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Abstract

In the standard model of the universe, it is widely accepted that the hierarchical structure
has been formed through the gravitational assembly of cold dark matter (CDM). The
examination of the CDM paradigm is one of the most important tasks in the era of
precision cosmology.

The information on the structure formation history can be extracted from galaxy clus-
ters. In particular, Jing & Suto (2002) (JS02) found a universal probability distribution
function (PDF) for the minor-to-major axis ratio of trixaxially-modelled simulated ha-
los. This suggests that we can test the CDM paradigm by comparing PDFs of axis ratio
between observations and simulations.

Recently, observational analyses of the non-sphericity of galaxy clusters have become
feasible. In particular, Kawahara (2010) fitted ellipses to the X-ray surface brightness of
galaxy clusters, and showed that their axis ratio is barely consistent with the prediction
based on JS02, although the number of analyzed data is small and so the observational
uncertainty is large.

In this thesis, by using cosmological hydrodynamical simulations, we show that the
prediction based on JS02 is not suitable for precise comparisons with observation data; we
calculate PDFs of axis ratio of X-ray surface brightness directly from our simulation data,
in the same way as Kawahara (2010), and show that our results are significantly different
from the prediction based on JS02. This is mainly because JS02 assumes that the den-
sity distribution inside simulated halos is well approximated by concentric ellipsoids with
common axis ratio; this assumption affects predictions of projected (two-dimensional) axis
ratio that is observationally more relevant. Our PDFs are free from the above assump-
tions, and therefore reliable in comparisons with observation data.

We also preliminarily compare our simulation results with the X-ray observation data
analyzed by Kawahara (2010). Our PDF is much closer to the observation data, than
the simple prediction based on JS02, while the robustness of both simulation data and
observation analyses should be more thoroughly tested with a much larger number of
observation and simulation data that is expected to be available in the near future. Espe-
cially, we found that the non-sphericity of dark matter halos, as well as gas distribution,
significantly depends on baryonic processes adopted in simulations, even up to the virial
radius, not only in the central region.

In general, we emphasize that the estimator of the non-sphericity of galaxy clusters
both in simulations and observations. This methodology can be straightforwardly applied
to a larger number of observation data, including X-ray and gravitational lensing data,
and higher-resolution simulations, and the CDM paradigm will be more severely tested
in the near future.
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Chapter 1

Introduction

Based on a number of observational evidence, the standard model of the universe, so
called the ΛCDM model, lays the foundations of modern cosmology; approximately 70 %
of the total energy budget of the universe is attributed to the cosmological constant Λ,
a little under 30 % is due to dark matter, and only the remaining a few percent comes
from baryons we are familiar with. The hierarchical structure of the universe has been
formed through the gravitational assembly of Cold (dissipationless) Dark Matter, which is
referred to as the CDM paradigm. The ΛCDM model has been firmly established through
a number of observational evidence; in particular, temperature anisotropies in the cosmic
microwave background (CMB) radiation, distance measurements of Ia type supernovae,
and the abundance of galaxy clusters have independently brought results consistent with
the ΛCDM model.

Nevertheless, the ΛCDM model is not always perfect, especially at small scales. In
particular, cosmological simulations based on the CDM paradigm produce too much small
objects (satellites) in a galactic halo, compared to the amount found in actual observa-
tions. In the era of precision cosmology, the CDM paradigm should be more severely
tested than ever before, not only at small scales, but also at larger scales where the CDM
paradigm has been successful.

One of the most conventional ways to obtain the information on the structure forma-
tion history of the universe is observations of galaxy clusters, corresponding to the most
massive gravitationally bound halos; since the dynamical time of galaxy clusters reaches
to a few Gyr, comparable to the age of the universe, they still hold the information on the
structure formation history. For example, the construction of the abundance of galaxy
clusters, or the mass function, is one of the principal ways to determine the cosmological
parameters (Allen et al., 2011, for a recent review).

Cosmological applications of galaxy clusters have been mainly performed under the
assumption of spherical symmetry for simplicity. A number of observations and cosmo-
logical simulations, however, has exhibited clear signatures of the non-sphericity of dark
matter halos. In addition, from a theoretical point of view, the Gaussian random field, a
conventional description of the primordial density fluctuations, predicts a definite statisti-
cal signature of the non-sphericity already imprinted in the early universe (Doroshkevich,
1970; Bardeen et al., 1986). Hence the non-spherical observational analyses of galaxy clus-
ters are essentially required to promote their cosmological applications, and have recently
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become feasible thanks to the development of observational techniques.
The improved quality of observational data demands accurate theoretical predictions

of the non-sphericity of cluster-scale halos. However, purely theoretical description of the
non-spherical structure and evolution of dark matter halos is very difficult due to the
non-linear evolution and complicated interactions among dark matter within the highly
inhomogeneous density distribution. Therefore cosmological simulations play key roles in
investigating the non-sphericity.

Among the recent simulation studies on the non-sphericity, Jing & Suto (2002) (here-
after JS02) modelled their simulated halos by triaxial ellipsoids, and found that their
minor-to-major axis ratio follows a universal probability distribution function (PDF).
The universality of the non-sphericity suggests that a comparison of PDFs of axis ratio
between simulations and observations can be a test for the CDM paradigm.

Actually, observational estimates of PDFs of axis ratio have been already performed,
although the number of available observation data is limited for now. The weak lensing
study by Oguri et al. (2010) has shown that their 18 clusters have PDF of axis ratio barely
consistent with that proposed by JS02 while the observational uncertainty is large. The 70
X-ray clusters analyzed by Kawahara (2010) also produced a consistent result with JS02,
although the observational uncertainty is large, too. In the near future, especially Subaru
Hyper Suprime-Cam (HSC)1 will provide us with a number of highly resolved lensing halos
which are suitable for non-spherical analyses. In addition, since the surface brightness
is one of the primary observables in X-ray observations of galaxy clusters, a number of
available X-ray data may be already existing. Also, future projects like eROSITA2 will
provide us with plenty of X-ray data.

For more precise comparisons between observations and simulations, however, we sus-
pect that the PDF of JS02 is inadequate; the PDF is constructed in the three-dimensional
space, so it must be arranged for comparisons with two-dimensional observation data. For
example, Oguri et al. (2003) integrated the PDF of JS02 along randomly oriented lines-of-
sight, and the resulting PDF of projected axis ratio is compared with the weak lensing data
by Oguri et al. (2010). In order to precisely compare observations and simulations, it is
the best way to calculate the non-sphericity of the observable quantity in each observation
directly from simulations.

Based on the above background, the main goals of this paper is to make more reliable
predictions on PDFs of axis ratio of galaxy clusters by using cosmological simulations,
and to establish the methodology to test the CDM paradigm by comparing PDFs between
simulations and observations. We predict PDFs of projected axis ratio of dark matter
density distribution and the X-ray surface brightness, directly from cosmological simula-
tions. We then clarify the difference between our results and the prediction of JS02. Our
resulting PDFs of projected axis ratio are compared with the observation data by Oguri
et al. (2010) (weak lensing) and Kawahara (2010) (X-ray). Especially, we calculate the
axis ratio of X-ray surface brightness in the same way as Kawahara (2010), and there-
fore we can make a conclusion on the consistency between the observation data and the
simulations, i.e., the validity of the CDM paradigm, for the currently available data.

The construction of PDFs of axis ratio itself can be achievable just by processing the

1www.naoj.org/Projects/HSC/
2http://www.mpe.mpg.de/eROSITA
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CHAPTER 1. INTRODUCTION

simulation data. It is important, however, to physically understand the simulation results
as possible. Especially, we attempt to clarify how and to what extent the simulation
results differ from purely theoretical predictions, including the spherical collapse model
and the ellipsoidal collapse model.

While the spherical collapse model and ellipsoidal collapse model are widely used in
statistically describing the evolution of halos, the individual comparison with the simula-
tion results has never been performed in the previous literature. Since these theoretical
models adopt a variety of strong assumptions, the validity of their predictions should be
examined.

In this thesis, before constructing PDFs of axis ratio of halos, we compare the evolution
of individual simulated halos with the conventional spherical collapse model and ellipsoidal
collapse model, on the object-wise basis. The results of the comparisons turn out to be
helpful to interpret statistical features on the non-sphericity of halos.

The rest of this thesis as follows:

• Chapter 2 reviews the theoretical models to describe the evolution and virialized
state of dark matter halos under the spherical symmetry assumption.

• In Chapter 3, we summarize the previous studies on the non-sphericity of halos.
First, we describe the theoretical models on the non-sphericity; the Gaussian random
initial conditions and the ellipsoidal collapse model. Next we present the simulation
study by JS02 who found the universality in the non-sphericity of simulated halos.
Then we summarize the study by Rossi et al. (2011) that pointed out the discrepancy
between the PDF of JS02 and the theoretical prediction from the Gaussian random
initial conditions. In addition, we review the previous observational studies on the
non-sphericity of galaxy clusters by Oguri et al. (2010) and Kawahara (2010).

• Chapter 4 compares the prediction of the spherical collapse model with the evolution
of individual halos extracted from the N-body simulation. We confirm that the
velocity dispersion that is neglected in the spherical collapse model, plays important
roles in the evolution of the simulated halos. This chapter is based on Suto et al.
(2016)

• In Chapter 5, we compare the prediction of the ellipsoidal collapse model with the
evolution of individual simulated halos. Especially we emphasize that the density
distribution of the simulated halos is not necessarily self-similar. We then construct
PDFs of projected axis ratio directly from the simulation data, and show that
the self-similarity assumption adopted in JS02 is indeed invalid. Furthermore, we
compare our simulation results with the weak-lensing data by Oguri et al. (2010).

• In Chapter 6, we measure the axis ratio of X-ray surface brightness from the galaxy
clusters extracted from the cosmological hydrodynamical simulations, in the same
way as Kawahara (2010) for the actual clusters. We statistically test the consistency
between our results and the observation data by Kawahara (2010).

• Chapter 7 presents the summary and conclusion of this thesis.
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Chapter 2

Evolution and Structure of Dark
Matter Halos under Spherical
Symmetry

In order to better understand the non-sphericity of dark matter halos, we first have to
know how their evolution and structure are theoretically described under the spherical
symmetry. For example, the ellipsoidal collapse model (Section 3.2) is extension of the
spherical collapse model (Section 2.2). In this Chapter, we review the theoretical models
that have been conventionally used to describe spherical pictures of dark matter halos.
Most parts of this chapter will be referred to in Chapter 4, where we compare the top-hat
spherical collapse model with the simulation results.

2.1 Dynamics of Collisionless Particles

We begin with the general description of the evolution of collisionless particles, i.e., the
collisionless Boltzmann equation:

df

dt
=
∂f

∂t
+
∑
i

vi
∂f

∂xi
−
∑
i

∂ϕ

∂xi

∂f

∂vi
= 0, (2.1)

where f = f(x,v, t) is the phase space density of the particles, and ϕ = ϕ(x, t) is the
gravitational potential at the position x. For simplicity, we here assume that all the
particles have the same mass m; otherwise, the momentum p should be used instead of
the velocity v.

Integrating Equation (2.1) over the velocity space yields the continuity equation:

∂ρ

∂t
+
∑
i

∂

∂xi
(ρv̄i) = 0, (2.2)

where

ρ(x, t) = m

∫
d3v f(x,v, t) (2.3)
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2.1. DYNAMICS OF COLLISIONLESS PARTICLES

is the density, and

v̄i(x, t) =

∫
d3v vif(x,v, t)

/∫
d3vf(x,v, t) (2.4)

is the mean velocity at position x.
Similarly, by multiplying Equation (2.1) by v̄j and integrating over the velocity space,

one obtains the following:

∂ρv̄j
∂t

+
∑
i

∂

∂xi
(ρvivj) + ρ

∂ϕ

∂xj
= 0, (2.5)

where

vivj(x, t) =

∫
d3v vivjf(x,v, t)

/∫
d3vf(x,v, t). (2.6)

The above equation can be rewritten as

∂v̄j
∂t

+
∑

v̄i
∂v̄j
∂xi

= −1

ρ

∑ ∂

∂xi

(
ρσ2

ij

)
− ∂ϕ

∂xj
, (2.7)

where

σ2
ij = vivj − v̄iv̄j, (2.8)

is the velocity dispersion. Equation (2.7) gives the equation of motion for collisionless
particles, and called the Jeans equation.

In the spherical coordinates (r, θ, φ), the Jeans equation for the r-direction is written
as

∂vr
∂t

+

[
vr
∂

∂r
+
vθ
r

∂

∂θ
+

vφ
r sin θ

∂

∂φ

]
vr = −1

ρ

[
∂(ρσ2

rr)

∂r
+

1

r

∂(ρσ2
rθ)

∂θ
+

1

r sin θ

∂(ρσ2
rφ)

∂φ

]

−
2σ2

rr − σ2
θθ − σ2

φφ − v̄2θ − v̄2φ + σ2
rθ cot θ

r
− ∂ϕ

∂r
.

(2.9)

In addition, under the spherical symmetry, the above equation reduces to

∂vr
∂t

+ vr
∂vr
∂r

= −1

ρ

∂(ρσ2
rr)

∂r
− 2βσ2

rr

r
− ∂ϕ

∂r
, (2.10)

where

β = 1 −
σ2
θθ + σ2

φφ

2σ2
rr

(2.11)

is called the velocity anisotropy parameter. If the velocity dispersion is exactly isotropic,
β = 0, and if the radial (tangential) component is dominant, β = 1 ( β → −∞). The
Jeans equation (2.10) is one of the most conventional forms to describe the motion of dark
matter particles inside a halo.
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CHAPTER 2. EVOLUTION AND STRUCTURE OF DARK MATTER HALOS
UNDER SPHERICAL SYMMETRY

We next derive the energy equation for the collisionless system, and then discuss the
equilibrium state. Multiplying Equation (2.5) by mxk and integrating over x yields∫

d3x xk
∂(ρv̄j)

∂t
= −

∑
i

∫
d3x xk

∂(ρvivj)

∂xi
−
∫
d3x ρxk

∂ϕ

∂xj
. (2.12)

The first term in the right-hand side is written as

−
∑
i

∫
d3x xk

∂(ρvivj)

∂xi
=

∫
d3x ρvjvk −

∑
i

∫
dσi xkρvivj, (2.13)

where dσi represents the surface element oriented toward the direction of xi. We rewrite
the right-hand side of the above equation in terms of the kinetic energy tensor Kjk:

Kjk =
1

2

∫
d3xρvjvk, (2.14)

and the surface pressure term Σjk:

Σjk = −
∑
i

∫
dσi xjρvivj. (2.15)

The second term in the right-hand side of Equation (2.12) is just the definition of the
Chandrasekhar potential tensor Wjk:

Wjk = −
∫
d3x ρxk

∂ϕ

∂xj
. (2.16)

For the gravitational system, ϕ is given by

ϕ(x) = −G
∫
d3x′

ρ(x′)

|x′ − x|
(2.17)

and therefore Wjk becomes

Wjk = G

∫
d3x

∫
d3x′ ρ(x)ρ(x′)

xj(x
′
k − xk)

|x′ − x|3
. (2.18)

In the above equation, one can interchange x and x′ since they are dummy variables of
integration:

Wjk = G

∫
d3x′

∫
d3x ρ(x′)ρ(x)

x′j(xk − x′k)

|x− x′|3
. (2.19)

Combining Equations (2.18) and (2.19), one obtains

Wjk = −G
2

∫
d3x

∫
d3x′ ρ(x)ρ(x′)

(x′j − xj)(x
′
k − xk)

|x′ − x|3
, (2.20)
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2.1. DYNAMICS OF COLLISIONLESS PARTICLES

which explicitly indicates that Wjk is symmetric about the subscripts j and k. Taking
the trace of above equation yields∑

k

Wkk = −G
2

∫
d3x ρ(x)

∫
d3x′

ρ(x′)

|x− x′|

=
1

2

∫
d3x ρ(x)ϕ(x).

(2.21)

Hence the trace of Wjk reproduces the ordinary definition of the total gravitational po-
tential energy.

Because the right-hand side of Equation (2.12) is now 2Kjk +Wjk + Σjk, and because
Kjk, Wjk and Σjk are symmetric about j and k, the left-hand side is also symmetric about
j and k. Therefore we can rewrite Equation (2.12) as

1

2

d

dt

∫
d3x ρ (xkv̄j + xj v̄k) = 2Kjk +Wjk + Σjk. (2.22)

Furthermore, for the inertial moment tensor Ijk:

Ijk =

∫
d3x ρxjxk, (2.23)

its time-derivative satisfies

dIjk
dt

=

∫
d3x

∂ρ

∂t
xjxk = −

∫
d3x

∂(ρv̄i)

∂xi
xjxk

=

∫
d3x (xkv̄j + xj v̄k) .

(2.24)

Therefore Equation (2.12) finally becomes

1

2

d2Ijk
dt2

= 2Kjk +Wjk + Σjk. (2.25)

This is called the tensor virial theorem. By taking the trace of both sides of the above
equation, one obtains the scalar virial theorem:

1

2

d2I

dt2
= 2K +W + Σ, (2.26)

where

I =

∫
d3x ρ|x|2, K =

1

2

∫
d3x ρv2,

W = −
∫
d3x ρx · ∇ϕ, Σ = −

∫
dσ · xρv2.

(2.27)

For a static system, d2I/dt2 = 0, and so

2K +W + Σ = 0. (2.28)

In particular, when the surface pressure term Σ is negligible, Equation (2.28) indicates
that the total energy E satisfies E = K +W = −K. The virial theorem is widely used in
theoretical models, including the spherical collapse model and ellipsoidal model (described
in the later sections), to describe the dynamical equilibrium state of dark matter halos.
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CHAPTER 2. EVOLUTION AND STRUCTURE OF DARK MATTER HALOS
UNDER SPHERICAL SYMMETRY

2.2 Top-Hat Spherical Collapse Model

Structures in the universe are formed through gravitational assemblies of dark matter,
starting from primordial density fluctuations. Except for early times of the universe, the
evolution of the density fluctuation is non-linear. The top-hat spherical collapse model
(Gunn & Gott, 1972; Gunn, 1977; Peebles, 1980) provides the most simple description of
the non-linear evolution of density fluctuations. In this section, we summarize the basic
equations and assumptions adopted in the top-hat spherical collapse model in the Einstein
de Sitter (EdS) universe (Subsection 2.2.1) and the flat universe with the cosmological
constant Λ (Subsection 2.2.2).

2.2.1 Einstein de Sitter universe

We consider an isolated homogeneous spherical region in the Einstein de Sitter (EdS)
universe (Ωm = 1). Assuming that the sphere has radius ri at the initial time ti, the
initial density ρi can be written as

ρi(r) =


ρ̄i(1 + δi) ; r < ri

0 ; r > ri,

(2.29)

where ρ̄i = (6πGt2i )
−1 is the cosmic mean density, and δi (independent of r) is the initial

density contrast. Throughout this thesis, we refer to this form of density profile as a
“top-hat” density profile.

The time evolution of the radius r(t) of the sphere follows

d2r

dt2
= −GM

r2
= −4πG

3
ρ̄(t)(1 + δ(t))r, (2.30)

where M = 4πρ̄(t)(1+δ(t))r3/3 is the total mass of the sphere. Throughout the evolution,
the density contrast δ(t) inside the sphere is determined so that M remains constant. We
emphasize that, in general, the motion of collisionless dark matter particles obeys the
Jeans equation that takes into account the velocity dispersion of particles. The above
equation of motion neglects the velocity dispersion.

Integration of the equation of motion (2.30) yields the following energy equation:

1

2

(
dr

dt

)2

− GM

r
= E, (2.31)

where E is the total energy. If E < 0, Equation (2.30) has a bound-state solution. The
solution is parametrically written as

t =
tta
π

(θ − sin θ) , r =
rta
2

(1 − cos θ). (2.32)

Accordingly, the overdensity ∆ = ρ/ρ̄ (= 1 + δ) inside the sphere is also parametrically
described as follows:

∆ =
9

2

(θ − sin θ)2

(1 − cos θ)3
. (2.33)
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2.2. TOP-HAT SPHERICAL COLLAPSE MODEL

The above solution states that r reaches a maximum, or “turns-around” at θ = π. We
have normalized t and r by the values at θ = π, i.e., tta and rta, and they satisfy

r3ta
t2ta

π2

8
= GM. (2.34)

We note that the equation of motion (2.30) is independent of the scale of r. Conse-
quently, r(t)/rta and ∆(t) do not depend on M and are determined solely by δi. Therefore
the initially homogeneous sphere remains homogeneous throughout the evolution. In par-
ticular, at the turn-around time tta, the overdensity ∆ta ≡ ∆(tta) satisfy

∆ta =
9π2

16
≈ 5.55 (2.35)

inside the sphere.
According to the solution (2.32), r contracts to zero at the “collapse time” tcol = 2tta.

Then ∆(tcol) diverges to infinity, which is, of course, unrealistic. Hence the another
assumption is needed to describe the state of the sphere after t = tcol. In fact, it is
conventional to assume that the system instantaneously reaches to the virial equilibrium
at t = tcol, described as follows.

At t = tta, the kinetic energy Kta = 0 since all the matter inside the sphere stop
expansion. In contrast, at t = tcol, the kinetic energy Kvir inside the sphere is assumed to
be half the absolute value of the potential energy Wvir. Since the density in the sphere is
homogeneous at all times, the potential energy W within the sphere is given by

W = −3

5

GM2

r
. (2.36)

Hence, by equating the total energies at t = tta and tcol; Kta + Wta=Kvir + Wvir, one
obtains

rvir =
1

2
rta. (2.37)

Note that the factor 3/5 in W comes from the homogeneous density profile. It is essential
that the retained homogeneity yields the same factor of 3/5 both at tta and tcol. We will
revisit this point in Chapter 4.

According to the above simplified treatment, the radius r of the sphere instantaneously
takes the finite value rvir at t = tcol, rather than vanishing. As a result, the overdensity
∆vir ≡ ∆(tcol) does not diverge, but becomes finite:

∆vir = 18π2 ≈ 177.7. (2.38)

This value of ∆vir is independent of M and δi; any collapsed object has the same value of
∆vir at t = tcol. This is part of a reason why ∆vir is widely used as the threshold of halo
identification in numerical simulations.

It is conventional to relate the above non-linear evolution of the sphere with that in
the linear regime. At early time t where the density contrast δ is much less than unity, r,
t and δ can be approximated up to the leading order of θ:

t ≈ tta
6π
θ3 , r ≈ rta

4
θ2 , δ ≈ 3

20
θ2. (2.39)
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Hence δ grows as t2/3 in the linear regime, which corresponds to the linear growth rate
D(t) in the EdS universe is proportional to the scale factor a ∝ t2/3.

In particular, at the turn-around time tta,

δta,lin =
3

20
(6π)2/3 ≈ 1.05 (2.40)

and at the collapse time tcol,

δvir,lin =
3

20
(12π)2/3 ≈ 1.69. (2.41)

The latter value corresponds to the linearly-extrapolated density contrast of collapsed
(viliarized) objects, and widely used in theoretical studies including the Press-Schechter
theory (Press & Schechter, 1974).

All the results in this subsection are strictly correct only in the EdS universe. We
describe the top-hat spherical collapse model in the spatially flat universe with the non-
zero cosmological constant Λ in the next subsection.

2.2.2 Flat universe with ΩΛ > 0

We consider the evolution of an isolated homogeneous sphere in the flat universe with
ΩΛ > 0 (Lacey & Cole, 1993; Eke et al., 1996; Nakamura & Suto, 1997). For simplicity,
we assume that the sphere collapses exactly at the present time; a(tcol) = 1. In this
section, we denote Ωm simply by Ω, and so ΩΛ = 1−Ω. The time-dependence of the scale
factor can be parametrically written as

Hvt =
1

3
(1 − Ωv)

−1/2 cosh−1(1 + 2χ),

a =

(
Ωv

1 − Ωv

)1/3

χ1/3,

(2.42)

where the subscript v denotes the values at the collapse (or virlial) time tcol. Since av = 1,

Ωv =
1

1 + χv

; 1 − Ωv =
χv

1 + χv

. (2.43)

It can also be easily shown that

Ht =
1

3

(
1 + χ

χ

)1/2

cosh−1(1 + 2χ). (2.44)

A sphere of mass M and radius r(t) obeys the following equation of motion:

d2r

dt2
= −GM

r2
+

Λ

3
r. (2.45)

Integrating Equation (2.45) gives the energy equation:

1

2

(
dr

dt

)2

− GM

r
− Λ

6
r2 = E, (2.46)
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where the energy E is defined at the turn-around time tta:

E = −GM
rta

− Λ

6
r2ta. (2.47)

Integrating the energy equation, one obtains

Ht = ζ1/2
(

1 + χ

χ

)∫ y

0

dx

[
1

x
− (1 + ζ) + ζx2

]−1/2

, (2.48)

where

y =
r

rta
, ζ =

r3taΛ

6GM
. (2.49)

Note that ζ is time-independent. In order for the sphere to turn around (i.e., the integrand
of Equation (2.48) does not diverge in the range 0 < x < 1), ζ must satisfy 0 < ζ < 1/2.
Using zeta and y, the overdensity ∆ (= 1 + δ) is written as

∆ =
3M

4πρ̄r3
=

χ

y3ζ
. (2.50)

The collapse time is given by

Hvtv = 2ζ1/2
(

1 + χv

χv

)∫ 1

0

dx

[
1

x
− (1 + ζ) + ζx2

]−1/2

. (2.51)

Now we replace the variable x by

x =
(2 − ζ − η)t2

2[1 + 2ζ − (3ζ + η − 1)t2]
, (2.52)

where
η =

√
4ζ + ζ2. (2.53)

Then Hvtv can be expressed as

Hvtv =
4(ζ + η)√

(η + 3ζ)(η − ζ)
[Π(ν, k) −K(k)] , (2.54)

where K(k) and Π(ν, k) are the elliptic integrals of the first and third kinds characterized
by

k2 =
4ηζ

(η + 3ζ)(η − ζ)
, ν =

2ζ

η + 3ζ
. (2.55)

Using Equation (2.44), one obtains

χv =
1

2

[
cosh

(
12(ζ + η)√

(η + 3ζ)(η − ζ)
[Π(ν, k) −K(k)]

)
− 1

]
. (2.56)

From the virial theorem,

⟨Um⟩ta + ⟨UΛ⟩ta =
1

2
⟨Um⟩vir + 2⟨UΛ⟩vir, (2.57)
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where

⟨Um⟩ = −3

5

GM

r
, ⟨UΛ⟩ = − 1

10
ΛMr2 (2.58)

are the gravitational potential energy due to the total mass M , and the potential energy
due to the cosmological constant Λ, respectively. By using ζ and yv, Equation (2.57) is
written as

4ζy3v − 2(1 + ζ)yv + 1 = 0. (2.59)

Equation (2.59) has a solution in the range 0 < yv < 1:

yv =

(
2 + 2ζ

3ζ

)1/2

cos

[
2

3
π − 1

3
cos−1

{
−1

ζ

(
3ζ

2 + 2ζ

)3/2
}]

. (2.60)

Combining all the above results, the virial overdensity ∆vir is given by

∆vir =
χv

y3vζ
, (2.61)

where χv and yv are given by Equations (2.56) and (2.60), respectively. This is considered
to be the density contrast at the collapse time in the non-linear theory.

Next we calculate the linearly-extrapolated density contrast δvir,lin. In the early stages
(y ≪ 1), Equations (2.44) and (2.48) give

Ht ≃ 2

3
(1 + χ)1/2 (2.62)

and

Ht ≃ 2

3
ζ1/2

(
1 + χ

χ

)1/2

y3/2
[
1 +

3

10
(1 + ζ)y

]
. (2.63)

Equating Equations (2.62) and (2.63) gives y iteratively:

y ≃
(
χ

ζ

)1/3
[

1 − 1

5
(1 + ζ)

(
χ

ζ

)1/3
]
. (2.64)

Combining all the above results, the initial density contrast δi is given by

δi ≃
3

5
(1 + ζ)

(
χ

ζ

)1/3

=
3

5
a(1 + ζ)

(
χv

ζ

)1/3

, (2.65)

showing that δi ∝ a as predicted by the linear theory. Since the linear growth rate D+ in
an open universe is given by

D+ = a2F1

(
1,

1

3
,
11

6
;−χ

)
, (2.66)

the density contrast δvir,lin at the collapse time is given by

δvir,lin =
3

5
2F1

(
1,

1

3
,
11

6
;−χv

)
(1 + ζ)

(
χv

ζ

)1/3

. (2.67)
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Figure 2.1: Virial overdensity ∆vir (left) and its linearly-extrapolated value δvir,lin (right),
as a function of Ωm,0. In each panel, the dashed line indicates the value for the EdS
universe (Ωm,0 = 0).

Figure 2.1 shows the dependence of ∆vir (left) and δvir,lin (right) on Ωm,0. While
∆vir strongly depends on Ωm,0, δvir,lin only slightly depends on Ωm,0. Hence the value
δvir,lin ≈ 1.68 is widely used as the linearly-extrapolated density contrast of virialized
objects, for any Ωm,0.

In Chapters 4 and 5, we use the cosmological N-body simulations with Ωm,0 = 0.279.
For this value of Ωm,0, ∆vir ≈ 355.4 and δvir,lin ≈ 1.675. We use the value ∆vir ≈ 355.4 to
identify halos from the simulation data at z = 0.

2.3 Self-Similar Spherical Collapse — Bertschinger

Model

One of the strong assumptions adopted in the top-hat spherical collapse model (TSC) is
the homogeneous density in the sphere. Fillmore & Goldreich (1984) and Bertschinger
(1985) considered mass shells with inhomogeneous density profile, and developed a self-
similar collapse model. Due to crossings of mass shells in the inhomogeneous density
field, the self-similar model naturally yields a picture of velocity dispersion of dark matter
that is neglected in TSC. Strictly speaking, the self-similar model holds only in the EdS
universe, but its qualitative picture gives us an important insight into the dynamics of
dark matter. We summarize the key points of the self-similar model in this section.

2.3.1 Cold accretion onto a black hole

Before describing the self-similar model including the shell crossing, we consider mass
shells accreting onto a black hole, as done by Bertschinger (1985); since a mass shell does
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not turn back after it falls onto the black hole, the shell crossing never happens. There
is a self-similar solution also in this case, and the resulting solution will be helpful in the
next subsection.

At the initial time ti, the density profile is set as follows:

ρ = ρi ×


1 + δa,i ; r < ra,i

1 ; r > ra,i,

(2.68)

where ρi = (6πGt2i )
−1, and ra,i is the initial radius of the overdense region, corresponding,

in this case, to the black hole radius.
For the mass shell with the initial radius ri(> ra,i), the equation of motion is given by

d2r

dt2
= −Gm

r2
, (2.69)

where

m =
4π

3
ρir

3
i

(
1 + δa,i

r3a,i
r3i

)
≡ 4π

3
ρir

3
i (1 + δi). (2.70)

We have denoted the initial overdensity for the mass shell under consideration by δi =
δa,i(ra,i/ri)

3. By normalizing the radius and time by their initial values, namely, by using
τ = t/ti, y = r/ri, the equation of motion is written as

d2y

dτ 2
= −2

9
(1 + δi)

1

y2
. (2.71)

Also, the initial conditions now become y = 1 and dy/dτ = 2/3 (i.e., the Hubble speed)
at τ = 1. The above equation of motion can be solved in the same way as in the case of
TSC, and for δi ≪ 1, τ and y are given by

τ =
3

4
(θ − sin θ)

(
5

3
δi

)−3/2

(2.72)

and

y =
1

2
(1 − cos θ)

(
5

3
δi

)−1

. (2.73)

Then the turn-around radius rta of the mass shell satisfies

rta(t) =

(
3π

4

)−8/9(
5

3
δa,i

)1/3

ra,iτ
8/9. (2.74)

In other words, rta(t) can be interpreted as the turn-around radius of the mass shell that
turns-around at time t. The corresponding mass mta at the turn-around time is given by

mta(t) =

(
3π

4

)−2/3
4

3
π

5

3
δa,iρira,iτ

2/3. (2.75)
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The self-similar solution for the mass shells accreting onto the black hole is described
via λ, or the radius normalized by rta(t):

λ =
r

rta(t)
= sin2 θ

2

(
θ − sin θ

π

)−8/9

. (2.76)

Both radius r and time t are now incorporated into λ, and therefore λ has two interpre-
tations; radius of one particular mass shell, or a series of radii of all the mass shells. In
what follows, we present the velocity, mass and density in the self-similar solution.

First, the self-similar description of velocity V (λ) is defined by

dr

dt
=
r

t

sin θ(θ − sin θ)

(1 − cos θ)2
≡ rta

t
V (λ). (2.77)

Note that V and λ are connected through θ. The top panel of Figure 2.2 illustrates V as
a function of λ. For λ≫ 1, V asymptotically approaches to (2/3)λ, corresponding to the
Hubble flow. In contrast, for λ ≪ 1, V ∝ λ−1/2, which is expected for a particle freely
falling onto a point mass.

Next, the mass M(λ) in the self-similar solution is given by

m =
4π

3
ρm(t)r3

[
3

4
(θ − sin θ)

]2
sin−6 θ

2
≡ 4π

3
ρm(t)r3taM(λ). (2.78)

The middle panel of Figure 2.2 shows M as a function of λ. In the limit of λ→ 0, M has
a non-zero value:

M(0) ≈ 3.497, (2.79)

which is interpreted as the black hole mass. Since m ∝ t2/3M , the (dimensional) black
hole mass grows as t2/3. For λ≫ 1,

M(λ) ≈ λ3 +
3

5

(
3π

4

)8/3

. (2.80)

Finally, the density D(λ) in the self-similar solution is defined by

ρ = ρi
r2i dri
r2dr

= ρm(t)

[
3

4
(θ − sin θ)

]2
sin−6

(
4 − 9

2

V (λ)

λ

)−1

≡ ρm(t)D(λ). (2.81)

Note that, in the above, r2i dri/r
2dr is calculated through

0 = dτ =

(
∂τ

∂δi

∂δi
∂ri

+
∂τ

∂y

∂y

∂ri

)
dri +

(
∂τ

∂δi

∂δi
∂r

+
∂τ

∂y

∂y

∂r

)
dr. (2.82)

The bottom panel of Figure 2.2 illustrates D as a function of λ. For λ ≪ 1, D ∝ λ−3/2,
while λ→ 1 for λ≫ 1.
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Figure 2.2: Velocity V (λ) (top), Mass M(λ) (middle) and Density D(λ) (bottom) of
dark matter mass shells in the self-similar accretion onto a black hole, as a function of
λ = r/rta(t).
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2.3.2 Collisionless infall

Now we describe the self-similar solution for collisionless infall with shell crossings. After
a mass shell falls into the center, the shell turns back and then turns-around once again.
Hence several mass shells can reside at a given radius at the same time.

We consider a mass shell that turns-around at t = tta. The self-similar solution adopts
λ = r/rta(t) and ξ = log(t/tta), where rta is defined by Equation (2.74). Importantly, rta(t)
is not the turn-around radius of the mass shell under consideration, but the turn-around
radius of another mass shell that turns around at time t.

Then the equation of motion is rewritten as

d2λ

dξ2
+

7

9

dλ

dξ
− 8

81
λ = −2

9

µ(λ)

λ2
, (2.83)

where µ(λ) denotes the mass in the self-similar solution. Also, the initial conditions are
λ = 1, dλ/dξ = −8/9 at ξ = 0. The above equation of motion is only numerically solved.
Since µ is not known in advance, the solution is iteratively derived by beginning with a
trail function for µ.

The resulting λ(ξ) is shown in Figure 2.3. The self-similarity enables us to interpret
this figure in two ways; the time evolution of radius of a particular mass shell, or a
snapshot for various mass shells at a fixed time. In the former picture, the figure shows
a mass shell repeats infalls and turns-around, in principle, infinite times. In the latter
picture, the figure indicates that several mass shells have the same λ at the same time,
i.e., shell crossings are occurring.

Figure 2.4 illustrates dλ/dξ against λ, or the phase diagram. Due to the shell crossings,
several shells can have the same λ with different dλ/dξ. This yields non-zero velocity
dispersions that is neglected in TSC. The dimensional velocity is given by

dr

dt
=
rta
t

(
dλ

dξ
+

8

9
λ

)
, (2.84)

which satisfies dr/dt = 0 at t = tta.

For the resulting λ(ξ), the mass µ(λ) is given by

µ(λ) =
9π2

16

∑
i

(−1)i−1 exp

[
−2

3
ξi

]
, (2.85)

where ξi is the i-th point where λ = λ(ξ). Figure 2.5 illustrates µ(λ). For λ≪ 1, µ ∝ λ3/4.

Correspondingly, the density ϱ is calculated by

ϱ(λ) =
1

3λ2
dµ

dλ
=

π2

4λ2

∑
i

(−1)i exp

[
−2

3
ξi

](
dλ

dξ

)−1

, (2.86)

and shown in Figure 2.5. Note that the cusps in the figure have , in principle, ϱ = ∞.
The positions of cusps correspond to λ where a mass shell collapses. For λ≪ 1,ϱ ∝ λ−9/4.
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Figure 2.3: The self-similar solution λ = r/rta for the collisionless infall as a function of
ξ = log(t/tta).

Figure 2.4: Phase diagram of the self-similar solution for the collisionless infall; dλ/dξ
against λ.

25



2.3. SELF-SIMILAR SPHERICAL COLLAPSE — BERTSCHINGER MODEL

Figure 2.5: Mass profile µ(λ) of the self-similar solution.

Figure 2.6: Density profile ϱ(λ) of the self-similar solution.
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2.4 Virialized State of Dark Matter Halos —  Lokas

& Mamon Model

The top-hat spherical collapse models predict that a sphere always keeps the homogeneity
of density. The self-similar solution by Fillmore & Goldreich (1984) and Bertschinger
(1985) describes a non-uniform density profile, but it is different from the NFW density
profile that is common in dark matter halos both in simulations and in observations.

Although there is no theoretical model to describe the formation of the NFW profile
(the origin of the NFW profile itself is still unknown), the viriazlied state with the NFW
profile has been provided by  Lokas & Mamon (2001). Since the method of  Lokas & Mamon
(2001) is applicable to any spherically symmetric systems, in this section, we consider the
uniform density profile, in addition to the NFW profile.

For a given density profile ρ(r), the gravitational potential ϕ(r) is given through the
Poisson equation by

ϕ(r) = −4πG

[
1

r

∫ r

0

ρ(r′)r′2dr′ +

∫ ∞

r

ρ(r′)r′dr′
]
. (2.87)

Using the above potential and the density, the dispersion profile of the radial velocity
σ2
r is obtained from the static Jeans equation:

1

ρ

d

dr
(ρσ2

r) + 2β
σ2
r

r
= −dϕ

dr
, (2.88)

where the velocity anisotropy β(= 1−σ2
t /2σ

2
r). It is the essential point of this model that

the virialized state is regarded as a static solution of the Jeans equation. Here beta in
general depends on radius, but we assume for simplicity that β is constant.

Using the total velocity dispersion σ2 = σ2
r(3 − 2β), the kinetic energy K(r) and the

potential energy W (r) inside the radius r are given by

K(r) =
1

2

∫ r

0

4πρ(r)σ2(r)r2dr, (2.89)

W (r) = −G
∫ r

0

4πρ(r)M(r)rdr, (2.90)

where M(r) is the mass inside the radius r. Then we obtain the virial ratio 2K/|W |.

2.4.1 Uniform density

We consider the uniform density profile:

ρ(r) =

{
ρ0 ; r ≤ a

0 ; r > a
(2.91)

In this case, the gravitational potential ϕ(r) is given by

ϕ(r) =


−GMa

a

(
3

2
− 1

2

r2

a2

)
; r ≤ a

−GMa

r
; r > a,

(2.92)
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where Ma = 4πa3ρ0/3. Then the static Jeans equation yields

σ2
r(r) =

1

1 + β

GMa

2a

[(r
a

)−2β

−
(r
a

)2]
, (2.93)

for r ≤ a. Here we set the boundary condition σ2
r = 0 at r − a, and so σ2

r = 0 outside
r = a.

Then the kinetic energy K inside r = a becomes

K(r) =
3(3 − 2β)

4(1 + β)

GM2
a

a

[
1

3 − 2β

(r
a

)3−2β

− 1

5

(r
a

)5]
(r ≤ a). (2.94)

In addition, the potential energy is

W (r) = −3

4

GM2
a

a

[
1 − 1

5

(r
a

)2]
(r ≤ a). (2.95)

Note that W (r) = 0 for r > a since ρ = 0.
For any β, 2K/|W | = 1 at r = a. This is because we have set the boundary condition

σ2
r = 0 at r = a, and so the surface pressure term becomes zero in the virial theorem

(2.28).

2.4.2 NFW density profile

The density of virialized halos at the present time is not uniform. In fact, Navarro et al.
(1995, 1996, 1997) have found a universal profile for the spherically averaged density of
simulated halos, called the Navarro-Frenk-White (NFW) profile:

ρ(r) =
ρ0c

3g(c)

3

1

cs(1 + cs)2
, (2.96)

where s = r/rs is the radius normalized by the scale radius rs, c = rv/rs is the concen-
tration parameter characterized by the virial radius rv, and

g(c) =

[
log(1 + c) − c

1 + c

]−1

. (2.97)

Here we basically follow the notation of  Lokas & Mamon (2001). In this subsection, we
consider the energy terms in the viriaized state with the NFW profile, according to  Lokas
& Mamon (2001).

The mass M(s) inside s is obtained by integrating the density profile:

M(s) = Mvg(c)

[
log(1 + cs) − cs

1 + cs

]
, (2.98)

where

Mv =
4π

3
ρ0r

3
v. (2.99)
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Then the (specific) gravitational potential phi(s) is given by

ϕ(s)

V 2
v

= −g(c)c
log(1 + cs)

cs
, (2.100)

where

V 2
v =

GMv

rv
=

4π

3
Gρ0r

2
v (2.101)

is the circular velocity.
Solving the static Jeans equation, one obtains the velocity dispersion σ2

r . Unlike the
case of the uniform density profile, the solution cannot be written in a common form for
arbitrary β. Hence we specifically provide the solution for β = 0, 1/2 and 1.

σ2
r

V 2
v

(s; β = 0) =
1

2
cg(c)cs(1 + cs)

[
π2 − log(cs) − 1

cs
− 1

(1 + cs)2
− 6

1 + cs

+

(
1 +

1

c2s2
− 4

cs
− 2

1 + cs

)
log(1 + cs) + 3 log2(1 + cs) + 6 Li2(−cs)

],
(2.102)

σ2
r

V 2
v

(s; β = 1/2) = cg(c)(1 + cs)2
[
−π

2

3
+

1

2(1 + cs)2
+

2

1 + cs

+
log(1 + cs)

cs
+

log(1 + cs)

1 + cs
− log2(1 + cs) − 2 Li2(−cs)

] (2.103)

and

σ2
r

V 2
v

(s; β = 1) = g(c)(1 + cs)2
1

cs

[
π2

6
− 1

2(1 + cs)2
− 1

1 + cs

− log(1 + cs)

1 + cs
+

log2(1 + cs)

2
+ Li2(−cs)

], (2.104)

where

Li2(x) =

∫ 0

x

log(1 − t)

t
(2.105)

is the dilogarithm function. Accordingly, the kinetic energy K(s) is given as follows:

K(s, β = 0) =
1

2
W∞

[
−3 +

3

1 + cs
− 2 log(1 + cs) + cs (5 + 3 log(1 + cs))

−c2s2 (7 + 6 log(1 + cs)) + c3s3
(
π2 + log

1 + cs

cs
+ 3 log2(1 + cs) + 6 Li2(−cs)

)]
,

(2.106)

K(s, β = 1/2) =
1

3
W∞

[
−3 +

3

1 + cs
− 3 log(1 + cs) + 6cs (1 + log(1 + cs))

−c2s2
(
π2 + 3 log2(1 + cs) + 6 Li2(−cs)

)] (2.107)
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and

K(s, β = 1) =
1

2
W∞

[
−2 log(1 + cs) + cs

(
π2

3
− 1

1 + cs
+ log2(1 + cs) + 2 Li2(−cs)

)]
,

(2.108)
where

W∞ =
cg2(c)GM2

v

2rv
. (2.109)

The potential energy is given by

W (s) = −W∞

[
1 − 1

(1 + cs)2
− 2 log(1 + cs)

1 + cs

]
. (2.110)

Figure 2.7: Ratio of the kinetic energy K to the potential energy W . The left panel
illustrates 2K/|W | with the velocity anisotropy parameter β = 0, for the three different
values of concentration parameter c; c = 5 (green dashed), c = 10 (red solid), c = 100
(blue dotted). The right panel shows 2K/|W | with c is fixed to 10, for the three different
values of β; β = 0 (red solid), β = 1/2 (green dashed), β = 1 (blue dotted). Note that
the red curves in the two panels are identical.

Figure 2.7 demonstrates the solutions with β = 0 and three different values of c (left),
and with c = 10 and three different values of β (right). Compared to c, the solution
strongly depends on β, especially in inner regions. In general, 2K/|W | is not necessarily
unity because the surface pressure term in the virial theorem (2.28) does not vanish.

In observations and simulations, the virialized region of a halo is conventionally deter-
mined based on the spherically averaged overdensity. In particular, the radius r200 inside
which the averaged overdensity is 200 times the cosmic critical density, is widely used
as the virial radius of a galaxy cluster. This is motivated by the fact that, in the top-
hat spherical model in the EdS universe, the virial overdensity is given by ∆vir ≈ 177.7,
independent of the collapse time. As Figure 2.7 indicates, however, 2K/|W | does not
have a special value at r200 ≈ rv. Hence r200, or a radius defined by overdensity does not
represent the virial region of halos. This point will be revisited in Chapter 4.
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Chapter 3

Non-spherical Modelling of Dark
Matter Halos; Ellipsoidal Collapse
Model, Simulations and Observations

In this chapter, we present the previous studies from the aspects of theory, simulations
and observations. In particular, we pay a special attention to the work by Rossi et al.
(2011) who found a discrepancy between simulations and theory, in the probability dis-
tribution function (PDF) of axis ratio of triaxial halos. Their finding strongly motivates
our researches, especially the one in Chapter 5.

We reproduce the work by Rossi et al. (2011) in Section 3.4. In preparation for that,
we first describe the theoretical models for the non-sphericity of halos, i.e., the Gaussian
random initial conditions(Section 3.1) and the ellipsoidal collapse model (Section 3.2).
These models give a purely theoretical prediction for PDF of axis ratio of triaxial halos.
Then, in Section 3.3, we present the work by Jing & Suto (2002) who found a universal
PDF of axis ratio of triaxially-modelled simulated halos. The work by Rossi et al. (2011)
is based on the theoretical models in Sections 3.1 and 3.2, and the simulation results
described in Section 3.3.

Finally, in Section 3.5, we describe the previous observation studies on the non-
sphericity of actual clusters by Oguri et al. (2010) (weak-lensing) and Kawahara (2010)
(X-ray) who compared their own observation data with the prediction of Jing & Suto
(2002).

3.1 Gaussian Random Initial Conditions

Theoretically, the non-sphericity of dark matter halos is already imprinted in primordial
density fluctuations, conventionally described by the Gaussian random field (Doroshke-
vich, 1970; Bardeen et al., 1986).

The primordial density fluctuations are characterized by the eigenvalues λk (k = 1,
2, 3; λ1 > λ2 > λ3) of the tensor (4πGρ̄a3)−1∇i∇jϕ. The overdensity δ is related to λk
through

δ = λ1 + λ2 + λ3, (3.1)
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and ellipticity e and prolate p of the density field are given by

e =
λ1 − λ3

2δ
, p =

λ1 + λ3 − 2λ2
2δ

. (3.2)

By definition, −∞ < e < ∞ and −e < p < e. In addition, e > 0 for δ > 0 and e < 0 for
δ < 0.

For a given variance σ2 of the density fluctuations, Doroshkevich (1970) derived the
probability distribution ℘ for δ, e and p:

℘(δ, e, p; σ) =
1√

2πσ2
exp

(
− δ2

2σ2

)
1125√

10π
e(e2 − p2)

(
δ

σ

)5

exp

[
−5

2

δ2

σ2
(3e2 + p2)

]
. (3.3)

Integrating ℘ over all the possible e and p simply reduces to an ordinary Gaussian function
for δ: ∫ ∞

−∞
de

∫ e

−e

dp ℘(δ, e, p; σ) =
1√

2πσ2
exp

(
− δ2

2σ2

)
. (3.4)

This is fully expected since the distribution ℘ is constructed base on the assumption that
the probability distribution of δ follows a Gaussian function.

To clarify how the ellipticity e depends on σ (or mass), we integrate the distribution
℘. First, integrating ℘ over −e < p < e reduces to the following:∫ e

−e

dp ℘(δ, e, p; σ) =
9
√

5e

2πσ
exp

[
− δ2

2σ2
− 10

(
eδ

σ

)2
](

δ

σ

)2

×

[
10
eδ

σ
+
√

10π exp

{
5

2

(
eδ

σ

)2
}{

5

(
eδ

σ

)2

− 1

}
erf

(√
5

2

eδ

σ

)]
.

(3.5)

Furthermore, integration over 0 < δ <∞ yields∫ ∞

0

dδ

∫ e

−e

dp ℘(δ, e, p;σ) =
45e

π(1 + 15e2)2

×

[√
5e(1 + 30e2)

1 + 20e2
− 1

(1 + 15e2)1/2
tan−1

√
5e2

1 + 15e2

]
.

(3.6)

The above expression does not include σ, and therefore the ellipticity e does not depend
on mass when ℘ is integrated over all the possible δ.

We are interested, however, in the mass dependence of e for the regions that eventually
become dark matter halos by the present time. Hence we integrate Equation (3.5) over
δc < δ < ∞, where δc = 1.68 is the linearly-extrapolated density contrast in the top-hat
spherical collapse model. Then the resulting function now depends on σ.

Figure 3.1 illustrates
∫∞
1.68

dδ
∫ e

−e
dp ℘ for three different values of σ; σ = 2.0 (blue),

σ = 1.5 (green), σ = 1.0 (red). Note that larger σs correspond to less massive regions. For
comparison, Equation (3.6) is also plotted in the black dashed curve. Importantly, Figure
3.1 indicates that more massive regions (with smaller σ) tend to have smaller ellipticity
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e in the Gaussian random initial conditions. This point will be revisited when we discuss
the discrepancy in the mass dependence of non-sphericity of halos at the present time
between simulations and theory.

Figure 3.1: Probability distributions of e as a result of
∫
dδdδ

∫ e

−e
dp ℘. Integration over

0 < δ <∞ yields the black dashed curve, independent of σ. If we change the lower limit
of integration to δc = 1.68, the result depends on σ, and the probability distributions of
e for σ = 2.0, 1.5, 1.0 are shown in blue, green and red, respectively.

3.2 Ellipsoidal Collapse Model

A conventional theoretical model to describe the evolution of non-spherical primordial
density fluctuations is the ellipsoidal collapse model (hereafter EC White & Silk, 1979;
Bond & Myers, 1996). In this section, we summarize the basic framework of EC. We
adopt the notation of Rossi et al. (2011).

EC describes the evolution of a homogeneous ellipsoid, embedded with a tidal field.
The tidal field is characterized by the eigenvalues of the tensor ∇ijϕ/(4πGρ̄a

3), where ϕ,
ρ̄ and a denote the gravitational potential, the mean matter density, and the scale factor,
respectively. The differentiation by ∇ij is operated in the comoving coordinate system.
We denote the eigenvalues of the tensor by λk (k = 1, 2, 3; λ1 ≥ λ2 ≥ λ3).

In the linear regime, the density contrast δ is given by
∑

k λk, and λk, δ and ϕ grow
in proportion to the linear growth rate D(t). Therefore, at the initial time tini where the
linear regime holds, the axis lengths of the ellipsoid Ak (k = 1, 2, 3) satisfy the following
equations:

Ak(tini) = a(tini)(1 − λk(tini)) (3.7)

and
dAk(tini)

dt
= H(tini)

[
Ak(tini) − a(tini)λk(tini)

d lnD

d ln a

∣∣∣∣
t=tini

]
, (3.8)
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where H(t) is the Hubble parameter.
Then the axis lengths Ak evolve according to the following equation of motion:

d2Ak(t)

dt2
= ΩΛ,0H

2
0Ak(t) − 4πGρ̄(t)Ak(t)

[
1 + δ(t)

3
+
b′kδ(t)

2
+ λ′ext,k(t)

]
. (3.9)

The above equation of motion implies that the ellipsoid does not rotate with respect to
the tidal field. Therefore the relation A3 ≥ A2 ≥ A1 is conserved all the time since
λ1 ≥ λ2 ≥ λ3 at the initial time.

In the equation of motion (3.9), the interior tidal force b′k within the ellipsoids is
computed by

b′k(t) =
∏
j

Aj(t)

∫ ∞

0

dτ

(A2
k(t) + τ)

∏
j

√
A2

j(t) + τ
− 2

3
. (3.10)

Also, the exterior tidal force λ′ext,k is described by

λ′ext,k(t) =
D(t)

D(tini)

[
λk(tini) −

δ(tini)

3

]
. (3.11)

Equation (3.10) is the exact expression only for the homogeneous density as considered
here. On the other hand, Equation (3.11) assumes the exact linear growth regime even
when the later evolution may not be the case. Unlike λ′ext,k, the density contrast δ(t)
is calculated at each time so that the mass inside the ellipsoid (4πρ̄/3)(1 + δ)A1A2A3 is
constant. For the spherical case (λ1 = λ2 = λ3 = δini/3 and A1 = A2 = A3 = R), both
b′k and λ′ext,k vanish, and the equation of motion simply reduces to d2R/dt2 = ΩΛ,0H

2
0R−

(4π/3)Gρ̄(1 + δ)R.
According to Equation (3.9), all the axis lengths Ak eventually collapse to zero, as in

the spherical case. Therefore an additional assumption is needed to predict the eventual
axis lengths Ak. In the spherical collapse model, it is conventionally assumed that the
final (virial) radius rvir and overdensity ∆vir of a homogeneous sphere are computed from
the virial theorem.

In the case of EC, however, there may be no widely accepted treatment of anisotropic
virialization of different axes. In this paper, we adopt the one proposed by Bond &
Myers (1996). They assumed each Ak separately stops collapsing when Ak reaches a(t) ×
(∆vir)

−1/3, using the virial overdensity ∆vir(z = 0) in the spherical virial theorem. Such
an ellipsoid corresponds to a halo which is virialized at z = 0.

In summary, EC describes the evolution of a homogeneous and isolated ellipsoid, based
on the liner growth of density fluctuations. The treatment of the virialization is based on
the non-trivial assumption that each axis separately virialize; the axis lengths Ak at low
redshifts (z ≲ 1) are determined mainly by this virialization criterion.

3.3 Probability Distribution for Non-sphericity of Sim-

ulated Halos

One of the most important findings in simulations studies on the non-sphericity of dark
matter halos is brought about by Jing & Suto (2002). They fitted triaxial ellipsoids withe
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with axis length A1, A2, A3 (A1 ≤ A2 ≤ A3) to isodensity surfaces of their simulated
halos. Then they found the following universal probability distribution functions (PDFs)
for axis ratios A1/A3 and A2/A3:

p(A1/A3;M200, z) =
(M200/M∗)

0.07[Ωm(z)]0.7

√
2π0.113

exp

[
− [A1/A3(M200/M∗)

0.07[Ωm(z)]0.7 − 0.54]2

2(0.113)2

]
,

(3.12)
and

p(A2/A3;A1/A3) =
3

2(1 − ω)

[
1 −

(
2A2/A3 − 1 − ω

1 − ω

)2
]
, (3.13)

where ω = max(A1/A3, 0.5), and M∗ is the characteristic non-linear mass scale at which
the rms top-hat smoothed overdensity becomes δlin,col = 1.68. The PDF (3.12) states that
more massive halos tend to be less spherical, although the mass dependence is very weak.
More recently, Bonamigo et al. (2015) and Vega et al. (2016) constructed PDFs of axis
ratios by using their simulated halos with higher resolution in a wider mass range, they
still found that more massive halos tend to be less spherical.

The PDFs (3.12) and (3.13) are based on the isodensity contour at ρ = 100ρc. Jing
& Suto (2002) assumed, for simplicity, that the density distribution of halos are “self-
similar”, i.e., the isodensity surfaces follow a set of ellipsoids with the same axis ratio and
the same central position. They also showed, however, that that their halos are actually
not necessarily self-similar; the self-similarity was assumed just for simplicity. Based on
the self-similarity assumption, Jing & Suto (2002) normalize the PDFs for ρ = 100ρc
by M200. Note that the “self-similarity” of the density distribution of dark matter halos
should not be confused with the “self-similar” solution of spherical collapse in Section 2.3.

The PDFs (3.12) and (3.13) have been widely used as a reference to compare with
theoretical models and with observation data. Among them, we present the studies by
Rossi et al. (2011), Oguri et al. (2010) and Kawahara (2010) that strongly motivate this
thesis.

3.4 Discrepancy between EC and Simulation Results

Rossi et al. (2011) solved the ellipsoidal collapse model (EC, Section 3.2) with the Gaussian
random initial conditions (3.1). Then they calculated the PDF of the axis ratio A1/A3.
The resulting PDF is, in a sense, a purely theoretical prediction.

They found that the results from EC and the Gaussian random field state that more
massive halos tend to be more spherical, keeping the mass dependence at the initial time.
In contrast, as stated in the previous section, the PDF (3.12) of Jing & Suto (2002)
(hereafter JS02) predicts that more massive halos are less spherical.

Figure 3.2 is a reproduction of the work of Rossi et al. (2011). The figure shows the
PDF of JS02 (black curve) and the PDF calculated from EC with the Gaussian random
initial conditions (red histogram) for three different mass ranges; 1013M⊙ < M < 1014M⊙
(top), 1014M⊙ < M < 1015M⊙ (middle), M > 1015M⊙ (bottom). Indeed, while the
theoretical prediction is shifted to the right at heavier mass ranges, the PDF of JS02 is
shifted to the left at heavier mass ranges.
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This manifests the discrepancy between the theory and the simulations, although the
mass dependence itself is very weak. In Chapter 4, we try to better understand the
discrepancy by following the evolution of the non-sphericity of individual simulated halos.

Figure 3.2: Comparison between the PDF of axis ratio A1/A3 of dark matter halos at
z = 0 predicted by Jing & Suto (2002) from their simulations (black curve), and the
one calculated from the Gaussian random initial conditions via EC (red histogram), for
the three different mass ranges; 1013M⊙ < M < 1014M⊙ (top), 1014M⊙ < M < 1015M⊙
(middle), M > 1015M⊙ (bottom). For both PDFs, the same cosmological parameters are
chosen as Jing & Suto (2002); Ωm,0 = 0.3, ΩΛ,0 = 0.7, h = 0.7, σ8 = 0.9.
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3.5 Observational Studies on Non-sphericity of Halos

Comparisons of the PDF (3.12) of Jing & Suto (2002) (JS02) with observation data
have been already implemented, although the number of available data is limited at this
stage. In the later chapters, we compare our simulation results with observation data by
Oguri et al. (2010) in the weak lensing analysis, and by Kawahara (2010) in the X-ray
observations. Here we briefly summarize their analysis methods and results.

3.5.1 Weak lensing

Oguri et al. (2010) anaylized Subaru/Suprime-cam observation data for 18 galaxy clusters
with the mean redshift z ∼ 0.23 and the mean mass Mvir ∼ 7 × 1014M⊙. They estimated
the axis ratio of the shear map of the clusters assuming the cluster density in the three-
dimensional space follows the self-similar “elliptical NFW” profile:

ρ(Re) =
ρ0

(Re/Rs)(1 +Re/Rs)2
, (3.14)

where

R2
e = A2

3

3∑
i=1

x2i
τ + A2

i

. (3.15)

Note that the density profile is self-similar (concentric, common axis ratios) if and only if
the density can be written as a function of Re alone.

Since the observed density distribution is projected on the sky, a PDF of projected
axis ratio based on Equation (3.12) is needed in order to compare the observation data
with the simulation results. Oguri et al. (2010) adopted the PDF of projected axis ratio
calculated by Oguri et al. (2003) described in what follows.

For the axis ratios µ13 = A1/A3 and µ23 = A2/A3 that follow the PDFs (3.12) and
(3.13), the axis ratio q = a1/a2 of the projected ellipse with axis length a1 and a2 (a1 ≤ a2)
is obtained by (Binney, 1985)

q(θ, ϕ;µ13, µ23) =

√
A+ C −

√
(A− C)2 +B2

A+ C +
√

(A− C)2 +B2
(3.16)

where

A = µ−2
13 cos2 θ

(
sin2 φ+ µ−2

23 cos2 φ
)

+ µ−2
23 sin2 θ,

B = µ−2
13

(
1 − µ−2

23

)
cos θ sin 2φ,

C = µ−2
13

(
µ−2
23 sin2 φ+ cos2 φ

)
and θ and φ represent the spherical coordinates with the axis set to the line-of-sight. For
the uniform distribution of (θ, φ) and sets of (A1, A2, A3) that follows the PDFs (3.12)
and (3.13), one can calculate the PDF of axis ratio q of the projected isopotential surfaces.

Oguri et al. (2010) compare the above PDF of projected axis ratio with their ob-
servation data. Figure 3.3 reproduces the comparison. The red symbols indicate the
observation data, and the blue solid curve shows the PDF of projected axis ratio by
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Oguri et al. (2003). Oguri et al. (2010) further convolved the PDF of Oguri et al. (2003)
with the Gaussian function (σ = 0.15), in order to incorporate the typical error in es-
timates of axis ratio q. The result is shown in the blue dashed curve. Given the large
uncertainty, they concluded the observation data and the simulation results are barely
consistent.

Figure 3.3: Comparison of the weak lensing data by Oguri et al. (2010) (red symbols with
error bars) and the prediction by Oguri et al. (2003) (blue solid curve). The prediction
of Oguri et al. (2003) is convolved with the Gaussian function (σ = 0.15) to incorporate
the horizontal errors, and plotted in the blue dashed curve.

3.5.2 X-ray

While the gravitational lensing analyses directly estimate the projected total density dis-
tribution of galaxy clusters, X-ray surface brightness of intracluster gas also provides the
information on the dark matter density distribution, assuming that the gas distribution
is correlated with the dark matter distribution.

Kawahara (2010) fitted ellipses to the X-ray surface brightness maps of galaxy clusters
observed by XMM-Newton (Snowden et al., 2008). The fitted ellipses have the semi-major
axis lengths a2/r200=0.1, 0.2, 0.3, 0.4, and Kawahara (2010) found the mean axis ratio q
is roughly 0.8 with no significant radial dependence.

The mean q ≈ 0.8 is larger than that of dark matter (q ≈ 0.6) predicted by Oguri et al.
(2003). This is fully expected because, under the conventional hydrostatic equilibrium:

1

ρgas
∇p = −∇ϕ, (3.17)

the gas density roughly follows isopotential surfaces that is in general more spherical than
isodensity surfaces.
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In order to compare the observation data with the simulation results of Jing & Suto
(2002), Kawahara (2010) calculated the projected axis ratio of isopotential surfaces based
on the PDF (3.12), as described in what follows.

For a self-similar density distribution ρ(Re), the gravitational potential ϕ(x) is given
by

ϕ(x) = −πG
(
A2A3

A1

)∫ ∞

0

dτ
ψ(∞) − ψ(Re(τ))√

(A2
1 + τ)(A2

2 + τ)(A2
3 + τ)

, (3.18)

where

ψ(Re(τ)) =

∫ Re(τ)

0

ρ(R)dR2 (3.19)

and

R2
e(τ) = A2

3

3∑
i=1

x2i
τ + A2

i

. (3.20)

For the elliptical NFW profile:

ρ(Re(τ)) =
ρ0

(Re(τ)/Rs)(1 +Re(τ)/Rs)2
, (3.21)

ψ(Re(τ)) is given by

ψ(Re(τ)) =
2Rsρ0

1 +Rs/Re(τ)
. (3.22)

Then ϕ(x) is calculated through Equation (3.18). An isopotential surface of the resulting
ϕ(x) is, strictly speaking, not an ellipsoid, but can be approximated by an ellipsoid with
the minor-to-major axis ratio µ13 and the intermediate-to-major axis ratio µ23 are given
by

µ13 =
x∗1
x∗3

; µ23 =
x∗2
x∗3
, (3.23)

where x∗i (i = 1, 2, 3) satisfy

ϕ(x∗1, 0, 0) = ϕ(0, x∗2, 0) = ϕ(0, 0, x∗3) = const. (3.24)

Finally the projected axis ratio q of the isopotential surfaces is calculated through Equation
(3.16).

Figure 3.4 is a reproduction of the result of Kawahara (2010). The blue symbols show
the observation data, and the black curve illustrates the PDF of axis ratio of isopotential
surfaces predicted from the PDF of JS02. While the uncertainty is large, similarly to the
case of the weak lensing analysis by Oguri et al. (2010), Kawahara (2010) concluded the
observation data is roughly consistent with the PDFs of Jing & Suto (2002).
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Figure 3.4: Comparison of the PDFs of axis ratio between the X-ray surface brightness
of actual clusters by Kawahara (2010) and the isopotential surfaces estimated from the
PDF of JS02.

It is important to note that both Oguri et al. (2010) and Kawahara (2010) prepared the
PDF of projected axis ratio based on the PDF (3.12) to compare with the observation data.
The simulation results of Jing & Suto (2002) are, however, based on the self-similarity
assumption for dark matter density distribution. Since Jing & Suto (2002) showed that
the density distribution is not necessarily self-similar, the true projected axis ratio can be
different from that predicted under the self-similarity assumption. In addition, for X-ray
observations, the hydrostatic equilibrium assumption is not necessarily valid due to the
dynamical motion of intracluter gas(Lau et al., 2009, 2013; Fang et al., 2009; Suto et al.,
2013).

Therefore more reliable prediction for PDFs of projected axis ratio (of dark matter
or X-ray surface brightness) will be obtained by directly measuring projected axis ratio
from cosmological simulation data. This is exactly what we are aiming at this thesis.

In Chapter 5, we point out that the self-similarity assumption adopted by Jing & Suto
(2002) is not necessarily valid, and directly calculate the PDF of projected axis ratio of
dark matter density distribution to compare with the observation data by Oguri et al.
(2010). Subsequently, in Chapter 6, we calculate the PDF of axis ratio of X-ray surface
brightness by using cosmological hydrodynamical simulations, and compare the results
with the observation data by Kawahara (2010).
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Chapter 4

Confrontation of Top-Hat Spherical
Collapse against Dark Halos from
Cosmological N-Body Simulation

4.1 Motivation

As presented in Section 3.4, Rossi et al. (2011) found the discrepancy in the probability
distribution function (PDF) of axis ratio between the simulation results by Jing & Suto
(2002) and the theoretical prediction from the ellipsoidal collapse (EC) with the Gaussian
random initial conditions; more massive simulated halos are less spherical, but more
massive halos are less spherical in theory.

The above discrepancy indicates that EC does not necessarily reproduce the evolution
of simulated halos. As seen in Section 3.2, EC includes a variety of strong assumptions;
homogeneous density, neglect of velocity dispersion, instantaneous and separate virializa-
tion of three axes, etc. In Chapter 5, we examine how and when these assumptions become
invalid by comparing the evolution of individual simulated halos with the prediction of
EC.

Before doing so, we suspect that even the top-hat spherical collapse (TSC) also does
not necessarily reproduce the evolution of simulated halos, since TSC adopts the strong
assumptions including homogeneous density, neglect of velocity dispersion and instanta-
neous virialization.

TSC is widely used in statistical contexts; e.g., it is applied to the halo identification
in simulations, and the mass measurements and scaling relations of galaxy clusters, etc.
Nevertheless, the validity of TSC for the evolution of individual halos has never been
tested. In this chapter, we compare the TSC prediction with the evolution of halos
extracted from the N-body simulation, on the object-wise basis, and clarify how and when
the strong assumptions in TSC become invalid for the simulated halos.

In Section 4.2, we describe the N-body simulation we use and how to trace back the
simulated halos identified at present to the past. We there show the velocity dispersion of
dark matter plays an important role, and investigate its evolution in the phase space. The
evolution of the simulated halos is compared with TSC in Section 4.3. In Section 4.4, the
main part of this chapter, we examine how the velocity dispersion affects the virialization
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process of halos. Finally, Section 4.4 summarizes this chapter.

4.2 Halos from cosmological N-body simulation

4.2.1 Numerical simulation and halo catalog

We use a cosmological N-body simulation performed with the TreePM code Gadget-2

(Springel, 2005). The simulation is run from z = 99 to z = 0 in a periodic box of
360 h−1Mpc (comoving) on a side, and the number of dark matter particles is 10243 and the
mass of each particle is mp = 3.4×109h−1M⊙. The initial condition is generated by MUSIC

code (Hahn & Abel, 2011), which employs second order Lagrangian perturbation theory.
The transfer function at the initial redshift zini = 99 is generated by the linear Boltzmann
code CAMB (Lewis et al., 2000). The adopted cosmological parameters are consistent with
the Wilkinson Microwave Anisotropy probe (WMAP) 9 year result (Hinshaw et al., 2013):
(Ωm,0, ΩΛ,0, h, ns, σ8)=(0.279, 0.721, 0.7, 0.972, 0.821). The gravitational softening length
is fixed at 20 h−1kpc comoving.

To identify halos in our simulation, the friends-of-friends (FOF) algorithm (Davis
et al., 1985) is performed with the linking parameter b = 0.159, corresponding to the
virial density ∆vir = 355.4. Some authors (More et al., 2011; Courtin et al., 2011) have
pointed out that the overdensity within a FOF halo varies with its mass even for the same
linking parameter b. In our study, however, this issue would not be important since the
mass range of the simulated halos is relatively narrow and a “halo” is redefined using the
spherical overdensity.

We obtain 17535 halos with mass > 1013h−1M⊙ at z = 0, and we choose to analyze
100 most massive halos with mass range 2.06 < M/(1014h−1M⊙) < 16.6 in order to have
a good mass resolution for each halo. In particular, Figures 4.1 - 4.4 below utilize six
halos listed in Table 4.1 for illustration.

Name M δini zta

[1014h−1M⊙] [10−2]

Halo I 16.6 2.72 1.12

Halo II 16.3 2.61 1.21

Halo III 8.38 2.86 0.870

Halo IV 4.87 2.36 0.891

Halo V 4.13 2.79 1.04

Halo VI 2.65 3.06 1.28

Table 4.1: Six halos selected for Figures 4.1 - 4.4 below. The turn-around redshift is
estimated from the maximum point of the cubic-spline interpolated radius R(z) of the
simulated halo from the fifteen redshift data (see text in Section 4.2.2).
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4.2.2 How to trace back the evolution of simulated halos

Using the above simulation data, we compare the evolution of each halo with TSC. To
this end, we define a sphere that corresponds to a halo identified by the FOF algorithm
at z = 0 as follows. First we calculate the center-of-mass of the FOF member particles of
a halo. Starting from the center-of-mass, we find the radius within which the overdensity
becomes ∆vir = 355.4. Then we calculate the center-of-mass of all the particles in the
sphere (not necessarily the FOF member particles), and repeat the procedure again.
This process is iterated until the center-of-mass position of the particles in the sphere
matches to the center of the sphere within 1 h−1 kpc in comoving coordinates. After the
iteration converges, we denote the mass and radius of the sphere by M355 and RM(z = 0),
respectively, for that halo.

For the purpose of our current study, we need the protohalos at different redshifts,
which correspond to the halos identified at z = 0 according to the above procedure. We
have stored fifteen simulation snapshots; zi = 99 (initial), 49, 9, 5, 4, 3, 2, 1.5, 1, 0.8, 0.6,
0.4, 0.2, 0.1 and 0. We use them to trace back the evolution of halos identified at z = 0.
For each redshift z = zi(̸= 0), we trace the distribution of the FOF member particles back
to zi, and calculate the center-of-mass of the distribution at zi . From the center-of-mass,
we find the radius inside which the mass is equal to M355 computed from each halo at
z = 0. The iteration process described above is carried out to determine the center of the
sphere. Finally, we define RM(zi) as the radius of the sphere. Note that the mass M355 is
constant while RM(zi) is a function of redshift.

The left panels of Figure 4.1 plot all the particles within the thickness of 0.03 RM(z)
at each redshift around its center of mass. In order to clarify the degree of mixing of the
particles, they are plotted in different colors according to their initial positions (at z = 99).
By z = 9, the particles are little mixed, and the particles with the same color roughly
keep the shape of the spherical shell. By z = 3, however, filament-like structures already
started to emerge, indicating that the uniform density assumption begins to break.

The colors of the particles at z=1, 0.4 and 0 are defined according to their positions
at z = 1. The redshift z = 1 approximately corresponds to the turn-around epoch of
Halo I. The colors are violently mixed by z = 0.4 (after about 3.5 Gyr), in contrast to
the period from the initial time to z = 2 (about 3.3 Gyr). This is because the relaxation
has finished in the inner part of the halo, and particles in the relaxed region are stirred
due to shell-crossing.

4.2.3 Evolution of velocity dispersion in phase space

In order to see the degree of particle-mixing more clearly, we consider the phase space as
well. Note that, throughout this chapter, we refer to the space of radial coordinate and
radial velocity (r, vr) as the “phase space”, for the comparison with the spherical model
(e.g., Colombi et al., 2015; Sousbie & Colombi, 2015). The right panels of Figure 4.1
demonstrate the phase space distribution of particles colored in the same way as the left
panels. The right panels plot a randomly selected one percent of the particles inside the
sphere within the shown radial range while the left panels plot all the particles in the slice
region.
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Figure 4.1: The particle distribution of Halo I in the comoving space (left) and the phase
space (right). We select a slice of thickness 3 % of RM(z) at each redshift, and plot all
the particles within the slice in the lect panel. In contrast, we consider a large sphere
that encloses the protohalo defined at each halo and plot randomly selected 1 % of the
particles in the sphere. The gray circles in the left panels and the vertical lines in the
right panels indicate RM(z). (The caption continues to the next page.)
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Figure 4.1: (Continued.) The particles are color-coded according to the initial position
at z = 99; the sphere of radius RM(z = 99) is divided into seven equal radial shells, and
particles in each bin are plotted in different colors. Black points correspond to particles
outside the initial halo at z = 99. Those different color particles become mixed due to
the subsequent evolution. In order to clarify the later evolution visually. we redefine the
colors of the particles at z = 1 (approximately the turn-around epoch), and keep the color
convention until z = 0.
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By definition, the initial particle distribution looks like seven color bars. These bars be-
come gradually tilted by z ∼ 2. Although the coordinate space distribution has exhibited
clear non-sphericity by z = 3, the phase space distribution looks still well ordered. The
innermost particles, however, have fallen into the center and then have positive (outward)
radial velocity. By z = 2, the region with large velocity dispersion σ2

r has formed. The
region gradually expands outward, and finally reaches outside the halo radius RM(z = 0).
This is one of the most remarkable differences between the simulation and the description
of TSC.

To look into the region with large σ2
r more carefully, we fully exploit all the particles

and visualize the phase space density in Figure 4.2; z = 1 (top), z = 0.4 (middle), z = 1
(bottom). The figure clearly shows the high density region around the outer end of the
large σ2

r region, indicating the stream of the particles that have (more than) once fallen
into the center. Such a motion of particles creates the large σ2

r region expanding outward.

It is informative to consider here the prediction of the self-similar model for the EdS
universe (see Section 2.3; Fillmore & Goldreich, 1984; Bertschinger, 1985). In the self-
similar model, a spherical shell falls toward the center, and moves outward again after
shell-crossing. The shell turns-around at some radius and falls back toward the center.
Such oscillations of a number of shells account for the development of the velocity disper-
sion in a halo. The physical size of the halo increases with time as more shells infall with
larger turn-around radius.

The above picture explains, at least qualitatively, the evolution of σ2
r of Halo I shown

in Figure 4.2. From z = 1 to z = 0, the velocity dispersion develops from the center of
the halo. The profile of σ2

r exhibits a sharp drop-off at the radius corresponding to the
end of the large velocity dispersion region. In contrast, the radial (peculiar) velocity vr
almost vanishes in the central region, while it is negative in the outer region, representing
the falling particles. All these features are consistent with the self-similar model.

To visualize the consistency between the self-similar model and the simulation results,
the the self-similar solution is overplotted on the phase space distribution at z = 0 (bottom
left panel of Figure 4.2). The overall feature of the simulated halo is followed, at least
qualitatively, by the self-similar solution. Especially, groups of the particles in course of
the first and second turning-arounds are apparent in the phase space distribution.

Strictly speaking, however, the self similar model describes a spherical halo in the
EdS universe, which naturally leads to the big difference between the simulation data
and the overplotted self-similar solution. In addition to the “regular” development of
σ2
r described in the self-similar model, the inhomogeneity contributes to the evolution of
σ2
r in the simulated halos. For example, the infall and the subsequent turn-around of a

substructure generates an additional velocity dispersion that is not described in the self-
similar model. Such a process enhances individuality of halos, and makes it difficult to
find universality (if any) of the evolution of σ2

r , as will be discussed again in later sections.

Furthermore, the density profile of the self-similar solution is predicted to be asymptot-
ically proportional to r−9/4, which is inconsistent with the Navarro-Frenk-White (NFW)
density profile (Navarro et al., 1995, 1996, 1997), the universal density profile common
in observed and simulated halos. Therefore the self-similar solution is not fully reliable
when we quantitatively investigate the evolution of velocity dispersion.
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Figure 4.2: Halo I’s color contrast images of the phase space density (left) and the cor-
responding profiles (right) of radial velocity (green dashed), radial (black solid) and tan-
gential (red dotted) velocity dispersions, for z =1 (top), 0.4 (middle) and 0 (bottom).
For the contrast image for z = 0, the self-similar solution (Fillmore & Goldreich, 1984;
Bertschinger, 1985) in the EdS universe is overplotted.
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Adhikari et al. (2014) have also considered the region with large velocity dispersion in a
different context. They refer to the radius where the density sharply drops as “splashback
radius”, which is essentially the same as the locus where the velocity dispersion sharply
drops. They proposed the splashback radius as a more physically motivated definition
of a dark halo, instead of the traditional definition by using some threshold overdensity.
Although the splashback radius is often much beyond the X-ray observed region of galaxy
clusters, More et al. (2015) have shown that the relation between the splashback and
R200m, within which the overdensity is 200 times the mean matter density, can be written
as a function of the peak height inside R200m. Furthermore, More et al. (2015) indicated
that the splashback radius may be already observed as a caustic of line-of sight velocity
of galaxies by Rines et al. (2013). Although Adhikari et al. (2014) claimed that it is
difficult to unambiguously determine the splashback radius of individual halos, these
studies indicate the importance of velocity dispersion in the halo evolution.

4.3 Comparison of Halo Radius Evolution Against

TSC and Spherically Averaged Jeans Equation

We now compare the evolution of the sphere characterized by the radius RM(z) defined
in Section 4.2.2, with the prediction of TSC. Figure 4.3 demonstrates the results for the
six halos in Table 4.1. The TSC predictions (black solid line) are calculated from the
initial overdensity of each halo. From the initial time until shortly before the turn-around
epoch zta, RM(z) is very close to the model prediction, despite the fact that non-sphericity
and non-uniformity develop by z ∼ 3. From around zta, RM(z) deviates from the model
prediction; the turn-around epoch is delayed, and thereafter the radius of the simulated
halo becomes systematically larger than the model. Finally, the radius RM(z) does not
collapse to zero (naturally), but settles into a finite radius. In addition, the present radius
is also larger than the model prediction. Although the degree of the deviation from TSC
varies from halo to halo, the above trend holds for majority of the simulated halos: the
simulated halos turn around later, and have larger radii both at zta and z = 0 than those
predicted by TSC.

We suspect that the difference between the simulation and TSC is mostly due to
the velocity dispersion focused on in the previous section. In numerical simulations, the
motion of dark matter particles should be described not by Equation (2.30), but by the
(three-dimensional) Jeans equation. We here focus only on their radial motion to see the
effect of the velocity dispersion in the framework of spherical symmetry. The spherically
symmetric version of the Jeans equation is

Dvr
Dt

= −1

ρ

∂(ρσ2
r)

∂r
− 2σ2

r − σ2
tan

r
− GM

r2
, (4.1)

where D/Dt denotes the Lagrangian differentiation, and σ2
tan is the tangential velocity

dispersion of dark matter. Note that σ2
tan includes dispersions in two directions (θ and

φ directions in the spherical coordinates). The density and velocity dispersion usually
decrease as a function of radius, so the first term is expected to delay the collapse epoch.
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Figure 4.3: The comparison of the evolution of the halo radius predicted by TSC (solid)
with the simulation (squares). The model prediction is calculated by using the initial
condition of each simulated halos. The red dashed line shows the solution of the col-
lapse model with the velocity dispersion terms included (see text), which improves the
prediction for the evolution of the halo radius.
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To confirm this, we evaluate the first two terms at r = RM(z) in the right-hand-side
of Equation (4.1) from the simulation data for each of the fifteen redshifts, and solve the
Equation (4.1) with the two terms replaced by using the cubic-spline interpolated values
from the fifteen redshifts.

The results are illustrated by the dashed lines in Figure 4.3. The prediction based on
Equation (4.1) reproduces the simulation results much better than that of TSC at least for
Halos I, II, IV and V. Therefore, we confirm that velocity dispersion explains the delayed
turn-around and the stopped contraction. For Halos III and VI, on the other hand, the
modification is not so successful. This is probably attributed to the strong non-sphericity
of the dark matter distribution. In fact, as shown in Figure 4.4, Halo III has undergone a
drastic merger of two similar mass objects. Halo VI, on the other hand, does not undergo
such a big merger, but its mass accretion occurs prominently along a single direction. In
the other four halos, matter assembles around the central structure from every direction
(The distribution of Halo I is shown in Figure 4.1).

Hence, the level of the improvement depends on the sphericity in the evolution of the
halos. Also, the velocity dispersion terms in Equation (4.1) are not uniquely determined,
so the details of the result depend on their evaluated values. Our present purpose, however,
is not to precisely improve TSC, but to confirm the effect of velocity dispersion. Thus we
conclude that the velocity dispersion plays an important role in the halo evolution from
the above comparison.

Figure 4.4: The particle distributions of Halo III at z = 1, and of Halo VI at z =
1.5, showing their highly non-spherical evolution. The plotted particles are a randomly
selected 5 % of those in the box 1.2 RM(z) on a side, centered on the halo center.

If we can model the evolution of σ2
r of an individual halo fully from initial conditions,

such a model helps us understand the halo evolution beyond the spherical collapse model.
We have found, however, that the profiles of σ2

r and density vary sensitively from halo to
halo: Although we made sure that σ2

r calculated from the linear power spectrum of the
matter density fluctuations can approximate that of simulated halos at the early stage
(z ≳ 5), the late evolution strongly depends on merger and mass accretion processes of
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each halo. Also, as stated in Section 4.2, the evolution of σ2
r in the self-similar model is

not quantitatively successful in describing that of the simulated halo. Thus the improved
modelling, we do not attempt here, remains as an important future work.

As a preliminary step to the above challenge, therefore, we evaluate more quantita-
tively the deviation from TSC. In the next section, we do so by comparing the radii of
the halos at the initial, the turn-around, and the present times.

4.4 Effect of Velocity Dispersion on Prediction for

Present Radius

In this section, we focus on the difference in the present radius R0 between the simulation
and TSC prediction. We first compare R0 and Rta of the simulated halos. Next, we
compare R0 of the simulated halos with the predicted value by TSC from the initial
conditions. To investigate the origin of the difference, it is essential to factorize the ratio
into energy terms, and we here provide relevant definitions for preparation.

The ratio of radii at two epochs may be predicted from the conservation of the total
energies E at those epochs. We decompose the total energy E into the kinetic energy K
(due to both the Hubble expansion and the peculiar velocity), the gravitational potential
energy W and the energy WΛ due to the cosmological constant.

The potential energies W and WΛ within the sphere of mass M and radius R are given
by

W = −γGM
2

R
(4.2)

and
WΛ = −γΛΛMR2, (4.3)

respectively, where the parameters γ and γΛ depend on the density profile inside the
halo (see, e.g., Equation 4.14 and discussion therein). Even if the particle distribution
is non-spherical, the above parametrization is valid as long as a sphere of radius R is
considered.

In order to derive a radial ratio at two epochs, the kinetic energy K must be associated
with the other energy terms. In the settings of TSC, K = 0 at z = zta, and K =
−(1− 5δini/3)W at z = zini, In order to consider the difference from these predictions, we
define the parameter α as

α = −K

W
. (4.4)

Then the total energy E can be written as

E = K +W +WΛ

= −(1 − α)γ
GM2

R
− γΛΛMR2, (4.5)

From now on, in order to represent the above quantities at different epochs, we use
the subscript X to mean either of “ini”, “ta”, and “0”, denoting the quantity at z = zini,
zta and 0 (present), respectively.

51



4.4. EFFECT OF VELOCITY DISPERSION ON PREDICTION FOR PRESENT
RADIUS

In the following sections, we use the ratio between the radii at z = 0 and another
epoch, assuming that the virial theorem is applicable to the halos at z = 0. By equating
the total energies EX (X = “ta” or “ini”) and E0, one obtains the ratio R0/RX in terms
of those coefficients of the energies. Strictly speaking, R0/RX is a solution of the cubic
equation, and the exact expression is not useful in understanding how each energy term
contributes the difference between the simulation and TSC. The contribution of Λ is,
however, very small compared to W :

WΛ

W
=

6

∆

γΛ

γ

ΩΛ

Ωm

, (4.6)

which is, for example, less than 1 % at z = 0 (∆ = 355.4 by definition for our adopted
cosmology). Hence we can treat WΛ/W as an infinitesimal.

Note, however, that, according to the virial theorem in the universe with Λ (Nowakowski
et al., 2002), a virialized halo satisfies −K/W = 1/2 −WΛ/W = 0 in the same settings
as TSC, i.e., α′

0 includes an additional WΛ/W . Hence we define another parameter α′
0

only for z = 0 as

α′
0 = −K0

W0

+
WΛ

0

W0

, (4.7)

although the difference between α0 and α′
0 is negligible at the level of the following dis-

cussion.
Then the total energy E0 at z = 0 is E0 = (1 − α′

0)W + 2WΛ. By equating E0 and
EX = (1−αX)WX +WΛ

X , we solve R0/RX perturbatively up to the leading term in WΛ/W
(∝ ΛR3/(GM)). The result is

R0

RX

=
1 − α′

0

1 − αX

γ0
γX

1

β0
X

(1 − ϵ0X), (4.8)

where

β0
X =

E0

EX

(4.9)

and

ϵ0X =

[
γΛX

γX(1 − αX)
− 2γΛ0
γ0(1 − α′

0)

(
γ0(1 − α′

0)

γX(1 − αX)β0
X

)3
]

ΛR3
X

GM
. (4.10)

A substantial fraction of the particles in a simulated halo defined in Section 4.2.2 indeed
move into and out of the sphere between the two epochs, and the total energy within
the sphere is not necessarily guaranteed to be conserved. The parameter β indicates the
degree of the energy conservation.

We calculate the above parameters α, β and γ for the 100 simulated halos. For a
simulated halo, the kinetic energy K is calculated as

K =
1

2

∑
i

mi(vi +Hxi)
2, (4.11)

where mi, xi and vi are mass, position and peculiar velocity of the i-th particle, and H is
the Hubble parameter at the epoch. The summation is taken over all the particles within
the sphere of radius R.
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The gravitational potential energy W is calculated as

W = −G
∑
i<j

mimj

|xi − xj|
, (4.12)

where the summation is taken over all the combinations of the i-th and j-th particles
within the sphere of radius R. The parameter γ is simply computed by γ = W/(GM2/R).

4.4.1 Comparison of R0 and Rta

The TSC prediction (2.37) is based on the energy conservation between the turn-around
and the collapse epochs. As seen in Section 4.3, however, it is difficult to define unambigu-
ously its collapse time. So, we first compare the present radius R0 with the turn-around
radius Rta instead. If TSC is exact, R0 defined with ∆vir = 355.4 should correspond to
Rvir for objects that collapsed at z = 0. Note that, both R0 and Rta in this section are of
the simulated halos.

The ratio R0/Rta predicted by TSC is 0.483, which can be compared with the simu-
lation. The top-left panel of Figure 4.5 shows that the R0/Rta of the simulated halos is
0.56 on average, with roughly 10 - 20 percent scatter. This level of the deviation may be
fully expected, given the extremely simplified assumptions of TSC.

In order to identify the origin of the discrepancy more quantitatively, we use Equation
(4.8). In TSC, ϵ0ta = 0.032, which explains the difference between the values of R0/Rta

between the EdS universe (R0/Rta = 0.5) and the universe with Λ (R0/Rta = 0.483). For
simplicity, we do not consider the contribution of each parameter in ϵYX to R0/Rta, and
use the following:

R0

Rta

= 0.483
1 − α′

0

0.5

1

1 − αta

γ0
γta

1

β0
ta

. (4.13)

Note that the contribution of Λ is partly incorporated in β0
ta. TSC predicts that the

kinetic energy vanishes at zta (αta = 0), and the virial theorem states that α′
0 = 1/2. In

addition, the density profile is always uniform (γta = γ0 = 3/5). Thus, combined with
energy conservation (β0

ta = 1), one obtains R0/Rta = 0.483.

The number of our available snapshots of the simulation is limited, so we define the
energy terms of each halo at zta as follows. First, for a simulated halo, the values of
radius at fifteen redshifts are cubic-spline interpolated, and its maximum value and the
corresponding epoch are defined as Rta and tta, respectively. We calculate the energy
terms for the two snapshots bracketing tta, and define the energy at tta with the linear-
interpolation.

Let us consider β0
ta first. The top-right panel of Figure 4.5 shows the calculated β0

ta

for 100 halos. The average ⟨β0
ta⟩ is 0.96, so the total energy is conserved to a good

approximation. This is not trivial, since a significant fraction (∼ 20 %) of the particles in
the sphere is changed. While we take into account the factor, β0

ta does not play a major
role in Equation (4.13).
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Figure 4.5: Comparison of the turn-around radius with the present radius of the 100 sim-
ulated halos (top-left). Their difference can be attributed to the parameters αta (middle-
left), α′

0 (middle-right), γta (bottom-left) and γ0 (bottom-right). The energy conservation
is also checked in terms of β0

ta (top-right). The solid line in each panel indicates the av-
erage value. The red dashed line in the top-right panel shows unity , meaning the total
energy in the sphere is conserved between the two epochs.
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The middle panels in Figure 4.5 plot αta and α′
0. While TSC states that αta = 0, the

simulated halos have roughly αta = 0.37 on average. This is the largest deviation from
TSC, and can be attributed to the velocity dispersion in the central region of halos; at
the turn-around, the halo expansion velocity of the outer shell almost vanishes, but the
velocity dispersion of the inner region significantly contributes to the kinetic energy.

At the present time, α′
0 is 0.62 on average, which is larger than 1/2 predicted by

the virial theorem. This result can be understood according to  Lokas & Mamon (2001),
who study the virialized state of a spherical halo with the NFW density profile. They
defined the virialized state as a solution of the spherical Jeans equation, and derived the
ratio K/W as a function of radius with the concentration parameter, c, and parametrized
velocity-anisotropy. Since this model is for the equilibrium state, the halo has no average
velocity, but finite velocity dispersion, which yields the substantial kinetic energy. For
any concentration parameter and velocity-anisotropy, they find that K/W is larger than
1/2 at any radius, and increases toward the center. This is mainly due to the density
and velocity dispersion inside the sphere, and the matter surrounding the halo is not
important. In most cases, K/W at the virial radius is in the range from 0.5 to 1, which
is in qualitative agreement with our simulated halos. The difference in α′

0 between the
simulation and TSC is also attributed to the velocity dispersion that is naturally expected
in the inside-out collapse model in the CDM universe.

Next, we look at γta and γ0, which are shown in the bottom panels in Figure 4.5. Both
are distributed around unity, which is different from 3/5 for the uniform density profile.
As stated before, γ depends on the density profile inside the sphere. For example, the
single power-law density profile ρ ∝ r−p (p < 5/2) results in γ = (3 − p)/(5 − 2p). Hence
γ = 1 implies p = 2.

For the NFW profile with the concentration parameter c, we obtain

γ = c

[
c(2 + c)

2(1 + c)2
− log(1 + c)

1 + c

] [
log(1 + c) − c

1 + c

]−2

(4.14)

at the virial radius. Figure 4.6 plots Equation (4.14), showing that γ is a increasing
function of c and γ(c = 0) = 2/3. Hence, for any c, the NFW profile predicts larger
values of γ than 3/5 from the uniform profile. According to Oguri et al. (2012), halos
with the mass range 2. < M/(1014h−1M⊙) < 20 (our sample) typically have 3 < c < 10,
implying 0.9 < γ < 1.3. The range agrees well with our γ0. At zta, the density profile of
the halo is not necessarily described by the NFW profile, so the above discussion can not
be applied. The difference between γta and γ0 is small, so they do not play a major role.
Also, as long as R0/Rta is concerned, the deviation of γ from 3/5 itself is not important,
but difference at the two epochs contributes the budget.

In summary, the ratio R0/Rta = 0.48 in TSC is increased by (1−αta)
−1 = 1.6 (not 1),

and decreased by (1 − α′
0)/0.5 = 0.76 relative to the TSC prediction, which finally yields

R0/Rta = 0.58, approximately explaining the mean value of R0/Rta = 0.56. This implies
that, although the non-zero velocity dispersion effect is fairly large, the other effects tend
to cancel it in practice.
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Figure 4.6: The parameter γ, defined by W = −γGM2/R, for the NFW density profile
at the virial radius as a function of the concentration parameter.

4.4.2 Comparison of R0 and Rini

An important advantage of TSC is its definite prediction for evolution of a halo from the
initial condition and also the insensitivity of the result to M . Hence, we now compare
the TSC prediction of the halo radius R0,TSC at z = 0 from the initial condition (z = 99)
measured for the simulation, against the radius R0,sim measured for simulated halos z = 0.
From now, we distinguish the two by denoting “TSC” or “sim”.

The upper-left panel of Figure 4.7 plots the ratio R0,sim/R0,TSC for the 100 simulated
halos. For most halos, R0,sim/R0,TSC is greater than unity. We suspect that the velocity
dispersion produces this trend, and investigate its effect in the following.

We again use the spherical collapse model to describe R0,TSC for simplicity. In the
linear regime (θ ≪ 1), R ≈ Rtaθ

2/4 and δ ≈ 3θ2/20 (cf. Equation (2.39)). Combined
with R0 = Rta/2, the model prediction for the present radius is given by

R0,TSC =
3

10
δ−1
iniRini. (4.15)

(Here we have derived the above expression based on TSC in the EdS universe, but it
holds in the flat universe up to the first order of WΛ/W .) Using the ratio R0,sim/Rini that
can be written in the form of Equation (4.8); we obtain

R0,sim

R0,TSC

=
10

3
δini

R0,sim

Rini

=
10

3
δini

1 − α′
0

1 − αini

γ0
γini

1

β0
ini

, (4.16)

where αini, β
0
ini and γini are defined at z = zini as we did at z = zta (Section 5.1). Since

Rini is very small, we neglect the correction due to ϵ0ini.
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We calculate αini, β
0
ini and γini from the simulation data. We again begin with looking

at the energy conservation. We find that the particles within a halo change by about 30
% from z = zini to z = 0. As a result, the upper-right panel of Figure 4.7 shows that the
total energy within the sphere changes within by ∼ 7 % from z = zini to z = 0

Figure 4.7: Comparison of the prediction of TSC with the present radius of the simulated
halos (upper-left). Their difference is attributed to αini (lower-left), β0

ini (upper-right)
and γini (lower-right), and α′

0 and γ0 in Figure 4.5 (see text for the definition of the
parameters). The solid line in each panel indicates the average value. The parameter αini

is compared with the theoretical prediction 1-5δini/3 (blue open squares), and its average
value is shown by the blue dotted line. The red dashed lines in the upper panels show
unity for comparison; if TSC prediction is perfect, the radios of the radii and total energies
become unity.

At the initial time, the density is almost uniform, so γini = 3/5, and αini = 1 − 5δini/3
for small δ. Actually, the simulated halos have the values of γini and αini very close to
the theoretical values, as shown in the lower panels of Figure 4.7. Thus Equation (4.16)
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practically reduces to
R0,sim

R0,TSC

=
1 − α′

0

0.5

γ0
0.6

, (4.17)

which indicates that the deviation of R0,sim/R0,TSC from unity is largely dictated by α′
0

and γ0. If α′
0 = 1/2 and γ0 = 3/5, R0,sim/R0,TSC = 1. In reality, however, (1 − α′

0)/0.5 =
0.76 reduces R0,sim/R0,TSC, and γ0/0.6 = 1.6 increases R0,sim/R0,TSC to 1.3, which ap-
proximates the average ⟨R0,sim/R0,TSC⟩ = 1.2. Therefore, the deviation R0,sim/R0,TSC is
mainly attributed to the non-uniformity of the present density profile and the present
kinetic energy due to the velocity dispersion.

Figure 4.8: The halo mass (upper) and the difference in the radial ratios between TSC
and the simulation (lower), vs. the initial overdensity (normalized by the linear growth
factor).

It is interesting to see how the above results depend on the initial overdensity δini of
the simulated halos since the TSC predictions are almost independent of the halo mass
and mainly determined by δini.
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We have defined the spherical region for each halo based on the overdensity ∆vir. The
value of ∆vir corresponds to a halo that is predicted to collapse exactly at z = 0 by TSC.
Figure 4.3 shows, however, the simulated haloes collapse significantly earlier (although it
is difficult to precisely determine when they collapse, since the radius does not shrink to
zero). This implies that δini of the simulated halos is larger than predicted by TSC.

In fact, the upper panel of Figure 4.8 shows that all the simulated halos have the initial
overdensity (normalized by the linear growth factor) larger than the linearly extrapolated
threshold of δc = 1.67 for a halo that is expected to collapse at present in TSC. In addition,
there seems a weak trend that mass is anti-correlated to δini; more massive halos have
smaller δini. Although the statistical significance is not strong, this is consistent with the
initial density distribution of random-Gaussian field first derived by Doroshkevich (1970).

Because of the above correlation of mass and δini, we attempt to replot R0,sim/R0,TSC

and R0/Rta now in terms of δini. Here we recall that we have defined the sphere for each
present halo based on the common ∆vir. So, by definition, R0,sim/R0,TSC is proportional
to ((1 + δini)/∆vir)

1/3 × δini (cf. Equation (4.16)). In fact, the lower-left panel of Figure
4.8 shows that R0,sim/R0,TSC follows a single curve as expected.

Similarly to R0,sim/R0,TSC, R0/Rta should follow a single curve if TSC were an exact
description of the evolution of simulated halos. In reality, however, their relation has a
relatively larger scatter around the mean relation as shown in the lower-right panel of
Figure 4.8. This corresponds to the deviation from the TSC prediction at z = zta. While
the degree of the scatter may be related to the non-sphericity of each simulated halo, we
were not able to identify a clear dependence of non-sphericity on δini. We also confirmed
that there is no clear dependence on δini in the parameters such as αta, γta, etc. A further
study on non-sphericity of halos may need a precise non-spherical definition of the region
of simulated halos, and a wider mass range of halos, which we plan to study and present
elsewhere.

4.5 Short Summary

We summarize the results of the object-wise comparison between TSC and the simulation
results as follows:

1. Even though the averaging and the dynamics do not commute, the overall pre-
dictions of TSC approximately describe the evolution of the simulated halos fairly
well, in particular prior to their turn-around epochs. In reality, however, the non-
uniformity/inhomogeneity of dark matter density profiles and the non-zero velocity
dispersions, both of which are neglected in TSC, turn out to play an important
dynamical role.

2. Unlike a simplified TSC picture of the instantaneous collapse, dense clumps inside a
halo collapse first, and merge and fall into the central region. Thus a large velocity
dispersion is developed from the center to outer parts. The region with the veloc-
ity dispersion expands outward, and finally reaches outside the “virialized” region
predicted by TSC.
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3. The velocity dispersion inside the halos strongly affects the size of the present virial
radius of halos. At the turn-around epoch zta, the kinetic energy K amounts to 37
% of the gravitational potential energy W , which increases the ratio R0/Rta of the
radii of the simulated halos at z = 0 and z = zta by ∼ 58 %. The velocity dispersion
also contributes to the kinetic energy, and K/W becomes 0.62 on average (larger
than 0.5 in TSC), which decreases R0/Rta by 25 %. In total, R0/Rta is 0.56 on
average, which is larger than the TSC prediction (≈ 0.483) by 16 %.

4. Moreover, the ratio R0,sim/R0,TSC of the present radius of the simulated halos to the
TSC prediction significantly deviates from unity; R0,sim/R0,TSC is 1.2 on average.
The deviation from the TSC prediction is explained on average by ∼ 20 % decrease
due to the non-zero velocity dispersion effect, and ∼ 60 % increase due to the non-
uniformity of dark matter density profile at z = 0. While the two effects tend to
cancel each other, those two effects need to be properly taken into account in the
dynamical description of evolution of actual individual halos in the CDM universe.
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Chapter 5

Evolution and Statistics of
Non-Sphericity of Dark Matter
Halos from Cosmological N-Body
Simulation

5.1 Motivation

In the previous chapter, we have seen that the spherical collapse model does not necessarily
reproduce the evolution of individual simulated halos. Just like in the case of the spherical
collapse model, how well the ellipsoidal collapse model (EC; Section 3.2) reproduces the
evolution of individual halos has never been tested before. Given the results in the previous
chapter, one can easily expect that the prediction of EC is not always valid, since EC
also adopts the strong assumptions including the homogeneous density, neglect of velocity
dispersion and the separate virialization of three axes, etc.

In fact, as described in Section 3.4, Rossi et al. (2011) pointed out the discrepancy in
the mass dependence of the non-sphericity of halos, between simulations and theory; more
massive simulated halos are less spherical, in contrary to the prediction of EC with the
Gaussian random initial conditions. This finding implies that the EC prediction indeed
does not necessarily reproduce the evolution of individual simulated halos.

In order to better understand the above discrepancy between simulations and theory,
in this chapter, we compare the evolution of simulated halos with the EC prediction on
the object-wise basis, and clarify how and when the simulation results deviate from the
EC prediction. Especially, we examine how the difference between simulations and theory
appears in probability distribution functions (PDFs) of the non-sphericity (axis ratio) of
halos. Discussion on the PDFs of axis ratio of dark matter density distribution will be
helpful in the next chapter, where we approach the main goal of this thesis; we compare
the PDFs of axis ratio of X-ray surface brightness between simulations and the currently
available X-ray data.

Section 5.2 describes the N-body simulation used in this chapter, and how to follow
the evolution of our simulated halos. We compare the evolution of individual halos with
EC in Section 5.3. Section 5.4 discusses the statistical evolution of halo non-sphericity.
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There we also examine the difference between our simulation results and the prediction
of JS02, in three-dimensional space. In Section 5.5, we compute PDFs of projected (two-
dimensional) axis ratio are constructed, and the results are compared with the currently
available weak lensing data by Oguri et al. (2010). Section 5.6 summarizes this chapter.

5.2 Triaxial Modelling of Simulated Halos

5.2.1 N-body simulation

We use cluster-scale halos identified from a different cosmological N-body simulation from
the one used in Chapter 4; the adopted cosmological parameters are the same, but the ini-
tial conditions are different. The details of the simulation and the halo-finding procedures
are described in this subsection.

The simulation is started at z = 99, where N = 10243 particles distributed in a
periodic cube with a side length of 360 h−1Mpc (comoving). Their initial conditions are
generated with a parallel code developed by Nishimichi et al. (2009) and Valageas &
Nishimichi (2011), which is based on the second-order Lagrangian perturbation theory
(Scoccimarro, 1998; Crocce et al., 2006).

The simulation employs the matter transfer function computed by a linear Boltzmann
solver CAMB (Lewis et al., 2000) for a flat ΛCDM cosmology with the nine-year WMAP
parameters (Hinshaw et al., 2013); Ωm,0 = 0.279, h = 0.7, ns = 0.972, and σ8 = 0.821 are
the current matter density in units of the critical density, the Hubble constant in units of
100 km s−1Mpc−1, the scalar spectral index, and the amplitude of the density fluctuation
(linearly extrapolated to the present) smoothed with a top-hat filter of radius 8 h−1Mpc,
respectively. With the above parameters, mass of each simulation particle mparticle is
3.4 × 109 h−1M⊙, which is sufficient to resolve massive halos (≳ 1014h−1M⊙) at z = 0 .

The particle distribution is then evolved using a publicly available parallel cosmological
N -body solver Gadget2 (Springel, 2005). The long-range gravitational force is computed
on 20483 mesh points based on the fast Fourier transform, while the tree algorithm with
the softening length of 20h−1kpc is adopted on short range. Snapshots at redshifts z = 49,
9, 5, 4, 3, 2, 1.5, 1, 0.8, 0.6, 0.4, 0.2, 0.1 and 0 are stored. Halos at z = 0 are identified
using the friends-of-friends (FOF) algorithm (Davis et al., 1985) with the linking length
of 0.159 times the mean inter-particle separation in one dimension. This length is chosen
so that the corresponding virial overdensity ∆vir matches 355.4 in units of the cosmic
mean density at z = 0, which is motivated by the spherical collapse model (Gunn & Gott,
1972; Gunn, 1977; Peebles, 1980). Indeed, we confirmed that the total mass of the linked
particles MFOF approximately corresponds to the virial mass Mvir. Furthermore, SUBFIND
algorithm (Springel et al., 2001) implemented in Nishimichi & Oka (2014), is applied to
each FOF halo to identify substructures as well as unbound particles.

In this chapter, we use the FOF halos with MFOF > 6.25 × 1013h−1M⊙, correspond-
ing to the mass range of galaxy clusters which are well resolved in optical and X-ray
observations. The total number of those halos is 2004.
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M/1014h−1M⊙ > 2.5 1.25 - 2.5 0.625 - 1.25 total

single M2/M1 < 0.2 171 429 1172 1772

multiple M2/M1 > 0.2 32 68 132 232

total 203 497 1304 2004

Table 5.1: The numbers of single- and multiple-halos, where M1 and M2 are the masses
of the main halo and the most massive substructure.

5.2.2 Morphology of FOF halos

Before modelling the 2004 simulated halos by triaxial ellipsoids, we classify the halos by the
amount of substructures. This is useful in understanding the extent to which the definition
of the non-sphericity of the FOF halos is sensitive to the presence of substructures.

Due to the nature of the FOF algorithm, an FOF halo may comprise two or more
prominent components. Such a halo tends to yield higher non-sphericity, which should
be distinguished from a very elongated single structure.

According to the result of the SUBFIND algorithm, we obtain the mass Mi of the i-th
most massive component for each FOF halo. The most massive component (i = 1) is
called the “main halo”, and we call the other components “substructures”. The values of
M2/M1 and M3/M1 roughly serve as measures of amount of substructures in each FOF
halo.

The upper-left, upper-right and lower-left panels of Figure 5.1 show the snapshots of
FOF member particles of three halos with different morphology. The halo in the upper-
left panel has very small values of M2/M1 and M3/M1, representing a single isolated
structure. In contrast, the halo in the upper-right panel has relatively large M2/M1

and small M3/M1, corresponding to a “double-structure”. The third halo in the lower-
left panel has relatively large values both for M2/M1 and M3/M1, and is classified as a
“triple-structure”.

The lower-right panel of Figure 5.1 indicates the cumulative fraction of the halos with
a given threshold of M2/M1 or M3/M1. The majority of our halos have small M2/M1 and
even smaller M3/M1. For later convenience, we set the threshold M2/M1 = 0.2, and call
a halo with M2/M1 < 0.2 a “single-halo”. Also, a halo with M2/M1 > 0.2 is referred to as
a “multiple-halo”. Then the halos in the upper-right and the lower-left panels of Figure
5.1 are multiple-halos. Such multiple-halos occupy approximately 10 % of all the 2004
halos.

The threshold M2/M1 = 0.2 is somewhat arbitrary. According to the right panel of
Figure 5.1, if we set the threshold by M2/M1 = 0.1, for example, ∼ 20 % of our sample
are classified as multiple-halos. As will be seen in the later sections, the choice of the
threshold does not make a major difference in the main results of this chapter.

Table 1 lists the number of the single- and multiple-halos out of our sample, corre-
sponding to the threshold M2/M1 = 0.2.
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Figure 5.1: Examples of morphology of dark matter halos. The upper panels and the
lower-left panel show the FOF member particles of halos comprising one, two and three
major components in the cubic region 6 h−1 Mpc a side around the halo. The FOF mass
MFOF of each halo is 8.43, 7.88 and 3.18 ×1014h−1M⊙, respectively. The ratios of mass
of the second and third massive components (M2 and M3) compared to the mass of the
most massive one (main halo) M1 are also indicated in the three panels. The cumulative
fractions of M2/M1 and M3/M1 for our 2004 FOF halos are illustrated in the lower-right
panel. For example, ∼ 90 % of the halos have M2/M1 < 0.2. In this chapter, we call the
halos with M2/M1 > 0.2 “multiple-halos”. In this figure, the halos in the upper-right and
lower-left panels are multiple-halos.
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5.2.3 Comparison of different methods of triaxial modelling:
mass tensor vs. isodensity surface

We approximate the density distribution of the simulated halos by a triaxial ellipsoid with
the axis lengths Ak (k = 1, 2, 3). The boundary of the ellipsoid is described by(

x1
A1

)2

+

(
x2
A2

)2

+

(
x3
A3

)2

= 1, (5.1)

where xk (k = 1, 2, 3) denotes the coordinate defined along the three axes with the origin
set to the center of the ellipsoid.

One measure of the non-sphericity of each halo is the minor-to-major axis ratio A1/A3.
The ellipticity e:

e =
A3 − A1

2(A1 + A2 + A3)
. (5.2)

is also used as an indicator of the non-sphericity in the literature. Thus we consider both
A1/A3 and e in the following sections.

The values of axis lengths Ak are not constant for an entire simulated halo. Within
the approximation of triaxial modelling, Ak should be expressed as Ak(Mellipsoid), where
Mellipsoid is the mass enclosed by the ellipsoid. Accordingly, A1/A3 and e also depend on
Mellipsoid.

In this chapter, we compute the axis lengths Ak(Mellipsoid) on the basis of the mass ten-
sor Iαβ (defined below) in an iterative fashion as follows. For a given set of Ak(Mellipsoid),
we compute the mass tensor Iαβ:

Iαβ =
N∑
i=1

x(i)α x
(i)
β , (5.3)

where x
(i)
α (α = 1, 2, 3) is the coordinate of the i-th particle along the three axes of the

ellipsoid, and the summation is taken over the N(= Mellipsoid/mparticle) particles inside the
ellipsoid. That mass tensor is now diagonalized and rotate the coordinate accordingly. The
square root of the eigenvalues multiplied by some constant now become a new set of axis
lengths Ak(Mellipsoid). The constant is determined so that the ellipsoid encloses Mellipsoid.
The coordinate system is redefined along the new axis lengths Ak(Mellipsoid), and the center
is reset to the center-of-mass of the particles inside the new ellipsoid. Starting from the
sphere centered on the center-of-mass of the FOF members, the above procedure is iterated
until all the eigenvalues converge within one percent. Hence, in the following parts of this
chapter, the axis ratio A1/A3 and the ellipticity e are also determined roughly within one
percent. In the above procedure, we use the all the particles including substructures and
non-FOF members.

In literature, there are several methods to determine the axis lengths Ak of simulated
halos, including isodensity surfaces and other definitions of mass tensors (JS02; Despali
et al., 2014; Ludlow et al., 2014; Bonamigo et al., 2015; Vega et al., 2016). We decide to
use the mass tensor I =

∑
xx, and we explain why we prefer I =

∑
xx in what follows.

An alternative method to determine Ak is the direct fitting to local isodensity surfaces,
as adopted by JS02. Since the shape of isodensity surface is sensitive to substructures
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around halos, the removal of substructures is required in this method. The goal of this
chapter is, however, to construct the PDF of projected non-sphericity of halos for obser-
vational applications. Since it is difficult to definitely remove the effect of substructures
in real observations, we do not use isodensity surfaces in the later sections.

We note, however, that the fitting to isodensity surfaces yields similar results to the
mass tensor I =

∑
xx after substructures are removed. Figure 5.2 shows the main halo

of the same single-halo in top-left panel of Figure 5.1 without substructures. We also plot
the projections of the two ellipsoids with the same mass determined by the mass tensor
I =

∑
xx (green) and the isodensity surface ρ = 100ρcrit (red), where ρcrit is the cosmic

critical density. The two ellipsoids are similar, indicating that the fitting to isodensity
surfaces is an effective method to determine Ak if substructures are removed.

Slightly different versions of mass tensors are also used in literature, including the
following two;

Îαβ =
N∑
i=1

x
(i)
α x

(i)
β

|x(i)|2
≡
∑
i

n(i)
α n

(i)
β (5.4)

and

Ĩαβ =
∑
i

x
(i)
α x

(i)
β

[R
(i)
e ]2

≡
∑
i

ñ(i)
α ñ

(i)
β , (5.5)

where

R(i)
e =

(x(i)1

A1

)2

+

(
x
(i)
2

A2

)2

+

(
x
(i)
3

A3

)2
1/2

(5.6)

is the ellipsoidal distance of the i-th particle.
To discuss the difference between the three mass tensors I =

∑
xx, Î =

∑
nn and

Ĩ =
∑
ññ, we consider a “self-similar” density distribution. Throughout this chapter, we

refer to the density distribution that is expressed by concentric ellipsoids with the same
axis ratio and orientation as “self-similar” distribution.

For example, in the two-dimensional space, for a self-similar ellipse with axis lengths
p and q, the two-dimensional counterparts of the mass tensors I =

∑
xx, Î =

∑
nn

and Ĩ =
∑
ññ yield ellipses with axis ratio p/q,

√
p/q and p/q, respectively. Although

Î =
∑
nn can be used as an estimator of the non-sphericity of halos, it does not reproduce

the axis ratio of isodensity surfaces even for a self-similar density distribution. In contrast,
Ĩ =

∑
ññ reproduces the isodensity surfaces of a self-similar density distribution, but the

weighting by R
(i)
e in Equation (5.5) is not appropriate when the density distribution is not

self-similar. Hence we adopt the mass tensor I =
∑
xx, which is free from such a weighting

scheme and reproduces the isodensity surfaces of a self-similar density distribution.
The definition of mass tensor varies with authors in the previous literature, and there-

fore the applied method of triaxial modelling in each study should be carefully noticed.
For example, JS02 fitted ellipsoids to isodensity surfaces of their simulated halos. Also,
the mass tensors I =

∑
xx, Î =

∑
nn, Ĩ =

∑
ññ are considered by Despali et al. (2014),

Ludlow et al. (2014) and Vega et al. (2016), respectively (although the results of Vega
et al. (2016) are mainly based on I =

∑
xx). We emphasize that these results should not

be quantitatively compared unless the same method of triaxial modelling is applied.
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Figure 5.2: Same as the top-left panel of Figure 5.1, but excluding substructures. The
projection of the ellipsoid fitted to the isodensity surface at ρ = 100ρc is shown in the red
dashed curve. The ellipsoid enclosing the same mass as that inside the isodensity surface
(Mellipsoid = 6.25 × 1014h−1M⊙) is determined by using the mass tensor I =

∑
xx and

its projection is plotted in the green solid curve. The resulting two ellipsoids are similar;
A1/A3 = 0.57 (isodensity surface) and A1/A3 = 0.55 (mass tensor).

5.3 Confrontation of EC Prediction against N-body

Results

On the basis of the ellipsoids defined via the mass tensor I =
∑
xx (Equation (5.3)),

we compare the evolution of the individual simulated halos with the prediction of EC on
the object-wise basis. For each FOF halo identified at z = 0, we trace back the positions
of the FOF member particles to each redshift. We then determine an ellipsoid of mass
MFOF at each redshift via the mass tensor I =

∑
xx by using all the particles including

non-FOF particles. Throughout this chapter, we call the ellipsoids determined at z ̸= 0
through the above procedure “protohalos” of each FOF halo. Note that the protohalos
are not halos identified by the FOF algorithm at each redshift.

Figure 5.3 demonstrates the evolution of the single-halo in the top-left panel of Figure
5.1 (MFOF = 8.43 × 1014h−1M⊙). The top-left panel shows the evolution of the axis
lengths Ak of the protohalos enclosing Mellipsoid = MFOF in units of their initial values at
z = 99. The axis lengths Ak determined by the mass tensor are plotted in filled squares;
A1, A2 and A3 are plotted in red, green and blue, respectively. The corresponding EC
predictions are illustrated in solid and dotted lines with the same color as the simulation
results. The solid lines adopt λk evaluated from Ak of the corresponding protohalo at
z = 99 through Equation (3.7); λk = 1−Ak(1− δini/3)/(A1A2A3)

1/3. On the other hand,
the dashed lines identify λk with the eigenvalues of ∇ijϕ/(4πGρ̄a

3) calculated from the
top-hat smoothed density field at the scale [3MFOF/(4πρ̄)]1/3, at the central position of
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the protohalo at z = 99. The difference between the solid and dashed lines implies that
the EC prediction is somewhat sensitive to the initial conditions, but the two sets of lines
are roughly the same.

The simulation results and the EC prediction agree at least approximately for z <
9. At around z = 9, however, the simulation results begin to deviate from the EC
prediction. As shown in the top-right panel, the corresponding ellipticity (magenta open
circle) becomes larger than the EC prediction (magenta thick line), even though the
linear regime still holds at z ∼ 9. The density distribution around the protohalo at
z = 9 is shown in the middle-left panel, and the projections of the ellipsoids with mass
Mellipsoid/MFOF = 0.2, 0.4, 0.6, 0.8, 1 are also plotted. The density distribution at z = 9 is
almost homogeneous, and so the triaxial modelling of the density distribution is not easy.

In EC, Equation (3.10) assumes the density distribution inside the ellipsoid is ho-
mogeneous. Inside the simulated halo, however, the density distribution becomes highly
inhomogeneous from z = 3 to z = 1, as shown in the middle-right and bottom-left panels;
particles falls into the central region of the protohalo along filamentary structures, and the
innermost region (Mellipsoid ≲ 0.2MFOF) becomes highly denser. Due to the filamentary
structures developed during these redshifts, the triaxial modelling is still a poor approx-
imation of the density distribution. The inhomogeneity of density distribution is one of
the reasons why the simulation results deviate from the EC prediction. In addition, the
internal density distribution is far from self-similar; for example, the orientation of the
inner ellipsoids at z = 1 is considerably different from the outer ones.

Nevertheless, the evolution of the axis lengths Ak very crudely follows the EC predic-
tion up to the turn-around epoch (z ∼ 1) as seen in the top-left panel. Given that the
various simplifications of EC, even this level of agreement between the simulation and EC
may be surprising.

After the turn-around epoch, however, the simulation results more strongly deviate
from the EC prediction. For example, the major axis A3 (blue squares) rapidly increases
and then decreases after z = 1. Finally at z = 0, the ellipticity e is much larger than the
EC prediction (top-right panel), although the triaxial modelling of the density distribution
seems to work well at z = 0 (bottom-right panel). The five ellipsoids at z = 0 in the
bottom-right panel are well aligned compared to z = 1, but the density distribution is
still not self-similar; the innermost ellipsoid is tilted with respect to the outermost one,
and inner ellipsoids are slightly more elongated than outer ones.

As an another example, Figure 5.4 shows the results for another single-halo (MFOF =
3.44 × 1014h−1M⊙). Similarly to the case of Figure 5.3, especially after the turn-around
epoch, the simulation results substantially deviate from the EC prediction. As seen in
the bottom and middle panels, the density distribution inside the halo is not self-similar,
as well as the halo in Figure 5.3.

We have found that the difference between the simulation and EC strongly depends
on individual halos. Basically, however, the EC prediction very roughly reproduces the
simulation results up to the turn-around. After that, the difference between the simulation
and EC becomes larger.

One might expect that the difference between the simulation results and the EC pre-
diction is larger for a multiple-halo than a single-halo. We have found that, however, this
is not necessarily the case; the individuality of the halos is more noticeable.
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Figure 5.3: Evolution of the single-halo (MFOF = 8.43×1014h−1M⊙) plotted in the top-left
panel of Figure 5.1. top-left: Evolution of the axis lengths Ak. The squares indicate Ak

calculated from the mass tensor; A1, A2, A3 are colored in red, green, blue, respectively.
The solid lines indicate the EC prediction with the initial λk are calculated from Ak

at z = 99 through Equation (3.7). The dashed lines are also the EC prediction, but
the initial λk are eigenvalues of the tensor ∇ijϕ/(4πGρ̄a

3) calculated from the top-hat
smoothed density field at the scale (3MFOF/(4πρ̄))1/3. top-right: Evolution of the axis
ratio A1/A3 (cyan) and the ellipticity e (magenta); A1/A3: filled squares (simulation)
and thin line (EC), e: open circles (simulation) and thick line (EC). middle and bottom:
Density distributions around the halo at z = 9, 3, 1 and 0. The projections of the ellipsoids
are determined by the mass tensor I =

∑
xx for the five different mass scales inside the

halos (M = (s/5)MFOF; s = 1,..., 5) and plotted in green curves. All the particles
including the non-FOF members are shown, and used in determining the ellipsoids.
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Figure 5.4: Same as Figure 5.3, but for another single-halo (MFOF = 3.44 × 1014h−1M⊙).

Actually, the difference between the model prediction and the simulation results is
not peculiar to EC. In Chapter 4, we compare the evolution of the spherical radius of
individual simulated halos with the prediction of the spherical collapse model. We then
showed that the spherical collapse model fairly well reproduce the evolution of the sim-
ulation results up to the turn-around epoch. After the turn-around epoch, however, the
evolution of simulated halos deviates from the prediction of the spherical collapse model.
In this subsection, it has turned out that EC does not improve the difference between
simulations and theoretical models. This rather implies that the spherical assumption
works surprisingly well despite the highly non-spherical structure and evolution of halos.

In Chapter 4, we also showed the difference is mainly caused by the velocity dispersion
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developed after the turn-around epoch. In order to better understand the difference
between the simulation results and the EC prediction, we focus on the evolution of the
simulated halos after the turn-around epoch (z ∼ 1). Because the difference between
the simulation results and the EC prediction varies appreciably from halo to halo, we
statistically compare them in the next section.

5.4 Evolution and Statistics of Axis Ratio

5.4.1 Evolution and mass dependence of non-sphericity of halos

One of the well-known discrepancies between EC and simulations is the mass dependence
of ellipticity of halos at z = 0. Rossi et al. (2011) calculated EC for initial conditions
described by the Gaussian random field and reported that more massive halos have smaller
ellipticity in EC, while those in simulations have larger ellipticity at z = 0.

We examine the evolution of axis ratio A1/A3 and ellipticity e of our simulated halos.
We have found that the initial λk(z = 99) measured from the simulation precisely repro-
duces the prediction for the Gaussian random field; more massive protohalos have smaller
ellipticity at z = 99. Also, more massive halos indeed have larger ellipticity on average at
z = 0 in our simulation, as reported in the previous studies Jing & Suto (2002); Despali
et al. (2014); Bonamigo et al. (2015); Vega et al. (2016). Therefore the dependence of
the non-sphericity of the simulated halos on their mass has changed sometime before the
present time.

Figure 5.5 demonstrates the mass dependence of axis ratio A1/A3 and ellipticity e at
z = 9, 1, 0.6, 0.2, 0. Each symbol indicates A1/A3 or e of each halo; red circles are for
single-halos (M2/M1 < 0.2) and green square are for multiple-halos (M2/M1 > 0.2). Note
that, for z ̸= 0, the results are for the protohalos of each FOF halo identified at z = 0.

The thick solid line illustrates the averaged value ⟨A1/A3⟩ or ⟨e⟩ over all the simulated
halos with the root-mean-square scatter shown in thin lines. We have found that ⟨A1/A3⟩
and ⟨e⟩ only slightly change if we exclude the multiple-halos, although they are system-
atically less spherical than single-halos. This is because the fraction of the multiple-halos
is small (∼ 10%). The blue dashed line indicates the EC prediction from the initial
condition λk calculated from Ak at z = 99 through Equation (3.7).

As shown in the top-left panel of Figure 5.5, at z = 9, more massive halos have larger
A1/A3 both in EC and the simulation results, reflecting the tendency at the initial time.
The large scatter for the symbols implies the strong individuality of halos, i.e., the mass
dependence of axis ratio is clear only when it is seen statistically. The simulation results
have systematically smaller values of A1/A3 than the EC prediction, implying that the
axis ratio A1/A3 of the majority of individual halos deviate from the EC prediction even
at around z = 9, as in the top-right panel of Figure 5.3.

At z = 1 (second-top panel), the mass dependence is preserved in EC, but it becomes
weaker at small mass scales for the simulated halos. From z = 0.6 to z = 0 (bottom three
panels), ⟨A1/A3⟩ becomes gradually larger. The increase of A1/A3 is predicted by EC
as in the top-right panels of Figures 5.3 and 5.4, although the values of A1/A3 are much
different between EC and the simulation.
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Figure 5.5: Axis ratio A1/A3 (left) and ellipticity e (right) of each halo against its FOF
mass MFOF at the five different redshift (z = 9, 1, 0.6, 0.2, 0). Each symbol indicates
the result for each of the 2004 simulated halos; red circle are single-halos (M2/M1 < 0.2),
green squares are for multiple-halos (M2/M1 > 0.2). The thick and thin solid lines indicate
the mean and the standard deviation, respectively, for all the halos. For comparison, the
blue dashed lines indicate the EC prediction calculated with the initial conditions λk
determined from Ak at z = 99 of each halo through Equation (3.7). Note that the
multiplicity (M2/M1) of the halos is determined only at z = 0.
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Most importantly, the mass dependence of ⟨A1/A3⟩ of the simulated halos exhibits a
clear transition after z = 1; the mass dependence becomes even weaker, and finally at
z = 0, massive halos tend to be less spherical, opposite to that at the initial time. In
contrast, the mass dependence of ⟨A1/A3⟩ in EC is preserved from the initial time to the
present time; massive halos are more spherical. The mass dependence of ⟨e⟩ exhibits a
similar transition to ⟨A1/A3⟩, as shown in the right panels of Figure 5.5. The redshift
z = 1 corresponds, on average, to the turn-around epoch where the difference between
the EC prediction and the evolution of individual halos becomes large (see Figures 5.3
and 5.4). We then expect that a similar transition of the mass dependence of ⟨A1/A3⟩ or
⟨e⟩ occurs earlier at inner mass scales of the halos, since inner regions turn-around earlier
than outer regions.

Figure 5.6: Evolution of the axis ratio ⟨A1/A3⟩ (left) and ellipticity ⟨e⟩(right), averaged
over the three different mass ranges (MFOF > 2.5×1014h−1M⊙ ; green, 1.25×1014h−1M⊙ <
MFOF < 2.5×1014h−1M⊙; red and 6.25×1013h−1M⊙ < MFOF < 1.25×1014h−1M⊙; black)
at the three different mass sales (MFOF; top, MFOF/2; middle, MFOF/10; bottom).
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To confirm this, we compute the Ak(Mellipsoid) at the mass scales Mellipsoid(< MFOF)
for each halo. Figure 5.6 compares the evolution of ⟨A1/A3⟩ and ⟨e⟩ at the three different
mass scales Mellipsoid = MFOF, MFOF/2 and MFOF/10. The values of Ak are averaged over
the three different mass ranges; heavy: MFOF > 2.5 × 1014h−1M⊙ (green), intermediate:
1.25 × 1014h−1M⊙ < MFOF < 2.5 × 1014h−1M⊙ (red) and light: 6.25 × 1013h−1M⊙ <
MFOF < 1.25 × 1014h−1M⊙ (black).

The top-left panel of Figure 5.6 illustrates the redshift evolution of ⟨A1/A3⟩ atMellipsoid =
MFOF. At z = 99, massive halos tend to be less spherical. Keeping this tendency, ⟨A1/A3⟩
decreases up to z ∼ 1, corresponding to the turn-around epoch. After that, ⟨A1/A3⟩ be-
gins to increase and its mass dependence changes, as seen in Figure 5.5.

The middle-left and the bottom-left panels of Figure 5.6 show the results for the mass
scales Mellipsoid = MFOF/2 (middle) and MFOF/10 (bottom), respectively. Indeed, the
mass dependence of ⟨A1/A3⟩ changes earlier at inner mass scales; at z ∼ 2 for MFOF/2,
and at z ∼ 4 for MFOF/10. These redshifts approximately correspond to the turn-around
epochs of the mass scales MFOF/2 and MFOF/10. Similar things occur also in the mass
dependence of ⟨e⟩, as shown in the right panels of Figure 5.6.

Therefore the mass dependence of ⟨A1/A3⟩ or ⟨e⟩ changes after the turn-around epoch
of each region. We then suspect that the change in the mass dependence may be related
to the development of the velocity dispersion after the turn-around epoch. Hence we
examine the radial profile of the velocity dispersion after z = 1 and compare it with the
radial profiles of ⟨A1/A3⟩ and ⟨e⟩ in the next subsection.

5.4.2 Radial profile of axis ratio inside FOF halos and the origin
of the mass dependence of axis ratio

Figure 5.7 shows the radial profiles of the radial velocity dispersion σ2
r and the “velocity

isotropy measure” defined by (σ2
θ + σ2

φ)/(2σ2
r) at z = 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0 (after the

turn-around epoch). We here use spherical mass coordinate Msphere for simplicity, and
calculate each component of velocity dispersion in the spherical coordinate. In the left
panel, the radial velocity dispersion σ2

r is normalized by the circular velocity v2circ(MFOF)
at Msphere = MFOF:

v2circ(MFOF) =
GMFOF

RFOF

, (5.7)

where RFOF is the radius of the sphere enclosing the mass MFOF. We first compute the
radial profiles of σ2

r/v
2
circ and (σ2

θ +σ2
φ)/(2σ2

r) for an individual halo, and then average fur-
ther the radial profiles over the 2004 halos to obtain the “mean” radial profiles, ⟨σ2

r/v
2
circ⟩

and s ≡ ⟨(σ2
θ +σ2

φ)/(2σ2
r)⟩. Note that, for z ̸= 0, the results are for the protohalos of each

FOF halo identified at z = 0. We have confirmed that the radial profiles in Figure 5.7 are
almost unchanged even if we include/exclude the multiple-halos.

The left panel of Figure 5.7 indicates that the radial velocity dispersion ⟨σ2
r/v

2
circ⟩ is

larger at the innermost regions at every redshift. At around Msphere = MFOF, σ2
r rapidly

decreases and becomes roughly constant at outer regions. The small values of ⟨σ2
r/v

2
circ⟩

at outer regions can be attributed to the particles coherently falling toward the central
region with small radial velocity dispersion.
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In the right panel of Figure 5.7, the averaged radial profile of the velocity isotropy
measure s at each redshift has roughly three different regions. At the innermost region,
s is approximately unity, indicating that the velocity is almost isotropic. At around
Msphere = MFOF, s rapidly increases, corresponding to the decrease of ⟨σ2

r/v
2
circ⟩ in the left

panel. Then s reaches a maximum. We indicate the maximum point by an arrow in the
figure. Outside the maximum point, s slowly decreases.

We indicate the location where the velocity isotropy measure s reaches the maximum
by an arrow also in the left panel. At this location, the radial profile of ⟨σ2

r/v
2
circ⟩ becomes

roughly flat. We find that this location approximately corresponds to the “splash-back
radius” rsb (Adhikari et al., 2014; Diemer & Kravtsov, 2014; More et al., 2015) that repre-
sents the physical halo boundary. We note that rsb moves outward with time, indicating
that the velocity dispersion develops and extends outward. We next examine how the
radial profiles of the axis ratio ⟨A1/A3⟩ and ⟨e⟩ behaves inside and outside rsb.

Figure 5.8 illustrates the radial profiles of axis ratio ⟨A1/A3⟩ and ellipticity ⟨e⟩ averaged
over our 2004 halos for z = 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0. The horizontal axis Mellipsoid

indicates the mass of ellipsoids determined by the mass tensor I =
∑
xx using internal

and external density distributions for each halo. We refer to the sequence of ⟨A1/A3⟩ or
⟨e⟩ of such ellipsoids as “radial profiles”. Note that the central position differs from inner
to outer ellipsoids belonging to the same FOF halo (see bottom panels of Figures 5.3 and
5.4). We have confirmed that the radial profiles in Figure 5.8 are almost unchanged even
if we include/exclude the multiple-halos.

The left panel of Figure 5.8 shows the evolution of the radial profile of ⟨A1/A3⟩. At
least after z ∼ 0.4, the radial profile of ⟨A1/A3⟩ rapidly decreases beyond a certain mass
scale around Mellipsoid ∼ MFOF. Similarly, as shown in the right panel of Figure 5.8, the
profile of ellipticity ⟨e⟩ rapidly increases there. This corresponds to the development of
filamentary structures surrounding the halos (cf. the bottom-left panel of Figure 5.3).
The characteristic mass scale moves outward with time, and eventually becomes larger
than MFOF after z ≲ 0.4.

We indicate the location where the velocity isotropy measure s reaches a maximum,
roughly corresponding to the splash-back radius rsb, at each redshift by an arrow in both
panels of Figure 5.8. The characteristic mass scale in the radial profile of ⟨A1/A3⟩ or ⟨e⟩
roughly corresponds to rsb, given that Msphere is not exactly identical to Mellipsoid. These
two mass scales may give a rough indication of the physical boundary of halos inside
which the velocity dispersion has been developed.

Figures 5.5 to 5.8 imply that the mass dependence of axis ratio ⟨A1/A3⟩ changes almost
simultaneously the velocity dispersion ⟨σ2

r/v
2
circ⟩ becomes larger. We note, however, that

the halos have a significant mean ellipticity ⟨e⟩ inside the splash-back radius rsb. This
may seem inconsistent with the fact that the velocity dispersion is almost isotropic at the
innermost region (Figure 5.7). Hence some unknown mechanism other than the velocity
anisotropy is needed to maintain the highly non-spherical density distribution of the halos,
which remains as a puzzle.

Figure 5.8 shows that the radial dependence of ⟨A1/A3⟩ or ⟨e⟩ at Mellipsoid ≲ MFOF

gradually changes from z = 1 to z = 0. While inner regions are more spherical at z = 1,
inner regions are less spherical at z = 0. This radial dependence may seem small, but
indicates that the halos are not self-similar. In the next section, we examine how the PDF
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of A1/A3 depends on Mellipsoid.

Figure 5.7: Radial profiles of the radial velocity dispersion σ2
r (left) and the velocity

isotropy measure s = (σ2
θ + σ2

φ)/(2σ2
r) (right), averaged over the 2004 simulated halos, at

the seven different redshifts; z = 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0. The velocity dispersion in
the left panel is normalized by the circular velocity v2circ(MFOF) = GMFOF/RFOF of each
halo at each redshift. The dashed lines indicate the standard deviation for z = 0. At
each redshift, the mass scale where s reaches a maximum is indicated by an arrow in both
panels.

Figure 5.8: Radial profiles of the axis ratio ⟨A1/A3⟩ (left) and the ellipticity ⟨e⟩ (right),
averaged over the 2004 simulated halos, at the seven different redshifts; z = 1, 0.8, 0.6,
0.4, 0.2, 0.1, 0. The dashed lines indicate the standard deviation for z = 0. At each
redshift, the spherical mass scale where s reaches a maximum (Figure 5.7) is indicated by
an arrow for both panels.
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5.4.3 Probability distribution function of axis ratio

Previously, JS02 measured the minor-to-major axis ratio A1/A3 of the isodensity sur-
face at ρ = 2500ρc (approximately corresponding to 0.3 rvir) of their simulated halos.
They further assumed the self-similarity of the density distribution inside the halos, and
obtained the following fitting formula at the virial mass Mvir:

P (A1/A3;Mvir, z) =
1√

2π0.113

(
Mvir

M∗

)0.07Ωm(z)0.7

× exp

[
[(A1/A3)(Mvir/M∗)

0.07Ωm(z)0.7 − 0.54]2

2(0.113)2

]
,

(5.8)

whereM∗(z) is the characteristic non-linear mass scale. The scale is determined so that the
top-hat smoothed mass fluctuation σ(M∗, z) becomes δc = 1.68, where δc is the linearly-
extrapolated critical density contrast in the spherical collapse model.

In the previous subsection, however, we have seen that the axis ratio A1/A3(Mellipsoid)
is not constant as a function of Mellipsoid (Figure 5.8). This result implies that the formula
(5.8) may not be reliable since it is based on the self-similarity assumption. Therefore,
we here quantitatively show the extent to which the departure from self-similarity affects
the probability distribution function (PDF) of A1/A3.

Figure 5.9 illustrates the PDFs of axis ratio A1/A3 of our 2004 halos, determined by
I =

∑
xx at the three different mass scales Mellipsoid = MFOF, MFOF/2 and MFOF/10.

The simulated halos are classified into three categories according to the mass of the
most massive substructure M2 compared to that of the main halo M1; M2/M1 < 0.1
(red), 0.1 < M2/M1 < 0.2 (blue), M2/M1 > 0.2 (green). The red and blue portions
correspond to the single-halos defined in Section 2.2, and the green portion corresponds
to the multiple-halos.

The bottom panel of Figure 5.9 shows the result for Mellipsoid = MFOF/10, approxi-
mately corresponding to the region enclosed by the isodensity surface ρ = 2500ρc. The
PDF of our halos is shifted to the left compared to Equation (5.8). Their difference may
be partly explained by the different methods of triaxial modelling of halos; the mass tensor
and the isodensity surfaces.

As shown in the middle panel of Figure 5.9, the PDF of A1/A3 for Mellipsoid = MFOF/2
is shifted to the right compared with that of MFOF/10. Hence the region at Mellipsoid =
MFOF/2 inside the halos is, on average, more spherical than MFOF/10, corresponding to
the radial profiles of A1/A3 and e in Figure 5.8. Similarly, as shown in the top panel,
the region Mellipsoid = MFOF is even more spherical, clearly indicating that the PDF of
A1/A3 depends on Mellipsoid due to the non-self-similarity of halos. Quantitatively, the
mean value ⟨A1/A3⟩ at Mellipsoid = MFOF/2 and Mellipsoid = MFOF/10 is smaller by ∼ 10%
and ∼ 15% than that at Mellipsoid = MFOF.

For Mellipsoid = MFOF, the PDF of our halos is similar to Equation (5.8), except for
the fraction by the multiple-halos. This is most likely just a coincidence; the difference
in Ak by the mass tensor and the isodensity surfaces, and the radial profile of A1/A3

are accidentally compensated. At Mellipsoid = MFOF/2 and MFOF, the multiple-halos are
significantly less spherical than single-halos. In contrast, the multiple-halos do not have
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such a tendency at Mellipsoid = MFOF/10. This is because the multiplicity of halos is
determined by the amount of substructures with all the FOF members; For example, the
region of MFOF/10 of a halo comprising two comparable mass objects may include only
one of them.

Previously, Vega et al. (2016) calculated the PDF of A1/A3 of their simulated halos at
the two different mass scales Mellipsoid ≈ MFOF and Mellipsoid ≈ MFOF/2 without the self-
similarity assumption. They then found that ⟨A1/A3⟩ at the inner mass scale is smaller
by ∼ 10 % than that at the outer mass scale. This is consistent with our results, although
their methods of triaxial modelling and halo identification are slightly different from ours.

Figure 5.9: PDF of the minor-to-major axis ratio A1/A3 of triaxial ellipsoid at z = 0 for
the three different mass scales: Mellipsoid = MFOF, MFOF/2 and MFOF/10. The histogram
is divided by three types of halos; M2/M1 < 0.1 (red), 0.1 < M2/M1 < 0.2 (blue),
M2/M1 > 0.2 (green). The cyan curve shows the fitting formula of JS02 (Equation (5.8))
that is based on the isodensity surface ρ = 2500ρc, approximately corresponding to 0.3rvir
and MFOF/10.
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In observations, since the density distribution of halos is projected on the sky, the PDF
of projected axis ratio is more relevant in interpreting observational data. In fact, OLS03
calculated the PDF of projected axis ratio by integrating imaginary halos whose axis
lengths Ak follow the formula (5.8). The scale dependence of the PDF of A1/A3 indicates
that the self-similar assumption is not valid when constructing a PDF of projected axis
ratio through a PDF of A1/A3, as employed previously (e.g., OLS03; Kawahara, 2010).
Therefore, we instead directly measure the projected axis lengths by projecting the density
distribution of the simulated halos in the next subsection.

5.5 Probability Distribution Function of Projected

Axis Ratio

5.5.1 Axis ratio of projected density distribution from simula-
tions

Figure 5.10 (a) shows the histograms of the projected axis ratio of our halos at z = 0.
Instead of MFOF, MFOF/2, MFOF/10 in Figure 5.9, we measure three observationally more
relevant mass scales; Mvir, M500 and M2500. The virial mass Mvir is defined as the mass
of the sphere within which the averaged overdensity becomes ∆vir(z = 0) = 355.4 times
cosmic mean matter density, and M500 and M2500 are the masses of the sphere within
which the mean density is 500 and 2500 times the cosmic critical density. Actual lensing
halos are observed roughly up to the scale of M500. Typically, M500 ∼ 0.5Mvir and
M2500 ∼ 0.2Mvir. In reality, these mass scales are measured from the projected density
distribution on the sky, but here we determine them in the three-dimensional space for
simplicity.

We determine an ellipse by using the two dimensional counterpart of I =
∑
xx from

the projected density distributions of each halo along the x-, y- and z-axes of our simu-
lation. We choose a rectangular box with the depth only along the line-of sight confined
so that the region barely encloses all the FOF member particles. Therefore we consider
all the particles in the box, but neglect the contribution from foreground and background
particles outside the box. The particle number N in Equation (5.3) is set so that the
(projected) mass inside the ellipse becomes any of Mvir, M500 and M2500. We call the axis
lengths of the resulting ellipse a1 and a2 (a1 < a2). Note that we obtain three values of
a1/a2 for each halo.

The top panel of Figure 5.10 (a) shows the histogram for Mvir (≈ MFOF) at z = 0.
The histogram is separately colored by single-halos (M2/M1 <0.2) and multiple-halos
(M2/M1 >0.2). Due to the projection effect, the overall shape of the histogram is broader
and more shifted to the right (rounder) than that of A1/A3 for MFOF in Figure 5.9. Also,
compared to A1/A3, the portion of the multiple-halos in the PDF is extended to the right;
if two major components of a multiple-halo are along the line-of-sight, it may be regarded
a single object from an observer.

We find that the histogram of projected axis ratio is well approximated by the beta
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distribution:

P (x; a, b) =
xa−1(1 − x)b−1

B(a, b)
, (5.9)

where

B(a, b) =

∫ 1

0

xa−1(1 − x)b−1dx (5.10)

is the beta function and a and b are parameters. The mean µ and the variance σ2 of the
beta distribution are given by

µ =
a

a+ b
, σ2 =

ab

(a+ b)2(a+ b+ 1)
, (5.11)

respectively. Table 2 lists the parameters a and b along with the mean value and the
standard deviation calculated from a and b. The values of mean µ and variance σ2 do not
change much even when we include/exclude the multiple-halos. Such weak dependence
on the multiplicity of halos is useful when the fitting formula is compared with real
observational data, since it is difficult to determine the multiplicity of real halos, and to
remove substructures in observations.

Our result should be compared with the PDF of a1/a2 by OLS03 that integrates
the PDF of A1/A3 by JS02. We emphasize that the PDF of OLS03 is sensitive to the
self-similarity assumption by JS02. When calculating the PDF of OLS03, we substitute
Mvir = 2× 1014h−1M⊙ in Equation (5.8), corresponding to the mean mass of our sample.
The PDF of OLS03 is plotted in blue dashed curve in Figure 5.10. Since the PDF of
A1/A3 for MFOF(≈ Mvir) well follows the model of JS02 by coincidence (the top-panel
of Figure 5.9), the difference between OLS03 and the histogram is mainly due to the
self-similarity assumption for the density distribution inside halos, adopted by JS02 and
OLS03. This difference clearly demonstrates the importance of the projection effect.

The middle and bottom panels of Figure 5.10 (a) show the histograms for M500 and
M2500, respectively, compared with OLS03. Since OLS03 assumes the self-similarity of
density distribution, the blue-dashed curves in the three panels of Figure 5.10 (a) are the
same. These histograms show that the inner region is slightly less spherical than the outer
region. This dependence is similar to the case of A1/A3 (Figure 5.9), but significantly
weaker due to the projection.

The PDF of a1/a2 at M500 and M2500 are also well approximated by the beta distribu-
tion, and the best-fit parameters are listed in Table 2. It may seem that, for M2500, the
PDF of OLS03 is in better agreement in the simulation results. Given that the significant
difference in the bottom panel of Figure 5.9 at MFOF/10, however, this is also just a co-
incidence, and rather implies the importance of the projection effect for non-self-similar
halos.

We repeat the same analysis for z = 0.2, 0.4 and 1. In doing so, we find halos by
the FOF algorithm at each redshift separately; in the preceding sections, we have traced
back the evolution of protohalos of each FOF halo identified at z = 0, which does not
correspond to real observational situations because observed halos are defined at each z.
The multiplicity of the halos is also defined at each redshift, according to the mass of
the most massive substructure M2 relative to that of the main halo M1. In addition, we
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extract halos with Mvir > 6.25 × 1013h−1M⊙ at each redshift. Hence the number of the
halos depends on redshift, and is indicated in Figure 5.10 and Table 2. Note that the
virial overdensity ∆vir(z) depends on redshift; e.g., ∆vir(z = 1) = 203.2.

Figure 5.10 (b), (c) and (d) show the results for halos at higher redshifts; z = 0.2, 0.4
and 1, respectively. For each redshift, the PDF of OLS03 (blue curves) in the three panels
are the same, but it slightly differs with redshift. The result for every redshift is basically
similar to z = 0. Also, all the histograms are well approximated by the beta distribution
(Equation (5.9)) and best-fit parameters are listed in Table 2.

Figure 5.10: PDF of the projected axis ratio at the three different mass scaleMvir M500 and
M2500, for four redshifts; z = 0 (a), 0.2 (b), 0.4 (c), 1 (d). The solid curves show the best-
fit beta distributions (our model). For comparison, the PDF by OLS03 (based on JS02) is
also shown. The histogram is colored according to the multiplicity of halos; M2/M1 < 0.2
(red), M2/M1 > 0.2 (green). The multiplicity of halos (M2/M1) is determined separately
at each redshift. When calculating the PDF of OLS03, M = 2×1014h−1M⊙, corresponding
to the mean mass of our halos, is substituted in Equation (5.8). Only the simulated halos
with Mvir(z) > 6.25 × 1013h−1M⊙ are selected at each redshift, and the number of halos
is 3 × 2004 (z = 0), 3 × 1550 (z = 0.4), 3 × 1101 (z = 0.2), 3 × 317 (z = 1).
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Figure 5.10: Continued.

According to Table 2, The mean value also has weak redshift dependence; it becomes
smaller toward earlier redshifts. This is partly due to the fixed minimum mass for the
sets of halos at different redshifts. At earlier redshifts, more massive fraction is chosen
out of all the halos, so the mean axis ratio becomes smaller.

We have found that the values of mean and standard deviation of a1/a2 calculated
directly from the simulation results agree within 5 % from those in Table 2. In addition,
the dependence of the mean value on mass scale and redshift are the same as discussed
above, implying the goodness of the fitting by the beta distribution.

In addition, the statistical mass dependence of a1/a2 is also weak. Figure 5.11 shows
the axis ratio a1/a2 of each halo against itsMvir (left panel) and M500 (right panel). Except
for the most massive part where the number of halos is small, the mass dependence of
a1/a2 is even weaker than the three-dimensional axis ratio A1/A3 plotted in Figure 5.5.
Therefore the minimum mass Mvir = 6.25×1013h−1M⊙ set in the above analysis is not so
critical. The weak dependence of the PDF of a1/a2 on redshift, mass scales (Mvir, M500,
M2500) and the minimum mass of the halos are useful when the model is compared with
observational data.
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all halos single-halos only

a b mean s.d. a b mean s.d.

z = 0 Mvir 4.18 2.71 0.61 0.17 5.00 2.99 0.63 0.16

N = 2004 × 3 M500 4.01 2.90 0.58 0.18 4.32 2.98 0.59 0.17

M2500 4.35 3.39 0.56 0.17 3.92 3.14 0.56 0.17

z = 0.2 Mvir 4.01 2.81 0.59 0.18 4.83 3.13 0.61 0.16

N = 1550 × 3 M500 3.69 2.92 0.56 0.18 4.18 3.13 0.57 0.17

M2500 4.34 3.65 0.54 0.17 4.46 3.74 0.54 0.16

z = 0.4 Mvir 4.02 3.03 0.57 0.17 4.78 3.34 0.59 0.16

N = 1101 × 3 M500 3.72 3.11 0.54 0.18 4.26 3.38 0.56 0.17

M2500 4.21 3.69 0.53 0.17 3.82 3.32 0.54 0.17

z = 1 Mvir 3.40 2.74 0.55 0.19 4.45 3.33 0.57 0.17

N = 317 × 3 M500 3.22 2.83 0.53 0.19 3.89 3.25 0.54 0.17

M2500 3.93 3.80 0.51 0.17 3.95 3.77 0.51 0.17

Table 5.2: List of the parameters of the beta distribution (5.9) that approximates the PDF
of projected axis ratio for Mvir, M500 and M2500 for four redshifts. The mean µ = a/(a+b)
and the standard deviation σ =

√
ab/[(a+ b)2(a+ b+ 1)] of the beta distribution are also

shown.
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Figure 5.11: Projected axis ratio a1/a2 of each halo at the four different redshifts (z = 1,
0.4, 0.2, 0) against its Mvir (left) and M500 (right). Each symbol indicates the result for
each of the 2004 simulated halos; red circle are single-halos (M2/M1 < 0.2), green squares
are for multiple-halos (M2/M1 > 0.2). The thick and thin solid lines indicate the mean
and the standard deviation, respectively. The halos are identified at each redshift, and
their multiplicity (M2/M1) is also defined at each redshift. The number of the simulated
halos is 3 × 2004 (z = 0), 3 × 1550 (z = 0.4), 3 × 1101 (z = 0.2), 3 × 317 (z = 1).
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5.5.2 Comparison with observational sample

As an example of possible applications of our fitting formula for the PDF of projected
axis ratio a1/a2, we attempt to compare it with the PDF for the observed halos estimated
by Oguri et al. (2010). They measured the projected axis ratio from the weak lensing
shear map of 18 clusters. In doing so, they assumed that the three-dimensional density
distribution inside each halo follows a self-similar triaxial ellipsoid. The observed region of
their clusters roughly corresponds to M500, and their mean redshift is 0.23, so we compare
their observation data with our model for M500 of all the halos and z = 0.2 in Table 2.
The mean virial mass Mvir of our sample is roughly 2 × 1014h−1M⊙.

Figure 5.12: Comparison of PDFs of projected axis ratio a1/a2. The red symbols with
error bars show the results from the 18 clusters in the weak lensing analysis by Oguri et al.
(2010). The PDF of OLS03 is plotted in the blue dashed curve. Following Oguri et al.
(2010), we use Mvir = 7 × 1014h−1M⊙, corresponding to the mean mass of the observed
clusters, when calculating the PDF of OLS03 through Equation (5.8). The black solid
curve indicate our fitting formula for the PDF of a1/a2 at M500 of all the halos at z = 0.2
(Table 2). For the PDF of OLS03 and ours, the left panel illustrates the original PDFs,
while the right panel shows those convolved with the Gaussian function, corresponding
to the typical uncertainty for a1/a2 in the lensing analysis (cf. Table 1 of Oguri et al.
(2010)).

The left panel of Figure 5.12 plots the PDF of projected axis ratio of the observed halos
in red symbols with error bars. Oguri et al. (2010) compared this observational results
with the PDF of OLS03 calculated by assuming Mvir = 7×1014h−1M⊙ in Equation (5.8),
corresponding to the mean mass of the observed clusters. We also plot the same PDF in
the blue curve. In addition, our model is plotted in the black curve. The mean mass of
our sample is smaller than that of Oguri et al. (2010), but this is not serious since the
mass dependence of axis ratio a1/a2 is very weak (Figure 5.11).

In order to include the possible effect of the observational uncertainty in a1/a2, Oguri
et al. (2010) convolved the PDF of OLS03 with the Gaussian function with σ = 0.15,
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corresponding to the typical uncertainty of the measurement of the axis ratio (cf. Table
1 of Oguri et al. (2010)). The resulting PDF is shown in Figure 3.3 (Section 3.5). The
PDF, however, has non-zero values at a1/a2 = 0 and 1, while the existence probability of
halos with a1/a2 = 0 (line) and a1/a2 = 1 (perfect circle) should be zero. This comes from
the constant σ = 0.15 for all a1/a2; e.g., for a1/a2 = 0.95, the range 0.8 ≤ a1/a2 ≤ 1.1 is
assumed, although a1/a2 should be less than unity.

We resolve the above problem in the following way. For a1/a2 > 0.85, we set σ =
1 − a1/a2, since the upper bound of a1/a2 is unity. Similarly, for a1/a2 < 0.15, we set
σ = a1/a2 so that a1/a2 does not become negative. By using the above σ the depends on
a1/a2, we convolve the PDF of OLS03 and our fitting formula with the Gaussian function
with σ.

The resulting PDFs are plotted in the right panel of Figure 5.12. Because of the large
observational error bars, it is difficult to distinguish the PDF of OLS03 and our fitting
formula. Our fitting formula is, however, based on the direct measurement of a1/a2 of
the simulated halos, and therefore more reliable than that of OLS03 based on the self-
similarity of halos. In the near future, precise observational data of numerous clusters
will be provided by the Subaru Hyper Suprime-Cam, for example.

5.6 Short Summary

In this chapter, we studied the non-sphericity of dark matter halos by analyzing halos
extracted from the (dark matter only) simulation. In the first half of this chapter, we
compared the evolution of the non-sphericity of halos with the prediction of the ellipsoidal
collapse model (EC). In doing so, we assigned triaxial ellipsoids to approximate the density
distribution of each simulated halo by using the mass tensor I (Equation (5.3)). The
results are summarized as follows:

1. First, we compared the evolution of the axis lengths Ak (k = 1, 2, 3) of individual
simulated halos with the EC prediction on the object-wise basis, at the mass scale of
MFOF (roughly corresponding to the virial mass Mvir). In general, the EC prediction
roughly reproduces the simulation up to the turn-around epoch (z ∼ 1). After the
turn-around epoch, however, the simulation substantially deviates from the EC
prediction.

2. The discrepancy in the statistical mass dependence of axis ratio A1/A3 at z = 0
between the EC prediction and simulations has been reported in literature; massive
halos are more spherical in EC, but those in simulations tend to be less spherical.
For the first time, we demonstrated how and when the statistical mass dependence
of A1/A3 of the simulated halos deviates from EC. While massive halos are more
spherical initially, they gradually become less spherical after the turn-around epoch.
In contrast, more massive halos are always more spherical in the EC prediction. We
also confirmed that the above mass dependence of axis ratio changes at earlier
epochs in the inner regions by comparing the evolution of axis ratio at the mass
scales MFOF, MFOF/2 and MFOF/10.
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3. The averaged axis ratio ⟨A1/A3⟩ over all the simulated halos has significant radial
dependence as a function of enclosed mass Mellipsoid inside ellipsoids. At Mellipsoid ≳
MFOF, ⟨A1/A3⟩ rapidly decreases due to filamentary structures around the halos.
Inside Mellipsoid ∼ MFOF, the radial dependence of ⟨A1/A3⟩ gradually changes with
time; while ⟨A1/A3⟩ increases toward the inner region at z = 1, it decreases at z = 0.
As a result, at z = 0, ⟨A1/A3⟩ ∼ 0.4 at Mellipsoid ∼ 0.1MFOF and ⟨A1/A3⟩ ∼ 0.5 at
Mellipsoid ∼ MFOF. The radial dependence of ⟨A1/A3⟩ indicates that the halos are
not necessarily self-similar (concentric, common axis ratio and orientation).

The above results 1. and 2. imply that the information on the initial ellipticity of
halos is largely lost after the turn-around epoch. Hence cosmological N-body simulations
play important roles to study the present non-sphericity of halos. In the latter part of
this chapter, we studied the probability distribution function (PDF) of A1/A3. Especially,
we examined the validity of the self-similarity assumption for the density distribution of
halos adopted by JS02, inspired by the above result 3.

4. We examined how the PDF of A1/A3 of halos at z = 0 depends on Mellipsoid. The val-
ues of ⟨A1/A3⟩ at Mellipsoid = MFOF/10 is smaller than that of JS02 who employ the
isodensity surface at ρ = 2500ρcrit (roughly corresponding to the region of MFOF/10)
and adopt the self-similarity assumption. The difference is partly due to the differ-
ent methods of triaxial modelling of halos; mass tensor and isodensity surface. We
also found that ⟨A1/A3⟩ becomes larger toward outer mass scales; ⟨A1/A3⟩ ∼ 0.4 at
Mellipsoid = MFOF/10, and ⟨A1/A3⟩ ∼ 0.5 at Mellipsoid = MFOF.

5. The projected axis ratio a1/a2 is a more relevant quantity to compare with ob-
servational data, and it is sensitive to the self-similarity assumption for the den-
sity distribution of halos. Therefore we calculated the PDF of a1/a2, not through
those of three-dimensional A1/A3, but directly from the projected density distribu-
tion of the simulated halos for the first time. We found that the resulting PDFs
have mean values a1/a2 ∼ 0.6 only slightly depending on redshifts and mass scales
(Mellipsoid = Mvir, M500 and M2500); halos seem rounder due to the projection effect.

6. We provided a universal fitting formula (in the form of the beta distribution) for the
PDFs resulted from our simulation, and showed that the formula improves those in
previous studies, including OLS03, that assume the self-similarity of halos. Hence
our fitting formula will be useful in interpreting the future data of Subaru Hyper-
Suprime Cam among others.

We used the dark matter only simulation in order to clarify how the non-sphericity of
halos intrinsically evolves. The non-sphericity of actual halos can be, however, affected by
baryons at least inner mass scales (Mellipsoid ≲ 0.5Mvir). In the next chapter, we will study
the effect of baryons on the non-sphericity of dark matter halos by using simulations with
baryons (Section 6.4), although the main target of the next chapter is the non-sphericity
of X-ray surface brightness from intracluster gas.
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Chapter 6

Probing Non-sphericity of Galaxy
Clusters through X-ray Surface
Brightness

6.1 Motivation

In the previous chapter, we have constructed the probability distribution function (PDF)
of projected axis ratio of dark matter density field, and compared it with the existing
data of weak lensing observations. Given the limited number of the available observation
data, our PDF of projected axis ratio is roughly consistent with the observation.

It is not clear, however, how faithfully the non-sphericity of the weak lensing shear
map represents that measured by the mass tensor in the simulation. For more precise
comparison, one should adopt the same estimator of non-sphericity both in simulations
and observations. In the case of Oguri et al. (2010), weak lensing shear maps should be
calculated directly from simulations. Oguri et al. (2010), however, assumes that their
clusters have the self-similar density distribution in the three-dimensional space. Hence
the analyses based on the fact that halos are actually not self-similar are not feasible at
this stage.

Instead, in this chapter, we consider the non-sphericty of the X-ray surface brightness
SX of galaxy clusters:

SX =
1

4π(1 + z)4

∫
dl n2

gasΛ(T, Z) (6.1)

where ngas is the number density of gas and Λ(T, Z) is the X-ray cooling function that
depends on the gas temperature T and metallicity Z. Also, the integration is carried out
along the line-of-sight. Note that, over the typical temperature range of galaxy clusters
(1 keV ≲ T ≲ 10 keV), Λ is approximately proportional to T 1/2, and therefore the shape
of SX is largely determined by the gas density.

Since the X-ray surface is one of the primary observables in X-ray observations of
galaxy clusters, a number of data is available and will be increased in the near future.
They are more easily estimated than weak lensing data that require precise measurements
of distortion of many individual lensed galaxies. In fact, Kawahara (2010) has already
measured the non-sphericity of the surface brightness of 70 galaxy clusters. While the
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uncertainty is large, he obtained a barely consistent result with that expected from the
PDF of Jing & Suto (2002) for dark matter.

It should be emphasized that the density distribution of gas is different from that of
dark matter (Lee & Suto, 2003). Under the assumption of hydrostatic equilibrium (HSE),
the gas mass density ρgas (∝ ngas) satisfies the following:

1

ρgas
∇p = −∇ϕ, (6.2)

where p is the gas pressure, and ϕ is the gravitational potential mainly determined by
the dark matter density distribution. When the gas is isothermal, ∇ log ngas ∝ ∇ϕ, and
so the gas distributes along isopotential surfaces of dark matter, rather than isodensity
surfaces. In general, isopotential surfaces tend to be rounder than isodensity surfaces,
and therefore the gas density distribution is expected to be more spherical than that of
underlying dark matter.

In addition, the conventional assumption of HSE is not so accurate (Lau et al., 2009,
2013; Fang et al., 2009; Suto et al., 2013) due to the dynamical motion of gas. Hence
it is essential to use cosmological simulations including gas in order to precisely study
the non-sphericity of gas density. In this chapter, we analyze 40 galaxy clusters extracted
from cosmological simulations, and clarify the difference in the non-sphericity between gas
and dark matter density. We further compare our simulation results with the observation
data analyzed by Kawahara (2010).

6.2 Simulations

In this chapter, we analyze clusters extracted from cosmological hydrodynamical simula-
tions performed by Dubois et al. (2014) with the adaptive mesh refinement code RAMSES

(Teyssier, 2002).
The simulation includes 10243 dark matter particles in a periodic cube with a side

length of 100 h−1 Mpc, where the cosmological parameters are set in accord with the
Wilkinson Microwave Anisotropy Probe 7 cosmology (Komatsu et al., 2011); Ωm,0 = 0.272,
ΩΛ,0 = 0.728, Ωb,0 = 0.045, σ8 = 0.81, H0 = 70.4 km s−1 Mpc−1 and ns = 0.967. Hence
the dark matter mass resolution is 8×107M⊙. The initial condition is generated with the
MPGRAFIC software (Prunet et al., 2008).

The size of gas cells is initially set to 136 kpc, and the size is refined if the number of
dark matter particles in a cell becomes more than eight, or if the total baryonic mass in a
cell is eight times the dark matter mass resolution (8 × 107M⊙). The mesh refinement is
carried out up to 7 times, and therefore the minimum cell size is 1.06 kpc. Star formation
occurs if gas hydrogen number density exceeds the threshold of n0 = 0.1 H cm−3 following
a Poissonian random process (Rasera & Teyssier, 2006; Dubois & Teyssier, 2008).

The radiative cooling of gas due to H and He with a contribution from metals is mod-
elled according to Sutherland & Dopita (1993). Heating from a uniform UV background
also takes place following Haardt & Madau (1996). In addition, feedback from super-
novae is taken into account; the frequency of Type Ia SN explosions follows Greggio &
Renzini (1983), and the mechanical energy from Type II SNe is taken from STARBURST99

(Leitherer et al., 1999, 2010).
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SIM-DM SIM-SN SIM-SA

DM only DM + baryons DM + baryons

radiative cooling No Yes Yes

SN feedback No Yes Yes

AGN feedback No No Yes

Table 6.1: The three simulations used in this chapter. Whether each of radiative cooling,
supernova feedback, AGN feedback are included or not is indicated by “Yes” or “No”.

Feedback from active galactic nuclei (AGN) is also modelled according to Dubois et al.
(2012). Black holes are created where the gas mass density is larger than ρ > ρ0 (ρ0 is
0.1 times the hydrogen mass per cm3) with an initial seed mass of 105M⊙. The AGN
feedback includes two different modes, according to χ = ṀBH/ṀEdd, where the ṀBH

is the accretion rate onto the black hole and ṀEdd is the Eddington accretion rate. If
χ < 0.01, the feedback is called “the radio mode”, and the feedback energy is ejected
into a bipolar outflow with a jet velocity of 104 km s−1 following Omma et al. (2004).
Otherwise (χ > 0.01), the feedback consists of isotropic injection of thermal energy into
gas, called “the quasar mode”. The energy deposition rate satisfies ĖAGN = 0.015ṀBHc

2;
the coefficient is chosen so that the scaling relations between black hole mass and galaxy
properties (mass, velocity dispersion) and black hole density in the local Universe (see
Dubois et al., 2012) are reproduced.

For comparison, the simulation with the same settings as above but without the AGN
feedback is run. In addition, the dark matter only simulation with the same initial
conditions is also run. In this chapter, we refer to the hydrodynamical simulations with
and without the AGN feedback as “SIM-SA” and “SIM-SN” for short. Also, the dark
matter only simulation is called “SIM-DM”. Table 6.1 summarizes the physical processes
included in the three simulations.

We extract 40 clusters with M200 > 3 × 1013M⊙ from SIM-SA. For each cluster,
corresponding objects are identified in SIM-SN and SIM-DM as well. In the following
sections, we analyze the non-sphericity of X-ray surface brightness of gas for the two sets
of 40 clusters in SIM-SA and SIM-SN. For comparison, the non-sphericity of dark matter
halos is calculated for the three sets of 40 clusters.

6.3 Importance of AGN Feedback: Density and Tem-

perature Profiles

In general, the behavior of simulated clusters depends on baryonic processes included in
simulations. Especially, the inclusion or exclusion of AGN feedback makes a significant
difference. Since the X-ray surface brightness SX is the key quantity in this chapter,
we have to be careful of the difference in gas properties between SIM-SA and SIM-SN.
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While we always show the analysis results for both simulations in parallel throughout
this chapter, we consider that SIM-SA is the better model because it reproduces observed
properties of clusters better than SIM-SN; we explain the reason for that in this section
by looking at the density and temperature profiles of simulated clusters.

Figure 6.1 illustrates the density and temperature profiles of one simulated cluster
(M200 ≈ 4.5 × 1014M⊙) in SIM-SN. In the left-panel, we plot the density profiles of gas
(red), dark matter (black) and stars (blue). Also, the (mass-weighted) gas temperature
profile is shown in the right panel.

The stellar density exceeds the dark matter density inside ∼ 40 kpc. Since the typical
radius of galaxies is roughly 10 kpc, the stellar density is rather high. This indicates that
the radiative cooling is in the simulation too efficient. In fact, inside ∼ 40 kpc, the gas
temperature rapidly decreases toward the center. Due to the high concentration of stars,
the gas density suddenly increases toward the center at around 40 kpc. Also, the dark
matter density profile becomes slightly steeper around at 20 kpc.

In addition, outside ∼ 40 kpc, temperature is much higher than the typical temper-
ature of actual clusters expected from, for instance, the mass-temperature relation by
Arnaud & Evrard (1999):

M200 = 1.5 × 1015

(
TX

10 keV

)3/2

, (6.3)

where TX is the X-ray spectroscopic temperature. The cluster in Figure 6.1 has M200 ≈
4.5 × 1014M⊙, and so the corresponding temperature is roughly 5 keV. Given that TX is
usually measured inside r500 (≈ 0.5r200), the gas temperature in SIM-SN is extraordinarily
high. This is mainly due to the SN feedback from the excess amount of stars and the
rapid accretion of gas toward the center. The above behavior of density and temperature
profiles is not typical for actual clusters.

In contrast, the corresponding cluster in SIM-SA exhibits density and temperature
profiles, consistent with observations (see Figure 6.2). The stellar density exceeds the
dark matter density inside ∼ 10 kpc, corresponding to the typical galactic scale. The
gas density profile is flat inside ∼ 100 kpc, and does not exhibit a rapid increase unlike
in Figure 6.1. Also, the gas temperature gradually increases toward the center, and the
temperature at around r ≲ 0.5r200 is consistent with the mass-temperature relation (6.3).

Based on the results in this section, we use SIM-SA as a fiducial simulation, and show
results for SIM-SN just for reference, in the rest of this chapter.

6.4 Non-sphericity of Dark matter and Stars

Before measuring the non-sphericity of the X-ray surface brightness of the simulated
clusters, we examine how the non-sphericity of the dark matter density distribution,
studied in the previous chapter, is affected by the inclusion of baryonic processes.

As in the previous chapter, we use the following mass tensor to estimate the non-
sphericity of dark matter density distribution:

Iαβ =
∑
i

m(i)x(i)α x
(i)
β , (6.4)
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Figure 6.1: Radial profiles of density (left) and mass-weighted gas temperature (right) of
the cluster with M200 ∼ 4.5× 1014M⊙ for SIM-SN. The density profiles of gas (red), dark
matter (black) and stars (blue) are shown in the left panel. The gray dashed vertical line
indicates r200 of the cluster.

Figure 6.2: Same as Figure 6.1, but for the corresponding cluster in SIM-SA. Note that
r200 is slightly different between SIM-SA and SIM-SN.
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where x
(i)
α and m(i) is the position and mass of the i-th particle. The summation stops

when the sum of m(i) reaches a given mass. We calculate the mass tensor iteratively in the
same way as described in Section 5.2. For each of 40 simulated clusters, we calculate the
projected dark matter density distribution along the x-, y- and z-axes. Then we identify
the ellipses with the semi-major axis a2/r200 = 0.1, 0.2,..., 0.9, 1.0. The same procedure
is performed for the three simulations.

Figure 6.3 demonstrates the results for the same cluster in Figure 6.1. The resulting
ellipses with the semi-major axis a2/r200 = 0.2, 0.4, 0.6, 0.8, 1.0 are overplotted on the dark
matter density distribution for each simulation; SIM-DM (upper-left), SIM-SN (upper-
right) and SIM-SA (lower-left). The lower-right panel shows the dark matter density
profiles in three simulations; SIM-DM (green), SIM-SN (magenta) and SIM-SA (black).
Note that, since a part of the total mass of the universe is allocated to baryons in SIM-SN
and SIM-SA, the dark matter mass in SIM-DM is larger than that in other simulations.
Hence the density profile in SIM-DM is rescaled by 1 − Ωb,0/Ωm,0 ≈ 0.83 in the figure.

The dark matter density distribution in SIM-SN is clearly rounder than the other
two simulations for all the semi-major axes, while the ellipses in SIM-SA and SIM-DM
look similar. Nevertheless, the spherically averaged density profiles are roughly the same
outside ∼ 0.1r200; shapes of dark matter halos are different even though radial profiles
are similar.

We note that, in general, dark matter density at the innermost region (r < 0.1 Mpc in
this case) in both hydrodynamical simulations tends to be larger than that in SIM-DM,
unlike Figure 6.3. This is because gas and stars fallen into in the central region pull dark
matter towards the center. In fact, this tendency is noticeable in SIM-SN as in Figure
6.3. In SIM-SA, however, the individuality of clusters is more significant; whether the
dark matter density in SIM-SA is larger or smaller than that in SIM-DM depends on
individual halos.

In order to statistically see the difference of the resulting ellipses between the three
simulations, we calculate PDFs of axis ratio q = a1/a2 for 40 clusters with three lines-
of-sight. Figure 6.4 shows the results for the three simulations; SIM-DM (top), SIM-SN
(middle) and SIM-SA (bottom). To compensate for the small number of clusters (120×3),
we pile up the PDFs of a2 = 0.1 - 0.4 ×r200 (left), 0.5 - 0.7 ×r200 (middle) and 0.8 - 1.0
×r200 (right); the number of statistical samples is 480, 360 and 360, respectively. This
procedure is justified by the weak radial dependence of q at least for SIM-DM (cf. Section
5.5).

At the scale of 0.1 - 0.4 ×r200, the PDF of SIM-DM (top) is basically consistent with
the result for M2500 in Section 5.5 (r2500 ≈ 0.2r200), although the number of dark matter
halos in this chapter is much smaller. The PDF of SIM-SN (middle) is shifted to the
right, relative to that of SIM-DM; the dark matter density distribution is significantly
rounder. In contrast, if the AGN feedback is included (bottom), the density distribution
is only slightly rounder than that of SIM-DM.

One may expect that the rounder density distribution in SIM-SN may be related to the
radial density profile concentrated in the central region. Then the difference in q should
appear only in the inner region of cluster (≲ 0.5r200) where the existence or absence
of AGN significanly affects the density profile. However, the similar difference in PDFs
between the three simulations still persists in outer regions, even up to the scale of r200,
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as shown in the middle and right panels of Figure 6.4. This is surprising given that the
spherically-averaged density profile is roughly the same between the three simulations,
and that the dark matter occupies a much larger mass fraction (≈ 80 %) than gas and
stars.

Figure 6.3: Dark matter density distribution of the same cluster in Figure 6.1 projected
along the z-axis of the simulation for three simulations; SIM-DM (upper-left), SIM-
SN (upper-right) and SIM-SA (lower-left). The fitted ellipses with the semi-major axis
a2/r200 = 0.2, 0.4, 0.6, 0.8, 1.0 are plotted in black curves. The corresponding dark matter
density profiles are shown in the lower-right panel; SIM-DM (green), SIM-SN (magenta)
and SIM-SA (black). The dashed vertical line indicates r200 in SIM-SA. For SIM-DM, the
density profile is multiplied by a factor of 1 − Ωb,0/Ωm,0 ≈ 0.83.

Previously, Kazantzidis et al. (2004) showed that dark matter halos in a simulation
without radiative gas cooling is much less spherical than those in a simulation with cooling
(both simulations do not include AGN feedback) up to the virial radius (≈ r200). This
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result also indicates that the shape of dark matter halos strongly depends on the baryonic
processes included in simulations. (Note that, since they adopted another definition of
mass tensor, their results should not be quantitatively compared with ours.)

The above results indicate that the baryonic processes need to be carefully treated in
cosmological simulations even when the non-sphericity of dark matter (not gas or stars)
is studied. Simulation techniques for modelling baryonic processes are, however, still
developing, and this problem becomes more difficult for higher resolution simulations.
This remains a challenge for future.

Figure 6.4: PDFs of projected axis ratio of dark matter density distribution for the 40
simulated cluster along three lines-of-sight (x-, y- and z-axes of the simulation). For each
cluster, ellipses with the semi-major axis a2/r200 = 0.1, 0.2,..., 0.9, 1.0 are obtained by
the mass tensor I =

∑
xx, and the PDF is calculated for the ellipses with 0.1 - 0.4 r200

(left), the ellipses with a2 = 0.1 - 0.4 r200 (left), 0.5 - 0.7 r200 (middle) and 0.8 - 1.0 r200
(right). The same analysis is performed for the three kinds of simulations; SIM-DM (top),
SIM-SA (middle) and SIM-SN (bottom). For SIM-SA and SIM-SN, the PDF of axis ratio
of stellar density distribution for a2/r200 = 0.1, 0.2, 0.3, 0.4 is shown in the blue curve.

The non-sphericity of stellar density distribution can be estimated also through the
mass tensor similarly. The PDF of the axis ratio q of the ellipses with the semi-major
axis a2/r200 = 0.1, 0.2, 0.3, 0.4 for SIM-SN and SIM-SA (right) are illustrated in the
middle-left and bottom-left panels of Figure 6.4, respectively. For both simulations, the
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PDF of q for stars is slightly shifted to the left (less spherical) compared to that of dark
matter in each simulation. This is partly because the mass tensor I =

∑
xx is sensitive

to substructures, i.e., galaxies at large radii. The PDF in SIM-SN is shifted to the right,
compared to that in SIM-SA, similarly to the case of dark matter.

Figure 6.5: Radial dependence of axis ratio q of dark matter for the three simulations;
SIM-DM (green squares), SIM-SN (magenta crosses), SIM-SA (black circles). The ellipses
with a2/r200 = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 are found for the projected density distribution
of each dark matter halo by using the mass tensor. The lines indicate the standard
deviations.

In addition, we demonstrate the radial dependence of q of dark matter for the three
simulations in Figure 6.5. The figure shows q of the ellipses with a2/r200 = 0.1, 0.2,
0.4, 0.6, 0.8, 1.0. In SIM-SN, halos have mean values ⟨q⟩ ∼ 0.6 with a weak radial
dependence. This is consistent with the results in Section 5.5 based on another dark
matter only simulation. As already seen in Figure 6.4, halos in SIM-SN are significantly
rounder than those in the other simulations at all the scales up to the virial radius.

In contrast, ⟨q⟩ in SIM-SA is comparable to that in SIM-DM at least at around
a2 = r200. Hence the results in Chapter 5 for the scales around the virial mass (comparison
between the simulation results and the ellipsoidal collapse model, PDFs of axis ratio,
etc.) will be little affected by baryons. At smaller mass scales (≲ 0.5Mvir), however,
⟨q⟩ in SIM-SA is larger than that in SIM-DM, i.e., the non-sphericity of halos will be
significantly affected by baryons. This implies simulations with baryons are needed to
precisely examine the non-sphericity of actual dark matter halos, while we clarified the
intrinsic (under no baryon effects) evolution of the non-sphericity in Chapter 5.
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6.5 Non-sphericity of X-ray Surface Brightness

6.5.1 Fitting Ellipses to X-ray Surface Brightness

We now measure the non-sphericity of the X-ray surface brightness SX . For each cluster,
we calculate SX according to Equation (6.1) along the x-, y- and z axes. The range
to be projected along the line-of-sight is chosen as [−r200, r200]. We use the package
SPEX to calculate the cooling function Λ(Λ, Z). Then we directly fit ellipses to the X-ray
surface brightness SX . We adopt the fitting procedure of Jedrzejewski (1987), as done
by Kawahara (2010). For each simulated cluster, we identify the ellipses with semi-major
axis a2 fixed to a2/r200 = 0.1, 0.2, 0.3 and 0.4. Then the number of free parameters in
the fitting procedure is four; the axis ratio a1/a2, direction of the major axis Θ and the
central position Xc.

The top-panels of Figure 6.6 shows the results of the fitting to SX for the same cluster
in Figure 6.1 for SIM-SN (left) and SIM-SA (right). The black curves illustrate the
ellipses with the semi-major axis a2/r200 = 0.1, 0.2, 0.3, 0.4. For comparison, the density
distributions of dark matter and stars are shown in the middle and bottom panels.

The same color represents the same value of SX both in the left and right panels.
Hence the gas is more concentrated in SIM-SN. This is due to the high stellar density, as
seen in the density profiles in Figure 6.1.

In SIM-SA, SX is rounder than the dark matter density distribution, as expected from
the HSE assumption. In addition, while the orientations of the ellipses for SX are similar
to those of dark matter, they are not concentric. In SIM-SN, on the other hand, SX is
as round as the dark matter density distribution. In the next subsection, we statistically
examine the non-sphericity of SX .

6.5.2 Mass- and Radial-Dependence of Axis Ratio

We examine the statistical dependence of axis ratio q of the X-ray surface brightness SX

on mass and radius, as done in Section 5.5 for q of dark matter density distribution. We
have found that q of dark matter is very weakly dependent both on mass and radius.
Hence it is expected that q of SX also has weak dependence on mass and radius.

Figure 6.7 plots q of SX at a2 = 0.4r200 for each simulated cluster along three lines-
of-sight against its M200 for SIM-SA (left) and SIM-SN (right). The figure indicates the
mass dependence of q is very weak both in SIM-SN and SIM-SA, while the scatter of q is
large. For each cluster, the measured q along the x-, y-, and z-axis are plotted in the red
squares, green triangles and blue squares, respectively. Even for the same cluster, q can
be quite different depending on the lines-of-sight; for example, if a cluster is elongated
along the z-axis, q along x- or y-axis is much smaller than that along the z-axis.

We divide the 40 clusters into four groups of 10 clusters in the decreasing order of
mass. The mean value of q and the standard deviation are indicated by the black circle
and line in Figure 6.7. The mean q in SIM-SN (∼0.84) is slightly larger then that in
SIM-SA ∼0.78. This reflects the rounder shapes of the dark matter halos in SIM-SN, but
the difference of q for SX between the two simulations is smaller than that of dark matter.
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Figure 6.6: X-ray surface brightness SX (top), dark matter density distribution (middle)
and stellar density distribution (bottom) of the same cluster in Figure 6.1 along the z-axis,
for SIM-SN (left) and SIM-SA (right). For each panel, the ellipses with the semi-major
axis a2/r200 = 0.1, 0.2, 0.3, 0.4 are plotted in black curves. The ellipses are obtained by
direct fitting for Sx, and by mass tensor I =

∑
xx for dark matter and stars.

While Figure 6.7 shows the results for the semi-major axis a2 = 0.4 × r200, basically
the same results are reproduced even for a2 = 0.1, 0.2, 0.3 ×r200. In fact, the weak radial
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dependence of q is demonstrated in Figure 6.8. The figure plots the q of SX (red circles)
averaged over all the simulated clusters with the standard deviation indicated by the red
line, for SIM-SN (left) and SIM-SA (right). The mean q of SX is roughly 0.8 at all the radii
for both simulations. In SIM-SN, while the scatter is large, the mean value of q becomes
slightly larger toward outer regions. This is partly because gas is more concentrated in
SIM-SN (see Figure 6.6); contours of SX with a2 ≳ 0.3r200 tend to be more spherical
compared to those in SIM-SA.

The mean value of q for dark matter is plotted in the black squares. In SIM-SA, dark
matter halos have a smaller mean value of q than SX , while they are as round as SX in
SIM-SN. This has been already seen for the particular cluster in Figure 6.6.

The blue triangles in Figure 6.8 indicate that the density distribution of stars is less
spherical than that of dark matter for both simulations. Also, the mean q of stars is
higher in SIM-SN, as in the case of dark matter. The mean q of stars tends to be larger
toward the center for both simulations. This is partly because there are more galaxies
at outer regions that makes the ellipses determined by the mass tensor I =

∑
xx less

spherical.
In the innermost region (a2 = 0.1r200) in SIM-SN, dark matter is more spherical

than SX , inconsistent with expectation from the HSE assumption. One might expect
that, at this region, stars significantly contribute to the gravitational potential. We have
confirmed, however, that q measured for the mixed density distribution of dark matter
and stars is roughly the same as q for dark matter alone. Hence Figure 6.8 implies that,
in SIM-SN, the gas is far from the hydrostatic equilibrium in the innermost region.

6.5.3 PDF of Axis Ratio

We finally calculate the PDF of axis ratio q of the X-ray surface brightness SX and
compare it with the data analyzed by Kawahara (2010). Since we have seen that q is
almost independent of radius and mass in the previous subsection, we combine the results
for all the four semi-major axis lengths a2 = 0.1, 0.2, 0.3, 0.4 ×r200 to calculate a single
PDF. Hence the number of statistical sample is 480 (40 halos × 3 lines-of-sight × 4
semi-major axis lengths) for each simulation.

Figure 6.9 shows the results; the histogram is the PDF of q for the simulated clusters.
The observation data analyzed by Kawahara (2010) are indicated by the cross symbols.
For comparison, the PDF of q of dark matter is overplotted in green dashed line. The PDF
for SX is clearly different from that for dark matter at least in SIM-SA, as qualitatively
expected from the HSE assumption.

We also plot in black solid curve the PDF of q for isopotential surfaces based on the
PDF of JS02 for axis ratio of self-similar triaxial ellipsoids and the HSE assumption.
Strictly speaking, this is the PDF expected for the projected gas density distribution, not
for SX , under the HSE assumption. As shown in the magenta dotted line in Figure 6.9,
however, the PDF of q for the projected gas density directly calculated from the simulation
is roughly the same as the PDF for SX ; while the projected gas density is proportional
to ngas and SX is proportional to n2

gas, their shapes are roughly the same. Therefore, the
difference between the black solid curve and the red histogram is due to the projection
effect (invalidity of the self-similar assumption in JS02) and the departure from the HSE
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Figure 6.7: Projected axis ratio q of the X-ray surface brightness with a2 = 0.4r200,
against M200 of each simulated cluster, for SIM-SN (left) and SIM-SA (right). Each
symbol indicates the result for a simulated cluster. The axis ratio q of each cluster is
measured along the three different lines-of-sight, and indicated in different symbols; x-
axis (red square), y-axis (green triangle), z-axis (blue circle). The black circles show
the averaged values of q over every 10 of 40 clusters, and the black lines indicate the
corresponding standard deviation.

Figure 6.8: Projected axis ratio q of the X-ray surface brightness (red), dark matter
(black) and stars (blue) for the semi-major axis a2/r200 = 0.1, 0.2, 0.3, 0.4, averaged over
the 40×3 clusters, for SIM-SN (left) and SIM-SA (right). The lines indicate the standard
deviation. To facilitate visualization, the results for dark matter and stars are slightly
shifted to the left and right, respectively.
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Figure 6.9: PDFs of projected axis ratio q of the X-ray surface brightness SX (histogram),
dark matter (green dashed line), the isopotential surfaces based on JS02 and the HSE
assumption (black solid line), the projected gas density distribution (magenta dotted line)
and the observational data analyzed by Kawahara (2010) (blue symbols), for SIM-SN (left)
and SIM-SA (right).

assumption.
We emphasize that our simulation results (red histogram) and the PDF for the isopo-

tential surfaces (black curve) are totally different. This indicates that the simple model
prediction (black curve) based on the PDF of JS02 and HSE assumption is inappropriate
for precise comparisons with observation data; it is necessary to calculate the observable
quantities directly from simulation data.

Kawahara (2010) derived the PDF of q from the observation data, and compared it
with the PDF for isopotential surfaces (black dashed curve) and concluded that they are
barely consistent. Since we have obtained the more reliable prediction (red histogram)
for the PDF of q, the consistency between the observation data and the simulation results
can be more strictly tested. Here we apply the Kolmogorov-Smirnov (KS) test, which is
free from the binning of data.

In general, for a PDF Fn(x) with n samples for x and a null hypothesis that “Fn(x)
is generated from the smoothed distribution F (x)”, the KS statistic Dn is defined by

Dn = sup
x

|F (x) − Fn(x)|. (6.5)

Then the quantity
√
nDn has the following PDF independently of F (x) and Fn(x):

p(
√
nDn ≤ x) = 1 − 2

∞∑
i=1

(−1)i−1e−2i2x2

. (6.6)

In addition, for a confidence level α, Kα is defined by p(
√
nDn ≤ Kα) = 1 − α. Then, if√

nDn > Kα, the null hypothesis is rejected for the confidence level α.
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We regard the observation data analyzed by Kawahara (2010) and the PDF of q for
the isopotential surfaces as F (x) and Fn(x), respectively (x = q and n = 169). Figure
6.10 shows the cumulative PDFs of the observation data (thin blue solid) and the PDF
of q for the isopotential surfaces (black dashed). Note that the blue and black curves are
the same for both panels. For these cumulative PDFs, we obtain

√
nDn = 3.89, and the

corresponding α is less than 10−7. Hence the PDF of q for the isopotential surfaces is
inconsistent with the observation data.

In Chapter 5, we convolved the PDF derived from the simulation with a Gaussian
with σ ∼ 0.15, corresponding to the typical uncertainty in estimates of axis ratio, as done
by Oguri et al. (2010). Here we do not perform a similar procedure, since the typical
uncertainty in determination of q of SX in Kawahara (2010) is order of 0.01; PDFs little
change after convolved with a Gaussian.

We next compare the observation data with our simulation results. The KS test can
be modified for the two sets of discrete PDFs. For cumulative PDFs Fn(x) and Gm(x)
with n and m samples, respectively, the KS statistic D̄n,m is defined by

D̄n,m = sup
x

|Fn(x) −Gm(x)|. (6.7)

Then the quantity
√
nm/(n+m)D̄n,m follows the same PDF as Equation (6.6).

Figure 6.10: Cumulative PDFs of q of the X-ray surface brightness SX (red thick), the
isopotential surfaces based on JS02 and the HSE assumption (black dashed) and the
observational data analyzed by Kawahara (2010) (blue thin) for SIM-SN (left) and SIM-
SA (right).

We regard the histogram of q for SX of our simulated clusters as Gm(x) (x = q and
m = 480). The cumulative fraction for q of SX is shown in thick red line in Figure 6.10 for
SIM-SN (left) and SIM-SA. For SIM-SN, we obtain

√
nm/(n+m)D̄n,m = 2.04, and the

correponding α is less than 10−3. On the other hand, for SIM-SA,
√
nm/(n+m)D̄n,m =
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1.24, and the corresponding α is 0.10. In other words, the probability that the observa-
tional data statistically agrees with our simulation results is 10 % for SIM-SA, and less
than 0.1 % for SIM-SN.

Figure 6.11: PDF of axis ratio q of the X-ray surface brightness SX for SIM-SA, colored
to indicate the contributions from single-halos (red) and multiple-halos (green). For com-
parison, the observation data analyzed by Kawahara (2010) are plotted in blue symbols.

As a result, our simulation results for SIM-SA (red curve in the right panel of 6.10)
better agrees with the results of Kawahara (2010) (blue curve), compared to the prediction
based on the PDF of JS02 (black curve). The resulting statistical agreement is, however,
only 10 %, and so we discuss the origin of the disagreement between the simulation results
and the observation data in what follows.

In SIM-SA, the main difference between PDFs for our simulation data and observation
data analyzed by Kawahara (2010) comes from the much smaller number of observation
data with q < 0.65 than the simulation results. One may suspect that multiple-halos
(halos comprising two or more big structures; see Figure 5.1) occupy most parts of the
PDF at q < 0.65 in our simulation. To check if this is true, we classify our clusters into
single-halos and multiple-halos in the same way as Subsection 5.2.2; based on the mass of
main dark matter halo M1 and the mass of the most massive substructure M2, a cluster
is called a “single-halo” if M2/M1 < 0.2, and a “multiple-halo” otherwise. As a result,
we find 4 multiple-halos among the 40 halos. Note that the fraction of the multiple-halos
(10 %) is consistent with the halos analyzed in Chapter 5 (cf. Table 5.1).

In Figure 6.11, we color the PDF of q of SX for SIM-SA in order to indicate the
contributions from single-halos (red) and multiple-halos (green). The figure indicates that
the results from multiple-halos have a broad distribution. This resembles the case of the
projected dark matter density distribution (Section 5.5); q of multiple-halos distributes
more broadly than three-dimensional space, and even more broadly at inner mass scales
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(see Figure 5.10). Therefore the disagreement between the simulation results and the
observation data is not mainly due to the multiple-halos.

One possibility for the origin of the disagreement between the simulation results and
the observation data may be a selection effect in observations; for the same semi-major
axis length, halos with smaller q are less massive, and therefore gas has lower temperature
and density. Hence it is possible that smaller number of distorted clusters are observed
than round clusters.

Also, the robustness of the analysis of the observation data should be tested. In this
chapter, we fitted ellipses to local isocontours of SX , just because Kawahara (2010) did so.
Other method to determine q is possible; for example, one can use a kind of mass tensor
with some weighting scheme. In this case, q is not locally determined, but the contribution
from inner regions is taken into account. It is important to test the consistency between
simulations and observations for more than one estimator.

In addition, how the baryonic processes included in simulations affect the non-sphericity
of SX should be more thoroughly tested. Especially, as seen in Section 6.4, the strength
of AGN feedback influences shapes of dark matter halos, as well as SX , even up to the
virial radius.

All the above possibilities should be carefully examined by using much more simulation
and observation data in the future, in order to test the validity of the CDM paradigm.
In that sense, the comparison between the simulation results and the observation data
in this chapter is still preliminary. We emphasize, however, that the above issues have
become arguable because we have constructed the reliable PDF of q that is free from the
assumptions of the self-similar density distribution and the hydrostatic equilibrium.

6.6 Short Summary

We have calculated the PDF of axis-ratio q of X-ray surface brightness SX directly from
the cosmological hydrodynamical simulations. We measure the axis ratio in the same way
as Kawahara (2010), and compare our results with his result. The results in this chapter
are summarized as follows:

1. The PDF of q of SX calculated directly from the simulation data is totally different
from the PDF for isopotential surfaces based on the self-similarity density distribu-
tion (Jing & Suto, 2002) and the hydrostatic equilibrium. The latter PDF, or such
a simple model prediction should not be compared with observation data; the same
estimator of axis ratio should be adopted both in simulations and observations.

2. We preliminarily compared our PDF of q of SX with the X-ray observation data
analyzed by Kawahara (2010). As a result, our PDF is much closer to the one
derived from the observation data analyzed by Kawahara (2010), than the PDF for
isopotential surfaces. However, since the statistical agreement is only 10 % according
to the Kolmogorov-Smirnov test, and the disagreement may come from the selection
effect in observations, robustness of the method to fit ellipses to SX , etc.

3. The axis ratio of SX depends little on radius and mass, consistent with that the
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projected axis ratio of dark matter halos also depends little on radius and mass
(Section 5.5).

The above results on SX are mainly for the simulation with AGN feedback; the sim-
ulation reproduces typical density and temperature of observed clusters, much better
than the simulation without AGN feedback. Another important result is obtained by
comparing the different simulations:

4. The shapes of dark matter halos are significantly affected by the baryonic processes
up to the virial radius, even though the spherically-averaged density profile is little
affected outside a tenth of the virial radius. Specifically, if AGN feedback is absent,
dark matter halos tend to be much rounder than those in the dark matter only
simulation. If AGN feedback is adopted, halos are still slightly rounder than those
in the dark matter only simulation.

At least at around the virial mass scale, the non-sphericity of dark matter halos in the
simulation including AGN feedback is similar to that in the dark matter only simulation.
Hence the results in Chapter 5 for the virial mass scale are little affected even if baryons
are incorporated into simulations. In contrast, baryons have impact on the non-sphericity
of halos at the inner mass scales (e.g. M2500 in Section 5.5). Therefore it is quite important
to properly incorporate baryonic processes, especially AGN feedback, into simulations, to
examine the non-sphericity of dark matter, not only gas.
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Chapter 7

Summary and Conclusion

We have studied the non-sphericity of galaxy clusters by using the cosmological simula-
tions. Especially, we paid a special attention to the simulation study of Jing & Suto (2002)
(JS02). They approximated the isodensity surfaces of their simulated dark matter halos
by triaxial ellipsoids, and found that their minor-to-major axis ratio follows a universal
probability distribution function (PDF). The universality of the non-sphericity of halos
suggests that comparisons of PDFs of axis ratio between simulations and observations
can be tests for the cold dark matter (CDM) paradigm.

Observational estimates for PDFs of axis ratio has been performed, although the num-
ber of available data is small at this stage. In particular, Oguri et al. (2010) determined
the axis ratio of weak lensing shear maps of clusters, and compared the resulting PDF of
axis ratio with the PDF of projected axis ratio of dark matter halos, derived by Oguri
et al. (2003) based on JS02. Also, Kawahara (2010) fitted ellipses to isocontours of X-ray
surface brightness of 70 galaxy clusters. Then he compared the derived PDF of axis ratio
of X-ray surface brightness with the PDF of axis ratio of isopotential surfaces predicted
through the PDF of JS02 and the hydrostatic equilibrium assumption. Given the large
observational uncertainty, both Oguri et al. (2010) and Kawahara (2010) concluded that
the observation data and the predictions based on JS02 are barely consistent.

In this thesis, we showed that the predictions based on JS02 used in Oguri et al. (2010)
and Kawahara (2010) are not adequate for more precise comparisons between simulations
and observations. More reliable predictions on the non-sphericity of clusters are needed,
since much more observation data will be available in the near future. Therefore, by
using cosmological simulations, we presented predictions for the axis ratio of projected
dark matter density distribution and the X-ray surface brightness, which will be useful
in weak lensing analyses and X-ray observations, respectively. The specific results for
the dark matter density distribution and the X-ray surface brightness are summarized in
what follows.

In Chapter 5, we calculated PDFs of projected (two-dimensional) axis ratio of dark
matter halos, directly from the projected density distribution in the simulation by using
the mass tensor. We then showed that the resulting PDF is significantly different from the
PDF of projected axis ratio, presented by Oguri et al. (2003) who projected the PDF of
JS02. The difference between the two PDFs comes mainly from the assumption that the
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three-dimensional density distribution is self-similar (described by concentric ellipsoids
with common axis ratio), adopted in JS02. Since our calculation is free from the self-
similarity assumption, our PDFs are more reliable when compared with weak lensing
data.

We also found that our PDFs can be approximated by the beta distribution with two
parameters that little depends on redshifts and radius (or mass scales from the center).
The fitting formula will be useful for comparisons between simulations and observations.

As a preliminary approach, we compared the weak lensing data by Oguri et al. (2010)
with the PDF of projected axis ratio directly calculated from the N-body simulation.
Our PDF is broader than the PDF of Oguri et al. (2003), and seems to better agree with
the observation data. However, after we convolve both PDFs with Gaussian with the
dispersion corresponding to the typical uncertainty in the estimates of axis ratio, as done
by Oguri et al. (2010), two PDFs cannot be discriminated due to the large observational
error bars at this stage.

In order to make more precise comparisons, one should calculate the observable quan-
tity, i.e., the lensed shear map, directly from simulations, and measure the axis ratio in
the same way as the observation analysis. The analysis by Oguri et al. (2010) is, however,
based on the assumption that halos have the self-similar density distribution in the three
dimensional space. So the non-self-similarity of the projected density distribution cannot
be examined in this method. Hence we did not reproduce the analysis by Oguri et al.
(2010) in this thesis. With much more observation data in the near future, an analysis
method that is free from the self-similarity assumption should be established.

In Chapter 6, we measured the axis ratio of X-ray surface brightness in the same
way as Kawahara (2010). We then showed that the PDF of axis ratio of isopotential
surfaces used in the analysis of Kawahara (2010) is inappropriate for comparisons with
observation data; we calculate the PDF of axis ratio of X-ray surface brightness directly
from the simulation data in the same way as Kawahara (2010), and showed that the
resulting PDF is significantly different from the PDF of axis ratio of isopotential surfaces.
The difference comes mainly from the assumption of the self-similar density distribution
adopted by JS02, and from the hydrostatic equilibrium assumption.

Our PDF of axis ratio of X-ray surface brightness is free from the assumptions of
self-similar density distribution and hydrostatic equilibrium, and therefore more reliable
in comparisons with observation data.

We preliminarily compared our PDF of axis ratio of X-ray surface brightness with the
X-ray data analyzed by Kawahara (2010). As a result, our PDF is much closer to the
results of Kawahara (2010), than the PDF for isopotential surfaces based on JS02. The
statistical agreement between our simulation results and the observation data is still 10
%. The origin of the disagreement may come from the selection effect in observations; for
the same semi-major axis length, distorted clusters have smaller mass, and so the X-ray
surface brightness is smaller. Also, the robustness of both the simulation results and the
observation analysis should be more thoroughly examined in the future with much larger
number of data, in order to test on the CDM paradigm.

In addition, we pointed out in Chapter 6 that shapes of dark matter halos are strongly
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CHAPTER 7. SUMMARY AND CONCLUSION

affected by the baryonic processes adopted in simulations even up to the virial radius,
although the spherically averaged density profile is little affected. If AGN feedback is
properly incorporated, the results in Chapter 5 at least at around the virial mass scale
are little affected.

At the innermost mass scales (e.g., a fifth of the virial mass), halos become rounder
due to baryonic processes. Therefore, even when the non-sphericity of dark matter den-
sity distribution alone is interested, hydrodynamical simulations are needed in order to
precisely predict the PDF of axis ratio. These are challenging but important future tasks
since a number of lensing data will be provided by the Subaru Hyper Suprime-Cam in
the near future.

Generally, we emphasize that the same quantity should be adopted both in obser-
vations and simulations. This methodology is applicable to any other estimators of the
non-sphericity of galaxy clusters. The main goal of this thesis was to establish this
methodology, as well as to provide the more reliable PDFs of axis ratio than those based
on the PDF of JS02.

Although the number of available observation data is limited for now, but our study in
this thesis can be straightforwardly extended for much more observation data and higher
resolution simulations in the future. Through more precise comparisons with simulations
and observation data, the CDM paradigm will be severely tested, and cosmology beyond
the standard model will develop further.
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