale, from which
mean densities of the bodies can be derived. In fact, it is a fairly general conclusion that the
mean density is the only dimensional property of a system constrained from the relative flux, as
long as we consider Newtonian dynamics for point masses alone.

B.1 Terminology

Following Winn (2010), we define an eclipse as the obscuration of one celestial body by another.
When the obscuring object is much smaller than the obscured one, this kind of eclipse is called a
transit, and the opposite case is called an occultation. We use the term grazing if the obscuration
is partial, i.e., the path of a transiting (occulted) object is not totally inside (behind) the larger
body. Occultations are often called secondary eclipses in exoplanet literatures.

B.2 Transit Geometry

Equation (A.20) gives the sky-projected star–planet distance rsky ≡
√
X2 + Y 2 as

rsky =
a(1− e2)

1 + e cos f

√
1− sin2(ω + f) sin2 i. (B.1)

Note that rsky does not depend on Ω due to the rotational symmetry of the system with respect
to the line of sight.

The planetary transit, if visible, is centered on the minimum value of this rsky, which we
define as the transit center. The value of f that minimizes rsky is obtained by solving drsky/df =
0, and this equation reduces to

∆ =
1

2
arcsin

[
2e cos(ω +∆)

(
1

sin2 i
− cos2∆

)
− e sin(ω +∆) sin 2∆

]
, (B.2)

where we define ∆ ≡ π/2− (ω + f). This can be solved by iteration to give ∆ = e cosω cot2 i−
e2 sin 2ω cot2 i(1+cot2 i)+O(e3), which is negligibly small except for planets on highly eccentric
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(e is large) and close-in orbits with grazing eclipses (i is far from π/2). The true anomaly at the
transit center, therefore, is well approximated by

ftra = +
π

2
− ω, (B.3)

i.e., transits are centered at inferior conjunctions. In this approximation, the star–planet dis-
tance in the sky plane at the transit center is given by

rsky
(
f = +

π

2
− ω

)
= a cos i

1− e2

1 + e sinω
≡ bR⋆, (B.4)

where we define the normalized impact parameter of the transit, b, in the last equality.
Using the impact parameter defined above, the condition for the transit to be observable at

all for a given observer is written as

b <
R⋆ +Rp

R⋆
or | cos i| < R⋆ +Rp

a

1 + e sinω

1− e2
≡ cos i0. (B.5)

Thus, the transit probability for a randomly placed observer is

ptra =

∫ cos i0
− cos i0

d cos i
∫ +1
−1 d cos i

= cos i0 =
R⋆ +Rp

a

1 + e sinω

1− e2
. (B.6)

Note that the measure d cos i comes from the inclination dependence of the solid angle (propor-
tional to sin i). If ω is not known either, we also average over ω to obtain

ptra =
R⋆ +Rp

a

1

1− e2
≃ 0.005

(
R⋆

R⊙

)( a

1AU

)−1 1

1− e2
. (B.7)

The corresponding formulae for the occultation can be derived in an analogous manner.
The true anomaly at the occultation center is replaced by −π/2 − ω in Equation (B.3), and
so the signs of e sinω are all flipped in Equations (B.4) through (B.6) for the occultation case.
Equation (B.7) remains the same.

B.3 Information from Eclipses

If the transit is observed, its depth reveals the planet-to-star radius ratio, which is never con-
strained by other methods. In addition, the timings of the repeating transits allow us to constrain
the orbital phase of the planet, while the transit shape yields the geometric parameters of the
orbit including scaled semi-major axis a/R⋆ and orbital inclination i. We will see this using a
simplified model of the transit in Appendix B.3.1. We will also comment on how the mean stellar
density and, in some cases, orbital eccentricity can be derived from the time-domain information
of the light curve.

B.3.1 Constraints on Geometry from the Transit Shape

Here we describe the relationship between the shape of the transit and geometrical parameters
of the system. We adopt a simple “trapezoidal” model, where the shape of the transit light curve
is approximated by a trapezoid. In fact, the simple model is enough to capture the essential
property of the light curve, and the parameters that can be constrained from the modeling is
basically the same as a more elaborate model (e.g., Mandel & Agol, 2002, used in Chapters 4
through 6).
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flux

time

δ

tI tII tIII tIV

b
X

Y

Tτ

star

planet

Figure B.1 Illustration of the transit (upper panel) and the in-transit flux approximated
as a trapezoid (lower panel). Four contact times are defined.

Circular Orbit

Neglecting the effect of the stellar limb darkening, the shape of the extinction due to a planetary
transit is well approximated by a simple trapezoid as shown in Figure B.1. In this case, the
shape of the light curve is characterized by

1. the transit depth: δ ≡ (relative decrease in the stellar flux),

2. the total duration of the transit : Ttot ≡ tIV − tI,

3. the duration of the full transit : Tfull ≡ tIII − tII,

where the durations Ttot and Tfull are defined through the four contact times illustrated in Figure
B.1. We also define the durations of ingress and egress, τing = tII− tI and τegr = tIV− tIII. When
the orbit is circular, τing and τegr are equal and related to the above durations as τ ≡ τing =
τegr = (Ttot − Tfull)/2.

These parameters are simply related to the geometric parameters of a planet and its orbit
in the following manner. The transit depth δ is given as the fraction of the stellar flux blocked
by the planet to the whole stellar flux:

δ =

(
Rp

R⋆

)2

. (B.8)
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The angle the planet needs to travel during a transit, divided by its angular velocity, yields the
two durations as

Ttot =
P

π
sin−1

[
R⋆

a

√
(1 +Rp/R⋆)2 − b2

sin i

]
, (B.9)

Tfull =
P

π
sin−1

[
R⋆

a

√
(1−Rp/R⋆)2 − b2

sin i

]
. (B.10)

In the limiting case that Rp/R⋆ ≪ 1 and R⋆/a ≪ 1, these results are greatly simplified:

T ≡ Ttot + Tfull

2
≃ Ttot ≃ Tfull ≃ T0

√
1− b2, (B.11)

τ ≃ T0√
1− b2

Rp

R⋆
, (B.12)

where T0 is a characteristic timescale given by

T0 ≡
R⋆P

πa
≃ 13 h

(
P

1 yr

)1/3( ρ⋆
ρ⊙

)−1/3

. (B.13)

The above expressions for (δ, Ttot, Tfull) can be inverted to give a set of geometrical parameters

Rp

R⋆
=

√
δ, (B.14)

b2 =

(
a

R⋆
cos i

)2

=
(1−

√
δ)2 − (Tfull/Ttot)2(1 +

√
δ)2

1− (Tfull/Ttot)2
≃ 1− T

τ

√
δ, (B.15)

R⋆

a
=

π

2δ1/4

√
T 2
tot − T 2

full

P
≃ π

δ1/4

√
τT

P
, (B.16)

where the last approximation holds when τ ≪ T . In this way, the dimensionless parameters
that characterize the transit shape, (δ, T/P, τ/P ), are related to the planetary radius Rp and
two orbital elements a and i in units of the stellar radius R⋆ for lengths. The same is true even
when we use more detailed transit models such as Mandel & Agol (2002).

Eccentric Orbit

If the orbit is eccentric, the durations (B.9) and (B.10) are calculated via

tβ − tα =

∫ tβ

tα

dt =

∫ fβ

fα

(
df

dt

)−1

df =
P (1− e2)3/2

2π

∫ fβ

fα

1

(1 + e cos f)2
df, (B.17)

where α,β = I, II, III, IV. Here we use r2ḟ = h = na2
√
1− e2 and Equation (A.11) in the last

equality, and fα is the solution of

rsky(fα) =
a(1− e2)

1 + e cos fα

√
1− sin2(ω + fα) sin2 i = R⋆ ±Rp, (B.18)

where + and − signs correspond to α = I, IV and α = II, III, respectively. Equation (B.18)
cannot be solved analytically for fα, but the solution to the leading orders of e and R⋆/a can
be obtained as

π

2
− (ω + fα) =

1

sin i

R⋆

a

1 + e sinω

1− e2

√(
1± Rp

R⋆

)2

− b2 (B.19)
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for α = I, II. As the first approximation, therefore, Ttot and Tfull for the eccentric case are

Ttot =
P (1− e2)3/2

2π
· 2
[π
2
− (ω + fI)

] 1

(1 + e sinω)2

=
P

π

R⋆

a

√
(1 +Rp/R⋆)2 − b2

sin i

( √
1− e2

1 + e sinω

)
, (B.20)

Tfull =
P

π

R⋆

a

√
(1−Rp/R⋆)2 − b2

sin i

( √
1− e2

1 + e sinω

)
. (B.21)

These are different from the circular case by the factor in the parentheses, corresponding to the
difference of orbital velocity around the transit.

Since the non-zero eccentricity also introduces the velocity asymmetry with respect to the
transit center, τing and τegr are generally unequal. The difference is, however, usually negligibly
small. To the leading orders of R⋆/a and e, we have

τegr − τing
τegr + τing

∼ e cosω

(
R⋆

a

)3

(1− b2)3/2 (B.22)

(Winn, 2010). This quantity is less than 10−2e for a close-in planet with R⋆/a = 0.2, and even
smaller for more distant planets.

Considering the possible non-zero eccentricity, therefore, only affects the estimate of R⋆/a,
while Rp/R⋆ and b are unchanged. The modified formula for R⋆/a is

R⋆

a
=

π

2δ1/4

√
T 2
tot − T 2

full

P

1 + e sinω√
1− e2

≡
(
R⋆

a

)

circ

1 + e sinω√
1− e2

≃ π

δ1/4

√
τT

P

1 + e sinω√
1− e2

, (B.23)

where (R⋆/a)circ is R⋆/a derived assuming e = 0. Correspondingly, the inclination estimated
from the transit shape is also modified as

cos i = b
R⋆

a

1 + e sinω

1− e2
≡ cos icirc

(1 + e sinω)2

(1− e2)3/2
≃
[
1− T

τ

√
δ

]1/2 π

δ1/4

√
τT

P

(1 + e sinω)2

(1− e2)3/2
,

(B.24)
where cos icirc is cos i derived assuming e = 0. This means that the eccentricity cannot be
constrained from the transit shape alone without an independent constraint on R⋆/a.1

Constraint on the Phase

Transit observations constrain the orbital phase of the planet, in addition to the geometric
parameters discussed above.

First let us consider the case of a circular orbit. Assuming that the transits are observed
repeatedly, the series of observed transit times fix the orbital period P and the time of a transit
center t0 (sometimes called transit epoch). For e = 0, Equations (A.16) and (A.18) yield M =
E = f , and now ω + f(t0) = π/2 from Equation (B.3). Thus, ω + f (i.e., orbital phase) at any
time t is completely specified with t0 and P :

ω + f(t) =
π

2
+

2π

P
(t− t0). (B.25)

This is equivalent to fixing τ , although it is not uniquely defined for a circular orbit.

1In principle, the prior constraint on i could also be useful. However, it is usually impossible to
constrain i with a sufficient precision, independently from the transit.
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For e ̸= 0, we use Equation (A.26) to obtain

τ = t0 −
E(t0)− e sinE(t0)

n
, (B.26)

where E(t0) is derived from Equations (B.3) and (A.18):

E(t0) = 2 arctan

[√
1− e

1 + e
tan

(π
4
− ω

)]
. (B.27)

B.3.2 Constraint on the Physical Dimension

Dividing Kepler’s third law (A.15) by R3
⋆, we obtain

(
2π

P

)2( a

R⋆

)3

=
GM

R3
⋆

=
4πG

3
ρ⋆

(
1 +

Mp

M⋆

)
, (B.28)

where ρ⋆ is the mean stellar density. Thus, neglecting Mp/M⋆ ! 10−3 for a star–planet system,
the mean stellar density is obtained purely from the transit observables (Seager & Mallén-
Ornelas, 2003), as long as the eccentricity is already constrained.

Notice that Rp/R⋆, a/R⋆, and i derived in Appendix B.3.1 are determined solely by the
dimensionless shape parameters of the transit, δ, T/P , and τ/P , and that the information on
the absolute timescale (i.e., P ) is used for the first time in Equation (B.28). As we will discuss in
more detail below, ρ⋆ (or mean density in general) is the only dimensional quantity constrained
from the light curve alone.

B.3.3 Constraints on Orbital Eccentricity

It is generally difficult to constrain the orbital eccentricity from the transit light curve alone.
Nevertheless, the orbital eccentricity is (partly) determined from the light curve when either of
the following two information is available, as we demonstrated in Section 4.4.

Timing and Duration of the Occultation

If the occultation (secondary eclipse) is observed for a close-in planet, the orbital eccentricity is
fully constrained from the light curve from the timing and duration of the occultation relative
to the transit. In this case, the mean stellar density is derived from the light curve without
ambiguity via Equations (B.28) and (B.23).

First, the time from the transit to the occultation, ∆ttra→occ, is computed in a similar manner
to Equation (B.17):

∆ttra→occ =

∫ focc

ftra

(
df

dt

)−1

df =
P (1− e2)3/2

2π

∫ −π/2−ω

3π/2−ω

df

(1 + e cos f)2
,

≃ P (1− e2)3/2

2π
(π + 4e cosω) =

P

2

(
1 +

4

π
e cosω

)
+O(e2). (B.29)

This means that ∆ttra→occ deviates from P/2 due to the asymmetry of the orbit with respect
to the line of sight, which is represented by e cosω.2 Second, Equations (B.21) and (B.20) show
that durations relevant to the transit and occultation, Ttra and Tocc, are related by

Ttra

Tocc
=

1− e sinω

1 + e sinω
, (B.30)

2Remember that ω is measured from the sky plane, and so the major-axis of the orbit coincides with
the line of sight for ω = ±π/2.
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40

occultation

transit

fast

slow

Figure B.2 Schematic illustration of the effect of a non-zero eccentricity on the transit
and occultation light curves. When the system is observed from the direction of the left
orange arrow, the occultation is elongated due to a positive e sinω. When the observer
is in the direction of the bottom arrow, on the other hand, the occultation occurs later
than P/2 because e cosω > 0.

because the corresponding formulae for the occultation is obtained by replacing e sinω with
−e sinω.3 The difference in the durations comes from that in the velocities. Therefore the dura-
tion ratio is sensitive to the orbit asymmetry with respect to the sky plane, which is represented
by e sinω. Note that e cosω is more precisely constrained than e sinω because ∆ttra→occ is
longer than Ttra/occ roughly by a factor of a/R⋆. These two effects are schematically illustrated
in Figure B.2.

Constraint on the Mean Stellar Density

As discussed in Section 4.3, asteroseismology can precisely constrain the mean stellar density ρ⋆.
Less precise constraints on ρ⋆ can also be derived from the spectroscopic observation. Such a
constraint on ρ⋆ allows us to determine a/R⋆ via Equation (B.28) independently from the transit
light curve. This a/R⋆ can be combined with Equation (B.23) to contrain (1+ e sinω)/

√
1− e2.

Since (1+ e sinω)/
√
1− e2 ≤

√
(1 + e)/(1− e), the method (only) gives a lower limit on e (see,

e.g., Van Eylen & Albrecht (2015) and Uehara et al. (2016) for the application).

B.4 Remarks on the Similarity

Why is the transit light curve related to the mean stellar density, while the other parameters are
only obtained in a non-dimensional manner? This property is essentially due to the similarity
of the problem and hence applies fairly generally.

B.4.1 Stellar Intensity Profile

First, we note that the light curve is only sensitive to the planetary orbit normalized to the
stellar radius R⋆ as long as the following conditions are satisfied.

3Note that the formulae for the occultation is the same as the transit formulae in the coordinate
system reflected with respect to the plane of the sky. As we noted in Appendix A.1.4, ω and Ω changes
by π in this case.
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Suppose that the stellar intensity profile depends on the position only through r⋆/R⋆, where
r⋆ is a two-dimensional vector specifying a position on the stellar disk. We write such a profile
as I(r⋆/R⋆;α⋆), where α⋆ denotes the set of parameters that describes the stellar intensity
profile, and suppose that I = 0 outside of the stellar disk. In addition, we assume that the
planetary disk modifies the stellar intensity by a factor of E([r⋆− rp]/R⋆;β⋆), where rp here is
the position of the planet center on the sky plane, and β⋆ is the set of parameters that specify
the shape and intensity profile of the planetary disk. Then, the relative flux f , as an observable
of the differential photometry, is solely determined by r̃p(t) ≡ rp(t)/R⋆:

f =

∫
I(r′

⋆/R⋆;α⋆ )̸=0E([r′⋆ − rp]/R⋆;βp)I(r
′
⋆/R⋆;α⋆)d2r′⋆∫

I(r′
⋆/R⋆;α⋆ )̸=0 I(r

′
⋆/R⋆;α⋆)d2r′⋆

=

∫
I(r̃′

⋆;α⋆ )̸=0
E(r̃′⋆ − r̃p;βp)I(r̃

′
⋆;α⋆)d2r̃

′
⋆∫

I(r̃′
⋆;α⋆ )̸=0

I(r̃′⋆;α⋆)d2r̃
′
⋆

= f(r̃p(t);α⋆,βp). (B.31)

The above conclusion applies to broad situations. For example, the standard transit model
used in Chapters 4 through 6 assumes the quadratic limb-darkening law and dark planetary
disk:

I(r⋆/R⋆; (u1, u2)) =

{
I(0)

[
1− u1(1− µ)− u2(1− µ)2

]
, µ =

√
1− (r⋆/R⋆)2 for r⋆/R⋆ < 1

0 otherwise
,

(B.32)

E([r⋆ − rp]/R⋆;Rp/R⋆) =

{
0 for |r⋆ − rp|/R⋆ < Rp/R⋆

1 otherwise
, (B.33)

where u1 and u2 are constants called limb-darkening coefficients. While r̃p depends on (P, a/R⋆, e,ω, i,Ω, τ),
the profile (B.32) is axisymmetric and so f does not depend on Ω. Therefore, f = f(r̃p(t); (u1, u2), Rp/R⋆)
is sensitive to (P, a/R⋆, e,ω, i, τ, u1, u2, Rp/R⋆); this is indeed the set of parameters that can in
principle be constrained from the light curve, as shown in Appendix B.3.

The same property also applies to the gravity-darkened transit model discussed in Chapter 5.
As described in detail in Section 5.2.1, the stellar intensity profile in this case is solely determined
by the temperature at the stellar pole T⋆,pole, gravity-darkening exponent β, and the direction of
the surface gravity vector at each point on the stellar surface. Since the last one depends on the
radius vector normalized by R⋆, direction of the stellar spin axis, and a dimensionless parameter
γ = 3πf2

rot/2Gρ⋆ with frot being the stellar rotation frequency, the intensity profile has the form
of I(r⋆/R⋆; (ρ⋆, frot, T⋆,pole,β, i⋆,Ω⋆)), where Ω⋆ is defined analogously to Equation (A.19) for
the stellar spin vector. This explains the choice of the model parameters in Section 5.2.1. Note
that only λ = Ω−Ω⋆ is constrained due to the arbitrariness in choosing the reference direction
(+X-axis), and that M⋆ is not included in the light curve model explicitly but only constrained
through that on v sin i⋆ in Equation (5.3).

B.4.2 Newtonian Gravity

We have seen in Appendix B.3.2 that a/R⋆ and P obtained from the transit light curve can be
combined to determine the mean stellar density ρ⋆, if we neglect Mp/M⋆ ≪ 1. Why does the
light curve give ρ⋆ as the only absolute dimension of the system? This is because the timescale of
the motion, which is the only dimensional quantity obtained from the light curve, is determined
by the density in the Newtonian gravity. The dimensionless form of Equation (A.5) explicitly
shows this property:

d2(r/R⋆)

d(t/
√

R3
⋆/GM⋆)2

= − r/R⋆
(r/R⋆)3

, (B.34)
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which means that the normalized motion r/R⋆ is a function of t/tff , where

tff ≡
√

3

4πGρ⋆
. (B.35)

This property, along with the fact that the light curve only depends on rp/R⋆, leads to the
following conclusion: the observed transit light curve is invariant under any scaling of the mass
and radius that keeps the mean stellar density unchanged. In other words, the transit light curve
is only sensitive to the relative dimensions of the system except for the mean stellar density.
Chapter 6 deals with an exception to this rule, where the timescale is related to another absolute
dimension (i.e., size) of the system via the speed of light c. Even in this case, the absolute mass
is not well determined because the system size depends only on the cubit root of the mass scale.

TTVs Constrain the Mean Densities of the Bodies Alone

Since the above property comes from the scaling of the Newtonian dynamics, it can be generalized
to the transit light curve of multi-planetary systems, where the member planets gravitationally
perturb each other to produce the deviation from the two-body case (e.g., transit timing varia-
tions or TTVs; see also Section 1.2.3). In this case, the equations of motion for the coordinates
normalized by R⋆ depend on masses of the planets divided by M⋆, as well as ρ⋆. For tran-
siting planets, we can also constrain Rp/R⋆. In the ideal situation where the member planets
are strongly interacting and all transiting, therefore, TTVs allow for constraining the planetary
density ρp = ρ⋆(Mp/M⋆)(Rp/R⋆)−3 purely from the light curve. On the other hand, the abso-
lute mass and radius scales are never constrained from the light curve alone, as the same scaling
property as discussed above holds even in the presence of planet–planet interaction. Note that
this is true even when the transit variations other than TTVs (e.g., transit duration variations)
are considered, as pointed out by Sanchis-Ojeda et al. (2012).





Appendix C

Bayesian Inference

In the most parts of Chapters 4 through 6, we adopted a Bayesian approach for the inversion
problem to constrain the system parameters. For completeness, here we summarize the basic
procedure of the Bayesian inference taking a simple linear regression problem for example. The
treatment of the problem described here basically follows Gregory (2005).

C.1 Bayesian and Frequentist Views of Probability

The probability in the frequentist view is the “frequency that a given statement concerning
random variables is true.” Suppose that the statement p(x) is that “a random variable X takes
the value x.” Then the probability distribution p(x) is uniquely defined as the frequency resulting
from infinite numbers of trials to measure X, and we attempt to estimate this “true and unique”
distribution. The “confidence interval” in the frequentist statistics, for example, is the frequency
of the “true value” falling into the interval when the random values are repeatedly sampled,
where we never think that there is ambiguity in the true value.

On the other hand, the Bayesian probability is the quantitative measure of our state of
knowledge defined to satisfy the axioms of the probability theory. Such a probability may not be
the same for everyone, and hence is sometimes called “subjective probability.” In the previous
example, we directly compute p(x) from (even a small number of) measurements of X, and p(x)
changes as our knowledge increases.

The advantage to adopt such a definition of probability is that it extends the idea of prob-
ability beyond the frequentist sense. Suppose that the statement “A: a coin gives a head and
tail at equal probabilities.” In the frequentist view, the statement A is either true or false, and
all we can do is to reject either of them using reductio ad absurdum. In the Bayesian theory,
however, it is possible to quantitatively discuss the probability that the statement A is correct.

C.2 Bayes’ Theorem

The Bayes’ theorem follows from the product rule p(A,B) = p(A)p(B|A) = p(B)p(A|B):

p(A|B,C) =
p(A|C)p(B|A,C)

p(B|C)
. (C.1)

We may rewrite Equation (C.1) to make the roles of A, B, and C clearer:

p(Hi|D, I) =
p(Hi|I)p(D|Hi, I)

p(D|I) , (C.2)

where the meanings of Hi, I, and D are as follows:
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• Hi: A proposition that a hypothesis is true,

• I: A proposition that represents our prior information, the information needed to
describe the setup of the problem,

• D: A proposition representing the data.

While the subscript i in Hi assumes a discrete hypothesis space (e.g., H1: expansion of the
universe is accelerating, H2: expansion of the universe is decelerating), it is of course possible
to consider a continuous (e.g., H0: the value of the Hubble constant lies between H0 and
H0 + δh) or a multi-dimensional one. In the case of a continuous space, say p(H0|D, I), it is
interpreted as the probability density function (PDF). In any case, our goal is to assign the
reasonable values of probabilities to the set of p(Hi) or p(H0) dH. Depending on whether the
hypothesis space is discrete or continuous, the appropriate normalization condidtion

∑
i p(Hi) =

1 or
∫
dH0p(H0) = 1 is adopted. Below we do not explicitly specify whether H is discrete or

continuous unless especially required.

C.2.1 Interpretation of the Probabilities in Equation (C.2)

Here we summarize the meaning of each probability in Equation (C.2).

p(D|Hi, I): likelihood function The probability that we obtain the data D assuming that Hi

and I are true. Below it is also written as L(Hi).

p(Hi|I): prior probability of hypothesis The probability that Hi is true, evaluated on the
basis of the prior knowledge I alone. That represents our state of knowledge before we
obtain the data.

p(Hi|D, I): posterior distribution The probability that Hi is true after the data is added to
the prior knowledge; this is what we seek for. In short, Bayesian inference is a procedure
of how we incorporate the information from the data into p(Hi|I) to obtain the posterior
distribution.

p(D|I) This is a normalization constant and equal to
∑

i(Hi|I)p(D|Hi, I) if
∑

i p(Hi|D, I) = 1
is assumed.

C.2.2 Interpretation of the Bayes’ Theorem

As we mentioned in Appendix C.1, the Bayesian probability is not defined as the limiting fre-
quency. As such, the probability distribution for a (constant) physical quantity varies reflecting
the change in our state of knowledge (or ingnorance). Let us illustrate this in the following
simple example, taken from section 1.3.3. of Gregory (2005).

Suppose that we are to measure the value of a continuous quantity H0. If we have no
knowledge on the possible value of H0 prior to the measurement, the prior PDF p(H0|I) would
be a broad distribution over a physically reasonable range of H0, say a uniform distribution over
[Hmin, Hmax]. Note that the information on the range of “physically reasonable values” should
be included in the prior knowledge I.

Let us compute the posterior PDF p(H0|D1, I) given data D1, i.e., our state of knowledge
on H0 after we obtain the data. According to Bayes’ theorem (C.2),

p(H0|D1, I) ∝ p(D1|H0, I)p(H0|I). (C.3)

That is, the posterior PDF is the product of the prior PDF and the likelihood function (the
probability that the data D1 is obtained for a given value of H0). To compute the likelihood,
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we need the model of the observed quantity.1 If the data D1 is the measured value of H0, and
we know (or model) that it is distributed as a Gaussian centered on h and with the width σh,
the likelihood function is given by

p(D1|H0, I) =
1√
2πσ2h

exp

[
−(D1 −H0)2

2σ2h

]
. (C.4)

The posterior PDF obtained in this way is shown in Figure C.1. Here we show the two
extreme cases, where

(a) width of the prior PDF is much larger than that of the likelihood (i.e., Hmax−Hmin ≫ σh)

(b) width of the prior PDF is much smaller than that of the likelihood (i.e., Hmax−Hmin ≪ σh)

In case (a), the posterior PDF is dominated by the likelihood function. Since σh ≪ Hmax−Hmin

in this case, the measurement D1 narrows down the possible range of H0. On the other hand, in
case (b) the likelihood function is flat within the prior PDF, and so the posterior PDF is almost
the same as the prior one. This means that the measurement brings little new information and
hence does not improve our knowledge on H0 very much.

Figure C.1 Schematic illustration of the relationship between the prior PDF and likelihood
(upper panels) and the posterior PDF derived from the two (lower panels). Vertical scales
are different in upper and lower panels, while the horizontal scales are the same.

In this way, we continue to add the observational data to the prior information and keep
updating our state of knowledge; this is the process represented by Bayes’ theorem. Suppose,
for example, that additional data D2 for H0 are obtained, the posterior PDF (i.e., our state of
knowledge on H0) varies again:

p(H0|D2, I
′) ∝ p(H0|I ′)p(D2|H0, I

′), (C.5)

1In this sense, we may explicitly write the model M on the right of the “|” in Equation (C.3). Here
we consider that the model M is also included in the prior information I.
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where I ′ = D1, I and p(H0|I ′) is the posterior PDF computed in Equation (C.3). That is,
the current observational data will be the prior knowledge of the next observation, and the
knowledge becomes more detailed as this procedure is repeated. Of course, the new data need
to be more constraining (i.e., the width of the p(D2|H0, I ′) is narrower) or complementary to
refine the previous knowledge.

C.3 How to Bayesian Inference

Here we summarize a formal procedure for applying the Bayesian inference to actual problems.
The problem of our interest is generally written as follows:✓ ✏
We have a set of mutually exclusive models M1, M2, · · · , MiM (iM ≥ 1) that describe given
data (observables) D, and each model Mi includes ji parameters θ(i) ≡ (θ1, θ2, · · · , θji),
where ji ≥ 0 and ji can be different for each i. Given the prior information I including (but
not limited to) the range of the parameters and the relative plausibilities of the models, we
wish to evaluate the plausibility of each model Mi and/or the constraint on (a part of) the

parameters θ(i)j assuming a certain model Mi.✒ ✑
For this type of problems, we perform the inference in the following steps:

1. Examine the problem careafuly and clarify the appropriate prior information and the
model(s) to describe the data.

2. Write down the Bayes’ theorem (C.2). In the current setup of the problem, Hi is a set of
(Mi,θ

(i)), and so the posterior PDF p(Hi|D, I) is normalized by

1 =
∑

i

p(Mi|I) =
∑

i

∫
dθ(i)p(Mi,θ

(i)|I). (C.6)

3. Determine the prior PDF p(Hi|I). In this case, we assign a real number to every p(Mi|I)
and p(θ(i)j |Mi, I)dθ

(i)
j so that the above normalization condition is satisfied.

4. Compute the likelihood p(D|Hi, I), or give a numerical procedure to do so. At this point,
we do not need to care how to “invert” this likelihood.

The following procedures depend on the type of the problems.

Model Selection

The aim of the model selection problem is to find the best model that describes the observed
data. In the Bayesian inference, this is made possible by computing the quantitative measure
of the viability for each model. This is one of the advantages of the Bayesian analysis over the
frequentist statistics.

What we need to evaluate here is the probability that the model Mi is correct given the data
D and prior information I:

p(Mi|D, I) =
p(D|Mi, I)p(Mi|I)

p(D|I) , (C.7)
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where the global likelihood p(D|Mi, I) is given by2

p(D|Mi, I) =

∫
dθ(i)p(θ(i)|Mi, I)p(D|θ(i),Mi, I) ≡ L(Mi). (C.8)

The numerator of Equation (C.7) can thus be computed using the prior PDF and likelihood
function given in the steps 3 and 4. The normalization in the denominator is given by p(D|I) =∑

i p(D|Mi, I)p(Mi|I).
In usual inferences, the relative plausibility of the competing models plays an important role.

The plausibility of the model i relative to the model j is often evaluated by the odds ratio,

Oij ≡
p(Mi|D, I)

p(Mj |D, I)
=

p(D|Mi, I)p(Mi|I)
p(D|Mj , I)p(Mj |I)

. (C.9)

Note that the odds ratio can be computed without the normalization p(D|I). Furthermore, if
the models Mi and Mj are equally plausible a priori, the odds ratio reduces to

Oij =
p(D|Mi, I)

p(D|Mj , I)
=

L(Mi)

L(Mj)
, (C.10)

which is the ratio of the global likelihoods. The ratio is sometimes called the Bayes factor.

Parameter Estimation

Another common situation is that we need to estimate the values of the parameters θ assuming
a certain model M . In this case, we have iM = 1 and only the relative PDF matters, and so
all the normalizations can be neglected, as long as the normalization does not depend on the
parameter to be evaluated. Then we need to compute the posterior PDF for θ,

p(θ|D,M, I) =
p(D|θ,M, I)p(θ|M, I)

p(D|M, I)
∝ p(D|θ,M, I)p(θ|M, I)(= L(M)p(θ|M, I)), (C.11)

which is again evaluated using the prior PDF and the likelihood.
Suppose that we are only interested in the subset of θ, say θj , and we want to estimate the

Bayesian “confidence interval” taking into account the uncertainties in the other parameters.
This is given by the posterior PDF integrated over the parameters other than θj :

p(θj |D, I) =

∫
dθ−jp(θ|D, I). (C.12)

This operation is termed marginalization and p(θj |D, I) is called the marginal posterior
PDF of θj . Meanwhile, the other parameters that are not of interest (θ−j in this case) are
called nuisance parameters.

C.4 Bayesian Solution for the Linear Model Fitting

In practice, it is not at all obvious how to compute the quantities discussed in the previous
section, say the global likelihood in Equation (C.8). While the numerical methods as in Appendix
C.5 are very powerful, here we discuss the linear regression problem from a Bayesian viewpoint,
which is analytically tractable and well illustrates the procedure described in Appendix C.3.

2This follows from 1 =
∫
dθ(i)p(θ(i)|Mi, D, I) =

∫
dθ(i)p(D|θ(i),Mi, I)p(θ

(i)|Mi, I)/p(D|Mi, I),

which is obtained from the normalization condition p(Mi|D, I) =
∫
dθ(i)p(Mi,θ

(i)|D, I) =

p(Mi|D, I)
∫
dθ(i)p(θ(i)|Mi, D, I).
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The problem is defined as following:✓ ✏
We have N sets of measurements (xi, yi) (i = 1, 2, · · · , N) for the two variables x and y, as
shown in Figure C.2 for instance. To describe this data set, we consider two models, the
model M0: y = c and the model M1: y = a + bx, where a, b, and c are all constants. The
questions are

(i) Parameter estimation: What information do the data give for a and b, assuming that
the model M1 is correct?

(ii) Model selection: Which of the models M0 and M1 is preferred by the data?

We assume that the value of each yi is sampled from a Gaussian centered at the model
value with the known width σi, and that all σi are independent. Namely, we consider the
case that the measurement errors are reliably estimated and that they can reasonably be
regarded as independent Gaussians.✒ ✑

C.4.1 Setting up the Problem（§C.3, steps 1–4）
Prior information

The models and parameters are clearly stated in the above problem. While the values of a and
b can be any real numbers in principle, here we choose they are in the ranges [−∆a/2,∆a/2],
[−∆b/2,∆b/2], respectively, so that the prior PDFs can be normalized (of course, ∆a, ∆b > 0
are chosen to be sufficiently large). In addition, we suppose that there is no other information
on the values of a and b except for the ranges above.

Bayes’ theorem

Our goal is to derive the posterior PDF for (a, b),

p(a, b|D,M, I) =
p(D|a, b,M, I)p(a, b|M, I)

p(D|M, I)
. (C.13)

Although the normalization in the denominator is not important for the problem (i), we retain
it here because it will be necessary for the problem (ii).

Assign the prior PDF

On the basis of the conditions, we set

p(a, b|M, I) =

{
1
∆a

1
∆b if a ∈ [−∆a/2,∆a/2], b ∈ [−∆b/2,∆b/2]

0 otherwise
. (C.14)

In the model selection, we assume that p(M0|I) = p(M1|I)(= 1/2), i.e., the two models are
equally plausible before we obtain the data.

Compute the likelihood

Given the model M1 and its parameters a and b, the probability that we “observe” the value yi
for the i-th data is computed as

πi =
1√
2πσ2i

exp

{
− [yi − (a+ bxi)]2

2σ2i

}
, (C.15)
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on the basis of the problem setup. Thus, the probability that the data D are obtained is given
by

p(D|a, b,M, I) =
N∏

i=1

πi = (2π)−N/2

(
N∏

i=1

σ−1
i

)
exp

{
−1

2

N∑

i=1

[
yi − (a+ bxi)

σi

]2}

≡ (2π)−N/2

(
N∏

i=1

σ−1
i

)
e−χ

2/2, (C.16)

where we used the independence of each point i. In the last equality, we defined the chi squared

χ2 ≡
N∑

i=1

[
yi − (a+ bxi)

σi

]2
(C.17)

in a usual manner.

C.4.2 Problem (i): Constraints on the Model Parameters

Substituting Equations (C.16) and (C.14) into Equation (C.13), we obtain

p(a, b|D,M, I) =
1

p(D|M, I)

1

∆a

1

∆b
(2π)−N/2

(
N∏

i=1

σ−1
i

)
e−χ

2(a,b)/2 (C.18)

for a ∈ [−∆a/2,∆a/2], b ∈ [−∆b/2,∆b/2]. This is the answer to our problem; however, the
form of Equation (C.18) is not very informative, and so we will make it more tractable in the
following.

Maximum a posteriori (MAP)

The values of (a, b) that maximize Equation (C.18) can be one measure of the posterior PDF and
called maximum a posteriori (MAP).3 In this problem, MAP is the same as the maximum
likelihood estimator and obtained by minimizing χ2(a, b), although this does not hold in general.
This can be achieved by solving the normal equation ∂χ2/∂a = ∂χ2/∂b = 0. The solution is
given by the well-known forms,

â =

∑
iwix2i

∑
iwiyi −

∑
iwixi

∑
iwixiyi∑

iwi
∑

iwix2i − (
∑

iwixi)2
, b̂ =

−
∑

iwixi
∑

iwiyi +
∑

iwi
∑

iwixiyi∑
iwi

∑
iwix2i − (

∑
iwixi)2

,

(C.19)
where wi = 1/σ2i .

The posterior PDF is a Gaussian

Let us expand χ2(a, b) around the MAP (â, b̂). The first derivatives of χ2 at (â, b̂) are zero by def-
inition, while the second derivatives are ∂2χ2/∂a2(â, b̂) = 4

∑
iwi, ∂2χ2/∂b2(â, b̂) = 4

∑
iwix2i ,

∂2χ2/∂a∂b(â, b̂) = 4
∑

iwixi, and the higher ones are all zero. Thus, χ2 is expanded around

χ2
min = χ2(â, b̂) as

χ2(a, b) = χ2
min +

(
δa δb

)(2
∑

iwi
∑

iwixi∑
iwixi 2

∑
iwix2i

)

︸ ︷︷ ︸
Ψ

(
δa
δb

)
≡ χ2

min +∆χ2(δa, δb), (C.20)

3It should be noted, however, that the whole shape of the posterior PDF is important in the Bayesian
inference.
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where δa ≡ a− â and δb ≡ b− b̂. The posterior PDF (C.18) can then be rewritten as

p(a, b|D,M, I) = p(â, b̂|D,M, I)× exp

[
−1

2

(
δa δb

)(2
∑

iwi
∑

iwixi∑
iwixi 2

∑
iwix2i

)(
δa
δb

)]

= p(â, b̂|D,M, I)× exp

[
−1

2

(
δα δβ

)(λ1(w,x) 0
0 λ2(w,x)

)(
δα
δβ

)]
(C.21)

with the appropriate choice of the basis that diagonalizes Ψ. Hence the posterior PDF of
the problem is a two-dimensional Gaussian, and the contours of constant p(a, b|D,M, I) (i.e.,
∆χ2 = k, k : const.) are given by the ellipses in the α–β plane:

λ1δα
2 + λ2δβ

2 = k ⇔ δα2

k/λ1
+

δβ2

k/λ2
= 1. (C.22)

The same conclusion applies to the problems of higher dimensions as well, as long as the problem
is linear.

Credible interval

Let us rewrite Equation (C.21) as

p(a, b|D,M, I) = Ce−∆χ2/2 (C.23)

and consider ∆χ2
crit that satisfies

P =

∫

∆χ2<∆χ2
crit

dadbCe−∆χ2/2, (C.24)

say for P = 0.683. Then, the ellipse defined by∆χ2(a, b) = ∆χ2
crit includes the 68.3% probability

around the MAP; this region is called (68.3%) credible region in the Bayesian inference. Note
that the credible region should be interpreted as “the probability that the parameter value is in
the region,” while the confidence interval in the frequentist case is “the fraction of the repeated
trials that the true value falls inside the region.”

Equation (C.24) also leads to

P = 1− γ(ν/2,∆χ2
crit/2)

Γ(ν/2)
, (C.25)

where Γ is the gamma function, γ is the incomplete gamma function

γ(ν/2, x) =
1

Γ(ν/2)

∫ ∞

x
e−tt

ν
2−1dt, (C.26)

and ν is the number of model parameters (2 in this case). For ν = 2 and P = 68.3%, for
example, ∆χ2

crit = 2.3 gives the boundary of the credible region; this is formally the same result
as the frequentist analysis because here we adopt the priors uniform in a and b.

C.4.3 Problem (ii): Model Comparison

Next, let us compare the two-parameter model M1 with the constant model M0. Now that we
assume p(M1|I) = p(M0|I), the odds ratio of the two models in Equation (C.10) is obtained
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from the global likelihood L(Mi) for each model. Using Equations (C.8) and (C.18), we obtain

L(M1) = p(D|M1, I) =

∫
dadb p(a, b|M1, I)p(D|a, b,M1, I)

=
1

∆a

1

∆b
(2π)−N/2

(
N∏

i=1

σ−1
i

)∫
dadb e−χ

2(a,b)/2

=
1

∆a

1

∆b
(2π)−N/2

(
N∏

i=1

σ−1
i

)
e−χ

2
min/2

∫
dadb e−∆χ2/2

=
1

∆a

1

∆b
(2π)−N/2

(
N∏

i=1

σ−1
i

)
e−χ

2
min/2

∫
dδαdδβ exp

[
−λ1(w,x)δα2/2− λ2(w,x)δβ2/2

]

=
1

∆a

1

∆b
(2π)−N/2

(
N∏

i=1

σ−1
i

)
e−χ

2
min/2

√
2π

λ1

√
2π

λ2

= Lmax(M1)
(2π)(ν=2)/2

√
1/λ1

√
1/λ2

∆a∆b
. (C.27)

In the same manner, we obtain, for the model M0 (y = c),

L(M0) = Lmax(M0)
(2π)1/2

√
1/λ

∆c
. (C.28)

Thus, the odds ratio O10 is

O10 = e(χ
2
min,0−χ2

min,1)/2(2π)1/2
√

λ

λ1λ0

∆c

∆a∆b
. (C.29)

Prior PDF and Occam’s razor

The global likelihood in Equation (C.27) is the product of the maximum likelihood and another
factor, which is actually the ratio of the typical volume of the credible region in the parameter
space (i.e., area of the ellipse for ν = 2) to the volume of the area with non-zero prior probability
(i.e., are of the rectangle). This is in fact a generic result and even holds for nonlinear problems
(see chapter 10 of Gregory, 2005, for more detail).

The factor automatically implements Occam’s razor4 and hence is called the Occam factor,
whose meaning is understood in the following manner. If we increase the number of parameters,
we can always improve the fit to obtain a larger maximum likelihood Lmax(M). On the other
hand, the more complex model “rules out” the larger volume of the parameter space and more
strongly penalized by the reduction of the Occam factor. The more complex model is thus
justified only if it results in a significant increase in the likelihood that overcomes the penalty
by the Occam factor. Note that this factor originates from the marginalization over the whole
space in Equation (C.27). Hence it always works in the Bayesian model comparison.

C.5 Markov Chain Monte Carlo (MCMC)

Unlike the “solvable” example in Appendix C.4, it is not easy to solve non-linear problems even
in the Bayesian inference. Here we give a brief description of one of the numerical methods to
solve such problems, namely Markov chain Monte Carlo (MCMC), and demonstrate how
it is applied to the parameter estimation. This is the technique frequently used in Chapters 4
through 6 of this thesis.

4A guiding principle that we should not assume more than necessary to explain a phenomenon.
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C.5.1 What is MCMC?

Here we focus on obtaining the posterior PDF for the model parameters θ, p(θ|D), as in the
problem (i) in the previous section.5 In the MCMC method, we use a random variable to
generate a Markov chain in the parameter space (whose i+ 1-th value depends only on the i-th
one). The essence is that the values of θi in the chain follow the same probability distribution
as the posterior PDF p(θ|D), if the chain is generated following a certain rule, which will be
described below. If such a chain is obtained, the credible intervals can be obtained simply by
creating a histogram and by counting the number of samples in an appropriate region.

C.5.2 How Does MCMC Work?

The chain of the desired property can be obtained in the following procedure called the Metropolis-
Hasting (M–H) algorithm. We generate the state θi+1 from the previous state θi in the following
two steps:

1. Randomly generate the candidate of the i+1-th value θc using an appropriate probability
distribution (e.g., Gaussian) q(θc;θ)

2. Accept the proposed state θc with the probability r and update θi+1 = θc. Otherwise,
we choose θi+1 = θi. The acceptance probability is determined by

r(θc,θi) = min

[
1,

p(θc|D)q(θi;θc)

p(θi|D)q(θc;θi)

]
= min

[
1,

p(D|θc)p(θc)q(θi;θc)

p(D|θi)p(θi)q(θc;θi)

]
, (C.30)

where we used the Bayes’ theorem (C.2) in the last equality. Note that r can be computed
without knowing p(θ|D).

Repeating the above two steps, the chain sampled from the desired posterior PDF p(θ|D) can
be obtained.

Why does the Metropolis-Hasting work?

According to Roberts (1996), the following three conditions are required for the Markov chain
generated by the M–H algorithm to converge to a stationary distribution:

1. aperiodic

2. irreducible: the chain can eventually reach any state of non-zero probability from any
starting point

3. positive recurrent: there exists a stationary distribution π(θ) such that if the initial
value θ0 is sampled from π(θ), then all the subsequent iterates will also follow π(θ).

We can check that the chain generated by the M–H algorithm satisfies the third property, and
the stationary distribution in this case, to which the chain converges, is actually the posterior
PDF. Equation (C.30) derives the detailed balance equation

p(θi|D)ptr(θi+1|θi) = p(θi|D)q(θi+1;θi)r(θi+1,θi)

= min [p(θi|D)q(θi+1;θi), p(θi+1|D)q(θi;θi+1)]

= p(θi+1|D)ptr(θi|θi+1), (C.31)

5For a while, we omit I on the right side of | for simplicity.
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where ptr(θi+1|θi) denotes the transition probability from θi to θi+1 (here we use the subscript
“tr” to distinguish it from the posterior PDF) and the last equality follows from the symmetry
with respect to i and i + 1. Integrating both sides of Equation (C.31) over θi, we obtain the
probability that the value θi+1 is obtained as the i+ 1-th sample:

∫
dθi p(θi|D)ptr(θi+1|θi) = p(θi+1|D)

(∫
dθi ptr(θi|θi+1)

)
= p(θi+1|D). (C.32)

This shows that θi+1 follows the posterior PDF if the i-th value is sampled from p(θ|D), i.e.,
p(θ|D) is a stationary distribution of this chain.

C.5.3 Example: Fitting the Linear Model to the Data that In-
clude “Unknown” Uncertainties

Here we provide a worked example of the simple MCMC fitting, using the public MCMC code
emcee by Foreman-Mackey et al. (2013).6

Setup

We consider a problem similar to that discussed in Appendix C.4, i.e., we fit N data points
(xi, yi) with the linear model of the form y = a+ bx. We assume, however, that the estimated
uncertainty σi is not accurate, but misses another source of uncertainty ϵ. Namely, we know
that the “true” uncertainty of each point would be given by σi + ϵ, although the property of
ϵ is unknown, and we wish to evaluate a and b taking into account this uncertainty. Here we
also assume that ϵ is given by a single Gaussian common for all i. The mock data created in
this way are shown in Figure C.2. Here the scatter of the data around a linear model is larger
than the plotted (i.e., estimated) error bars σi, which means that the error is underestimated
provided that the linear model is true.7 Note that the problem is nonlinear due to ϵ.

The prior PDF and the likelihood

Let us fit the above “data” using an MCMC method. The procedure is basically the same as
problem (i) in Appendix C.4. Moreover, we only need to work on the procedures in Appendix
C.4.1, and the rest of the calculations can be performed numerically. Again we wish to compute
the posterior PDF for the parameters,

p(a, b, ln ϵ|D, I) ∝ p(D|a, b, ln ϵ, I)p(a, b, ln ϵ|I), (C.33)

where we choose ln ϵ, rather than ϵ itself, as the model parameter because ϵ > 0. We assume that
the prior PDF is independent and uniform for all three parameters and given by p(a, b, ϵ|I) =
p(a|I)p(b|I)p(ln ϵ|I), where

p(a|I) =
{

1
10 if 0 < a < 10

0 otherwise
, (C.34)

p(b|I) =
{

1
5.5 if − 5 < b < 1/2

0 otherwise
, (C.35)

6http://dan.iel.fm/emcee/current/
7Here we consider the situation that “the model is correct but the error is wrong.” Meanwhile, the

same situation can also be interpreted that “the error estimate is correct but the model may be missing
additional component, whose nature is not well understood.” In the latter interpretation, ϵ should be
read as an additional term to the model.



146 Chapter C Bayesian Inference

Figure C.2 The mock data for the “y = a + bx with error” model (N = 50). The true
values are a = 4.294 and b = −0.9594, and the corresponding true model is shown by the
grey solid line. For each xi, we add a random “error” sampled from the Gaussian with the
width

√
σ2
i + ϵ2 to the value of a+ bxi. We also sample σi from the Gaussian centered at

0.5 and width 0.1 for every i, and ϵ = 1.534. The plotted error bars, on the other hand,
only show σi.

p(ln ϵ|I) =
{

1
15 if − 10 < ln ϵ < 5

0 otherwise
. (C.36)

The likelihood function is

p(D|a, b, ln ϵ, I) = (2π)−N/2

⎛

⎝
N∏

i=1

1√
σ2i + ϵ2

⎞

⎠ exp

[
−1

2

N∑

i=1

(yi − a− bxi)2

2(σ2i + ϵ2)

]
. (C.37)

Results

First, from the least-square fitting, we obtain the dashed black line in Figure C.3. The “best-
fit” values, a = 4.8 ± 0.2 and b = −1.01 ± 0.03, deviate from the true ones, a = 4.294 and
b = −0.9594, by 2–3σ because of the underestimated errors. We obtain a similar result when
we maximize the likelihood function (C.37), rather than χ2, as shown by the solid black line.

Next we show the MCMC results. Figure C.4 shows the evolution of the Markov chain
for each parameter, and Figure C.5 are the 1-d and 2-d histograms created from the above
sample. The contours correspond to 1σ, 2σ, and 3σ credible regions. The summary statistics
obtained from the marginalized posteriors (histograms on the diagonal line in Figure C.5), here
the median and 68% credible region around it, are

a = 4.7± 0.5, b = −1.0± 0.1, ϵ = 1.5± 0.2. (C.38)

These a and b are consistent with the true values. The result shows that we obtain more robust
constraints on the parameters by introducing the parameter ϵ that describes the residual scatter
and by marginalizing over this nuisance parameter. This situation is illustrated in Figure C.6.
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Figure C.3 The least-square fit (dashed line) and the maximum likelihood fit (solid line)
to the data. The difference comes from ϵ ̸= 0 in Equation (C.37). The grey line shows
the true model.

Figure C.4 The Markov chains of the three model parameters.
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Figure C.5 The 1-d and 2-d histograms obtained from the last 90% of the chains in Figure
C.4. The blue lines correspond to the maximum likelihood solution. This plot is made
using triangle.py by Foreman-Mackey et al. (2014).

Figure C.6 Comparison between the true model (solid red line) and the models sampled
from the posterior PDF (solid grey lines). The black error bars show σi, while the grey
ones take into account ϵ estimated from the MCMC fitting in the error budget.



Appendix D

Joint Posterior Distributions for the
Model Parameters

This appendix shows the two-parameter joint posterior distributions resulting from the analyses
in Chapters 4 through 6. The two-dimensional and one-dimensional histograms are plotted for
selected model parameters to elucidate the nature of the parameter correlations. The inner three
contours in the two-dimensional histograms correspond to 1σ, 2σ, and 3σ credible regions of the
marginal posteriors (cf. Appendix C). The plots in this appendix are made using corner.py by
Foreman-Mackey (2016).

D.1 Joint Photometric and Spectroscopic Analysis in
Chapter 4

Figures D.1 through D.3 correspond to the results in Table 4.3 and Figure 4.9 for the HAT-P-7
system. Figure D.4 shows the result for the Kepler-25 system in Table 4.4 and Figure 4.10.

D.2 Gravity-Darkened Model Fit in Chapter 5

Figures D.5 and D.6 correspond to the results for Kepler-13Ab in the fourth and sixth columns
of Table 5.1: c2-fitted light-curve solution and joint solution for the B11 stellar parameters.
These results are obtained by fitting the Q2 light curve alone, as in Figures 5.1 and 5.2. Figures
D.7 and D.8 correspond to the two joint solutions for HAT-P-7b in Table 5.3.

D.3 Joint ETV and Light-Curve Fit in Chapter 6

Figure D.9 corresponds to the joint-fit result in the last column of Table 6.1.

149
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Figure D.1 (HAT-P-7) Joint posterior distributions for the most correlated 11 model
parameters and ψ for the W09 data set (Table 4.3).
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Figure D.2 (HAT-P-7) Joint posterior distributions for the most correlated 11 model
parameters and ψ for the N09 data set (Table 4.3).
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Figure D.3 (HAT-P-7) Joint posterior distributions for the most correlated 11 model
parameters and ψ for the A12 data set (Table 4.3).
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Figure D.4 (Kepler-25) Joint posterior distributions for the most correlated 11 model
parameters and ψ (Table 4.4).
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Figure D.5 (Kepler-13A) Joint posterior distributions for all the model parameters and
ψ. This result is for the Q2 transit light curve and adopts B11 set of parameters (Table
5.1, fourth column).
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Figure D.6 (Kepler-13A) Joint posterior distributions for all the model parameters and
ψ. This result is for the Q2 transit light curve and adopts B11 set of parameters. Here
the spectroscopic constraint on λ is also imposed (Table 5.1, sixth column).
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Figure D.7 (HAT-P-7) Joint posterior distributions for all the model parameters and ψ.
This result is for the solution 1 of the joint analysis (Table 5.3).
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Figure D.8 (HAT-P-7) Joint posterior distributions for all the model parameters and ψ.
This result is for the solution 2 of the joint analysis (Table 5.3).
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Figure D.9 Joint posterior distributions for the most correlated 12 model parameters.
This result is for the joint analysis that adopts the prior constraint on MA (Table 6.1,
last column).
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Eggleton, P. P., & Kiseleva-Eggleton, L. 2001, ApJ, 562, 1012

Espinosa Lara, F., & Rieutord, M. 2011, A&A, 533, A43

—. 2012, A&A, 547, A32

Esteves, L. J., De Mooij, E. J. W., & Jayawardhana, R. 2013, ApJ, 772, 51

—. 2015, ApJ, 804, 150

Fabrycky, D., & Tremaine, S. 2007, ApJ, 669, 1298

Fabrycky, D. C., & Winn, J. N. 2009, ApJ, 696, 1230

Fabrycky, D. C., Lissauer, J. J., Ragozzine, D., et al. 2014, ApJ, 790, 146

Faigler, S., & Mazeh, T. 2015, ApJ, 800, 73

Faigler, S., Tal-Or, L., Mazeh, T., Latham, D. W., & Buchhave, L. A. 2013, ApJ, 771, 26

Fielding, D. B., McKee, C. F., Socrates, A., Cunningham, A. J., & Klein, R. I. 2015,
MNRAS, 450, 3306



162 REFERENCES

Fischer, D. A., & Valenti, J. 2005, ApJ, 622, 1102

Ford, E. B., Kozinsky, B., & Rasio, F. A. 2000, ApJ, 535, 385

Foreman-Mackey, D. 2016, The Journal of Open Source Software, 24,
doi:10.21105/joss.00024

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306

Foreman-Mackey, D., Price-Whelan, A., Ryan, G., et al. 2014, triangle.py v0.1.1,
doi:10.5281/zenodo.11020

Fressin, F., Torres, G., Charbonneau, D., et al. 2013, ApJ, 766, 81

Frewen, S. F. N., & Hansen, B. M. S. 2016, MNRAS, 455, 1538
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