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ABSTRACT

Observations of high-redshift quasars have revealed the existence of supermassive black holes

(SMBHs) in the early universe. Importantly, the SMBHs are believed to have grown within 1Gyr

to as massive as ≳ 109 solar masses (M⊙), suggesting a big problem in the context of structure

formation in the early universe that ”how does a SMBH grow so fast?”.

As origins of the high-redshift SMBHs, theoretical astrophysicists often consider that a small ‘seed’

BH, left as a remnant of a massive star, grows via gas accretion and mergers to become a SMBH.

As a comparative model for formation of such a seed, a BH of mass ∼ 100M⊙, which is left after

death of a first star or a Population III (Pop III) star, is thought to grow via a nearly Eddington

accretion rate. This means that a SMBH of mass ∼ 109 M⊙ is marginally formed within the age of

the universe at z ∼ 6. Unfortunately, this model has a problem that the BH growth is delayed due

to effects of radiation, which is emitted when gravitational energy is released from accreting gas and

is converted to radiation energy. This radiation feedback significantly suppresses the accretion rate

well below the Eddington accretion rate and makes the SMBH formation impossible by the Pop III

BH model.

As alternative models to facilitate the formation of the high-redshift SMBHs, there are three

models: the direct collapse model, the super-Eddington accretion model and the runaway stellar

collision model. These models have been intensively studied by many authors, but there still remain

many things to be examined. Specifically, previous works often consider idealized situations, whereby

the validity of the models cannot be correctly discussed.

In this thesis, we study the BH formation models by considering more realistic situations in order

to examine the validity of the models.

First, we work on the direct collapse model, where a supermassive star (SMS) of mass ∼ 105 M⊙

almost entirely collapses at the end of stellar lifetime, directly leaving a ∼ 105 M⊙ BH. A SMS can

form under peculiar conditions, e.g., inside an atomic-cooling halo strongly irradiated by Lyman-

Werner radiation emitted from external sources, whereby a rapid gas accretion of ∼ 0.1−1M⊙ yr−1

on to a growing protostar is realized. However, there is a problem that, during the formation

of a SMS via rapid gas accretion, strong stellar radiation is expected to stop the accretion by UV

radiation feedback. To clarify if the expectation is true or not, Hosokawa et al. (2013) compute stellar

evolution of the accreting SMS, by assuming a constant accretion rate. They find that a growing

SMS is actually largely inflated with a low surface temperature of ∼ 5000K and emit a small amount

of UV photons to cause the UV feedback. The SMS evolution is contrasted to a relatively slowly

accreting Pop III star which contracts and emit a significant amount of UV radiation. In a more

realistic case, the accretion history will be highly variable with time, since the accretion occurs

through a gravitationally unstable disk where fragments form and migrate to fall on to the central

protostar, causing accretion bursts. In this case, the evolution of the growing SMS can be affected

if there are long, quiescent accretion phases during which the star can contract.

We examine stellar evolution of an accreting SMS with a highly variable, episodic accretion history,

where burst accretion followed by quiescent accretion is repeated. We construct an analytic model of



episodic accretion histories with parameters characterizing the burst and quiescent phases, and then

calculate the evolution. It is found that the SMS significantly contracts during the quiescent phases

and emits a copious amount of UV photons, likely resulting in the efficient radiation feedback, if the

length of the quiescent phases is longer than a thousand years. We also investigate the effect of a

more realistic episodic accretion history, which is obtained from 2D hydrodynamics simulations of

a gravitationally unstable disk, on the SMS evolution. In this case, the duration of the quiescent

phases is typically shorter than 103 yr and the accreting protostar does not contract. Then, the

protostar is able to grow to become as massive as ∼ 105 M⊙ without UV feedback and the direct

collapse BH formation is viable.

Next, we study the super-Eddington model, in which a BH grows with very rapid super-Eddington

gas accretion and becomes a SMBH in a short time. How can such super-Eddington accretion be

realized? It is naively expected that such a rapid gas accretion flow near the BH causes strong

radiation force with emitting nearly Eddington luminosity, which halts the accretion and stops the

BH growth. Photon trapping, however, is thought to reduce the emerging luminosity. In fact,

several studies including numerical simulations and (semi-)analytical studies show that the super-

Eddington accretion is not prevented by the radiation force within the BH accretion flow near the

BH. On the other hand, radiation heating can suppress gas accretion at larger scales where gas

pressure and BH gravity is comparable. Thus, the small and large scale regions need to be self-

consistently investigated. To this end, Inayoshi, Haiman & Ostriker (2016) perform a 1D radiation

hydrodynamical simulation of a spherical accretion flow at the large scales, assuming a functional

form of luminosity emerging from the central region, which is at most the Eddington luminosity

for this spherical case. They find that transition occurs from the usual Eddington accretion to a

‘hyper-Eddington’ accretion, which is essentially a Bondi accretion. The transition occurs because

an ionized region is initially smaller than the Bondi radius at which BH gravity balances gas pressure.

More realistically, however, the emerging luminosity can exceed the Eddington luminosity due to the

deviation from the spherical morphology, i.e., due to formation of an accretion disk where emitting

radiation can preferentially escape through polar directions.

We examine the large-scale BH accretion flow with a super-Eddington luminosity source by per-

forming 1D radiation hydrodynamics simulations, in order to see whether the transition to the steady

hyper-Eddington accretion occurs in this high-luminosity case. We construct an analytical model of

the central source which exceeds the Eddington luminosity. It is shown that the transition occurs

even when the luminosity reaches at most 100 times the Eddington luminosity. We argue, using an-

alytic models and numerical results, that the transition is realized because ram pressure of accreting

gas in addition to gas gravity overcomes the radiation force from the super-Eddington luminosity

source. Thus, the BH growth would continue not to be halted by the strong radiation.

Finally, we study the runaway stellar collision model, in which stars in a dense star cluster succes-

sively collide and merge with a specific star residing near the center. The star eventually becomes as

massive as ∼ 1000M⊙ and collapses to leave an intermediate-mass BH (IMBH), possibly serving as

a seed for forming a SMBH at high redshift. Although several studies have shown that star cluster

formation is likely to occur within metal-enriched atomic-cooling halos in the early universe, it is still

uncertain whether such a runaway collision process is prevalent. Katz, Sijacki & Haehnelt (2015)

perform direct N-body simulations of star clusters formed in a mini-halo system, which is identified

in cosmological simulations. They show that the runaway collision and IMBH formation are very

likely outcomes in mini-halos.

This work encourages us to statistically examine the star cluster dynamics and evolution for

clusters forming in atomic-cooling halos. We first perform cosmological simulations to find star



cluster forming sites. We then generate star cluster initial conditions for direct N-body simulations

assuming star formation efficiency and an initial mass function. For the star clusters, direct N-body

simulations are conducted, to follow stellar collisions and mergers. It is found that in all the clusters

except one the runaway stellar collisions occur and massive stars of mass 400−1900M⊙ form, which

would leave IMBHs at the end of their lives. The diversity of the final stellar masses is attributed

to the diversity of the parent atomic-cooling halo properties as virial mass, central gas density and

central gas velocity dispersion. We also derive an IMBH mass-cluster mass relation for our simulated

clusters and compare it with a SMBH mass-bulge mass relation in the local universe.

We conclude that the three models are viable until the seed BH formation. However, it is still

unclear whether the seed BHs grow to the SMBHs. In future works, we will study the subsequent

evolution in the context of the three models considered in this thesis. Specifically, we will follow the

evolution and growth of the IMBHs left inside the star clusters (Chapter 5). We will focus on tidal

disruption of stars and BH merger which would occur during the IMBH growth and estimate the

event rates to compare to the future X-ray/gravitational-wave observations. The comparison would

greatly help us to further understand the origin of the SMBHs in the early universe.
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Chapter 1

Introduction

1.1 Observations of supermassive black holes lurking in the distant

universe

In the past decade, observations of the distant universe have revealed the existence of supermassive

black holes (SMBHs) with mass ∼ 109 M⊙ at high redshift z ≳ 6 or the age of the universe ≲ 1 Gyr

(e.g., Fan et al. 2001, Jiang et al. 2007, Kurk et al. 2007, Willott et al. 2010, Mortlock et al. 2011,

Venemans et al. 2013, De Rosa et al. 2014, Wu et al. 2015, Mazzucchelli et al. 2017, Bañados et al.

2017). The origin of these high redshift SMBHs remain to be elucidated.

In Figure 1.1, we show the BH mass MBH of observed quasars at z ≳ 6 whose masses have been

estimated. The observed quasars are summarized in Table 1.1.

1.1.1 Eddington ratios

A large fraction of the high-redshift quasars emits luminosity of nearly the Eddington limit, i.e.,

accreting at nearly the Eddington accretion rate. In Figure 1.2, we plot bolometric luminosity

versus BH mass of the high-redshift quasars (Table 1.1). The Eddington ratios for the high-redshift

quasars range ∼ 0.1− 1, which is comparable to the ratios for the quasars at z < 4 (Kollmeier et al.

2006).

For comparison, the bolometric luminosity versus mass of compact objects for the local ultra-

luminous X-ray sources (ULXs; Table 1.2) are also shown in Figure 1.2. For the ULXs, the luminosity

can significantly exceed the Eddington limit with a range of ∼ 1− 100× the Eddington luminosity,

indicating that the super-Eddington accretion on to the compact objects occurs.

1.2 Theoretical models of SMBH formation in the early universe

In many theoretical works which attempt to elucidate the origin of the SMBHs at z ≳ 6, small ‘seed’

BHs of mass 100− 105 M⊙ are often deemed as the initial states and then grow to the SMBHs via

mass accretion and mergers with other BHs. The evolution of the seed BH mass is estimated by the

following equation:
dMBH

dt
= (1− ϵ)ṁ =

(
1− ϵ

ϵ

)(
L

LEdd

)
MBH

tEdd
, (1.1)

where ϵ is radiative efficiency of accreting gas, ṁ = L/ϵc2 is a total mass accretion rate, L is an

accretion luminosity, LEdd is the Eddington luminosity and tEdd ≡ MBHc
2/LEdd is the Eddington
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Table 1.1 High-z quasars observed at z ≳ 6 whose masses are estimated.

Name Redshift MBH Lbol Lbol/LEdd References

(109 M⊙) (1047 erg s−1)

VIK J0109-3047 6.7909± 0.0004 1.33+0.38
−0.62 0.51+0.05

−0.06 0.29+0.88
−2.59 [1]

PSO J036.5078+03.0498 6.541± 0.002 3.00+0.92
−0.77 2.0+0.22

−0.64 0.51+0.17
−0.21 [1]

VIK J0305-3150 6.6145± 0.0001 0.90+0.29
−0.27 0.75+0.10

−0.34 0.64+2.20
−3.42 [1]

PSO J167.6415-13.4960 6.5148± 0.0005 0.30+0.08
−0.12 0.47+0.16

−0.22 1.22+0.51
−0.75 [1]

ULAS J1120+0641 7.0842± 0.0004 2.47+0.62
−0.67 1.83+0.19

−0.072 0.57+0.16
−0.27 [1, 2]

HSC J1205-0000 6.73± 0.02 4.7+1.2
−3.9 0.36+0.18

−0.20 0.06+0.32
−0.58 [1]

PSO J231.6576-20.8335 6.5864± 0.0005 3.05+0.44
−2.24 1.89+0.34

−0.45 0.48+0.11
−0.39 [1]

PSO J247.2970+24.1277 6.476± 0.004 0.52+0.22
−0.25 1.77+0.06

−0.76 2.60+0.08
−0.15 [1]

PSO J323.1382+12.2986 6.5881± 0.0003 1.39+0.32
−0.51 0.81+0.07

−0.50 0.44+1.09
−3.19 [1]

PSO J338.2298+29.5089 6.666± 0.004 2.70+0.85
−0.97 0.4+0.2

−0.1 0.11+0.71
−0.49 [1]

VIK J2348-3054 6.9018± 0.0007 1.98+0.57
−0.84 0.43+0.20

−0.13 0.17+0.92
−0.88 [1]

SDSS J010013.02+280225.8 6.30± 0.01 12.4+1.9
−1.9 16.2 1.0a [3]

J2229+1457 6.1517± 0.0005 0.12+0.14
−0.08 0.36 2.4 [4, 5]

J1319+0950 6.1330± 0.0007 2.1+3.8
−1.4 2.7 1.0b [4, 8]

J2054-0005 6.0391± 0.0001 0.9+1.6
−0.6 1.1 1.0b [4, 8]

J0055+0146 6.0060± 0.0008 0.24+0.26
−0.14 0.38 1.2 [4, 5]

J2310+1855 6.0031± 0.0002 2.8+5.1
−1.8 3.6 1.0b [4, 8]

J1044-0125 5.7847± 0.0007 11+19
−7 4.5 0.35a [4, 8]

J0129-0035 5.7787± 0.0001 0.17+0.31
−0.11 0.22 1.0b [4, 8]

J0210-0456 6.438± 0.004 0.08+0.055
−0.04 0.25 2.4 [5]

J2329-0301 6.417± 0.002 0.25+0.04
−0.04 0.43 1.3 [5]

J0050+3445 6.253± 0.003 2.6+0.5
−0.4 2.1 0.62 [5]

J0221-0802 6.161± 0.014 0.70+0.75
−0.47 0.30 0.33 [5]

J1509-1749 6.121± 0.002 3.0+0.3
−0.3 2.6 0.68 [5]

J2100-1715 6.087± 0.005 0.94+0.29
−0.25 0.59 0.49 [5]

J1641+3755 6.047± 0.003 0.24+0.10
−0.08 0.72 2.3 [5]

J0836+0054 5.810± 0.003 9.3+1.6
−1.6 5.25 0.44 [6]

J1030+0524 6.309± 0.009 3.6+0.9
−0.9 2.34 0.50 [6]

J1306+0356 6.016± 0.005 3.2+0.6
−0.6 2.51 0.61 [6]

J1411+1217 5.927± 0.004 1.3+0.3
−0.3 1.58 0.94 [6]

J1623+3112 6.247± 0.005 1.5+0.3
−0.3 2.14 1.11 [6]

J1342+0928 7.5413± 0.0007 0.78+0.33
−0.19 1.5 1.5+0.5

−0.4 [7]

a We use the values of bolometric luminosity and black hole mass for the calculation of Lbol/LEdd.
b The

Eddington accretion is assumed for the derivation of the BH masses. [1] Mazzucchelli et al. (2017) (their
tables 5 and 8). For the quasar PSO J338+29, we recalculate the bolometric luminosity Lbol using their
equation (13). [2] Mortlock et al. (2011). [3] Wu et al. (2015). [4] Gallerani et al. (2017) (their table 1).
[5] Willott et al. (2010) (their table 2). [6] Jiang et al. (2007) (their tables 2 and 5). [7] Bañados et al.
(2017). [8] Wang et al. (2013) (their table 3 for Lbol).



3 1.2 Theoretical models of SMBH formation in the early universe

Fig. 1.1 Redshift versus mass of high-z quasars observed at ≳ 6. We use the estimates of
redshift and BH mass from Mazzucchelli et al. (2017) (red circles and black square), Wu et al.
(2015) (blue diamond), Gallerani et al. (2017) (green triangles), Willott et al. (2010) (orange
down-pointing triangles), Jiang et al. (2007) (brown diamonds) and Bañados et al. (2017)
(purple star). The black square represents the quasar discovered by (Mortlock et al. 2011).
Evolutions of BH mass are also shown as lines from the initial seed BH mass depicted as open
circles (see Section 1.2). The black solid and dashed lines depict evolutions of BH mass from
z = 20 and 30 respectively, assuming the initial seed BH mass Mseed = 100 M⊙ and the
Eddington accretion rate, i.e., L = LEdd in equation (1.4). The green and blue solid lines
represent the mass growth from z = 20 with the larger seed BH mass Mseed = 105 M⊙ and
1000 M⊙ respectively, assuming the Eddington accretion rate. The red solid line shows the
mass growth from z = 20 with a super-Eddington accretion rate with L = 1.5LEdd in equation
(1.4) from Mseed = 100 M⊙.

time scale. The Eddington luminostiy is

LEdd =
4πGMµempc

σT
, (1.2)

where µe is mean molecular mass per an electron, mp is the proton mass and σT is the Thompson

scattering cross section. We can solve the equation (1.1) as

MBH = Mseed exp

(
t

tgrow

)
, (1.3)
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Fig. 1.2 Bolometric luminosity versus BH mass for the quasars in the early universe (Table 1.1,
the colors and markers are the same as in Figure 1.1). The corresponding quantities for some
ULXs are also shown by black open circles (Table 1.2). The lines denote the relation of mass-
fLEdd, where LEdd is the Eddington luminosity (equation 1.2) and f = 0.1, 1, 10 and 100.

Table 1.2 Some examples of ULXs.

Name M L L/LEdd References

(M⊙) (1040 erg s−1)

Holmberg II X-1 > 25 1.34a < 4.3 [1]

M 82 X-1 428± 105 5b 0.8± 0.2 [2]

M 82 X-2 ∼ 1.4 1.8b ∼ 100 [3]

NGC 7793 P13 ∼ 1.4 0.2− 0.5b ∼ 30 [4]

M 101 ULX-1 20− 40 0.3a ∼ 1 [5]

NGC 1313 X-1/X-2 > 100 2.0/0.66b < 1.6/ < 0.52 [6]

M74 X-1 ∼ 140 < 1.2b < 0.7 [7]

ESO 243-49 > 500 < 110b < 20 [8]

a Bolometric luminosity. b X-ray luminosity. [1] Cseh et al. (2014). [2] Pasham, Strohmayer & Mushotzky
(2014). [3] Bachetti et al. (2014). [4] Israel et al. (2017). [5] Liu et al. (2013). [6] Miller et al. (2003).
[7] Krauss et al. (2005). [8] Farrell et al. (2009).
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Fig. 1.3 Pop III BH model for the formation of the high-redshift SMBHs.

Table 1.3 A mini-halo versus an atomic-cooling halo.

Nomenclature Redshift Mvir (M⊙) Components Coolants T (K) Ṁ (M⊙ yr−1)

Mini-halo ≳ 20 ∼ 105−6 primordial species including H2 H2 ∼ 200 ∼ 10−4 − 10−3

Atomic-cooling (AC) halo ≳ 10 ∼ 107−8 primordial species without H2 H ∼ 104 ∼ 0.1− 1

Column 2: typical redshift when the halo forms or becomes unstable and commences gas collapse due
to Jeans instability with gas density ≲ 1 cm−3; column 3: virial mass of the halo at the halo formation;
column 4: components of the halo at the halo formation; column 5: main coolants during the gas collapse;
column 6: typical gas temperature during the gas collapse; column 7: accretion rates which would be
realized after protostellar formation at density ∼ 1021 cm−3.

where Mseed is the initial seed BH mass and tgrow is the growth time scale. The latter quantity is

tgrow =

(
ϵ

1− ϵ

)(
LEdd

L

)
tEdd = 4.4× 107 yr

(
LEdd

L

)
, (1.4)

where we use radiative efficiency ϵ = 0.1, typical for local quasars (Soltan 1982, Yu & Tremaine

2002), and µe = 1.14, expected in fully ionized primordial gas with the hydrogen and helium mass

fractions of X = 0.75 and Y = 0.25.

As in Figure 1.3, possible seed BHs are remnant BHs of Population III (Pop III) stars (Madau

& Rees 2001), which have typical stellar mass of ∼ 100 M⊙ (Hirano et al. 2014, Susa, Hasegawa &

Tominaga 2014) and can leave the BHs with mass ∼ 100 M⊙ after their lifetimes (see figure 2 of

Heger & Woosley 2002). The seed BH of ∼ 100 M⊙ can just barely attain mass of ∼ 109 M⊙ by

z ≃ 6 if we assume the Eddington accretion rate, as is depicted by the black solid line of Figure 1.1.

Recent studies, however, suggest difficulties in this model. For example, radiation feedback from a

BH accretion disk readily suppresses a gas supply from an intergalactic medium, resulting in decrease

of the accretion rate far below the Eddington values (Alvarez, Wise & Abel 2009, Jeon et al. 2012).

The growth time of the BH then becomes much longer than the age of the universe at z ∼ 6.

To circumvent the difficulties in the Pop III BH model, three models which accelerate the formation

of the high-redshift SMBHs have been suggested: the direct collapse model, the super-Eddington

model and the runaway stellar collision model. In Figure 1.4, we show a schematic picture which

depicts these three models.

In Tables 1.3 and 1.4, we briefly summarize the nomenclatures used in this thesis.

1.2.1 Supermassive stars and direct collapse massive seed BHs

One alternative model to ease the growth delay problem is so-called direct collapse model. In the

model, SMBHs are assumed to be built from larger seed BHs of MBH ∼ 105 M⊙ which are remnants
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Fig. 1.4 Three SMBH formation models which accelerate the formation of SMBHs in the
early universe: the direct collapse model, the super-Eddington model and the runaway stellar
collision model.

Table 1.4 A Pop III star versus a supermassive star.

Nomenclature Formation site M∗ (M⊙)

(Normal) Pop III star Mini-halo ∼ 100

Supermassive star (SMS) AC halo ∼ 105
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after gravitational collapse of supermassive stars (SMSs) with similar masses (Shibata & Shapiro

2002, Bromm & Loeb 2003, Reisswig et al. 2013). The growth time of the BH is significantly

shortened in this case. For instance, a ∼ 105 M⊙ seed BH will easily increase its mass and becomes

a ≳ 109 M⊙ SMBH via accretion at the Eddington rate (see the solid green line of Figure 1.1).

With reduced accretion rates due to, e.g., radiation feedback from a BH-disk system, an SMBH of

∼ 109 M⊙ can still form at ≃ 6 if the average accretion rate is higher than ∼ 50 per cent of the

Eddington accretion rate. Indeed, cosmological simulations show that efficient cold accretion flows

allow such high accretion rates in the epoch of the first galaxy formation (Di Matteo et al. 2012).

In the direct collapse model, a critical assumption is that sufficiently massive stars form in a

gas cloud. Specifically, SMSs are considered to form in the so-called atomic-cooling halos of virial

temperature Tvir ∼ 104 K (Inayoshi & Omukai 2012, Agarwal et al. 2014, Visbal, Haiman & Bryan

2014). When molecular hydrogen cooling is suppressed in these massive primordial halos due to

strong ultraviolet radiation, gas clouds gravitationally collapses mainly with atomic hydrogen cool-

ing, almost isothermally at T ≃ 8000K (Omukai 2001). An embryonic protostar eventually forms

and starts to grow by gas accretion from a surrounding envelope (Inayoshi & Haiman 2014, Van

Borm et al. 2014), in analogy with normal Pop III star formation (Yoshida, Omukai & Hernquist

2008). The accretion rate at the accretion phase has the well-known temperature dependence of

Ṁ∗ ∼ c3s
G

∼ 0.2

(
Tvir

104 K

)3/2

M⊙ yr−1, (1.5)

wherein cs is a sound speed of gas and G is the gravitational constant. Due to the higher gas

temperature during the collapse stage, the accretion rate is significantly higher than that in normal

Pop III cases. If such a high mass accretion rate is maintained for ∼ 1Myr, which is the lifetime

of massive stars, SMSs of 105 − 106 M⊙ will form and finally provide massive BH seeds after their

deaths.

A possible hurdle for the growth of SMSs by rapid gas accretion is radiative feedback from the

central massive protostar. Even for a normal Pop III star of ∼ 100M⊙ forming by accretion,

stellar UV radiation becomes sufficiently strong to create an H ii region which dynamically expands

through the accretion envelope (McKee & Tan 2008). The H ii expansion eventually leads to halting

the gas accretion; final stellar mass is determined by this mechanism (Hosokawa et al. 2011). It is

expected that, for the case of SMS formation, similar or even stronger UV radiation feedback might

largely reduce or even halt the gas accretion. The feedback could occur since an SMS would emit

significant amounts of photons with stellar luminosity being nearly at the Eddington value, which

is proportional to stellar mass.

Strength of the stellar radiation feedback is dependent critically on the ionizing photon emissivity

from primordial protostars, which is derived considering their evolution during accretion. For normal

Pop III cases of average accretion rates ∼ 10−3 M⊙ yr−1, a radius of an accreting protostar is large

during the early evolution but eventually becomes small with contraction to the zero-age main

sequence (ZAMS) for M∗ ∼ 100M⊙ (Omukai & Palla 2003). During the contraction of the star, its

ionizing photon emissivity rises and UV radiative feedback becomes effective.

By contrast, protostellar evolution with very rapid accretion rates Ṁ∗ ≳ Ṁ∗,cr = 4×10−2 M⊙ yr−1

expected in the direct collapse model is qualitatively different from that in the Pop III cases. At

the high accretion rates, a protostar continues to expand and does not contract even after the star

becomes as massive as ∼ 100M⊙ (Hosokawa, Omukai & Yorke 2012). The radius of the star reaches

∼ 104 R⊙ for M∗ ≳ 103 M⊙ (Hosokawa et al. 2013, Schleicher et al. 2013). Effective temperature

of such a ‘supergiant protostar’ is as low as Teff ≃ 5000K and the ionizing photon emissivity for
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M∗ ≲ 104 M⊙ remains only ≲ 1045 s−1, which is several orders of magnitude smaller than for main-

sequence SMSs. The resulting UV feedback would be too weak to stop the mass accretion. For giant

stars, mass loss can be induced due to a pulsational instability, but expected mass-loss rates are

much lower than the rapid mass growth rates via accretion (Inayoshi, Hosokawa & Omukai 2013).

Thus, the high mass accretion rate is expected to be maintained and SMSs of mass ≳ 105 M⊙ will

ultimately form.

In the previous studies, only constant accretion rates are considered. In more realistic situations,

however, the gas accretion on to a growing SMS would be dynamic with highly time-variable accretion

histories. For normal Pop III cases, for example, a circumstellar accretion disk becomes gravitation-

ally unstable and fragments (Stacy, Greif & Bromm 2010, Greif et al. 2011). Such fragments migrate

inward within the disk and accrete on to the star (Greif et al. 2012), resulting in a drastic increase

of the accretion rate which is so-called burst accretion (Vorobyov, DeSouza & Basu 2013). In this

case, the accretion history has two phases: one is the burst phase with Ṁ∗ ∼ 0.1M⊙ yr−1 and the

other is a quiescent phase with Ṁ∗ ∼ 10−4 M⊙ yr−1, whose time spans are ≲ 102 and ∼ 103− 104 yr

respectively. This episodic accretion is also expected to occur during the SMS formation via disk gas

accretion (Inayoshi & Haiman 2014). In fact, recent high-resolution simulations report signatures of

the disk fragmentation within atomic-cooling halos (Regan, Johansson & Wise 2014, Becerra et al.

2015).

1.2.2 Super-Eddington mass accretion on to seed BHs

One of the other models to avoid the growth delay in the Pop III BH model is the super-Eddington

accretion model, in which seed BHs grow via very rapid super-Eddington accretion flows. How are

such super-Eddington accretion flows achieved? Usually, when the BH is fed by sufficiently strong

gas flows and the emitting luminosity increases, radiative feedback is likely to disturb gas dynamics.

Such radiation feedback is caused by radiation pressure force and radiation heating.

Radiation force is crucially important in the vicinity of the BH horizon since the gas is highly

opaque to electron scattering. Specifically, if the luminosity approaches the Eddington luminosity

(equation 1.2), the radiation force becomes comparable to the BH gravity, limiting the accretion rate

to the Eddington rate. To overcome the limit of the Eddington accretion, ‘photon trapping’ (Katz

1977, Begelman 1978) during BH growth would be helpful. The photon trapping becomes effective

when radiation within an optically thick flow is advected inwards via efficient electron scattering

faster than the radiation can escape by radiative diffusion. The emergent luminosity is then limited,

and it is prevented from exceeding the Eddington luminosity for a spherical symmetric flow case

(Begelman 1979). We can estimate the characteristic ‘trapping radius’ as

Rtr ≡
κesṀ

4πc
, (1.6)

outside which photons escape and contribute to the emergent luminosity. Using the radius, we

can see that the maximum luminosity released by gravitational energy is limited to the Eddington

luminosity as ≃ GMBHṀ/Rtr ∼ LEdd.

Considering the photon trapping effect which reduces radiation force, previous studies have shown

that the super-Eddington accretion is realized with very rapid gas flows. Numerical simulations have

examined rapid accretion with Ṁ ≫ LEdd/c
2 and showed that the high accretion rates are possible

in a disk-like configuration, with which radiation escapes vertically (Ohsuga et al. 2005, Fragile,

Olejar & Anninos 2014, Jiang, Stone & Davis 2014, McKinney et al. 2014, Sa̧dowski et al. 2014,
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Sa̧dowski & Narayan 2016). In semi-analytical models, the possibility of such rapid growth of BHs

in the early universe is also suggested (Volonteri & Rees 2005, Alexander & Natarajan 2014, Madau,

Haardt & Dotti 2014, Volonteri, Silk & Dubus 2015). Analytical studies also support rapid growth

by gas accretion at a super-Eddington rate (Pacucci, Volonteri & Ferrara 2015). A recent work

of Pezzulli, Valiante & Schneider (2016) shows that a very high accretion rate of ≳ 103 LEdd/c
2 is

maintained at z > 10, even if BH feedback effect is included.

Radiation heating, on the other hand, can suppresses gas inflows from larger scales wherein gas

is not bounded by BH gravity. By the radiation heating effect, the accretion behavior can be-

come episodic and the mean accretion rate is limited to ≲ 10LEdd/c
2 (Ciotti & Ostriker 2001,

Milosavljević, Couch & Bromm 2009, Park & Ricotti 2011, 2012, Park et al. 2016).

In order to address the issue of BH accretion flows more correctly, we need to consider a self-

consistent solution of the flows from large scales, wherein the mass accretion begins, to small scales,

wherein photon trapping diminishes the emergent luminosity. Recently, Inayoshi, Haiman & Ostriker

(2016: hereafter IHO16) found a self-consistent spherically symmetric steady solution of BH accretion

flows at a rate of ≳ 5000LEdd/c
2 (‘hyper-Eddington accretion’) when the condition is satisfied as

( n∞

105 cm−3

)
≳
(

MBH

104 M⊙

)−1(
T∞

104 K

)3/2

, (1.7)

in which n∞ and T∞ are density and temperature of ambient gas. They showed that this condition

corresponds to a H ii region, generated by ionizing radiation emanating from a photosphere, being

smaller than the Bondi radius. In this case, the solution consists of a radiation-dominated core,

whereby photon trapping due to electron scattering is effective, and an accreting envelope that follows

an isothermal Bondi profile with T ≃ 8000K. When the photon trapping suppresses luminosity

emanating from the photosphere to ≲ LEdd, radiation from the central region does not halt the

gas accretion from larger scales. In fact, the H ii region size remains much smaller than the Bondi

radius, resulting in a high inflow rate which is unimpeded by radiation feedback.

In IHO16, they adopted a model which assumed that photon trapping is effective, and that

luminosity is limited to LEdd. This assumption is, however, not valid if a compact nuclear disk is

produced by the accretion flow with non-zero angular momentum. From the disk, outflows or jets

are potentially launched into polar regions (Ohsuga et al. 2005, McKinney et al. 2014, Sa̧dowski et al.

2014). Also, in the polar regions, photon trapping is found less efficient than in spherically symmetric

flows, with the vertical escape of radiation being facilitated by magnetic buoyancy (Jiang, Stone &

Davis 2014). As a result, luminosity away from the disk place can largely exceed the Eddington

luminosity.

1.2.3 Formation of massive stars and intermediate-mass BHs via runaway collision of

stars in dense star clusters

There is still another mechanism to facilitate formation of massive BHs in the early universe. In

some star clusters in the present-day Universe, it has been suggested that intermediate-mass BHs

(IMBHs) lurk at the central regions. Such IMBHs, if they exist, can be remnants of very massive

stars which could have formed via runaway stellar collisions in the clusters (Ebisuzaki et al. 2001,

Vanbeveren et al. 2009, Devecchi et al. 2010, Katz, Sijacki & Haehnelt 2015). Omukai, Schneider &

Haiman (2008) have discussed that dense star clusters, within which runaway collision can occur, are

formed in atomic-cooling halos with a virial temperature of ≳ 104 K, which are enriched by metals

(elements heavier than helium) through a supernova ejection of matter fused inside a star. They
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argue that a gas cloud with metallicity larger than Zcr ∼ 5 × 10−6 Z⊙ can undergo dust-induced

cooling and fragmentation, resulting in production of a star cluster. Devecchi et al. (2010) have

investigated formation of very massive stars and BH seeds in star clusters considering a hierarchical

galaxy formation model. They predict in their semi-analytic model that a BH mass density is as

large as ρseed ∼ 2000− 4000M⊙ Mpc−3 at z ≳ 6.

Formation of star clusters at high redshift has been also examined by numerical simulations (Boley

et al. 2009, Trenti, Padoan & Jimenez 2015). Bromm & Clarke (2002) have performed Smoothed

Particle Hydrodynamics (SPH) simulations of dwarf galaxy formation in the early universe and show

that globular clusters with mass ∼ 105 M⊙ form in small-mass halos. Kimm et al. (2016) have stud-

ied formation of globular clusters at z > 10 by performing cosmological radiation-hydrodynamical

simulations. They find that metal-cooling induced gas fragmentation drives formation of dense star

clusters with mass 6× 105 M⊙ and a half-light radius ≲ 1 pc within about 10Myr.

Overall, the dense star cluster formation in the early universe is plausible. There are, however, few

simulations to date which follow primordial star cluster evolution until the runaway stellar collisions

occur and IMBHs form. Katz, Sijacki & Haehnelt (2015) have performed a cosmological simulation

to examine the dynamical evolution of a star cluster which is formed in a metal-enriched mini-halo.

Identifying the star cluster from the cosmological simulation and then performing direct N-body

simulations, they show that the runaway stellar collisions occur in the cluster, where a very massive

star of ∼ 300− 1000M⊙ is yielded. The massive stars would leave IMBHs after their lifetimes. The

cluster model of Katz, Sijacki & Haehnelt (2015) provides promising IMBH formation channel in the

early universe, but unfortunately their cluster model is based on only one specific mini-halo. Thus,

it is still unclear how rare such IMBH formation at high redshift is.

1.3 Aim of this thesis

This thesis aims to study the three BH seed formation models which circumvent the BH growth

delay (Section 1.2), namely, the direct collapse model, the super-Eddington accretion model and the

runaway stellar collision model. Specifically, we adopt more realistic situations for each model than

those in previous works in order to examine the validity of the models.

In Chapter 2, in the context of the direct collapse model, we work on the formation of SMSs

via rapid gas accretion, in order to see whether UV feedback can be effective to halt the growth

of the accreting SMS. In Hosokawa et al. (2013), they consider SMS evolution with constant high

accretion rates ≳ 0.1M⊙ and show that the protostar becomes supergiant with a bloating, low

temperature surface of Teff ∼ 5000K and that UV feedback is ineffective. By contrast, we study

the SMS evolution with a highly time-variable accretion history, expected for accretion through a

gravitationally unstable disk, where fragments form by fragmentation and fall on to the central

protostar causing accretion bursts. We use a stellar evolution code STELLAR which can solve basic

equations of stellar evolution, treating nuclear reactions and convection within the star (Yorke &

Bodenheimer 2008). The evolutions of the accreting SMSs are computed, assuming episodic accretion

histories for which we use parameters to mimic the variable features of the accretion. We compare

our results with those for the constant accretion case to examine the impact of the episodic accretion

histories on the evolution of the SMSs. We also vary episodic accretion histories by changing values

of the parameters and see the variation of the SMS evolution. Finally, the efficiency of UV feedback

is discussed.

In Chapter 2, we assume rather idealized, parameterized episodic accretion histories with ana-

lytical functions. In Chapter 3, as the next step, we examine stellar evolution with more realistic
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accretion histories. We first perform a 2D hydrodynamical simulation using a grid-based code

ZEUS-2D (Stone & Norman 1992) to follow the protostellar accretion, adopting a central sink cell

to monitor the accretion history for the central protostar. A gravitationally unstable disk around a

rapidly accreting SMS is analyzed, focusing on the properties of fragments and the difference from

a disk forming around a Pop III star, as studied in Vorobyov, DeSouza & Basu (2013). We then

compute stellar evolution using the obtained accretion history in a post-process manner. The UV

feedback efficiency is again discussed.

In Chapter 4, we examine the impact of a high-luminosity central source of L > LEdd on a

very rapid, spherical accretion flow at large radii, using 1D radiation hydrodynamical simulations

with a code ZEUS (Stone & Norman 1992), to see whether or not hyper-Eddington accretion can

also occur as in IHO16. Because of the computational difficulty to follow the entire accretion

regions, we only focus on the large scale regions where BH gravity is comparable to accreting

gas pressure and do not resolve smaller scales where photon trapping is effective and photosphere

is formed. In the ZEUS code, as well as the basic hydrodynamical equations, non-equilibrium

chemical reactions of primordial gas and radiation transfer are solved. We model the analytical

functions of luminosity coming from a central source, or, a nuclear accretion disk, which can emit a

super-Eddington luminosity of L ≳ LEdd, with a parameter of the maximum luminosity. From the

simulations, BH accretion histories are derived to see whether the transition to the hyper-Eddington

accretion occurs. We also see the variation of the histories when adopting different values of the

maximum luminosity. We then discuss the results to explain the behavior of the histories using

analytical arguments and a simple numerical model.

In Chapter 5, we perform direct-tree hybrid N-body simulations to follow evolution of several

dense star clusters, which are assumed to form in atomic-cooling halos identified in cosmological

SPH simulations. In contrast to the work by Katz, Sijacki & Haehnelt (2015) who consider a cluster

formed in a mini-halo and focus on one realization, we consider clusters formed in an atomic-cooling

halo and focus on several realizations. In this work, we will examine if runaway stellar collisions and

IMBH formation are prevalent in primordial star clusters forming in atomic-cooling halos. First, we

perform the cosmological simulations using a code Gadget-2 (Springel 2005) which is updated by

Hirano et al. (2014) to get several atomic-cooling halo data. Then, star cluster initial conditions for

the N-body simulations are generated, assuming parameters relating to star formation efficiency, an

initial mass function (IMF) and a virial ratio which is the ratio of kinetic energy to gravitational

energy of the clusters. From the initial conditions, we perform the N-body simulations using a code

BRIDGE (Fujii et al. 2007). We also investigate the dependence of the parameters for the star

cluster generation on the results.



Chapter 2

Primordial supermassive star formation via

episodic accretion: I. Controlled cases with

model accretion histories

2.1 Overview

We study stellar evolution of supermassive stars (SMSs) growing by rapid mass accretion in atomic-

cooling halos. We show the assumed physical conditions of the atomic-cooling halo in Table 1.3

where SMSs are supposed to be formed in contrast to normal Pop III star formation in mini-halos

(see Table 1.4). Although constant accretion rates are often assumed in previous works, which is

a rather idealized assumption, we here examine the impact of time-dependent mass accretion of

repeating burst and quiescent phases which is expected to occur with a self-gravitating circumstellar

disk. Our calculations show that protostars growing via episodic accretion can substantially contract

in the quiescent phases, in contrast to the constant mass accretion case, whereby the star expands

roughly monotonically. Accordingly, the stellar effective temperature and ionizing photon emissivity

increase, which can trigger strong ionizing feedback and suppress the mass accretion. With a fixed

duration of the quiescent phase ∆tq, the contraction occurs in early evolutionary phases, i.e., when

M∗ ≲ 103 M⊙ with ∆tq ≃ 103 yr. For later epochs and larger masses with the same ∆tq, stellar

contraction is negligible even during quiescent phases. In the case with larger ∆tq, however, the star

continues to contract in quiescent phases even for the higher stellar masses. We find that this stellar

behavior is well understood by comparing the interval time between bursts ∆tq and the thermal

time for a bloated surface layer. We conclude that the stellar radiation feedback becomes effective if

∆tq ≳ 103 yr. Such a long interval time is possible in an accretion disk forming in the direct collapse

model.

2.2 Numerical method and modeling of episodic accretion

2.2.1 Stellar evolution code for accreting stars

We use the stellar evolution code STELLAR developed by Yorke & Bodenheimer (2008) to calculate

evolution of accreting massive protostars. The basic equations are

∂r

∂m
=

1

4πr2ρ
, (2.1)
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Table 2.1 Models of episodic accretion. The average accretion rates are 0.1 M⊙ yr−1. The
table is taken from Sakurai et al. (2015).

Model A B C D

Duration of the burst phase ∆tb ( yr ) 25 50 100 500

Duration of the quiescent phase ∆tq ( yr ) 270 540 1080 5400

Accretion rate in the burst phase Ṁ∗,b (M⊙ yr−1 ) 1 1 1 1

Accretion rate in the quiescent phase Ṁ∗,q (M⊙ yr−1 ) 10−3 10−3 10−3 10−3

Transition time ∆tt ( yr ) 50 100 200 1000

Radiative efficiency η 0.1 0.1 0.1 0.01

∂P

∂m
= − Gm

4πr4
, (2.2)

∂l

∂m
= Enuc − cP

∂T

∂t
+

δ

ρ

∂P

∂t
(2.3)

∂T

∂m
= − GmT

4πr4P
∇, (2.4)

where m is the enclosed mass, r is the radial distance from the center, ρ is the density, P is the total

pressure, l is the net energy flux, Enuc is the net energy generation rate by nuclear fusion, cP is the

specific heat at constant pressure, T is the temperature, δ ≡ (∂ ln ρ/∂ lnT )P and ∇ ≡ ∂ lnT/∂ lnP

is the temperature gradient. The temperature gradient ∇ is computed using the mixing-length

theory for convective regions (see e.g., Kippenhahn, Weigert & Weiss 2012). The nuclear reactions

of hydrogen and helium burning are included in the rate Enuc.

We assume hydrostatic equilibrium in equation (2.2) and omit the inertial term. The assumption

is valid since the dynamical time in the stellar interior is much shorter than the duration of temporal

change in accretion rates ∼ 10 yr (see ∆tt in Table 2.1). We retain the time derivatives in equation

(2.3) and allow deviation from thermal equilibrium.

Mass accretion onto a stellar surface is included in the code by adding mass Ṁ∆t to the outermost

grid in each time step. We assume that the accreting gas is thermally adjusted to the atmosphere

before accretion, e.g., when slowly orbiting in a circumstellar disk. In this case the physical quantities

of newly accreting gas are the same as in the stellar atmosphere. Note that the gas can actually bring

additional energy which comes from released gravitational energy into the stellar surface region. We

treat the effect by adding the advected energy to the stellar luminosity. The advected energy L∗,acc

is expressed using a parameter η as the fraction of released gravitational energy,

L∗,acc = η
GM∗Ṁ∗

R∗
. (2.5)

The adopted values of η are summarized in Table 2.1. As explained in Hosokawa et al. (2013) the

stellar evolution is not changed by varying η for M∗ ≳ 100 M⊙.

The initial stellar structure is constructed by solving the Lane-Emden equation with a polytropic

index of n = 1.5 which means that the star is initially fully convective. The initial model has mass

2 M⊙ and a radius 25 R⊙. The choice of the initial model is rather arbitrary, but the subsequent

stellar evolution is insensitive to the initial condition for M∗ ≳ 100 M⊙. We assume that the

composition of the initial star and the accreting material is X = 0.72 and Y = 0.28.
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2.2.2 Modeling of episodic accretion

Hydrodynamical simulations of a gravitationally unstable disk show that the accretion rate becomes

episodic repeating alternately bursty and quiescent phases. For example, a burst occurs when a

fragment emerging by gravitational instability migrates toward the central protostar to be accreted

(Vorobyov, DeSouza & Basu 2013). Such a burst is usually followed by a quiescent phase at which

the accretion rate becomes moderate. Another burst is triggered when another fragment forming

in the gravitationally unstable disk again falls on to the star. The tendency of the burst accretion

will continue while the disk self-gravity is effective by mass growth of the disk from a surrounding

envelope.

We model episodic accretion histories using parameters. The burst and quiescent modes of the

accretion are characterized by constant accretion rates Ṁ∗,b and Ṁ∗,q, respectively. The durations

of these phases are set by ∆tb and ∆tq. We also assume that the transition time between bursty

and quiescent phases ∆tt is finite. The accretion rate during the transition phase is determined by

linear interpolation.

We examine four different episodic accretion models with different sets of the parameters as listed

in Table 2.1. The values are chosen so that the average accretion rates become 0.1 M⊙ yr−1 which is

an expected value for the direct collapse model. For the other parameters, typical values are inferred

in the analytical and numerical studies. Hydrodynamical simulations suggest that the durations of

burst and quiescent phases are 10 yr ≲ ∆tb ≲ 200 yr and ∆tq ≲ 104 yr respectively, though these

values are for normal Pop III star formation cases (e.g., DeSouza & Basu 2015, Vorobyov, DeSouza

& Basu 2013). An analytical arguments of Inayoshi & Haiman (2014) also suggests ∆tq ≲ 104 yr for

SMS formation cases (see their figure 2). As to values of Ṁ∗,b and Ṁ∗,q, the numerical simulations

usually show that the ratio of the two accretion rates Ṁ∗,b/Ṁ∗,q ∼ 103 − 104. Thus we choose the

values Ṁ∗,b = 1 M⊙ yr−1 and Ṁ∗,q = 10−3 M⊙ yr−1 so that the average rate becomes 0.1 M⊙ yr−1.

Note that the latter value is below the critical accretion rate Ṁ∗,cr ∼ 0.04 M⊙ yr−1. The transition

time ∆tt is expected to be comparable to ∆tb as is seen in the numerical simulations. We assume

finite transition times with ∆tb = 2∆tt < ∆tq, where the specific value is chosen to achieve numerical

stability. We have checked that the effect of varying ∆tt by a factor of a few on the results is small.

We compare the results of the four models with the same mean accretion rate 0.1 M⊙ yr−1. We

regard the Model C in Table 2.1 as a fiducial case (Section 2.3.2.1). The evolutionary calculations

are commenced at burst phases.

2.3 Results

2.3.1 Evolution by constant accretion rates

We briefly describe the cases with constant accretion rates to compare to episodic accretion cases.

2.3.1.1 Normal Pop III star formation case with 10−3 M⊙ yr−1

In the typical case of an accretion rate 10−3 M⊙ yr−1, a protostar grow with several distinct evo-

lutionary stages. To understand the behavior of the stellar evolution the two time scales are useful

(Stahler, Palla & Salpeter 1986, Omukai & Palla 2003, Hosokawa & Omukai 2009a): the Kelvin-

Helmholtz (KH) time scale

tKH =
GM2

∗
R∗L∗

, (2.6)
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which is the thermal time over which the gravitational energy is released by radiation, and the

accretion time scale

tacc =
M∗

Ṁ∗
, (2.7)

which is the characteristic stellar growth time. In the early evolutionary phases of M∗ ≲ 5 M⊙,

the star evolves adiabatically with tacc < tKH. As the star grows by mass accretion and the stellar

luminosity L∗ becomes larger, the KH time scale shortens. The luminosity increases because the

opacity deep in the star decreases as the temperature increases according to Kramers’ law (κ ∝
ρT−3.5). With the decrease of the opacity, the heat accumulated in the inner region gradually

escapes outward by radiation energy transport. The KH time finally becomes shorter than the

accretion time and the protostar begins to contract losing more energy away from the surface by

radiation. The KH contraction phase starts when M∗ ≳ 8 M⊙ for the case of Ṁ∗ = 10−3 M⊙ yr−1,

which can be seen in Figure 2.1. The stellar internal temperature rises during the KH contraction

phase, and eventually hydrogen burning commences at the center when M∗ ≃ 40 M⊙. After this

time, the evolution of the stellar radius traces the mass-radius relation of a ZAMS star.

Figure 2.1 shows that the ionizing photon emissivity rapidly rises during the KH contraction.

Before the contraction, the emissivity is only ∼ 1037 s−1. As the star contracts and the surface

temperature increases, the emissivity quickly rises to ≳ 1049 s−1. With the large amount of emitting

UV photons, radiation hydrodynamic simulations show that the radiation feedback is effective in

the late KH contraction stage and finally suppresses the mass accretion (e.g., Hosokawa et al. 2011).

2.3.1.2 Direct collapse case with 0.1 M⊙ yr−1

We consider evolution of a protostar with the high constant accretion rate of 0.1 M⊙ yr−1. Unlike

the normal Pop III star formation case of 10−3 M⊙ yr−1, the protostar does not experience KH

contraction (see the black dashed lines in Figure 2.1). Instead, the overall evolution is that the star

continues to expand nearly monotonically as the mass increases.

The Figure 2.2 shows that the time scale inversion explained in Section 2.3.1.1 occurs at M∗ ≃
22 M⊙ (t ≃ 200 yr) in this case. The star evolves adiabatically before this point. In the adiabatic

epoch, the stellar radius at a given mass is larger than for 10−3 M⊙ yr−1 since the rapid accretion

of 0.1 M⊙ yr−1 enhances average entropy in the inner region of the star. Unlike the normal Pop III

case, the protostar continues to expand even when tKH < tacc, which at a glance is counterintuitive:

with the time scale imbalance, a star normally radiates internal energy through the surface and

contracts. Actually, for this bloating phase most of the stellar interior contracts, while only the

surface layer with newly accreting gas inflates due to absorption of the heat flux coming from the

contracting inner region (Hosokawa, Omukai & Yorke 2012). Specifically, though the bloating surface

layer contains a small fraction of the total stellar mass, the opacity at the layer is large due to H−

bound-free absorption. The opacity of H− has a very strong temperature dependence which makes

the stellar effective temperature locked at a constant value of ≃ 5000 K as in the case of red giants.

Using Teff ≃ 5000 K and L∗ = 4πR2
∗σSBT

4
eff ≃ LEdd where σSB is the Stefan-Boltzmann constant

and LEdd is the Eddington luminosity, we get the mass-radius relation during the bloating phase

R∗ ≃ 2.4× 103 R⊙

(
M∗

100 M⊙

)1/2

, (2.8)

which is consistent with the numerical results (Hosokawa et al. 2013).

The evolution of ionizing photon emissivity is also different to the case of 10−3 M⊙ yr−1. Even

when M∗ ≳ 100 M⊙, the emissivity is very small because of the low surface temperature of the
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Fig. 2.1 Evolution of the accretion rates (top two panels), stellar mass (third panel), stel-
lar radius (fourth panel), and ionizing photon emissivity (bottom panel). The red and blue
lines in each panel represent Model A and B (Table 2.1). Evolution for constant accretion
rates of 0.1 M⊙ yr−1 and 10−3 M⊙ yr−1 are also shown by the black dashed and dot-dashed
lines respectively. The black dot-dashed lines for 10−3 M⊙ yr−1 in the bottom two panels are
horizontally shifted so that the line of the mass increase matches that for 0.1 M⊙ yr−1, e.g.,
M∗ = 100 M⊙ at the time of 103 yr. The radii and ionizing photon emissivity for ZAMS stars
are also shown by the thick gray dashed lines, where ZAMS mass is translated to time by the
relation of t = MZAMS/0.1 M⊙ yr−1. In the bottom panel, the horizontal dotted line repre-
sents the critical value of ionizing photon emissivity above which UV feedback would become
significant for the accretion rate 0.1 M⊙ yr−1 (see Section 2.4.1). This figure is reproduced
from Sakurai et al. (2015).
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time tKH (black solid) and accretion time tacc (black dashed) as in equations (2.6) and (2.7)
are plotted respectively. The local KH time tKH,surf (red solid) and accretion time tacc,surf
(red dashed) as in equations (2.9) and (2.10) are also plotted. This figure is reproduced from
Sakurai et al. (2015).

protostar. UV feedback is then too weak to stop the rapid accretion (see Section 2.4.1).

We have found that despite the time scale imbalance tKH < tacc, the protostar continues to inflate.

We can explain the apparent discrepancy by noticing the fact that the usual KH time scale tKH in

equation (2.6) is a global quantity which does not takes into account the internal structure of the

star. In the stellar interior, most of the mass is concentrated in the central region and the bloating

surface region has a small fraction of the stellar mass (see fig. 2 in Hosokawa et al. (2013)). We thus

define the local KH time scale for the surface layer which is evaluated considering the actual mass

distribution in the star,

tKH,surf = f

∫
sradTdm∫

dl
, (2.9)

where srad is entropy of radiation and f is a dimensionless constant of O(1). The time scale is deemed

as a surface KH time scale since the numerator corresponds to the thermal energy in the surface

region and the denominator corresponds to the energy flux in the same region, which is in analogy

with the usual definition tKH in equation (2.6). The factor f is introduced assuming that only a

fraction of the surface energy is radiated away over the time scale. Note that the surface KH time

scale tKH,surf does not match tKH even if we integrate over whole star because of the inhomogeneous

internal structure of the star. The above local KH time scale is compared with the local accretion
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time scale for the surface region

tacc,surf = f

∫
dm

Ṁ∗
. (2.10)

For consistency, the same factor f is also included in equation (2.10). We set f = 0.4 as a fit to our

numerical results and the range of integration 0.7 M∗ ≤ m ≤ M∗ in equations (2.9) and (2.10) to

cover the surface layer. We have checked that the choice of the lower limit of the integration does

not significantly affect the main results. In Figure 2.2 we show that the local accretion time scale

tacc,surf continues to be shorter than the local KH time scale tKH,surf even when the global time

scales satisfies tKH < tacc. The star keeps expanding because, with the rapid mass accretion, gas

accumulates faster than heat escapes by radiation in the surface layer. We will show that the two

local time scales tKH,surf and tacc,surf can be used for understanding stellar evolution via episodic

accretion.

2.3.2 Stellar evolution via episodic accretion

2.3.2.1 The fiducial case: Model C

We first focus on the Model C as a fiducial case of stellar evolution via episodic accretion. In this

model, the accretion rates in the burst and quiescent phases are Ṁ∗,b = 1 M⊙ yr−1 and Ṁ∗,q =

10−3 M⊙ yr−1 with time durations of ∆tb = 100 yr and ∆tq = 1080 yr (Table 2.1). The accretion

history is plotted in the top panel of Figure 2.3. The protostellar evolution is also shown in Figure 2.3,

where there are differences from the case with the constant accretion rate 0.1 M⊙ yr−1. Firstly, the

star shrinks during the quiescent phases. For instance, when 300 yr ≲ t ≲ 1500 yr the stellar

radius decreases to 100 R⊙ which is about 10 times smaller than the supergiant protostar with the

constant accretion of Ṁ∗ = 0.1 M⊙. In addition, the stellar contraction leads to the increase of

ionizing photon emissivity which eventually reaches the level for ZAMS stars.

Because the accretion rate during the quiescent phases is smaller than the critical rate for main-

taining the star inflating Ṁ∗,cr ≃ 0.04 M⊙ yr−1, the star shrinks as in the normal KH contraction

stage. To demonstrate this, we analytically derive an equation for the time evolution of the stellar

radius assuming that the contraction continues over the usual KH time scale *1,

R∗

R⊙
=

(
1

R∗,0/R⊙
+ C

t− t0
1 yr

1

M∗/M⊙

)−1

, (2.11)

where C is a fitting parameter, and the quantities at the beginning of the contraction have the

subscript 0. In the fourth panel of Figure 2.3, the fitting curve from equation (2.11) is plotted (black

solid line) together with out numerical result.

The protostar again expands when the next burst accretion occurs and accordingly the ionizing

photon emissivity decreases. The cycle of contraction and expansion is repeated for the following

two cycles of quiescent and burst phases when 2000 yr ≲ t ≲ 5000 yr. As the star gets more mass,

*1 Using equation (2.6), the time derivative of the stellar radius is

dR∗

dt
∼ −

R∗

tKH
= −

L∗R2
∗

GM2
∗
.

The stellar luminosity is well approximated by the Eddington luminosity LEdd ∝ M∗ and the equation becomes

dR∗

dt
= −const.×

R2
∗

M∗
.

Regarding the stellar mass almost constant during quiescent phases, integration of the equation gives equation
(2.11).
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Fig. 2.3 The same plots as Figure 2.3 but for Models C and D (Table 2.1) which are represented
by red and blue lines respectively. The black solid line in the fourth panel is a fitting for the
KH contraction in Model C (see text for detail). This figure is reproduced from Sakurai et al.
(2015).
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the degree of the contraction gradually diminishes. The stellar contraction hardly occurs during the

quiescent phases for t ≳ 5000 yr, i.e., M∗ ≳ 500. Overall, for the model C, the ionizing photons can

cause stellar feedback in the early evolutionary epoch.

We understand the numerical result by comparing the duration of the quiescent phase ∆tq to the

local KH time scale at the surface layer tKH,surf which is defined in equation (2.9). For the range of

the integration in equation (2.9), we take a surface layer of 0.01 R∗ ≤ r ≤ R∗ which contains only

≃ 10 − 30% of the stellar mass but 99.9999% of the volume. As shown in Figure 2.4, the surface

KH time scale monotonically increases with time and stellar mass, other than some bump features

which appear during the stellar contraction. The increase of tKH,surf with stellar mass is explained

by rewriting equation (2.9) as

tKH,surf ∼ f

∫
Gm/rdm∫

dl
∝ GM2

∗
L∗R∗

∝ M
1/2
∗ , (2.12)

where the second term comes from the hydrostatic equilibrium for radiation pressure, Tsrad ∼
Prad/ρ ∼ Gm/r, and we use the relations L∗ ∼ LEdd ∝ M∗ and R∗ ∝ M∗ (see equation 2.8). For

t ≲ 5 × 103 yr, the surface KH time scale is shorter than the duration of the quiescent phases. In

this early stage, the quiescent phase is long enough so that the protostar loses its thermal energy

trapped in the surface layer and then contracts.

Even in this case, however, the contraction of the star does not promptly follow the decrease

of the accretion rate. For example, after the first burst, the accretion rate drops below Ṁ∗,cr at

t ≃ 150 yr (Figure 2.3), but the stellar contraction commences only at t ≃ 400 yr. The top panel

of Figure 2.4 shows that the surface KH time at this time is a few 100 yr, which is comparable to

the delay time of the contraction. In addition, Figure 2.3 shows that, after the second and third

bursts at t ∼ 2000− 4000 yr, the corresponding delay lengthens to ∼ 103 yr. The delay time is also

consistent to the calculated surface KH time at t ∼ 2000− 4000 yr in the top panel of Figure 2.4.

As described in Section 2.3.1.2, it is crucial to use tKH,surf as the thermal time for the inflating

protostars instead of the usual KH time tKH. The latter time scale is a global quantity for which the

inhomogeneous internal structure of the star is not taken into account. As seen in Figure 2.5 and

Figure 2.6, the mass is actually strongly concentrated in the central region when the star is bloating.

For M∗ ∼ 4× 103 M⊙ or t ∼ 4× 104 yr, for instance, 0.0001 percent of the central volume contains

∼ 90 percent of the stellar mass (Figure 2.6).

As seen in the top panel of Figure 2.4, for the bloating phases, the normal KH time tKH is shorter

than the surface KH time tKH,surf . It might appear puzzling that the global time tKH is shorter

than the local time tKH,surf . To solve the puzzle, we first note that the normal KH time provides

the thermal time if ∫ M∗

0

Gm

r
dm ∼ GM∗

R∗
, (2.13)

which is not the case for the bloating protostar. Since most of the mass is concentrated near the

stellar center, we actually have ∫ M∗

0

Gm

r
dm ∼ 10− 100

GM∗

R∗
, (2.14)

depending on accretion history and the stellar mass. As a consequence, the effective thermal time

for the whole star is now tKH,eff ∼ 10− 100× tKH, which at any time is larger than the local surface

KH time tKH,surf .

We confirmed that the effective KH time tKH,eff becomes comparable to ∆tq at ∼ 103 yr, which
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Fig. 2.4 Upper panel: the surface KH time tKH,surf (solid line, equation 2.9) and the KH
time of the usual definition (dashed line, equation 2.6) are compared to the duration of the
quiescent phase ∆tq (horizontal dotted line) for Model C. The red circle and vertical dot-
dashed line represents the time when tKH,surf = ∆tq. Lower panel: evolution of the stellar
radius in Model C. The star can contract only for the quiescent phases and the early epoch
when tKH,surf ≲ ∆tq. This figure is reproduced from Sakurai et al. (2015).

does not point the time when the stellar contraction ceases. For the bloating star, only entropy in

the stellar surface layer determines whether the star contracts or not. Thus, it is reasonable to use

the surface KH time tKH,surf for comparison to ∆tq.

2.3.2.2 Variations with different episodic accretion histories

The numerical results of Models A, B and D can be explained based on our findings for Model C.

In Model B, for instance, the fourth panel of Figure 2.1 shows that the stellar contraction during

the quiescent phases ceases when t ≳ 2000 yr. The top panel of Figure 2.7 shows the evolution of

the KH times for Model B. We see that tKH,surf increases with time and becomes comparable to the

duration of the quiescent phases ∆tq at t ≃ 2000 yr, which explains the absence of stellar contraction
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Fig. 2.5 Evolution of the stellar internal structure in Model C. The black solid lines represents
the positions of the mass coordinates for 20, 40, 60, 80 and 100 per cent of the total stellar
mass in ascending order. The white, yellow, green, brown and pink regions indicate radiative
layers, convective layers, a hydrogen-burning convective core, deuterium-burning layers and
deuterium-burning convective layers respectively. The burning regions are identified where the
depletion time of the corresponding composition is shorter than the main sequence lifetime.

Note that the stellar mass is roughly estimated as Ṁ∗t for t ≳ 103 yr, where Ṁ∗ is the average
accretion rate. This figure is reproduced from Sakurai et al. (2015).

for the late epoch.

Figure 2.1 and Figure 2.3 show that the protostar stops contracting earlier for the models with

shorter duration of quiescent phases. Unless the stellar contraction lasts for a long time, the resulting

rise of the stellar ionizing photon emissivity is not significant. We conclude that episodic accretion

causes stellar contraction and possible UV feedback when a quiescent phase continues for ≳ 103 yr

(see Section 2.4.1).
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2.4 Discussions

2.4.1 UV feedback from SMSs evolving via episodic accretion

We discuss whether UV photons emitted from a growing SMS with episodic accretion can ionize the

surrounding gas to cause radiation feedback. We derive the lower limit of ionizing photon emissivity

for the UV feedback to be effective by assuming that the feedback sets in when all accreting atoms

are ionized. From the estimate of the total number of neutral hydrogen and helium atoms accreting

per second for Ṁ∗ = 0.1 M⊙ yr−1, the critical ionizing photon emissivity is Smin ≡ 3×1048 s−1. The

critical value is represented by the dotted horizontal lines in the bottom panels of Figure 2.1 and

Figure 2.3. In Models A and B, with the short durations of the quiescent phase ∆tq, the emissivity

is always lower than Smin. By contrast, in Model C and D which have the longer duration of the

quiescent phase, the emissivity gets larger than Smin when the star contracts during the quiescent

phases. Overall, the UV feedback becomes effective in quiescent phases if ∆tq ≳ 103 yr, even for

the average accretion rate of 0.1 M⊙ yr−1.

There are several uncertainties about the UV feedback since we do not see evolutions and structures

of a circumstellar disk and a gas envelope. For example, UV photons can be consumed by re-ionizing

the recombining gas within an H ii region. Moreover, even if the H ii region appears around the star,
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Fig. 2.7 The same plot as Figure 2.4, but for Model B. This figure is reproduced from Sakurai
et al. (2015).

its expansion can be hindered by a burst accretion, which is induced by gravitational instability of

the accretion disk. The disk can become gravitationally unstable after the H ii region emerges, if

mass supply from the gas envelope to the accretion disk continues, e.g., with UV photons escaping

preferentially to polar directions to form anisotropic H ii regions (e.g., Hosokawa et al. 2011). With

the unstable disk and the resulting burst accretion, the star stops contracting and expands, the

ionizing photon emissivity strongly decreases and the H ii region disappears. Some of the gas expelled

by the expanding H ii region may fall back on to the disk before the H ii region again emerges during

the next stellar contraction. Therefore, it is still uncertain whether the protostar can continue to

grow via episodic accretion and intermittent UV feedback. Further studies are necessary to examine

the overall impact of episodic accretion on disk accretion and formation of H ii regions.
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2.4.2 Stellar evolution for M∗ ≳ 104 M⊙

Due to difficulty in numerical convergence, we have stopped the calculation at the stellar mass

M∗ ≲ 104 M⊙. The mass is below the putative critical mass 105−6 M⊙ at which for ≳ 0.1 M⊙ yr−1

non-rotating SMSs collapse to form seed black holes by general relativistic instability (e.g., Shibata,

Uchida & Sekiguchi 2016). Regarding the later evolution for M∗ ≳ 104 M⊙ until the black hole

formation, the surface KH time will continue to increase with the stellar mass (equation 2.12). Since

∆tq ≲ 103 yr < tKH,surf ∝ M
1/2
∗ , entropy in the stellar surface layer will remain high and the

contraction of the more massive star will become harder. In the absence of the stellar contraction,

the drastic increase of ionizing photon emissivity will not occur.

It is possible, however, that UV feedback becomes effective without significant stellar contraction

in late evolutionary phases. Hosokawa et al. (2013) calculate the later stellar evolution for 104 M⊙ ≲
M∗ ≲ 105 M⊙ with a higher constant accretion rate 1M⊙ yr−1. Such a high accretion rate is actually

suggested for the direct collapse case by numerical simulations (e.g., Latif et al. 2013). Although in

this case the star also expands following equation (2.8) forM∗ ≲ 104 M⊙, the stellar expansion ceases

after the mass exceeds a few ×104 M⊙. The effective temperature of the star and UV emissivity

accordingly rise, irrespective of the variability in an accretion history. The ionizing photon emissivity

reaches ∼ 1050 s−1 for M∗ ∼ 105 M⊙ (see fig. 11 in Hosokawa et al. (2013)), which exceeds the

critical value Smin for accretion rates 0.1− 1 M⊙ yr−1. Thus, UV feedback may finally regulate the

growth of the SMSs before the seed black hole formation.

2.4.3 Accretion histories in atomic-cooling halos

We have modeled the time variable accretion histories by simple functional forms with several free

parameters (Table 2.1). Despite progresses in 3D numerical simulations, a long-term accretion

history for a SMS formation is not well understood. Latif et al. (2013) simulate the long-term

evolution for the protostellar accretion phase using the so-called sink cell technique. Their obtained

accretion histories show some time variability (see their fig. 4), but overall rather smoother than

our model accretion histories. Regan, Johansson & Wise (2014) and Becerra et al. (2015) perform

simulations with much higher spatial resolutions and find signatures of disk fragmentation. Though

their simulations only follow the initial 10− 100 yr for the accretion phase, the results suggest that

highly time-dependent accretion can be realized for the direct collapse model.

Vorobyov, DeSouza & Basu (2013) follow the long-term evolution of a self-gravitating disk for

normal Pop III star formation cases by high-resolution 2D simulations. In the simulations, highly

time-variable episodic accretion occurs with a mean accretion rate ∼ 103 M⊙ yr−1, which indicates

the accretion rate on to the disk from a surrounding envelope. As the disk gets more mass and

becomes more gravitationally unstable, fragmentation occurs and clumps migrate inward to the

star, resulting in an increase of the accretion rate to ∼ 10−2−0.1 M⊙ yr−1. In the intervals between

such accretion burst events, the accretion rate falls to 10−5 − 10−4 M⊙ yr−1.

Episodic accretion with large variations is also expected for a large mean accretion rate of ∼
0.1 M⊙ yr−1 in the direct collapse case. In particular, the duration of the quiescent phase ∆tq is

a key value since the value determines whether the star contracts or not. The value ∆tq will be

controlled by the two time scales, namely, the effective fragmentation time tfrag and the migration

time tmig. The fragmentation time tfrag is the mean time for a fragment to form in a self-gravitating

disk or the inverse of a clump formation rate. The migration time tmig is the time scale over which

new-born fragments migrate inward to the star. We expect ∆tq ∼ tfrag + tmig.
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The two time scales can be estimated based on previous numerical and analytical studies. For

instance, Vorobyov, Zakhozhay & Dunham (2013) find that, based on their simulations of the present-

day star formation, tfrag can be determined by the time scale over which the disk grows via mass

supply from the accretion envelope,

tfrag =
Md

Ṁd

, (2.15)

where Md is the disk mass and Ṁd is the accretion rate on to the disk.

For the estimation of tmig, the analytic model of Inayoshi & Haiman (2014) is useful which

describes the structure of an accretion disk around an SMS for the accretion rate 0.1 M⊙ yr−1. They

consider migration of a fragment from the fragmentation radius Rf within which disk fragmentation

is efficient. WhenM∗ ≲ 104 M⊙, the radius Rf is well in the regions where the disk gravity dominates

the protostellar gravity, and in this case the migration time is approximately estimated as the viscous

time scale,

tmig,max ≃ 4× 103 yr. (2.16)

This can be considered as the maximum time scale since the fragment formed within Rf will have

the shorter migration time.

We can predict the evolution of ∆tq by comparing the two time scales tfrag and tmig. In an

early evolutionary phase for tfrag < tmig, the duration of the quiescent phase ∆tq is limited by the

migration time tmig. In this stage, the quiescent phase lasts for tmig < 4 × 103 yr, which can be

shorter than the critical value 103 yr for the formation of an H ii region (Section 2.3.2.2). For the

accretion rate 0.1 M⊙ yr−1 from the envelope on to the disk, however, the fragmentation time scale

tfrag will exceed the migration time when the disk mass reaches ∼ 400 M⊙. After this time, the

quiescent phase will become longer assuming that the disk mass increases with the stellar mass.

Unlike the stellar evolution for the constant duration ∆tq, the SMS may further contract during

prolonged quiescent phases. The ionizing photon emissivity from the star would be enhanced by the

contraction.

In order to verify our analytic expectation, we need to obtain realistic accretion histories realized

in an atomic-cooling halo. The accretion rates can be derived by multidimensional hydrodynamic

simulations which follow the dynamic process of accretion on to growing SMSs.

2.4.4 Metallicity effects on SMS growth

We have assumed that accreting gas is pristine. If the gas has been polluted by some metals, the

gas thermal evolution for the direct collapse model will be changed by additional coolants of heavy

elements and dust grains (Omukai, Schneider & Haiman 2008). If the gas temperature is reduced

below 3000 K during the collapse phase of star formation, the resulting accretion rates will be smaller

than the critical rate necessary for a bloating giant protostar, Ṁ∗,cr = 0.04 M⊙ yr−1. In this case,

the star would contract and start to emit a copious amount of UV photons. However, cooling by

heavy elements and dust grains often operates only in the late stage of the collapse and the early

accretion stage on to the protostar at high densities. The accretion rate will therefore be small only

when the protostellar mass and luminosity are relatively low. In the later stage the accretion rate

may significantly increase, which can trigger the abrupt expansion of the growing protostar and

quench the stellar UV flux.

Other effects of varying metallicity can further modify the evolution. For instance, both the

collapsing and accreting gas can fragment via gravitational and thermal instabilities (e.g., Katz,
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Sijacki & Haehnelt 2015, Inoue & Omukai 2015). Moreover, opacity of the accreting gas will be

enhanced for higher metallicity. With the larger opacity, the radiation feedback of the star will more

easily disrupt the accretion envelope, e.g., by radiation pressure exerting on dust particles contained

in the gas (Hosokawa & Omukai 2009b). We naively expect that the formation of SMSs is suppressed

if the metallicity is above some critical metallicity, but the detail of the evolution in such ‘failed’

cases is uncertain and remains to be studied in future work.

2.5 Conclusions

We have studied the evolution of supergiant protostars which grow via episodic accretion, which

is expected in gravitationally unstable circumstellar disks forming in atomic-cooling halos (Regan,

Johansson & Wise 2014, Inayoshi & Haiman 2014, Becerra et al. 2015). The protostellar evolution

have been followed with various accretion histories which are controlled by free parameters to mimic

repeating short bursts and long quiescent phases (see Table 2.1 and the top panels of Figure 2.1 and

Figure 2.3). We fix the mean accretion rate of the models to 0.1 M⊙ yr−1 and consider different

variabilities to examine potential impact of the episodic accretion.

The episodic accretion can qualitatively change the evolution of an accreting SMS, in contrast

to the constant accretion case in which the stellar radius monotonically increases with growth of

the stellar mass (equation 2.8). In the episodic accretion cases, the star can contract during the

quiescent phases between the bursts. Along with the stellar contraction, stellar ionizing photon

emissivity significantly increases due to a rapid rise of the effective temperature. Specifically, for a

quiescent phase of length ∆tq ≳ 103 yr, the emissivity exceeds 3× 1048 s−1, which allows formation

of an H ii region. Consequently, UV feedback might hinder the mass accretion on to the protostar.

With a fixed duration of the quiescent phase ∆tq, the star can contract in an early epoch, e.g.,

for M∗ ≲ 103 M⊙ in our model C with ∆tq ≃ 103 yr (see Figure 2.3). With a longer ∆tq, however,

the stellar contraction will continue until the star gets much more mass. This stellar behavior is

well understood by comparing the duration of the quiescent phase to the surface thermal (or KH)

time tKH,surf defined by equation (2.9). As the surface KH time increases with growth of the stellar

mass, the imbalance of the two time scales changes from tKH,surf < ∆tq to the opposite at some

point. Before the point, the star contracts significantly in the quiescent phases because the inflating

surface layer loses most of entropy before the next burst occurs. After the time scale inversion to

tKH,surf > ∆tq, the stellar contraction ceases and the stellar radius increases following the mass-

radius relation in equation (2.8). The same time scale comparison using the global KH time tKH

instead of tKH,surf severely overestimates the critical mass above which the star stops to contract.

The overestimation stems from the inhomogeneous internal structure of the bloating star which is

not taken into account in the definition of the global time tKH. Since the mass distribution of the

bloating star is very centrally condensed (Figure 2.1 and Figure 2.3), the global KH time provides

a poor estimate for the thermal time.

Our calculations show that stellar radiation feedback may become important if the quiescent phase

lasts longer than 103 yr. Such long intervals between accretion bursts are expected for an accretion

disk around a growing SMS (Inayoshi & Haiman 2014). If the UV feedback halts the stellar mass

growth, the final mass of the SMS is reduced and the mass of the remnant BH which is left behind

after the death of the star is also reduced. We discuss that the stellar UV feedback may be effective

and determine the final mass, by adopting a simple functional form with parameters (Table 2.1) to

model the accretion histories, where the duration of quiescent phases is constant. In more realistic

cases, the length of the quiescent phase can vary with time and the accretion histories need to be
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examined by hydrodynamical simulations for more correct estimation of the final mass. The stellar

evolution and strength of the resulting UV radiation feedback for this case is studied as in Chapter 3.



Chapter 3

Primordial supermassive star formation via

episodic accretion: II. Protostellar disk

instability and radiation feedback efficiency

3.1 Overview

In Chapter 2, we examine the evolution of supermassive stars (SMSs) with rapid episodic accretion

histories. Since we have used the parameterized accretion histories, we could not correctly judge

whether or not the SMS realistically contracts and emits a copious amount of UV photons to cause

radiation feedback. We here study the evolution of an accreting SMS and its UV emissivity with

realistic variable accretion from a circumstellar disk. To correctly follow the circumstellar disk

structure and evolution, at least a 2D simulation is necessary. First we perform a 2D hydrodynamical

simulation to follow the protostellar accretion through the disk until the stellar mass exceeds 104 M⊙.

The disk fragments by gravitational instability, forming many clumps that migrate inward to fall on

to the central star. A resulting accretion history is highly time-dependent: short episodic accretion

bursts are followed by prolonged quiescent phases. We show that the disk in the direct collapse model

is more unstable and presents greater variability than that in normal Pop III cases. Next, we perform

a stellar evolution calculation using the obtained accretion history. Irrespective of the variable

accretion, the stellar radius monotonically increases with nearly constant effective temperature at

Teff ≃ 5000 K as the stellar mass increases. The UV photon emissivity is too low to hinder accretion

and UV feedback is ineffective. The insensitivity of stellar evolution to variable accretion is ascribed

to short time scales of variability, ≲ 103 yr, which are shorter than a surface thermal time scale of

the bloating SMS. We argue that this evolution will continue until the SMS gravitationally collapses

to produce a massive black hole by general relativistic instability after the stellar mass reaches

≳ 105 M⊙.

3.2 Numerical model

3.2.1 2D hydrodynamical simulations

Our numerical model and method for studying the gravitational collapse of primordial cores are

presented in (Vorobyov, DeSouza & Basu 2013). We here briefly review the main concepts and

appropriate modifications for the SMS formation. We follow the evolution of gravitationally unstable
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massive primordial cores from the prestellar stage into the star and disk formation stages. Our

simulations are terminated once about 50 per cent of the initial mass reservoir has been accreted

on to the star and disk system. Once the disk is formed, it occupies the innermost region of the

numerical grid. The dynamics of both the disk and envelope are followed self-consistently on one

global grid, which ensures accurate mass infall rates on to the star plus disk system. This self-

consistency is an important prerequisite for studying gravitational instability and fragmentation of

young circumstellar disks at all epochs.

We introduce a sink cell at the inner boundary of the computational domain with a radius of

Rsc = 110 AU, and allow matter to freely flow into the sink. The radius of the sink cell is chosen

to accommodate the maximum radius of the growing central star. In the early prestellar phase, we

monitor the mass accretion rate through the sink cell and introduce a central point mass object

which represents the forming star. In the subsequent evolution, about 95 per cent of the accreted

material is assumed to directly land on to the star. The rest material remains in the sink cell to

keep its density equal to the mean density of gas in the innermost 10− 20 AU outside the sink cell.

We solve the mass and momentum transport equations written in a thin-disk approximation. A

method of finite-differences is used with a time-explicit operator-split procedure described by Stone

& Norman (1992) for their ZEUS-2D code. Advection is performed with the third-order piecewise

parabolic scheme (Colella & Woodward 1984). Gravitational acceleration includes contributions

from the central point mass star once formed, from the material in the sink cell (r < Rsc), and from

the self-gravitating circumstellar disk and envelope.

The equations of mass and momentum transport are closed by a barotropic equation of state for

gas pressure P of the form

Pk = Kργk

k−1∏
i=1

ρ
γi−γi+1

c,i for ρc,k−1 ≤ ρ < ρc,k, (3.1)

where K = RT/µργ1−1, T = 8000 K is the initial temperature of gas, R is the gas constant, and

µ = 2.27 is the mean molecular weight of the primordial gas. The equation is a piecewise fit to the

detailed thermal and chemical evolution of a collapsing gas cloud in an atomic-cooling halo, which

is calculated by Omukai, Schneider & Haiman (2008) using a one-zone model. In Figure 3.1, the red

solid line depicts their exact solution and the red dashed line portrays the piecewise approximation

used in our simulations. The five individual components of the approximation are distinguished

by the index k as shown in Table 3.1. For each component k, Table 3.1 also shows the values of

the associated polytrope indices γk and the mass and number densities, ρc,k and nc,k, at which the

transitions between k and k + 1 occurs (red dots in Figure 3.1). We note that when k = 1 the

product term in (3.1) is unity, and the pressure reduces to P1 = Kργ1 . Moreover, K is approximately

equal to c2s = RT/µ where cs is the sound speed, because γ1 = 0.965 ≈ 1.0.

The form of the barotropic relation is modified in our simulations as

Pk = KΣγk

k−1∏
i=1

Σ
γi−γi+1

c,i for Σc,k−1 ≤ Σ < Σc,k, (3.2)

where P is the vertically integrated gas pressure. The transition surface density is related to the

transition volume density through the instantaneous local scale height Z at each location in the

disk by Σc,i = 2Zρc,i. We calculate the scale height Z assuming a local hydrostatic balance in the

gravitational field of both the star and the disk (Appendix A of Vorobyov & Basu 2009).



31 3.2 Numerical model

102

103

104

105

106

105 1010 1015 1020

T
em

p
er
at
ur
e
[
K

]

Number density [ cm−3 ]

Direct collapse
Normal Pop III

Fig. 3.1 The temperature evolution of collapsing primordial gas as a function of the hydro-
gen number density. The red line represents the evolution of gas irradiated by a strong UV
background radiation corresponding to the direct collapse case (fig.5a of Omukai, Schneider &
Haiman 2008: [M/H] = −6). The red dashed line depicts the approximate piecewise polytropic
fit used in our simulations. The blue line represents the evolution of metal-free gas without
UV background (Omukai et al. 2005). This figure is reproduced from Sakurai et al. (2016).

Table 3.1 Parameters of the barotropic relation. This table is taken from Sakurai et al. (2016).

k γi ρc,i nc,i

(g cm−3) (cm−3)

1 0.965 3.38×10−10 8.92×1013

2 1.002 8.037×10−8 2.12×1016

3 1.456 7.089×10−7 1.87×1017

4 1.269 3.673×10−4 9.69×1019

5 1.614 — —

The profiles of the initial gas surface density Σ and angular velocity Ω are

Σ =
r0Σ0√
r2 + r20

, (3.3)

Ω = 2Ω0

(r0
r

)2 √1 +

(
r

r0

)2

− 1

 . (3.4)
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The radial profile of Σ is an integrated form of a Bonnor-Ebert sphere. The profile of Ω is the expected

differential rotation profile to accompany equation (3.3) (Basu 1997). We use the parameters of the

central angular velocity Ω0 = 7.22 km s−1 pc−1, the central gas surface density Σ0 = 7.63 g cm−2

and the radius of a central density plateau r0 = 0.154 pc. They are chosen so that a gravitationally

unstable core has the initial mass Mc = 26240 M⊙ and the ratio of rotational to gravitational energy

β = 1.96× 10−2. Although the initial cloud mass is lower than that assumed for the direct collapse

model where a SMS exceeding 105 M⊙ may ultimately form, the mass is sufficient to follow the

protostellar evolution for the first ∼ 105 yr.

The numerical simulations are run on a grid of a polar coordinate (r, ϕ) with 512 × 512 spatial

zones. The radial points are logarithmically spaced to increase a numerical resolution of the inner

grid, where the disk forms and evolves. The innermost cell outside the central sink cell has a radius

Rsc + 1.6 AU. The radial and azimuthal resolutions are ∼ 14 AU at a radius of r = 1000 AU and

∼ 70 AU at r = 5000 AU. These resolutions are sufficient to fulfill the Truelove criterion which

describes that the local Jeans length must be resolved with at least four numerical cells (Truelove

et al. 1997). For a thin self-gravitating disk, the Jeans length can be written as (Vorobyov, DeSouza

& Basu 2013)

RJ =
cs

2

GΣ
. (3.5)

With the mean surface density of Σ ≃ 500 g cm−2 and the mean temperature T ≃ 7500 K, which

are typical for our disk at r = 1000− 5000 AU, the Jeans length is RJ ≃ 550 AU and is resolved by

∼ 40 grid zones at r = 1000 AU and ∼ 8 grid zones at r = 5000 AU in each direction (r, ϕ).

3.2.2 Stellar evolution calculations

We use a stellar evolution code STELLAR which is originally developed by Yorke & Bodenheimer

(2008) and is used in the study of Chapter 2. Since we have described the detail of the code in

Section 2.2.1, here we briefly explain the main features of the code.

In the code, the basic equations of stellar evolution are solved with effects of mass accretion.

We consider nuclear reactions up to helium burning (3α and {CNO}+He). Energy transport by

convection is modeled by a mixing length theory.

We use a gray atmosphere boundary condition for the stellar surface layer where accreted gas

accumulates. The accreted gas mass Ṁ∗∆t is added to the outermost grid cell in each time step,

where Ṁ∗ is the accretion rate and ∆t is the time step of the calculation. Physical quantities of

the accreted gas are assumed to be the same as those of the outermost grid point. This treatment

approximates an extreme case in which accreting gas has time to adjust thermally to the stellar

surface and slowly lands on to the star. This is not always the case, however, because the gas can

accrete with more thermal energy. The additional energy is taken into account by parametrizing the

fraction of accretion luminosity deposited in the stellar surface layer,

η ≡ L∗,acc

Lacc
= L∗,acc

(
GM∗Ṁ∗

R∗

)−1

, (3.6)

where L∗,acc is the part of the accretion luminosity which directly contributes to the stellar luminosity

and affects the stellar internal structure. As shown in Hosokawa et al. (2013), the parameter η has a

minor effect on stellar evolution for high accretion rates ≳ 0.1 M⊙ yr−1 except the earliest accretion

phases. We choose η = 0.1 in our calculations.
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As the initial condition, we set a polytrope star of 2 M⊙ with a polytropic index n = 1.5, which

approximates a fully convective star. Before calculation of stellar mass growth, we first relax the

polytrope star to a fully converged stellar model. The stellar composition is set to be pristine with

X = 0.72 and Y = 0.28. The accretion history is taken from the 2D hydrodynamical simulation of

Section 3.2.1.

3.3 Results

3.3.1 Episodic accretion with self-gravitating disks

We describe the evolution of a circumstellar disk which forms as a result of the gravitational collapse

of the massive primordial core. Figure 3.2 shows the time evolution of the gas surface density in

the inner 20000× 20000 AU2 box. The total simulation box is about 100 times larger in area than

displayed in Figure 3.2. The time shown in each panel is the elapsed time since the formation of

the star which is schematically denoted by the red circles at the center. Evidently, the disk around

the star is strongly gravitationally unstable and quickly forms giant spiral arcs. Within the arcs,

gravitationally bound and pressure supported clumps form via fragmentation due to the gravitational

instability.

We analyze the properties of the fragments in a post-process manner, using the method described

in Vorobyov, DeSouza & Basu (2013). The algorithm is based on two conditions. The first one is

that the fragment must be pressure supported with a negative pressure gradient with respect to the

fragment center. The second condition dictates that the fragment must be held together by gravity,

with a positive gradient of the gravitational potential from the fragment center where the potential

well is deepest.

The top panel of Figure 3.3 shows the time evolution of the number of fragments in the disk. The

number of fragments increases with time from a few tens just after the formation of the central star

to more than a hundred by the end of the simulations. The increase is not steady but is characterized

by both rises and drops, which implies that the fragments can be both created and lost. One of the

loss channels is accretion of the fragments on to the star. The accretion occurs when the fragments

lose the angular momentum due to gravitational interaction with other fragments and spiral arcs

(e.g., Vorobyov, DeSouza & Basu 2013). Such accretion of the fragments causes the strong increase

of the accretion rate featuring the episodic accretion.

The number of fragments and their formation rate is roughly 10 times greater than those for the

normal Pop III case. The increase of the number of fragments is attributed to the specific density-

temperature relation typical for the direct collapse case. The red line in Figure 3.1 demonstrates

that there is a wide range of gas densities ≲ 1016 cm−3 for which the gas temperature decreases

with increase of the density. A density increase by any compression therefore leads to a temperature

decrease which promotes further compression and ultimately fragmentation.

The bottom panel of Figure 3.3 represents the normalized distribution function of fragment masses.

The distribution is calculated using all fragments identified in the top panel. Since the time interval

of sampling in the top panel is 500 yr, some long-lived fragments are duplicated and the distribution

function is accordingly skewed. The fragments have various masses from a sub-solar mass to several

hundred solar masses.

In our simulations, some of the fragments may be ejected out of the disk by multibody interactions.

Several candidates of the escaping fragments are highlighted in Figure 3.2 by the yellow circles.

Provided that they can acquire sufficient velocities to escape the gravitational pull of the star and
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Fig. 3.2 Gas surface density of the disk around the rapidly growing protostar in the inner
20000 × 20000 AU2 box. The star is schematically denoted as red circles in the center. The
elapsed time from the formation of the star is shown in each panel. The yellow circles indicate
the fragments which are ejected from the disk. The color bar shows dex values of the surface
density in g cm−2. This figure is reproduced from Sakurai et al. (2016).
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Fig. 3.3 Top: the number of fragments in the disk as a function of the elapsed time from
the formation of the central protostar. Bottom: the distribution function of masses of the
fragments at all times. This figure is reproduced from Sakurai et al. (2016).
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disk system, they will become freely-floating primordial stars.

We compare the variable accretion histories for the direct collapse case with that for the normal

Pop III case, focusing on the duration of quiescent phases of accretion ∆tq. We define the quiescent

phases for the direct collapse case as phases when the accretion rate is below the critical rate

0.04 M⊙ yr−1 above which the star becomes ‘supergiant’ (Section 1.2.1). For the normal Pop III

case, the quiescent phases are defined as phases when the accretion rate falls below one tenth of

the average value. The definition is analogous to that for the direct collapse case since the critical

accretion rate 0.04 M⊙ yr−1 is ∼ 0.1× the average accretion rate for the direct collapse case.

In Figure 3.4, we show the evolution of the accretion histories for the direct collapse case (top

panel) and for the Pop III case (bottom panel) by the blue lines, with the threshold accretion rate

Ṁth below which the accretion is deemed quiescent (black dashed line). For each panel, we also

show the time-averaged accretion histories with smoothing bins of ∆tbin = 1000 and 100 yr (red

and green lines). When averaging over ∆tbin, all variations shorter than ∆tbin are blurred. Thus, if

the accretion rate averaged over ∆tbin exceeds the threshold rate Ṁth, the duration of the quiescent

phase ∆tq is less than ∆tbin. For the direct collapse case, the typical duration of the quiescent

phases is much smaller than 1000 yr in the early phase ≲ 0.06 Myr, since the red line never falls

below the black line and the green line seldom drops below it. The relatively long quiescent phases

of ∆tq ∼ 1000 yr only appear in the late evolutionary stages ≳ 0.06 Myr, due to gradual depletion

of the envelope mass and associated weakening of fragmentation in the disk. In contrast, for the

Pop III case the quiescent phases are much longer ∆tq ≳ 103 yr until the end of the simulation.

We attribute the difference of ∆tq to the difference of the time intervals of disk fragmentation.

Since the disk in the direct collapse case is more unstable than that in the normal Pop III case,

the disk fragmentation is also more efficient and the infalling rate of fragments is greater, resulting

in the shorter duration of the quiescent phases. To see the difference of the disk gravitational

stability, we use the Toomre Q parameter (Toomre 1964) which is an estimator of the gravitational

instability. The Q parameter for the accretion stage of star formation is approximately given by

Q ∼ O(0.1 − 1) × (Tdisk/Tenv)
3/2 (see equation 19 of Tanaka & Omukai 2014), where Tdisk and

Tenv are temperatures of the disk and surrounding envelope. We can see that the disk is more

gravitationally unstable at a smaller Q value when Tdisk is smaller than Tenv. As is surmised from

Figure 3.1, such a temperature imbalance can occur for the direct collapse case if the number density

is ≲ 1016 cm−3. In our 2D simulation, the number density at the boundary between the disk and

envelope is ∼ 106 to 109 cm−3 and Tdisk is slightly smaller than Tenv. By contrast, the imbalance

of the temperature is opposite for the normal Pop III case, where the temperature is an increasing

function of the number density for ≳ 105 cm−3. The disk in this case is thus less unstable, which

explains the longer duration of the quiescent phases ∆tq.

In Figure 3.5, we present the azimuthally averaged gas surface density and volume density as a

function of radial distance from the star for two evolutionary times at 10 and 60 kyr. Whereas low

mass fragments and spiral arcs are smoothed out by azimuthal averaging, the existence of massive

fragments is apparent by the multiple peaks in the density distributions. The black circles indicate

the position of the disk outer edge which is defined visually assuming that fragments form within the

disk and not within the infalling parental core. We note that the application of a more sophisticated

disk tracking method (Dunham, Vorobyov & Arce 2014) is difficult for the highly unstable and

fragmenting disk. The black dotted lines are the least-square fits to the surface density profiles. The

corresponding relations at 10 and 60 kyr by g cm−2 are

Σ = 106.7±0.2
( r

AU

)−1.4±0.06

, (3.7)
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Fig. 3.4 Top: the accretion history for the direct collapse case in the 2D simulation. The
time is the elapsed time from the formation of the protostar. The blue line represents the
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Fig. 3.5 Azimuthally averaged gas surface and volume density profiles (red and black lines)
at two evolutionary times after the formation of the star. The black circles represent the
position of the disk outer edge. The black dotted lines show the least-square fits to the gas
surface density profiles, which follow approximately a power law relation of r−1.5. The blue
lines denote the local aspect ratio of the disk. The outside regions of the disk are depicted by
the dashed lines. This figure is reproduced from Sakurai et al. (2016).

Σ = 107.4±0.1
( r

AU

)−1.5±0.02

. (3.8)

The surface density profiles follow approximately a power law relation r−1.5 which is typical for

self-gravitating disks around Pop III stars. The blue lines represent the ratio of disk vertical scale

height to distance from the central star. This quantity apparently stays well below unity everywhere

in the disk, justifying the assumption of the thin-disk approximation.
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3.3.2 Stellar evolution via episodic mass accretion

We here consider the evolution of the central protostar via the variable mass accretion history

obtained in the 2D hydrodynamical simulation (Section 3.3.1). The top panel of Figure 3.4 shows

the accretion rate (blue line) used in the stellar evolution calculation. The mean accretion rate is

0.1−0.3 M⊙ yr−1, which is expected for the direct collapse model. The top panel of Figure 3.6 shows

the evolution of the stellar mass and the stellar radius. Despite the frequent drops of the accretion

rate below the critical rate 0.04 M⊙ yr−1, which could in principle allow stellar contraction, the

protostellar radius increases almost monotonically until the end of the computation. The stellar

radius finally reaches 100 AU which is only slightly below the sink radius 110 AU. We show in the

bottom panel of Figure 3.6 the evolution of ionizing photon emissivity. We find that the ionizing

photon emissivity remains insufficient for creating an H ii region, since the effective temperature is

fixed to ∼ 5000 K which is too low to ionize gas. The temperature ∼ 5000 K is determined due to

the very sensitive temperature dependence of the H− opacity. Overall, the evolution is similar to

that with constant accretion rates of ≳ 0.1 M⊙ yr−1 (black dashed line in Figure 2.1).

The absence of stellar contraction during the quiescent phases in our current simulation is at-

tributed to long thermal time compared to the length of the quiescent phases ∆tq. In Chapter 2,

we have found that, in order for the protostar to circumvent stellar contraction and remain to be

supergiant, the length of quiescent phases ∆tq has to be shorter than the surface KH time tKH,surf

of equation (2.9). The surface KH timescale tKH,surf is used instead of the usual global definition

tKH = GM2
∗/R∗L∗, because mass distribution of the bloated protostar is highly inhomogeneous,

namely, only a surface layer with a very small fraction of the total mass inflates to cover most of the

stellar radius. (see Section 2.3.2.1 and Figures 2.5 and 2.6). The surface KH time is approximately

written as

tKH,surf ≃ 10tKH ≃ 1000 yr

(
M∗

500 M⊙

)1/2

. (3.9)

Since the length of the quiescent phases in our simulation ∆tq is shorter than this time scale tKH,surf

in all epoch, the bloated surface layer does not have enough time to commence contraction by

radiating away thermal energy. Even for the late evolutionary stage ≳ 0.06 Myr when the quiescent

phases has long duration of ∆tq ∼ 103 yr, the star does not contract because tKH,surf increases to

≳ 1000 yr with growth of the stellar mass.

To evaluate the strength of UV feedback, a critical value of ionizing photon emissivity Smin =

Ṁ/µmH is used (see Section 2.4.1), which is the value to ionize once all of the atoms accreting on

to the star. Smin is the lower limit to form an H ii region in spherical geometry since, in reality,

additional UV photons are necessary to ionize recombined atoms. Although a H ii region could

expand into the polar directions from which little mass accretion occurs, the very low UV flux

ensures that the envelope will be hardly affected by ionization. In the bottom panel of Figure 3.6,

we also show the evolution of Smin, for which the averaged accretion history with ∆tbin = 1000 yr is

used. The UV emissivity is always much smaller than Smin and thus no significant H ii region will

emerge to halt the mass accretion.

3.4 Conclusion and Discussion

We have studied the evolution of a growing SMS via variable mass accretion caused by a self-

gravitating circumstellar disk. The 2D hydrodynamical simulation gives evidence of strong dynamic
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features of the disk and stellar accretion; fragmentation easily occurs in the disk and the fragments

then migrate inward to fall on to the star. The obtained accretion history is highly time-dependent,

presenting a number of short accretion bursts followed by somewhat longer quiescent phases. De-

spite the high variability of the accretion rate, the stellar evolution resembles that for the constant

accretion case, namely, the stellar radius monotonically increases with the growth of the stellar mass.

The effective temperature keeps almost constant at ≃ 5000 K, at which the star emits the negligible

amount of UV photons. The KH contraction during the quiescent accretion phases does not occur

because their duration is short ∆tq ≲ 1000 yr. The duration is shorter than the local KH time scale

for the inflating stellar surface layer of equation (3.9). In this situation, the surface layer can only

insufficiently radiate away thermal energy during the short quiescent phases and thus the star does

not commence the stellar contraction to leave the supergiant protostar stage.

3.4.1 Caveats to the numerical treatments

In the current work, we have simulated the evolution until the stellar mass reaches ≃ 1.6× 104 M⊙

(top panel of Figure 3.6). The final mass is limited by our adopted initial conditions, in particular,

the limited cloud mass of ≃ 2.6× 104 M⊙. We could simulate a longer evolution up to higher stellar

masses by assuming a higher initial cloud mass. We nevertheless focus on capturing variability

during the early evolutionary stages of protostellar accretion, because the surface KH time scale is

shorter when the stellar mass is low, tKH,surf ∼ 103 yr(M∗/10
3 M⊙)

1/2.

We note that with the adopted sink size 110 AU, the disk first appears only after the stelar mass

reaches ≃ 1000 M⊙. A test case with a 70 AU sink shows that the disk and resulting variability of

the accretion appear earlier from M∗ ≃ 700 M⊙, at which ∆tq is still lower than 100 yr as in the

case with a sink size 110 AU. Thus, we do not currently expect stellar contraction to occur in the

early evolutionary stages, a fact which needs to be checked by further simulations. Note that the

smaller sink has not beed adopted because the SMS radius is as large as ≳ 100 AU and would soon

exceed the sink size.

The top panel of Figure 3.4 shows that the length of some quiescent phases becomes longer for

≳ 0.06 Myr due to gradual depletion of the accretion envelope, i.e., stabilization of the disk. For

more realistic cases, where significantly more massive clouds form in atomic-cooling halos, the mass

depletion would be postponed to even later evolutionary times.

We note possible dimensional effects in a realistic three-dimensional disk. Fragments which form

in a 3D disk can interact with the central star and other fragments in a complex manner. Unlike in

our 2D simulation where fragments simply move either inward or outward, dynamical interactions of

fragments would induce more stochastic mass accretion. However, the resulting dynamics in our 2D

simulation is overall consistent with that in 3D simulations, where most fragments migrate towards

the star (Cha & Nayakshin 2011, Machida, Inutsuka & Matsumoto 2011, Greif et al. 2012). It will be

necessary to perform three dimensional simulations to study explicitly the impact of fragmentation

to SMS formation.

3.4.2 Analytical estimation of the length of quiescent phases

In order to examine whether ∆tq is sufficiently short for all evolutionary stages to suppress stellar

contraction, we analytically estimate the duration of quiescent phases ∆tq. We expect that ∆tq is

controlled by two time scales: a fragmentation time scale tfrag and a migration time scale tmig. The

former is the time scale for a fragment to form in a gravitationally unstable disk. The latter is the

time scale for a newly formed fragment to migrate inward to fall on to the central star. If tfrag < tmig,
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the length of quiescent phases will be typically in the range tfrag ≲ ∆tq ≲ tfrag + tmig ∼ tmig. In

this case, there would be many fragments in the disk. The minimum duration time will be realized

when fragments form at regular time intervals and migrate successively. Conversely, if tfrag > tmig,

the length will be ∆tq ∼ tfrag + tmig ∼ tfrag.

We estimate the fragmentation time using the maximum growth rate ωmax of gravitational insta-

bility in a linear theory (Shu 1992),

tfrag =
2π

ωmax
=

2π

Ω
√

1−Q2
∼ 2π

Ω
, (3.10)

where Ω is the angular velocity and Q is the Toomre parameter. The rate ωmax is the rate for the

wavenumber kmax = Ω2/πGΣ. In the last term, Q is assumed to be sufficiently small. For tmig, since

fragments lose their angular momentum through the interaction with spiral arms in the simulation,

we use the so-called Type I migration time scale (Tanaka, Takeuchi &Ward 2002, Inayoshi & Haiman

2014),

tmig =
1

4qCµ

(
H

r

)2
2π

Ω
, (3.11)

where q = Mf/M∗, C = 1.160 + 2.828α ∼ 5.402, µ = πΣr2/M∗, H = cs/Ω, Mf is a fragment mass,

α ≃ 1.5 is a power index of the surface density (see Figure 3.2). The mass of fragments is estimated

to be

Mf = πλ2
maxΣ, (3.12)

where λmax = 2π/kmax.

To assess the two time scales, we assume Ω ∼ 0.5ΩKep which is the value found in our simulation,

where ΩKep ∼
√
GM(< r)/r3 is the Kepler angular velocity and M(< r) is the enclosed mass,

M(< r) = M∗ +

∫ r

r0

Σ2πrdr. (3.13)

The lower limit of the integration r0 is the adopted sink radius 110 AU. We use Σ = Σ0(r/r0)
−1.5,

where Σ0 is the surface density at r0. In the disk regions, M(< r) ≃ M∗ according to our simulation

and thus the fragment mass and the two time scales are

Mf = 14 M⊙

(
Σ0

104 g cm−2

)3(
M∗

104 M⊙

)−2 ( r

103 AU

)3/2
, (3.14)

tfrag = 6.3× 102 yr

(
M∗

104 M⊙

)−1/2 ( r

103 AU

)3/2
, (3.15)

tmig = 2.2× 104 yr

(
Σ0

104 g cm−2

)−4(
T

8000 K

)(
M∗

104 M⊙

)5/2 ( r

103 AU

)1/2
. (3.16)

The fragment mass of equation (3.14) is in good agreement with the typical mass 1−10 M⊙ (bottom

panel ofFigure 3.3).

Since we get the specific formulae of the two time scales, we can now estimate the duration of

quiescent phases ∆tq, which is assessed within the disk r < rdisk where fragmentation occurs. For

r <≲ rdisk, we find that tfrag ≲ tmig at least at 10 kyr and 60 kyr. If we assume that tfrag < tmig

is always realized in the disk, the minimum length of quiescent phases ∆tq,min will be comparable

to tfrag. For the early evolutionary stages of M∗ ≲ 104 M⊙ and r ≲ rdisk, we see ∆tq,min ∼ tfrag ≲
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103 yr, which is consistent with our rough estimate of ∆tq in Section 3.3.1. For M∗ ≳ 104 M⊙, ∆tq

can become even shorter since tfrag ∝ M
−1/2
∗ , if the disk continues to be unstable with an ample gas

supply and the assumption of Q ≪ 1 is valid in equation (3.10). Although the gas supply becomes

limited for M∗ ≳ 104 M⊙ in our simulation, it would be ample if we use a more realistic heavier

initial cloud. Overall, we expect that ∆tq ≲ 103 yr ≲ tKH,surf and there will be no significant stellar

contraction for any SMS mass, until the stellar mass reaches ∼ 105 M⊙. At this point, the SMS is

expected to collapse and leave a massive BH via general relativistic instability.

3.4.3 Stellar evolution of fragments and UV feedback

It is often suspected that fragments which form in the disk may become zero-age main sequence

(ZAMS) stars before destruction. The ZAMS stars will emit UV photons and UV feedback can

occur.

Several studies consider fragmentation and clump migration in a disk around a SMS by using

analytical models (Lodato & Natarajan 2006, Inayoshi & Haiman 2014, Latif & Schleicher 2015).

Inayoshi & Haiman (2014) and Latif & Schleicher (2015) show that fragments fall on to the central

star before they become ZAMS stars when M∗ ≲ 104 M⊙. The rapid fall is attributed to the shorter

migration time scale than the KH time scale of the fragments tKH = GM2
f /RfLf , where Rf and

Lf are a radius and luminosity of fragments. Conversely, for M∗ ≳ 104 M⊙, the groups argue that

fragments can become ZAMS stars.

Following the previous works, we discuss whether UV feedback from fragments is plausible. We

first estimate the KH time scale of the fragments. As seen in figure 4 of Hosokawa & Omukai (2009a),

if the accretion rate of fragments Ṁf ≲ 10−2 M⊙ yr−1, the KH time scale tKH is comparable to or

larger than an accretion time scale tacc = Mf/Ṁf before the fragment reaches ZAMS. The lower

limit of KH time is then estimated by the accretion time scale tacc (Inayoshi & Haiman 2014)

tKH ≳ tacc ∼ 104 yr

(
Mf

30 M⊙

)(
Ṁf

0.003 M⊙ yr−1

)−1

. (3.17)

The accretion rate of fragments Ṁf is

Ṁf =
3

2
ΣΩ(fHRH)

2, (3.18)

where RH = r(Mf/3M∗)
1/3 is the Hill radius and the factor fH is O(1) (Goodman & Tan 2004).

With fH = 1, the approximate form is derived

Ṁf = 3.6× 10−3 M⊙ yr−1

(
Σ0

104 g cm−2

)3(
M∗

104 M⊙

)−3/2

. (3.19)

Using equations (3.14) and (3.19), the KH time in equation (3.17) becomes

tKH ≳ 3.9× 103 yr
( r

103 AU

)3/2( M∗

104 M⊙

)−1/2

. (3.20)

The ratio of tmig to tKH is then calculated

tmig

tKH
≲ 5.7

(
Σ0

104 g cm−2

)−4(
M∗

104 M⊙

)3 ( r

103 AU

)−1
(

T

8000 K

)
. (3.21)
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We can see that the migration time tmig becomes smaller than tKH when M∗ ≲ 104 M⊙. This

discussion is roughly consistent with the models of the other groups: for M∗ ≲ 104 M⊙, UV feedback

from fragments will be ineffective. There are, however, other mechanisms to be considered in order

to examine the fate of the fragments. For such mechanisms, there are tidal disruption of fragments

by the central star, interactions between fragments and possibly ejection. To assess the effect of UV

feedback from fragments more correctly, 3D simulations including radiation are necessary in future

studies.



Chapter 4

Black hole growth via hyper-Eddington

accretion under super-Eddington luminosity

4.1 Overview

We perform 1D radiation hydrodynamical simulations in order to solve accretion flows on to mas-

sive black holes (BHs) with a high rate. By assuming that photon trapping limits luminosity

emerging from the central region to L ≤ LEdd, a previous work of Inayoshi, Haiman & Ostriker

(2016) (hereafter IHO16) has shown that an accretion flow settles to a ‘hyper-Eddington’ solution,

which is a steady and isothermal (T ≃ 8000K) Bondi profile with ≳ 5000 times the Eddington

accretion rate ṀEdd ≡ LEdd/c
2. In this work, we address the possibility that accreting gas with

finite angular momentum forms a bright nuclear accretion disk, with super-Eddington luminosity

(1 ≲ L/LEdd ≲ 100). Combining our simulations with an analytical model, we show that a tran-

sition to steady hyper-Eddington accretion still occurs, as long as the emerging luminosity keeps

L/LEdd ≲ 35(MBH/10
4 M⊙)

3/2(n∞/105 cm−3)(T∞/104 K)−3/2(r⋆/10
14 cm)−1/2, where n∞ and T∞

are the ambient gas density and temperature, and r⋆ is the photosphere radius, at which radiation

emerges. When the luminosity exceeds this value, mass accretion becomes episodic. Our results

can be recovered in a toy model of an optically thick spherical shell, which is driven by radiation

force into a collapsing medium. If the central source is dimmer than the above critical value, the

shell expansion is halted and reversed by ram pressure of the collapsing medium plus shell gravity.

Our results show that rapid unimpeded hyper-Eddington accretion is possible even if luminosity

emerging from the central source far exceeds the Eddington limit, and that the accretion can be

either steady or strongly episodic.

4.2 Simulation method

4.2.1 Setup of the simulations

We solve structures of spherical accretion flows on to a BH of mass MBH by performing 1D hydro-

dynamical simulations which include radiative processes. Figure 4.1 represents important physical

scales of the gas structure. The Bondi radius is

RB =
GMBH

c2∞
= 1.98× 1018 cm MBH,4T

−1
∞,4, (4.1)
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Fig. 4.1 Schematic picture of a spherically symmetric accretion flow on to a BH at a hyper-
Eddington rate. The positions of the trapping radius Rtr, the photosphere Rph and the Bondi
radius RB are represented. Our simulations solve the structure of the accretion flow between
rmin(≃ 10−3 RB) ≲ r ≲ 10RB. This figure is reproduced from Sakurai, Inayoshi & Haiman
(2016).

within which the BH gravity overcomes the gas pressure and accretion begins. In this equations,

c∞ =
√

kBT∞
µmp

and T∞ are a sound speed and gas temperature of ambient gas with the molecular

weight for neutral gas µ = 1.23. We use the normalizations of MBH,4 ≡ MBH/10
4 M⊙ and T∞,4 ≡

T∞/104 K. A photosphere forms at Rph ∼ 1014−15 cm (IHO16). The trapping radius is

Rtr =
κesṀ

4πc
= 1.48× 1012 cm MBH,4ṁ3, (4.2)

where κes is the electron scattering opacity and Ṁ is a mass accretion rate. We use the normalization

ṁ3 ≡ (Ṁ/ṀEdd)/10
3, where ṀEdd ≡ LEdd/c

2 and LEdd ≡ 4πGMBHµempc/σT are the Eddington

accretion rate and Eddington luminosity.

It is desirable to resolve all these radii in the simulation to determine the structure of the flow

self-consistently. This is, however, computationally prohibitive even with a logarithmically spaced

grid, because both Rtr and Rph are smaller than RB by four-five orders of magnitude (see IHO16).

In our simulations, therefore, we focus on the region between 10−3 RB ≲ r ≲ 10RB, and examine

whether hyper-Eddington accretion is realized without being impeded by radiation feedback. In this

case, our simulation domain does not extend down to Rtr and Rph. Instead of resolving the small

scales, we set the emergent luminosity from the inner region by hand, employing several different

models of the radiation efficiency, where super-Eddington luminosity is allowed. Note that in this

work, we simply assume that the disk is small enough to be embedded well within the innermost

radius of the simulation box, from which radiation with L > LEdd emerges.
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4.2.2 Basic equations and numerical schemes

We use the hydrodynamical simulation code ZEUS (Stone & Norman 1992) in order to follow gas

dynamics around a BH. For the spherically symmetric case, the continuity equation is

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρv) = 0, (4.3)

and the equation of motion is

ρ

(
∂v

∂t
+ v

∂v

∂r

)
= −∂p

∂r
− ρ

∂Φ

∂r
+ frad, (4.4)

where ρ is gas density, v is velocity of the flow, p is gas pressure, Φ is gravitational potential of the

BH and frad is radiation force per volume. The gas pressure is assumed to be given by the equation

of state p = (γ−1)ρe, where γ = 5/3 and e is specific energy density. We adopt a general relativistic

correction for the gravitational potential for completeness, Φ = −GMBH/(r−RSch), although these

corrections are practically negligible in our simulation domain. The energy equation is

ρ

(
∂e

∂t
+ v

∂e

∂r

)
= −p

1

r2
∂

∂r
(r2v)− Λ + Γ, (4.5)

where Λ is a cooling rate and Γ is a heating rate. The cooling rate Λ includes effects of collisional

excitation of H, He, He+ atoms and by the H free-free emission (Glover & Jappsen 2007):

Λ = ΛH + ΛHe + ΛHe+ + Λff . (4.6)

Equation (4.5) is solved by an implicit method to stabilize the calculation (Anninos et al. 1997).

We treat a chemical reaction network composed of the six primordial species H, H+, He, He+,

He++ and e−. We set the number abundance of He nuclei relative to H nuclei to 8.33 × 10−2. We

include the chemical reactions of photoionization, collisional ionization and radiative recombination

of H, He and He+. The on-the-spot approximation is adopted, i.e., recombination photons are

quickly absorbed as ionizing photons and recombinations to the ground state are ignored. The

case B recombination coefficient is used. We solve the chemical reactions for the six species with a

semi-implicit formulation (Anninos et al. 1997). The electron fraction is derived according to charge

conservation.

The time step in the simulations is set to the minimum value among the Courant time, cooling

time, and chemical time, following Whalen & Norman (2006). The Courant number is set to be less

than 0.5. We set the cooling time and chemical time to the minimum value of

tcool ≡ 0.1
ρe

|Λ− Γ|
, (4.7)

tchem ≡ 0.01
xe + 0.001xH

ẋe
, (4.8)

on the simulation grid, where xe and xH are electron and neutral hydrogen number fractions, re-

spectively.

We solve the steady and spherically symmetric radiation transfer equations to compute the radi-

ation force, the heating rates and photoionization rates. The assumption of steady states is valid
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because the cloud crossing time of photons ∼ τr/c is much shorter than the time step of the simu-

lations. The transfer equation is

1

r2
d

dr
(r2Fν) = 4πην − ρκνcEν , (4.9)

where Fν is radiation flux, ην is emissivity, κν is opacity and Eν is radiation energy density. The gas

is optically thin against photons within ionized regions and thus in those regions we approximate

Fν ≈ cEν .

We calculate the photoionization rates ki and the heating rates Γi (i =H, He, He+) in a photon-

conserving manner (Whalen & Norman 2006)

ki =

∫
νi

4πĴν
hν

σidν, (4.10)

Γi = ni

∫
νi

4πĴν
hν

σiEheat,idν, (4.11)

where Ĵν is average intensity calculated to conserve the number of photons at each simulation grid,

σi is a cross section for bound-free absorption of ionizing photons, νi is ionization energy, and

Eheat,i = h(ν − νi) is excess energy of a photo-electron available for heating. We compute the

radiation force due to electron scattering and bound-free transitions by

frad,i =
ne

c

∫
σTFνdν +

Γ

c
. (4.12)

We specify the radiation flux entering the simulation domain at its inner boundary by hand as

follows. A radiation spectrum is assumed to be a power law of

Fν,in ∝
(

ν

νmin

)−α

(νmin ≤ ν ≤ νmax), (4.13)

where hνmin = 13.6 eV is the ionization energy of neutral hydrogen and hνmax ∼ 30 keV is the

maximum cut-off energy. We set the power-law index to α = 1.5 (see IHO16). The normalization of

the radiation flux is calculated by L = ηṀc2, where Ṁ is the mass flux through the innermost grid,

η is radiative efficiency, and L is bolometric luminosity. We employ a simple model of the efficiency

which mimics the photon trapping effect for a high accretion rate ṁ ≡ Ṁ/ṀEdd ≫ 1 as

ηfEdd
≡ 1

10 + ṁ/fEdd
, (4.14)

where fEdd ≡ Lmax/LEdd with Lmax being the maximum luminosity for ṁ → ∞. As an illustration,

in Figure 4.2 we represent the model luminosity as a function of ṁ using equation (4.14). In this

model, the efficiency becomes a constant at η ≃ 0.1 for low ṁ, while η → fEdd/ṁ for high ṁ.

Since the accretion rates in our simulations do not decrease below ṁ ≈ 10−3, the critical value at

which a transition to an advection-dominated accretion flow (ADAF) would be expected (Ichimaru

1977, Narayan & Yi 1994), we do not consider an ADAF. Note that IHO16 considered only the

case of fEdd = 1, where the luminosity never exceeds the Eddington luminosity. We here relax their

assumption and allow super-Eddington luminosities.

In addition to the models of the radiative efficiency in equation (4.14), we also consider a more

realistic model of the efficiency which asymptotically approaches a logarithmic form for high ṁ and
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better describes the well-known behavior of the slim disk (Watarai et al. 2000),

ηlog =


0.1 (ṁ < 20)

2

ṁ

[
1 + ln

(
ṁ

20

)]
(ṁ > 20).

(4.15)

The prescription is motivated by simulations with ṁ ≫ 1, which show that photon trapping do

not totally suppress the luminosity emerging from the central region (Jiang, Stone & Davis 2014,

Sa̧dowski et al. 2014).

Spherical coordinates are set with a logarithmically spaced grid in the radial direction. We set the

positions of the inner and outer boundary to rmin and rmax. The i-th grid is written as ri = rmin +

∆r0(ϵ
i−1−1)/(ϵ−1), where ∆r0 is a size of the inner-most grid and ϵ = ∆ri+1/∆ri is a ratio between

consecutive grids. With the given number of the grid cells N , ∆r0 = (rmax − rmin)(ϵ− 1)/(ϵN − 1).

In this work, we set N = 700, ϵ1.01, rmin ∼ 10−3 RB and rmax = 5000 rmin in order to calculate

dynamics of gas accretion from outside the Bondi radius with sufficient resolution.

The ‘outflow’ boundary condition (BC) is adopted at the innermost grid (Stone & Norman 1992).

In this BC, the innermost velocity v(rmin) is normally set to v(rmin +∆r0) to circumvent spurious

reflection of wave energy at the boundary. However, when L > LEdd, using this BC artificially

underestimates effect of radiation force on the innermost shell. This is because the velocity at rmin,
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wherein the infalling gas would be significantly decelerated by radiation, is replaced by the velocity

at rmin + ∆r0, wherein deceleration is inefficient since radiation is partially absorbed by gas at

rmin before reaching rmin + ∆r0. To avoid this underestimate, we adopt an alternative inner BC:

v(rmin +∆r0) is set to v(rmin) for L > LEdd.

4.3 Results of the simulations

Figure 4.3 shows time evolution of accretion rates for several models with the radiative efficiency ηfEdd

(fEdd = 1, 2, 10 and 30, solid lines) and ηlog (dashed lines). The BH mass is set toMBH = 2×104 M⊙,

and an initially static neutral uniform gas is adopted with n∞ = 105 cm−3 and T∞ = 104 K. The

dotted line represents the evolution with no radiation, the accretion rate approaching the Bondi

rate,
ṀB

ṀEdd

= 7.3× 103 MBH,4n∞,5T
−3/2
∞,4 , (4.16)

where the Bondi rate is estimated for the isothermal case,

ṀB = e3/2πρ∞R2
Bc∞, (4.17)

and n∞,5 ≡ n∞/105 cm−3. With radiation on for the case fEdd = 1, the accretion rate is much lower

than that in the case without radiation. The average rate is limited to ∼ 20ṀEdd for t < 105 yr,

where the luminosity from the central region is ∼ 0.7LEdd. For t ≳ 1.3× 105 yr, the accretion rate

becomes episodic and rises promptly to a higher value. This result is consistent with that shown in

IHO16 (their figure 5). After the transition, the accretion rate gradually approaches the Bondi rate.

The hyper-Eddington accretion is realized since the H ii region is always confined inside the Bondi

radius, i.e., RH ii ≲ RB (see equation 1.7).

For moderately higher values of 1 < fEdd ≤ 10, the same transition to steady hyper-Eddington

accretion is found as in fEdd = 1. Even in these cases, luminosity before the transition is confined

to ∼ LEdd. The transition time is delayed for higher fEdd since radiation force is non-negligible,

and contributes an outward-directed force on the infalling gas. After the transition, the luminosity

exceeds LEdd. The hyper-Eddington accretion is yet maintained because ram pressure overcomes

radiation force at the innermost region.

In the model with ηlog, the result is qualitatively the same since luminosity after the transition is

L ≲ 20LEdd which is as small as in the case with 1 < fEdd ≤ 10.

For the highest value with fEdd = 30, the transition to the hyper-Eddington phase occurs, but

behavior of the accretion rate differes f from the other cases after the transition. Namely, the

accretion rate becomes unstable and begins to oscillate. In this case, radiation force with L ≃ 30LEdd

prevents a steady accretion flow. However, the radiation force does not suppress the net mass

accretion and the time-averaged accretion rate still matches the Bondi rate. This result implies that

the central BH grows rapidly even for fEdd ≳ 30. The critical luminosity to keep steady hyper-

Eddington accretion is determined by comparing radiation force with ram pressure and gravity of

the infalling gas (see Section 4.4).

In Figure 4.4, we show radial profiles of gas density, temperature, and a local mass inflow rate

Ṁ = 4πr2ρ|v| for the model of fEdd = 10 at the five different times corresponding to the open circles

in Figure 4.3. As IHO16 argued, the condition required for hyper-Eddington accretion is given by

equation (1.7), which is derived from the condition that the size of the H ii region RH ii is smaller than

the initial Bondi radius RB,0. Figure 4.4(b) shows that the condition of RH ii < RB,0 is satisfied for
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Fig. 4.3 Time evolution of accretion rates for the five different models with radiative efficiency
represented in Figure 4.2. We adopt MBH = 2×104 M⊙,n∞ = 105 cm−3 and T∞ = 104 K. The
dotted line depicts the time evolution of the accretion rate in the absence of any radiation,
which settles to the Bondi rate. Open circles mark five different times, at which radial profiles
for the model of η10 are shown in Figure 4.4. This figure is reproduced from Sakurai, Inayoshi
& Haiman (2016).

this case. We can explain the physical reason for the occurrence of the transition as follows. While

gas accretion proceeds before the transition, the H ii region expands to the radius of RH ii inside

which radiation force and gas pressure suppress the accretion. Since RH ii < RB,0, the accreting gas

accumulates in the region RH ii ≲ r ≲ RB (line 1 in Figure 4.4a). Once the accumulating gas shell

becomes sufficiently dense and massive, it begins to move inward due to the gravitational force of

the central BH (line 2 and 3 in Figure 4.4a). At the same time, the H ii region contracts and the

accretion rate increases (line 4 in Figures 4.4 b and c). After the transition, the gas profile reaches

a steady and isothermal Bondi profile with ρ ∝ r−3/2 and T ≃ 8000K (line 5 in Figure 4.4).

For the case of fEdd = 30, radial profiles of the gas properties are almost identical to those of

fEdd = 10, except inside a narrow central H ii region, where strong radiation force eventually blows

the ionized gas outward. With the resulting decrease of the accretion rate and luminosity, ram

pressure caused by rapid accretion from outside the H ii region pushes the blown gas inward again,

leading to episodic accretion. The result also shows that as long as RH ii < RB,0, the time-averaged

accretion rate will match the steady hyper-Eddington Bondi rate, even for fEdd = 30.

We further elucidate the effect of radiation force on the accretion flow with a super-Eddington

luminosity. To this end, we perform a separate suite of simulations as an academic exercise, where

we assume a steady and isothermal Bondi accretion flow as the initial condition and then turn on
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and the (initial) size of the H ii region RH ii. In this case, the condition which is required for
steady hyper-Eddington accretion, RH ii ≲ RB,0, is satisfied (equation 1.7). Note that the size
of the H ii region in any epoch is estimated as the radius where gas temperature steeply rises
with decreasing the radius from the center, namely, (1) RH ii,1 = RH ii ∼ 1.4 × 1018 cm, (2)
RH ii,2 ∼ 3 × 1013 cm, (3) RH ii,3 ∼ 6.5 × 1016 cm, (4) RH ii,4 < rmin = 8 × 1015 cm and (5)
RH ii,5 < rmin. This figure is reproduced from Sakurai, Inayoshi & Haiman (2016).
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solid) or 30LEdd (blue dashed). In the former case, the Bondi accretion rate is maintained,
while in the latter cace, the accretion is blocked by radiation force. This figure is reproduced
from Sakurai, Inayoshi & Haiman (2016).

the central source with constant luminosity which is independent of the accretion rate. Figure 4.5

shows two cases of L = 10LEdd (red solid) and 30LEdd (blue dashed). For L = 10LEdd, the

gas accretion does not change at all after the radiation is turned on at t = 0. By contrast, for

L = 30LEdd, radiation force is strong enough to shut off the gas inflow. This behavior is different

from the previous case of fEdd = 30 (see Figure 4.3), where accretion is episodic, rather than being

shut off.

4.4 Analytical arguments

We have shown in Section 4.3 that a transition to a steady hyper-Eddington accretion occurs with

MBH = 2×104 M⊙ and n∞ = 105 cm−3, as long as the maximum luminosity is L/LEdd ≡ fEdd ≲ 20.

For fEdd ≥ 30, the steady accretion is replaced by highly variable episodic accretion, but the time-

averaged rate remains close to the Bondi rate. In this section, we discuss the physical interpretation

of these results. First, we consider conditions for the transition to occur with analytical arguments.

Then, we consider a toy model of an optically thick spherical shell, driven by radiation force from a

central source, to further justify the results of our simulations.
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4.4.1 Conditions for hyper-Eddington accretion

As explained in Section 4.3, the transition to hyper-Eddington accretion occurs if the Bondi radius

RB ∝ MBHT
−1
∞ is larger than the size of the H ii region RH ii. The latter quantity is estimated by a

balance between photoionization and radiative recombination,

RH ii =

(
3Qion

4πn2
∞αB

)1/3

, (4.18)

where Qion is the average number of ionizing photons released per unit time and αB is the case

B recombination rate. Since we adopt the power-law spectrum with the index of −1.5, we get

Qion = L/3hνmin. Using the fact that the luminosity L is restricted to ∼ LEdd before the transition,

RH ii ∝ L
1/3
Eddn

−2/3
∞ ∝ M

1/3
BH n

−2/3
∞ and the transition condition of RB > RH ii is rewritten as equation

(1.7), where the temperature inside the H ii region is set to 6 × 104 K. For the evaluation of RH ii,

we here assume a constant density profile with n∞ instead of the Bondi density profile, the latter of

which is actually realized just before the transition. With the constant density profile, the resulting

value of RH ii is larger by a factor of a few than the actual value. Thus, our assumption of a constant

density profile is conservative with regard to the condition for the hyper-Eddington accretion.

After the transition, radiation luminosity emitted from the central source would be brighter than

∼ LEdd in certain directions (Ohsuga et al. 2005, Jiang, Stone & Davis 2014, Sa̧dowski et al. 2014:

e.g.,). In a standard picture of outflows driven by radiation force of L > LEdd, hyper-Eddington

accretion seems unlikely to occur since radiation force due to electron scattering dominates the

BH gravity. However, steady hyper-Eddington accretion can actually occur in our case, where

all momentum of the radiation is essentially absorbed by neutral hydrogen at the boundary of the

H ii region within a short mean-free path. Although the radiation force exerted on the recombination

shell near RH ii is actually larger than that on to ionized gas, the excess is only by a factor of

1/τe, where τe ∼ nσTRH ii(≲ 1). Outside the H ii region where rapid hyper-Eddington inflow can

develop, the radiation has no effect. The inflow gas exerts strong inward ram pressure at the edge

of the H ii region, which can significantly exceed the BH gravity. In addition, the infalling gas can

accumulate near RH ii and increase inward gravitational force. Thus, if the inward ram pressure plus

the gravity exceeds the outward radiation force, the steady hyper-Eddington accretion can occur.

The stability condition after the transition is written as ṀB|v| > L/c at r = r⋆ where all radiation

is absorbed. We here omit the contribution of gravity to simplify the argument. Since the inflow

velocity is |v| = (2GMBH/r)
1/2 at r ≥ r⋆, we get

fEdd =
L

LEdd
≲ 11M

3/2
BH,4n∞,5T

−3/2
∞,4 r

−1/2
⋆,15 , (4.19)

with r⋆,15 = r⋆/10
15 cm. As a conservative estimate, we set r⋆ = rmin(= 8 × 1015 cm). With

MBH,4 = 2, n∞,5 = 1 and T∞,4 = 1, hyper-Eddington accretion remains to be stable as long as

fEdd ≲ 10. The estimate agrees with our simulation results represented in Section 4.3. In practice,

radiation would emerge from a photosphere located at a smaller radius, Rph(< rmin). Although

the photosphere is not resolved in our simulations, if we use r⋆ = Rph ≃ 1014 cm which is shown in

figure 11 of IHO16, we find the critical luminosity of fEdd ≲ 100. This critical luminosity is discussed

further in Section 4.4.2 using a simple toy model.

We summarize the necessary conditions for the hyper-Eddington accretion in Figures 4.6 and 4.7.

The conditions of equations (4.19) (solid line) and (1.7) (dashed line) are shown in the fEdd −MBH
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cretion is realized due to radiation heating and ionization (crosses). This figure is reproduced
from Sakurai, Inayoshi & Haiman (2016).

and fEdd − n∞ planes, respectively. For the solid lines, either r⋆ = rmin or r⋆ = Rph are adopted.

In the parameter regions below the dashed lines, hyper-Eddington accretion is not realized due to

radiation heating and ionization (cross; sub-Edd.). For the region between the solid and dashed

lines, hyper-Eddington accretion could occur but a steady state is not realized because radiation

force dominates ram pressure (open circle; Rad. ¿ Ram.). Only in the region above those lines,

steady hyper-Eddington accretion is achieved (filled circle; hyper-Edd.).

4.4.2 1D momentum-driven shell model

To understand the physics which allows hyper-Eddington accretion, we consider a model of a geo-

metrically thin, but optically thick spherical shell around a point source, which is driven by radiation

force into a rapidly collapsing medium (King 2003, Kasliwal, Lovelace & Houck 2005). The lumi-

nosity L from the central source is assumed constant, and the equation of motion for the shell

is
d

dt
(MshṘsh) =

L

c
− Ṁ(|v|+ Ṙsh)−

GMBHMsh

R2
sh

, (4.20)
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Fig. 4.7 Three different accretion regimes are shown for different values of fEdd and n∞, where
we use MBH = 2 × 104 M⊙ and T∞ = 104 K. See Figure 4.6 for the explanation of the lines
and symbols. This figure is reproduced from Sakurai, Inayoshi & Haiman (2016).

where Msh is mass of the shell, Rsh is distance of the shell from the central point, and Ṁ and v are

an accretion rate and velocity of the gas inflow just outside the shell. The terms on the right-hand

side (RHS) correspond to the outward radiation force exerted on the shell, and the inward forces

by ram pressure of the rapid inflow and the BH gravity. We assume that (i) the shell is optically

thick to ionizing radiation and absorbs all incident radiation with momentum L/c, and that (ii) the

whole cloud is effectively optically thin to recombination radiation.

In this model, we omit the contribution of photon scattering which would actually contribute to

radiation pressure force. If the recombination radiation is efficiently scattered by the neutral shell,

i.e., if condition (ii) is invalid, then the radiation is trapped inside the neutral shell just outside the

H ii region. Multiple scattering events inside the shell would increase the total radiation pressure

force to ≃ τscatL/c, wherein τscat is an effective optical depth to scattering. In our case, H i Rayleigh

scattering is negligible, but Ly α scattering can be important owing to the high optical depth at

the line center, τLyα ∼ 1010 − 1012. However, before Ly α radiation pressure affects a motion of the

shell, the Ly α photons will be converted to 2S → 1S continuum photons and ∼ 1 eV photons (H−

free-bound transition), to which the neutral shell is optically thin. We therefore expect that the

scattering is not significant and our condition (ii) holds, with an effective scattering opacity τscat a

factor of a few. Nevertheless, future works are needed to examine the effect of the trapping of Ly α

radiation, the conversion to lower energy continuum photons and the escape of these photons from

the cloud.
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The mass growth rate of the shell is

dMsh

dt
= Ṁ

(
1 +

Ṙsh

|v|

)
, (4.21)

and the initial shell mass is

Msh,0 =

∫ Rsh,0

0

4πr2ρ(r)dr, (4.22)

where the subscript 0 indicates the initial value. For simplicity, we consider two extreme cases of the

density profile, namely, a constant density profile ρ(r) = const. and the Bondi profile ρ(r) ∝ r−3/2.

The corresponding initial masses are

Msh,0 =


4

3
πR3

sh,0ρ∞ for ρ(r) = ρ∞

8

3
πR

3/2
B R

3/2
sh,0ρ∞ for ρ(r) = ρ∞

(
r

RB

)−3/2

.

(4.23)

We here adopt Ṁ = ṀB, |v| = (2GMBH/r)
1/2 (free-fall velocity), Ṙsh,0 = 0, MBH = 2 × 104 M⊙,

n∞ = 105 cm−3 and T∞ = 104 K.

First of all, we consider time evolution of a dense shell which initially locates at Rsh,0 = RH ii(≃
1.4× 1018 cm) before the transition to hyper-Eddington accretion, with luminosity from the source

L ≃ LEdd(fEdd ≃ 1). The shell corresponds to that represented in Figure 4.4(a) (phase 1). Figure 4.8

shows three cases, wherein ram pressure of the inflowing gas and BH gravity on the accumulated

mass are both included (red), and wherein either the gravity (blue) or the ram pressure (green) are

artificially excluded. Solid (dashed) lines correspond to the case of constant (Bondi) initial density

profiles. As this figure shows, the shell radius contracts when both ram pressure and gravity are

incorporated. By contrast, when either of the inward forces are turned off, the shell continues to

expand and never falls on to the center. Although the expansion velocity of the shell is slower for

the cases with heavier masses (dashed), the choice of the initial shell mass does not change the

qualitative behavior of the shell. Overall, it is the combination of the ram pressure and gravity that

overcomes the radiation force and yields hyper-Eddington accretion. The role of the ram pressure is

somewhat more important for triggering the hyper-Eddington accretion, which can be seen from the

fact that the shell expands more rapid without ram pressure (green) than without gravity (blue).

Next, in Figure 4.9 we show time evolution of a shell initially located at Rsh,0 = rmin(= 8 ×
1015 cm), for the cases fEdd = 1 (red), 10 (green) and 30 (blue). These correspond to the cases after

the hyper-Eddington accretion is achieved in our simulations. The initial shell mass is estimated

assuming a constant density profile, and the effects of both ram pressure and gravity are included.

Figure 4.9(a) clearly shows that for fEdd ≲ 10 the shell shrinks within 20 yr, corresponding to the

case that the hyper-Eddington accretion continues after the transition. The result of this shell

evolution is in excellent agreement with our simulations and analytical arguments in Section 4.4.1.

In Figure 4.9(b), we also show the case for the initial shell radius Rsh,0 = Rph(≃ 1014 cm), with

fEdd = 100 (red), 200 (green), and 300 (blue). For fEdd ≲ 100, the shell contracts, which is again

in agreement with the results of the analytical arguments shown in Figure 4.6 and Figure 4.7.
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Fig. 4.8 Time evolution of a geometrically thin, optically thick shell, which is driven by
radiation force of a central source into a rapidly collapsing cloud. The evolution is computed
from a toy model described as equation (4.20) which incorporates the outward radiation force
(first term of RHS of equation 4.20) as well as the inward forces of ram pressure and gravity
on the shell (second and third terms of RHS of equation 4.20), initially located at Rsh,0 =
RH ii(≃ 1.4× 1018 cm). Each line corresponds to the case with both ram pressure and gravity
(red), and with either ram pressure (green) or gravity (blue) artificially turned off. For each
case, the initial density profile is assumed to be either constant (solid) or to follow the Bondi

profile (dashed) (see equation 4.23). We adopt fEdd = 1, Ṁ = ṀB, MBH = 2× 104 M⊙, n∞ =
105 cm−3 and T∞ = 104 K. The shell corresponds to that shown in phase 1 in Figure 4.4(a).
This figure is reproduced from Sakurai, Inayoshi & Haiman (2016).

4.5 Summary and discussions

We have performed 1D radiation hydrodynamical simulations in order to solve spherically symmetric

accretion flows on to massive BHs with a high rate. Our setup extends simulations in the earlier work

(IHO16), by allowing the central luminosity to exceed the Eddington luminosity (1 ≲ L/LEdd ≲ 100).

The setup of the super-Eddington luminosity is motivated by the possibility of gas accreting with

finite angular momentum through a bright nuclear disk which is fed at rates well in excess of the

Eddington accretion rate (e.g., Ohsuga et al. 2005, Jiang, Stone & Davis 2014, McKinney et al. 2014,

Sa̧dowski et al. 2014).

It is found that a transition to a stable hyper-Eddington accretion phase occurs when the two
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conditions are satisfied. One is

Ṁ ≳ 5000 ṀEdd = 5000LEdd/c
2, (4.24)

(see equation 1.7). The condition is identical to that found in IHO16 who assume that photon

trapping effectively limits the luminosity emerging from the central source to ≲ LEdd. The other

new condition determines whether the hyper-Eddington accretion is steady or highly episodic. We

find that a steady state is preserved as long as radiation luminosity from the central source is below

a critical value,

L

LEdd
≲ 11

(
MBH

104 M⊙

)3/2 ( n∞

105 cm−3

)
. (4.25)

The condition corresponds to the requirement that ram pressure of the collapsing medium plus BH

gravity of the accumulated shell mass at the boundary of the H ii region dominate over radiation

force, i.e., Ṁ |v| ≳ L/c. When the luminosity exceeds this critical value, then a steady hyper-

Eddington phase cannot be realized, and the accretion instead becomes episodic. Still, the time-

averaged accretion rate matches the unimpeded Bondi rate ṀB, if the condition of equation (4.24)

is satisfied. We summarize the three distinct types of accretion flows which are determined by the

above two conditions, in Figures 4.6 and 4.7. In this work, we also present a physical interpretation

of our simulation results, which can be recovered with a toy model of an optically thick spherical

shell, driven by radiation into a collapsing cloud.

For a radiation spectrum, we have assumed a power law with an index of α = 1.5 over a frequency

range of 13.6 eV ≤ hν ≤ 30 keV (equation 4.13). In this case, all radiation can contribute to

ionization of neutral gas. In realistic cases, however, a spectrum of an accretion disk around a BH

would have lower energy photons with hν < 13.6 eV which can escape not ionizing the accreting

gas (e.g., Tanaka & Menou 2010). Thus, when assuming a realistic spectrum with a fixed total

luminosity, a transition to hyper-Eddington accretion is more likely to occur than in our case.

In our simulations, we do not resolve the photosphere and trapping radius located at small radii.

If the accreting gas has a finite angular momentum, a compact accretion disk would form around the

central BH. Anisotropic radiation and/or outflows/jets from the center would break the spherical

symmetry of the gas inflow, at least in the inner regions. Fully self-consistent treatments of such an

accretion flow with an anisotropic bright source of L > LEdd at the central region, embedded in a

nearly spherical inflow at large radii, require multidimensional radiation hydrodynamical simulations.
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Black hole formation via runaway collision in

primordial star clusters

5.1 Overview

The formation of massive BHs in the first star clusters via runaway stellar collision is studied. In

previous works, first star clusters which can experience the runaway stellar collision process are

supposed to be formed in atomic-cooling halos (Table 1.3) which are slightly metal-enriched by

supernovae. Although the collision process in first star clusters is previously examined by Katz,

Sijacki & Haehnelt (2015), they consider a cluster in a mini-halo and focus on one realization. In

order to elucidate whether the runaway stellar collision is prevalent in the early universe, specifically

in star clusters within atomic-cooling halos which are more massive than mini-halos, we here consider

statistics of atomic-cooling halos and study the collision processes in the clusters. First of all, we

identify star-forming gas clouds in protogalactic halos of mass ≳ 107 M⊙, which are deemed as

atomic-cooling halos and are assumed to be slightly metal-enriched, by performing cosmological

hydrodynamical simulations. We then use them to generate the initial conditions for star clusters

of masses ∼ 105 M⊙. We next perform a series of direct-tree hybrid N-body simulations to examine

runaway stellar collisions in the star clusters. In all the star clusters but one, runaway collisions

occur within a few million years, and the mass of the central massive star which undergoes runaway

collisions reaches ∼ 400 − 1900M⊙. Such very massive stars collapse after their lifetimes and

leave intermediate-mass BHs (IMBHs). The diversity of the final masses can be explained by the

differences of the parent cloud properties such as virial mass, central gas density and central gas

velocity dispersion. Finally, the IMBH mass to cluster mass ratios are discussed, which are compared

with the observed BH to bulge mass ratios in the present-day Universe.

5.2 Numerical methods

We performed the simulations in the following three-step manner. First, we run cosmological hy-

drodynamical simulations of early galaxy formation. The output is used to locate a number of

proto-galactic halos that host a star-forming gas cloud. Then, we replace the gas cloud with a

star cluster, assuming that numerous stars with a wide range of masses form in the cloud. We

set positions and velocities of the stars by adopting a few simple models. The realizations which

are generated in this manner serve as the initial conditions for star cluster evolution simulations.

Finally, direct-tree hybrid N-body simulations are performed to follow the stellar dynamics.
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Table 5.1 Host halo properties, generated star cluster properties and main results of the star
cluster simulations, where we use fiducial model parameters, αsfe = 6.32×10−4, mmin = 3M⊙,
mmax = 100M⊙, β = 2.35, Q = 0.5 and mDM = 1.87M⊙. The overlines denote that the values
are averaged over 3 realizations. This table is taken from Sakurai et al. (2017).

z Rvir Mvir M cl N rc ρc trh trc ϵsfe MDM NDM mmax,f N coll

(pc) (107 M⊙) (104 M⊙) (103) (pc) (M⊙ pc−3) (Myr) (kyr) (%) (107 M⊙) (107) (M⊙)

A 19.7 281 4.03 16.4 19.9 0.401 6.45× 105 19.7 528 5.91 4.79 2.56 929 11.7

B 19.6 276 2.97 13.0 15.7 0.387 5.82× 105 12.6 783 6.12 3.78 2.02 409 4.67

C 19.7 208 2.03 12.1 14.7 0.380 8.36× 105 9.67 67.1 10.1 6.60 3.53 1330 18.3

D 14.9 321 2.60 11.7 14.1 0.357 9.75× 105 13.6 8.93 7.16 5.67 3.03 971 13.7

E 17.1 264 1.47 4.76 5.76 0.224 1.16× 106 4.42 2.98 8.15 3.25 1.74 773 9.67

F 16.5 312 2.01 9.00 10.8 0.662 7.05× 105 15.0 3.62 8.67 5.13 2.74 1100 14.0

G 16.9 242 1.99 12.5 15.0 0.353 1.01× 106 10.1 4.25 9.48 4.17 2.23 1660 25.0

H 11.7 541 4.22 7.70 9.32 0.276 1.08× 106 10.8 0.807 5.55 5.25 2.81 964 15.0

Notes 1: Halo properties when the central gas density is nH = 107 cm−3; column 2: redshift, column
3: virial radii and column 4: virial masses.
Notes 2: Generated star cluster properties; column 5: total stellar mass, column 6: total number of star
particles, column 7: core radii, column 8: core density, column 9: half-mass relaxation time (equation
5.3), column 10: relaxation time at the center (equation 5.4), column 11: global SFE ϵ = Mcl/Mgas(<
Rcl), wherein Mgas(< r) is enclosed gas mass in the original halo data, column 12: total mass of DM and
column 13: total number of DM particles. The core radius and density are computed using the method
of Casertano & Hut (1985). We calculate the values rc, ρc and trh using bound particles.
Notes 3: Results in the hybrid N-body simulations; column 14: maximum mass of the star which
forms via runaway collision and column 15: number of the collisions to the runaway collision star.

5.2.1 Cosmological simulations

We employ the parallel N-body/SPH code Gadget-2 (Springel 2005), modified as in Hirano et al.

(2014) so that primordial gas cloud formation processes can be followed (see also Yoshida et al. 2003,

Yoshida, Omukai & Hernquist 2008). The initial condition of the simulations is set at zini = 99 with

a box size 10h−1 Mpc employing the MUSIC software (Hahn & Abel 2011). We adopt cosmological

parameters from the latest Planck data (Ade et al. 2016: last column of their table 4). We choose

the box size to be sufficiently large to locate ∼ 10 halos of virial mass ∼ 107 − 108 M⊙ at redshift

z = 10 − 20 (Reed et al. 2007). A dark matter (DM) only simulation with N = 5123 is first

run, and then a friends-of-friends halo finder is run to identify dark halos at z = 10. Next, zoom-

in simulations are performed for the selected target halos with a high spatial resolution. A mass

resolution of mDM ∼ 1M⊙ is achieved with the multilevel zoom-in technique. The resolution is

determined by considering that the DM particle mass will become smaller than the minimum stellar

mass in the star cluster simulations (Section 5.2.3), which is mmin = 3M⊙ in the fiducial model

(Section 5.2.2). The zoom-in simulations are performed including SPH particles and switching off

radiative cooling other than atomic hydrogen cooling. We omit molecular hydrogen cooling to

prevent gas cloud formation in early mini-halos. We stop the SPH simulations when the target halos

gravitationally collapse, and the central gas density becomes nH ∼ 107 cm−3. The simulations are

run for eight halos in total whose basic properties are listed in Table 5.1 (column 2-4).
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5.2.2 Generation of star cluster plus DM distributions

The initial conditions for the stellar dynamics simulations are directly generated from the outputs

of the cosmological zoom-in simulations. A snapshot for each target halo is exported at density of

the central gas nH ∼ 107 cm−3. The density corresponds to a critical density of cloud fragmentation

when metallicity is Z ∼ 10−4 Z⊙ (figure 5 of Omukai, Schneider & Haiman (2008)). It is expected

that the cloud would be already gravitationally unstable and yield multiple stars. However, in the

zoom-in simulations we do not resolve formation of individual stars, and thus we adopt the following

simplified model to locate stars within the parent gas cloud.

We choose a fraction of the SPH particles as ‘stars’. A sampled star particle is re-assigned the

mass and velocity, while the position is kept the same as that of the original SPH particle. The

following five physical parameters are used to determine the sample probability and to compute the

stellar mass and velocity: local star formation efficiency (SFE) αsfe which is non-dimensional and

controls global SFE, the minimum and maximum stellar mass mmin and mmax, an power-law index

β of an initial mass function (IMF) dN/dm ∝ m−β and a virial ratio Q (the ratio of the total kinetic

energy to the total gravitational energy for the stars). We compute the probability of replacing an

SPH particle i with a stellar particle according to the local SFE (Fujii & Portegies Zwart 2015)

defined by

ϵloc,i = max

(
αsfe

√
nH,i

1 cm−3
e−ri/Rcl , 1.0

)
× mgas,i

ms
, (5.1)

wherein ri is a SPH particle distance from the maximum density point (cloud center), Rcl is a cluster

radius which is defined as the radius where the enclosed gas mass is equal to that of DM, mgas,i

is mass of a SPH particle and ms is the average stellar mass for the specified IMF. This equation

is based on the star formation law of Schmidt (1959), ρ̇star ∝ t−1
ff , where the star formation rate

ρ̇star is proportional to the inverse of free-fall time tff ∝ n
−1/2
H . The factor of mgas,i/ms is necessary

to guarantee that the stellar mass does not exceed the gas mass after the replacement of the SPH

particles to the star particles. The exponential cutoff is employed to set a finite cluster size, but the

selection of the value for Rcl does not affect the resulting cluster distribution. In order to assign the

velocity to individual star particles, we rescale the SPH particle velocity

vstar =

√
Q

T/|W |
(vSPH − v), (5.2)

wherein vSPH is the velocity of the SPH particle with the cloud’s bulk velocity subtracted, v =∑
replaced mstarvSPH/

∑
mstar, mstar is stellar mass, T is kinetic energy

∑
replaced mstarv

2
SPH/2 and

W is gravitational energy of the stars. Adopting the fiducial virial ratio Q = 0.5, we can achieve a

marginally stable cluster. For each sample, three realizations are generated with different random

number seeds to select star particles. In total, 24 simulations are performed for our fiducial model.

We further perform additional simulations to investigate the effect of model parameters, which will

be discussed in Section 5.3.2.

We keep the DM distribution essentially the same as in the original output of the cosmological

simulations. We practically split DM particles so that all DM particles have the same mass mDM,

for which we choose the minimum DM particle mass in the cosmological simulation. The splitting is

performed to avoid artificial mass segregation of DM particles when the hybrid N-body simulations

are run (Section 5.2.3). In the process of the splitting, we randomly distribute the daughter particles

in a sphere with a radius of the mean separation of the DM particle. The daughter particles retain
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the same velocity as the parent particle. In addition, DM halo’s bulk velocity is subtracted and the

velocities of the particles are rescaled so that a DM virial ratio becomes 0.5, as in equation (5.2).

This prevents the outer part of the DM halo from evaporating in our star cluster simulations.

The fiducial parameters for generation of the initial condition are set to αsfe = 6.32 × 10−4,

mmin = 3M⊙, mmax = 100M⊙, β = 2.35, Q = 0.5 and mDM = 1.87M⊙. We show the resulting star

cluster/DM global properties in Table 5.1. The value of the star formation efficiency αsfe is manually

chosen so that the particle number in model A becomes about ∼ 2 × 104. Note that the value of

αsfe is just an indicator of the amount of the star formation. By this choice, the global SFE (column

10 in Table 5.1) becomes ϵsfe ∼ 0.06− 0.1, which is almost consistent with the value of ∼ 0.1 found

in the hydrodynamical simulations of star clusters within atomic-cooling halos (Kimm et al. 2016).

We set Q to 0.5, but this does not necessarily mean that the system is virialized because not all the

star particles are bound. We assume the Salpeter mass function throughout this work. Although

the minimum stellar mass is set to mmin = 3M⊙, stars with lower masses of < 1M⊙ may exist in

real clusters. Choosing a smaller mmin makes the number of star particles very large and computing

time of the hybrid N-body simulations impractically long. We examine the effect of varying mmin,

as well as the other parameters, in Section 5.3.2.

5.2.3 Direct-tree hybrid N-body simulations

We perform the stellar dynamics simulations using the hybrid N-body code BRIDGE (Fujii et al.

2007). In the code, orbits of the star particles are followed by a direct method in a dynamically

consistent manner with DM particles, motions of which are computed by a tree method. The current

version of the code employs the sixth-order Hermite integrator for the direct integration (Nitadori &

Makino 2008). Efficient parallelization is realized with the NINJA scheme (Nitadori, Makino & Abe

2006). We use the PHANTOM-GRAPE library (Tanikawa et al. 2013) to speed up the gravitational

force computation.

We allow a pair of stars to collide and merge when its separation d ≡ |r1 − r2| is less than

the sum of the stellar radii R∗,1 + R∗,2, i.e., d < R∗,1 + R∗,2. The merger criterion or the so-

called ‘sticky-sphere’ approximation is well tested by Gaburov, Lombardi & Portegies Zwart (2010),

who found that the criterion gives ∼ 75 per cent accurate results when compared to the results of

hydrodynamical simulations of stellar three-body interactions.

We use the stellar radii of the fitting formula from Tout et al. (1996) for the non-evolving zero-age

main-sequence stars with Z = 0.02. The formula which is valid for stellar mass of ≤ 100M⊙ is

extrapolated to larger stellar mass, resulting in possible underestimations of the radii, especially

for very massive stars. For instance, the stellar radii for stellar mass 100, 200, 500 and 1000M⊙

from the formula in Tout et al. (1996) are 17, 28, 54 and 87R⊙, respectively, while the radii from

the interior structure calculations for massive stars in Ishii, Ueno & Kato (1999) are 18, 40, 160

and 3000R⊙ and those from Yungelson et al. (2008) are 14, 27, 66 and 129R⊙. Note that stellar

radii are generally smaller for lower metallicity stars (e.g., Baraffe & El Eid 1991, Baraffe, Heger &

Woosley 2001). Although a stellar radius model for Z = 10−4 Z⊙ could be technically constructed

as in Katz, Sijacki & Haehnelt (2015), we use the Tout’s fitting formula for the solar metallicity for

simplicity. The effect of adopting a different model of stellar radii is examined in Section 5.3.2.

We present parameters for the N-body simulations in Table 5.2, where η is an integration accuracy

parameter (see equation 16 of Nitadori & Makino 2008), ∆t is a tree time step, Lbox is a box size

in the simulations, ncrit is the maximum group size in GRAPE calculation (Makino 1991), θ is

a tree opening angle and ϵcl and ϵDM are softening lengths for calculating gravity of stars and
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Table 5.2 Parameters for the hybrid N-body simulations. This table is taken from Sakurai et al. (2017).

η ∆t Lbox ncrit θ ϵcl ϵDM

(yr) (pc) (pc) (pc)

0.11 1.16× 103 1024/2048 512 0.5 0 0.0313

DM respectively. We choose the accuracy parameter η so that errors of the total energy during

the simulations do not exceed 0.04 per cent. The box size of the simulations Lbox is set to 1024 or

2048 pc, which is chosen to encompass all the particles during the simulations. We check convergence

of the results with varying ∆t, Lbox and ϵDM. We stop the simulations at t = 3Myr, when the central

massive star is considered to end its life.

5.3 Results

We summarize the properties of the eight halos in Table 5.1. The virial masses are∼ (1.5−4)×107 M⊙

and the formation redshifts are z = 11− 20. In Figure 5.1, we represent the gas distribution of Halo

B (top panels) and G (bottom panels), respectively. In Halo B the features of turbulent motions are

seen in the gas distribution, whereas in Halo G the gas appears dynamically relaxed, and is nearly

spherical. We also show the generated stellar distributions in the right-hand panels of Figure 5.1.

Most of the stars reside within the central few parsec region, but a small number of stars are found

in the outer region.

5.3.1 Fiducial models

The initial stellar mass in the clusters ranges from ∼ 5× 104 M⊙ to ∼ 1.6× 105 M⊙ for our fiducial

models (see Table 5.1).

In Figure 5.2, we show time evolution of the cluster core radii. The core radii are computed

following the procedure of Casertano & Hut (1985). The core contracts quickly within ∼ a million

years due to the short crossing time tcr ≡ rh/σ ≲ 0.1Myr of the cluster systems with a typical

half-mass radius rh ∼ 1 pc and three-dimensional velocity dispersion σ ∼ 10 km s−1.

In Figure 5.2, the evolution of rh is also plotted. The radii rh remain roughly constant with time,

suggesting that the runaway collision is triggered by core collapse and not driven by cold collapse of

the entire cluster because of the initially non-equilibrium configuration.

Core-collapse time tcc, which we define by the time when the core radius has its minimum, ranges

from ≲ 0.1 to ∼ 2.7Myr in our 24 simulations. When the times tcc are rewritten in terms of the

half-mass relaxation time trh (Table 5.1),

trh =
0.651Gyr

ln(γN)

1M⊙

ms

(
Mcl

105 M⊙

)1/2(
rh
1 pc

)3/2

, (5.3)

wherein Mcl is cluster mass and γ is ∼ 0.015 for a system with a wide mass spectrum (Giersz &

Heggie 1996, Gürkan, Freitag & Rasio 2004), it is found that tcc ranges from ≲ 0.01 to ∼ 0.2 tth.

It is expected that the core-collapse time tcc is proportional to the central relaxation time-scale

(Gürkan, Freitag & Rasio 2004, Fujii & Portegies Zwart 2014: see Table 5.1),

trc =
0.065σ3

c

G2msρc ln γN
, (5.4)
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Fig. 5.1 The projected gas density distributions are plotted for Halo B (top panels) and G
(bottom panels). The region size is 200 pc (left-hand panels) and 20 pc (middle and right-
hand panels). The generated stellar distributions (magenta dots) are also compared on the
right-hand panels. This figure is reproduced from Sakurai et al. (2017).

wherein σc is the three-dimensional velocity dispersion at a cluster center, which we compute using

central 20 stars. We find that tcc ranges from ∼ 2 to 200 trc. In contrast to the result found in Fujii

& Portegies Zwart (2014), significant scatter is found in the ratio of tcc/trc even though mmax/ms

is fixed. This scatter could be attributed to the variation in the compactness of the initial stellar

distribution.

In Table 5.1, we show the final stellar mass mmax,f and the number of stellar collisions Ncoll by

t = 3M⊙. In all the runs, runaway collision occurs with Ncoll ∼ 5−25 and the final mass of the stars

exceeds the threshold mass ∼ 300M⊙ for gravitational collapse (Heger et al. 2003, Yoon, Dierks &

Langer 2012, Spera & Mapelli 2017); remnants would be IMBHs of similar masses. Figure 5.3 shows

time evolution of the mass of the central star which undergoes runaway collisions. The analytical

model of the mass evolution from Portegies Zwart & McMillan (2002) is also shown:

m = mseed + 4× 10−3 Mclfc lnΛ ln

(
t

tcc

)
, (5.5)

wherein mseed is seed mass of a star which starts a runaway process, fc is a fraction of binaries which

contribute to collisions and lnΛ is a Coulomb logarithm. This equation is derived by integration

of a mass growth rate, which is essentially an average mass increase per collision times an average

collision rate of binaries. In our simulations, the rate of mass accumulation via collisions is well

described by the model.
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Fig. 5.2 Time evolution of the core radii and the half-mass radii in the eight models A to H.
The thick lines represent pre-core-collapse phases, while the thin lines denote post-core-collapse
phases. The arrows indicate the core-collapse time which is defined as the time when the core
radius is smallest. This figure is reproduced from Sakurai et al. (2017).

5.3.2 Model parameter dependence

We examine how the initial configuration and the values of the model parameters (Section 5.2.2)

affect the results. To this end, models with different parameter values or with different setups are

considered: models without DM particles (AnoDM), with smaller stellar radii (Arad), with different

values of mass limits for the same Salpeter IMF (Amax and Amin) and with different SFE parameter

values αsfe (Asfe1, Asfe2 and Asfe3). We summarize the adopted parameter values and the resulting

initial properties of the star clusters in Table 5.3.

First, we compare model A and AnoDM. The existence of a DM halo clearly has minor impact on

the runaway growth of the stars. This result is expected since the characteristic time of dynamical

friction between stars and DM is long. We derive the dynamical friction time tdf by considering

frictional force on a star of mass m and velocity v in a matter field with a density profile ρ(r) (Binney

& Tremaine 2008), and by using the equation of angular momentum change (Fujii & Portegies Zwart

2014), as

tdf =
0.186v3

G2m lnΛ′

∫ rini

0

dr

rρ
, (5.6)

wherein Λ′ ≃ 0.1N (Giersz & Heggie 1994) and rini is an initial radial position of the star. Adopting
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Fig. 5.3 Time evolution of masses of the stars which undergo runaway collisions at the cluster
center. We plot the analytical expression of equation (5.5) (black line) for the model G with
mseed = 100M⊙, Mcl = 1.25 × 105 M⊙, tcc = 0.1Myr and fc lnΛ = 1. The types of the lines
and colors are the same as in Figure 5.2. This figure is reproduced from Sakurai et al. (2017).

Table 5.3 Star cluster models with different parameter values. We describe the main difference
from the fiducial model in the last column. The values of MDM and NDM, when DM is included,
are the same as in the corresponding fiducial model and are not shown in this table. We note
that the initial stellar distributions in model AnoDM and Arad are exactly the same as in
our fiducial model A. Unless mentioned, the values are computed by averaging over three
realizations. This table is taken from Sakurai et al. (2017).

M cl,4 N3 rc ρc,5 trh trc ϵsfe mmax,f N coll Notes

(104 M⊙) (103) (pc) (M⊙ pc−3) (Myr) (kyr) (%) (M⊙)

A 16.4 19.9 0.401 6.45× 105 19.7 528 5.91 929 11.7 fiducial model (Table 5.1)

AnoDM 16.4 19.9 0.401 6.45× 105 19.7 528 5.91 915 10.7 no DM

Arad 16.4 20.0 0.400 6.30× 105 19.5 553 5.90 958 9.00 half radii for stars, 1 realization

Amax 16.5 18.6 0.394 7.31× 105 17.2 157 5.95 1510 11.0 mmax =200M⊙, 1 realization

Amin 16.6 53.3 0.401 7.94× 105 44.6 1040 5.99 980 12.0 mmin =1M⊙, no DM, 1 realization

Asfe1 28.5 34.5 0.509 5.47× 105 48.3 511 10.3 1060 14.5 αsfe =1.26× 10−3, 2 realizations

Asfe2 8.56 10.4 0.359 4.47× 105 12.7 351 3.09 602 5.67 αsfe =3.16× 10−4

Asfe3 1.75 2.10 0.361 8.51× 104 8.61 144 0.629 186 1.67 αsfe =6.32× 10−5
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the inner part of the Navarro-Frenk-White DM halo density profile ρ ∝ r−1 with normalization

ρ0 ∼ 7 × 10−20 g cm−3 at 1 pc, which is obtained directly from our simulation, and adopting v =

10 km s−1, rini = 1pc, m = 100M⊙ and N = 3 × 107, we get tdf ∼ 7Myr, which is several dozen

to hundred times longer than tcc. Hence, the DM dynamical friction has little effect on the stellar

dynamics.

Next, model A and Arad are compared which differ from each other in stellar radius calculation.

In model Arad, stellar radii for given stellar masses are half times smaller than in model A. The

difference causes only modest impact on the results. In specific, the number of collisions in model

Arad becomes slightly smaller, but the final stellar mass mmax,f is almost the same.

In model Amax, where we set a larger maximum mass limit of the Salpeter IMF mmax, we can

see a more direct effect: the runaway growth of the massive star at the center is accelerated. By

contrast, setting a smaller mmin (model Amin) has minor effect on the runaway process. These

results are totally reasonable since mainly massive stars undergo the runaway collision process via

mass segregation/concentration towards the cluster center.

Changing the values of the SFE parameter αsfe notably alters the results. Adopting a higher SFE

(model Asfe1) accelerates runaway collision because an initially denser cluster forms, while setting a

smaller αsfe results in smaller mmax,f and Ncoll (Asfe2 and Asfe3). In model Asfe3, there are actually

few collisions, and the runaway collision does not occur due to the small cluster mass (see the small

value of the second term in equation 5.5).

5.4 Summary and discussions

We have performed simulations for evolution of star clusters and explored IMBH formation via

runaway collisions. The star cluster formation sites are found in realistic cosmological simulations.

Runaway stellar collisions commence quickly within 3Myr, and very massive stars of mmax,f ∼
400 − 1900M⊙ form (Figure 5.3), which is consistent with the results of Katz, Sijacki & Haehnelt

(2015). The final mass mmax,f exceeds ∼ 300M⊙ in all our fiducial models, and therefore IMBHs

will be left in the clusters after the lifetime of the stars (Heger et al. 2003). The IMBHs could be

seeds for the formation of SMBHs observed at z ≳ 6, which are supposed to grow via gas accretion or

merger. Provided that Eddington accretion is sustained with radiative efficiency 10 per cent, a seed

BH of mass 1000M⊙ grows to as massive as ∼ 109 M⊙ in ∼ 0.6Gyr. We conclude that formation of

IMBHs in dense star clusters offers a viable mechanism for seeding the high-z SMBHs.

5.4.1 Correlation between the final mass and halo properties

We examine the origin of the diversity of mmax,f (see Table 5.1) found in our simulations by searching

correlations between mmax,f and several halo properties. Relevant physical quantities will be the

halo virial mass Mvir, gas velocity dispersion at the center σc,gas and average gas density of central

core region ρc,gas. We naively expect that the cluster mass scales with the halo mass Mcl ∝ Mvir and

the star cluster density scales with the central gas density ρc ∝ ρc,gas. We also expect σc ∝ σc,gas

by dynamical consideration. We here essentially assume that the bulk properties of the star clusters

come from those of the parent gas clouds. With these scalings and the fact that the core-collapse

time tcc scales with the relaxation time trc, we can rewrite equation (5.5) using Mvir, ρc,gas and

σ3
c,gas as

mmax,f ∝ Mvir ln(const.× ρc,gas/σ
3
c,gas), (5.7)
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Fig. 5.4 Correlation between mmax,f and Mcl ln(ρc/σ
3
c ). The units of Mcl, σc and ρc are M⊙,

km s−1 and M⊙ pc−3, respectively. The solid line is ∝ mmax,f . This figure is reproduced from
Sakurai et al. (2017).

where we use t = 3Myr. The logarithmic dependence of σc and ρc comes from the integration of

the mass growth rate via stellar collisions ∝ t−1 over a time interval between tcc ∝ trc ∝ σ3
c and

t = 3Myr (Portegies Zwart & McMillan 2002). In Figure 5.4, we show the correlation between

mmax,f and Mcl ln(ρc/σ
3
c ) for our fiducial models. It is found that mmax,f is correlated with the halo

properties with moderate scatter, as in equation (5.7).

As a reference, in Figure 5.5, we also show a simpler correlation, namely, a correlation between

mmax,f and Mcl. The scatter of the correlation is larger than that from equation (5.7).

A simple redshift dependence of mmax,f is also derived as follows. In the derivation, we use the

cosmological scaling of halo properties and redshift as in, for instance, equation (18)-(20) of Ahn &

Shapiro (2007), i.e., Mvir ∝ (1 + z)−3/2 with virial temperature Tvir ∼ 8000K, ρc,gas ∝ (1 + z)3 and

σc,gas ∝ σgas ∼ (GMvir/rt)
1/2 ∝ M

1/3
vir (1 + z)1/2. From these scalings, we get

mmax,f ∝ (1 + z)−3/2 ln(1 + z). (5.8)

In Figure 5.6, we show the correlation between mmax,f and the cluster formation redshift z. Again,

it is found that the actual dependence is consistent with the above scaling (dashed line) although

there is substantial scatter. In spite of these interesting correlations, we argue that, in order to

determine more accurate correlations, simulations with a large number of samples are necessary.
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Fig. 5.5 Correlation between mmax,f and Mcl. The solid line is ∝ mmax,f .

5.4.2 Cluster mass-IMBH mass relation

For galaxies and their central BHs, there is a well-known relation between SMBH mass and bulge

mass (Magorrian et al. 1998, Merritt & Ferrarese 2001). Although the objects and mass scales are

different, we compare the IMBH mass with the cluster mass in our simulations. Figure 5.7 shows the

relation between the cluster mass M cl and the final mass mmax,f of the runaway collision stars which

would collapse and leave IMBHs with little mass loss. Our simulation data are located in the left-

hand bottom portion of the figure. The lower dotted line denotes the well-known Magorrian relation

for SMBHs (from equation 10 of Kormendy & Ho 2013), while the upper dashed line represents the

BH mass-cluster mass relation (see equation 16 and figure 3 of Portegies Zwart & McMillan 2002).

The latter relation is specifically given by

mmax,f = 30 + 8× 10−4Mcl lnΛcl, (5.9)

with Λcl = min(Mcl/M⊙, 10
6). Our simulation results agree with this relation, namely, about one

percent of the cluster mass contributes to the mass of the central massive star. Comparing the

simulation data with the observational data, we find that the primordial star clusters forming in

early atomic-cooling halos may be similar to present-day star clusters, but with smaller masses. We

also find that the ratio of central BH mass to galaxy (cluster) mass is slightly higher than that found

for local SMBHs, possibly reflecting the different formation mechanism.
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Fig. 5.6 Correlation between redshift z and mmax,f is shown. The dashed line represents a

relation of ∝ (1+ z)−3/2 ln(1+ z) (equation 5.8). This figure is reproduced from Sakurai et al.
(2017).

5.4.3 Model uncertainties

In this work, the most significant uncertainty lies in the generation process of the initial conditions

for star clusters (Section 5.2.2). First, the epoch when a entire gas cloud would be replaced by a

star cluster is not trivial. We assume that the cluster forms when density of the gas cloud reaches

nH ∼ 107 cm−3. We use the density value by noting that efficient cooling and fragmentation of gas by

OH cooling occur in a cloud with metallicity ≳ 10−4 Z⊙ (Chiaki, Yoshida & Hirano 2016). Although

protostellar formation will occur at much higher density ≳ 1020 cm−3, a lower density threshold for

‘star cluster’ formation is adopted to trace the global structure of the parent cloud. We also note

that starburst in star clusters does not occur instantaneously but can last for over a million years

(Kimm et al. 2016). Successive star formation can promote runaway collisions by supplying newly

formed stars to the cluster, or delayed star formation may actually prevent the growth of the central

star. Moreover, a newly born star cluster is not necessarily virialized with Q = 0.5, and could have

somewhat anisotropic velocity structure. Finally, the SFE will be controlled by stellar evolution

itself through various feedback effects. Self-consistent treatment of the star cluster formation and

evolution is beyond the scope of this work. However, direct cosmological simulations which couple

star formation and stellar dynamics as well as DM halo assembly will elucidate many of the above

issues.
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Fig. 5.7 Correlation between Mcl and mmax,f for the models in Table 5.1 and Table 5.3. We
exclude the model Asfe3 because the massive star of mass mmax,f ≲ 300M⊙ would end its life
as a pair instability supernova (Heger et al. 2003). We also over-plot the observational data for
elliptical and classical bulges (Kormendy & Ho 2013) and globular clusters (Lützgendorf et al.
2013). The analytical expressions of the BH mass-cluster mass relation (equation 5.9; dashed
line) and the Magorrian relation (equation 10 of Kormendy & Ho 2013; dotted line) are also
represented. This figure is reproduced from Sakurai et al. (2017).

In our hybrid N-body simulations, several physical processes are not incorporated. First of all,

the collision rate is likely to be affected by stellar evolution through the stellar radius evolution

and mass loss. As we have already investigated in Section 5.3.2, the uncertainty in the stellar radii

of main sequence stars modestly affects our results. When post-main sequence evolution is taken

into account, the collision can be enhanced during the giant phases of the stars. We expect that

stellar wind and mass loss are not significant over a short time of ∼ 3Myr, assuming that the

stellar metallicity is as low as ≲ 10−4 Z⊙ (Baraffe, Heger & Woosley 2001, Muijres et al. 2012, Katz,

Sijacki & Haehnelt 2015). Next, binary evolution increases the merger rate via tidal interaction

(Hurley, Tout & Pols 2002), and can promote runaway collisions. In this case, formation of massive

stars can occur even faster than in our simulations. Moreover, primordial binaries may delay core

collapse of the star clusters by binary heating (Rasio, Fregeau & Joshi 2001), or may accelerate

the core collapse by enhancing mass segregation because of the effectively increased mass (Heggie,

Trenti & Hut 2006). Finally, the stellar collision condition and outcome may not be as simple as

those we have adopted (Section 5.2.3). Effects of tidal interaction can increase the rate of close

encounters (Fregeau et al. 2004: and references therein), whereas mass loss during binary collision

would reduce the mass of the collision product (Glebbeek et al. 2009). Rejuvenation of stars by
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collisional mixing lengthens the lifetime of the collision products. An encounter of a pair of stars

with high velocities which satisfy our merger condition could actually just pass through each other

depending on the impact parameter and the stellar envelope thickness. Most of such stars which

once escape merger are in tight binary orbits, and therefore they may eventually merge at later time.

Stellar-gas interaction may enhance core collapse if dynamical friction or mass increase by accretion

is effective. We estimate a dynamical friction time scale of equation (5.6) for gas to be tdf ∼ 0.2Myr,

adopting an isothermal sphere profile ρ = ρ0(r/r0)
−2 with ρ0 ∼ 2× 10−18 g cm−3 at r0 = 1pc which

we derive from the halo data, and using m = 100M⊙, v = 10 km s−1, rini = 1pc and lnΛ′ ∼ 10. We

also estimate an accretion time scale defined by tacc = m/ṁB, wherein m is a typical stellar mass

and ṁB is the Bondi accretion rate of equation (4.17). For m = 10M⊙, and using gas temperature

∼ 104 K and density nH ∼ 107 cm−3 which are indicated in Kimm et al. (2016), we get tacc ∼ 1Myr.

Both tdf and tacc are within 3Myr and the presence of gas may accelerate the core collapse of the

star clusters.

5.4.4 Fate of IMBHs in star clusters

The formation of very massive stars via runaway collision in dense star clusters has been successfully

shown and the stars will undergo direct gravitational collapse to leave IMBHs. Thus, the runaway

stellar collision is a promising initial process of seeding the formation of SMBHs. However, there

still remains an important question, i.e., it is unclear whether an IMBH in a star cluster can actually

grow to be an SMBH within about a billion years. It is possible that either lack of gas supply

or the radiation feedback from the accreting IMBH suppresses its growth (Milosavljević, Couch &

Bromm 2009, Park & Ricotti 2012). In this case, the IMBHs would be left in star clusters or within

galaxies in the present-day Universe, as suggested in some observational studies (Maccarone et al.

2007, Pasham, Strohmayer & Mushotzky 2014, Kızıltan, Baumgardt & Loeb 2017). Further studies

are warranted to research the fate of the early IMBHs and their observational signatures.
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Conclusion

In this thesis, we study three seed BH formation models, namely, the direct collapse model, the

super-Eddington accretion model, and the runaway stellar collision model. We examine the validity

of these models in realistic situations. As far as we examined, all the three models are viable

to produce seed BHs which may subsequently grow to the observed high-redshift SMBHs via gas

accretion and BH mergers.

In Chapter 2, we first consider the direct collapse model. We study the efficiency of UV feedback

by stellar radiation for an accretion phase of SMS formation, where we consider rapid episodic

accretion of a mean rate ∼ 0.1M⊙ yr−1. We focus on the difference of the evolution of the rapidly

accreting protostars between constant accretion cases and episodic accretion cases. We first construct

analytic functions of the episodic accretion histories using parameters which specify the durations

of burst and quiescent phases, and the accretion rates during those phases. By calculating the

stellar evolution with the parameterized accretion histories, we find that the episodically accreting

supergiant protostar can significantly contract during prolonged quiescent phases which last longer

than 103 yr. The stellar contraction results in an increase of the effective temperature and UV

feedback due to an emission of a significant amount of ionizing photons. This result is contrasted

with those of the stellar evolution via constant rapid accretion, where the accreting supergiant

protostar continues to be bloated and keeps its low surface temperature of ∼ 5000K.

In Chapter 3, we examine a highly gravitationally unstable accretion disk around a SMS by a 2D

hydrodynamical simulation. We calculate a more realistic episodic accretion history by following

the dynamics of fragments within the disk. We find that such a disk is more unstable and more

frequently forms fragments with a typical number of fragments O(100), than a disk for a normal Pop

III star formation case. We also compute stellar evolutions with the obtained accretion history in a

post-process manner to investigate the efficiency of the stellar UV feedback. It is found that, even

with the highly variable accretion history, the accreting protostar continues to be largely bloated

and keeps the low effective temperature of ∼ 5000K as found in the constant accretion cases. With

a small amount of stellar UV photons emitted, UV feedback would be ineffective and the protostar

would continue to grow until its mass reaches ∼ 105 M⊙ at which it collapses to produce a remnant

BH.

In Chapter 4, we next consider the super-Eddington accretion model. We examine a BH accretion

flow at a high rate with a super-Eddington luminosity source from the central region, which is

assumed to be a nuclear accretion disk around the BH. We focus on the flow at large scales where

BH gravity is comparable to gas pressure, near the Bondi radius. We examine whether a stable

hyper-Eddington accretion flow is maintained in this high luminosity case. To this end, we perform

1D radiation hydrodynamics simulations with radiation from the central source, which is modeled

by analytical functions with a parameter specifying the maximum luminosity that can exceed the
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Eddington luminosity. It is found that the stable hyper-Eddington accretion is achieved even with

at most 100 times the Eddington luminosity, when the two conditions are satisfied: the initial

H ii region is smaller than the Bondi radius and the ram pressure is stronger than the radiation

force. Analytical results based on these two conditions can explain our simulations. To see the role

of ram pressure, gas gravity and radiation force in detail, we model a motion of an optically thick gas

shell just outside the H ii region, which is driven by radiation force from the central source toward a

rapid gas accretion flow. We find that both ram pressure and gas gravity are important to overcome

the radiation force.

In Chapter 5, finally, we work on the runaway stellar collision model. In order to elucidate whether

the runaway collision and IMBH formation are prevalent within first star clusters, we examine

dynamics of the clusters which are identified in star-forming gas clouds within atomic-cooling halos.

Firstly, the atomic-cooling halos are identified by performing cosmological SPH simulations. By

replacing the SPH particles to star particles, assuming local star formation efficiency and an initial

mass function, we then generate initial stellar distributions within star clusters. Using the star

cluster initial conditions, we perform direct N-body simulations with stellar collisions and mergers.

It is shown that the runaway stellar collisions occur in almost all star clusters and the massive stars

form with a mass range of ∼ 400 − 1900M⊙, which would gravitationally collapse to leave IMBHs

at the end of their lifetimes. The final masses likely become larger with larger virial mass, larger

central gas density and smaller velocity dispersion of the host halos. We also find that the ratio of

IMBH mass to cluster mass in our simulations is nearly 1 per cent, which is consistent with the local

star cluster observations.

Although we show that all the models are viable for formation of a seed BH, it remains still

uncertain whether the seed grows to a SMBH. As future works, we will study processes of the seed

BH growth in the context of the three models we have considered in this thesis. Intriguingly, an

IMBH formed in a first star cluster (Chapter 5) can grow by subsequent mergers with stars and other

BHs, possibly causing tidal disruption events and gravitational wave events. The event rates may

be enhanced by the existence of an accretion disk, which exserts dissipative force on intruding stars

(Just et al. 2012, Kennedy et al. 2016). The events may be observed, e.g., by a X-ray telescope like

SwiftBAT and by gravitational-wave telescopes like LISA and DECIGO. Thus, by further studying

the growth of the seed BH, we can compare the theoretical models with observations, which will

lead to further understanding for origin of the high-redshift SMBHs.
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