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Abstract

Since the discovery of close-in binary black hole with LIGO, the origin and evo-
lution of such systems are active research fields in astrophysics. Current formation
scenarios usually require long-term evolution to achieve coalescence. It implies the
presence of numerous wide-separation binary black holes as progenitors of LIGO’s
black hole analogs. However, the existence of this new population is not yet clear
observationally. Both gravitational wave and direct photometry observations have
difficulty in identifying this kind of systems since they are expected to have neither
detectable gravitational wave signals nor electromagnetic radiations.

In this thesis, as a possible methodology, we propose a new approach to search for
wide-separation binary black holes with radial velocity modulation of the outer star.
Following the perturbation theory for a hierarchical three-body problem in celestial
mechanics, we derive analytic approximation formulae to describe the motion of outer
objects orbiting around an unseen inner binary, including wide-separation binary black
holes. For simplicity, the formulation in this thesis focuses on a triple system with
coplanar and near-circular orbits. This treatment clarifies the origin and characters
of expected observation signals. Although it is for very ideal situations, the currnet
observations imply the presence of such systems. There are a few known systems
relevant for our model; 2M05215658+4359220 and PSR J0337+1715. These formulae
can provide a directly applicable tool for this class of objects.

In order to confirm the validity, we compare the approximate formulae with N-
body numerical simulation. Although these formulae are expected to be applicable for
a variety of observational data, we particularly consider radial velocity as a specific
example. We derive the approximate radial velocity formula of outer body and examine
it with numerical simulation. As a practical application, we derive a constraint on an
unseen companion inside a binary system 2M05215658+4359220 recently discovered
through the radial velocity observation. This constraint reveals that if the unseen
bodies constituting an inner binary have roughly equal masses, even the current data
could exclude the inner binary with more than 12.5 day orbital period. Future radial
velocity follow-up observation will either strengthen the constraint or even detect a
signature of the inner binary.

Since Gaia and TESS are expected to find many binary systems with unseen com-
panions in near future, this radial velocity formulae may be useful to either put a
constraint on these or estimate radial velocity modulations before real follow-up ob-
servation. The detection of wide-separation binary black hole will contribute to the
formation theory currently proposed. Finally, we discuss outlook and future prospects.
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Chapter 1

Introduction

The first direct detection of a gravitational wave (GW) from a binary black-hole (BBH)
merger (Abbott et al. 2016) has convincingly established the presence of very compact
BBHs in the universe. The origin, evolution and distribution of such BBHs are hardly
understood, but several scenarios have already been proposed. The isolated binary
evolution scenario (e.g. Belczyński & Bulik 1999; Belczynski et al. 2012, 2016, 2002,
2007; Dominik et al. 2012, 2013; Kinugawa et al. 2014, 2016) considers that massive
stars like Pop III stars are formed as binary systems, experience supernovae, and
finally evolve into compact binaries including binary black holes. The dynamical
formation scenario (e.g. O’Leary et al. 2009, 2006; Portegies Zwart & McMillan 2000;
Rodriguez et al. 2016; Tagawa et al. 2016) considers that black holes in dense star
clusters experience significant gravitational interactions and binary black holes can be
formed due to occasional capture. The primordial origin scenario (e.g. Bird et al. 2016;
Sasaki et al. 2016, 2018) proposes that abundant primordial black holes are formed in
a very early universe and they finally interacts each other and form binary black holes
through GW emission.

Regardless of such different formation scenarios, however, there should be abundant
progenitor BBHs with wider separations and thus longer orbital periods. Detection
of such unseen BBHs will not only constrain the formation and evolutionary channel
towards the GW emitting BBHs, but also establish a yet unknown species of astro-
physical objects.

Those BBHs do not generate a detectable GW signal until a few seconds before the
final merger. Also they are difficult to be detected directly unless they are surrounded
by appreciable accretion disks. Therefore, the presence of such unseen binaries have
to be searched for through their dynamical influence on nearby visible objects.

Indeed there are a couple of examples that are relevant for such a strategy. One
is a triple system consisting of a white dwarf-pulsar binary and an outer white dwarf
orbiting around the inner binary (Ransom et al. 2014). The system was detected with
the arrival time analysis of the pulsar. Quite interestingly, the inner and outer orbits
of the triple system are near-circular and coplanar; the eccentricities of the inner and
outer orbits are ein ∼ 6.9× 10−4 and eout ∼ 3.5× 10−2, and their mutual inclination is
i = (1.20± 0.17)× 10−2 deg.
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2 Introduction

The other is a red giant 2M05215658+4359220 with an unseen massive object,
possibly a black hole (Thompson et al. 2018). The system was discovered from a
systematic survey of stars exhibiting anomalous accelerations. The follow-up radial-
velocity (RV) observation indicates that the orbit is also near-circular; eout = 0.00476±
0.00255.

The two examples are very encouraging, implying that the dynamical search for
unseen companions of visible objects is very rewarding, and even that a near-circular
outer object with a near-circular and coplanar inner binary really exists.

Indeed there are several on-going/future projects that search for unseen companions
around stars. Gaia was launched at the end of 2013, and is performing astrometric
survey for about billion of stars in the Galaxy. Since the astrometry of Gaia has great
astrometric precision especially for bright stars, it can detect a subtle motion of a star
around an unseen object. There are many proposals to search for star – black hole
binaries with Gaia (e.g. Breivik et al. 2017; Kawanaka et al. 2017; Mashian & Loeb
2017; Yamaguchi et al. 2018). Yamaguchi et al. (2018), for instance, estimate that
Gaia can detect 200− 1000 binaries in 5 year operation.

TESS launched in 2018 is carrying out photometric surveys of near-by stars to
search for transit planets. Masuda & Hotokezaka (2018) propose that TESS will
potentially discover ∼ 103 binaries consisting of a star and an unseen compact object
through identifying a relativistic effect in their photometric light-curves.

Thus it is quite likely that Gaia, TESS and other surveys detect numerous binary
systems with an unseen object. Given the LIGO discovery of very tight BBHs, it is
natural to expect that a fraction of those systems are indeed triple systems that host
unseen inner BBHs. Therefore it is important to see if one can distinguish dynamically
between a single black hole and a binary black hole in such triple systems. For that
purpose, we consider the orbital evolution of an outer visible body in a near-circular
and coplanar triple system. While this is a fairly idealized system, there exists at
least one system as we mentioned in the above. Also we can approach the dynamics
of the system analytically by applying a perturbation theory in the hierarchical three-
body problem. This provides a good physical insight on the dynamical behavior of
such systems, and also puts preliminary constraints on the parameter space before
performing an intensive numerical study to unambiguously identify the inner BBHs.

The rest of this thesis is organized as follows. Chapter 2 summarizes the current
observational reports on the binary and triple systems relevant to our study. The
summary of each formation scenario and observing proposals with Gaia and TESS is
also described in Chapter 2. Chapter 3 summarizes the theoretical background for the
research in this thesis. Chapter 4 describes the formulation of the three-body problem
that we adopted, and derives the basic perturbation equations. Here, we also present
the approximate analytic solutions and comparison of them against the result from
numerical simulation. Chapter 5 applies our analytic formulae to put a constraint on
a possible unseen binary inside 2M05215658+4359220 reported in Thompson et al.
(2018), and discusses the validity of the approximation using numerical simulations.
Finally, Chapter 6 is devoted to the summary of result and discussion about future
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prospects. Appendices are added in order not to disturb the main part of this thesis.
They summarize the Hansen coefficients, variation of constants method, and show the
full comparison of perturbation and numerical solutions on a term-by-term basis.



Chapter 2

Examples of observed compact
binaries and triples

2.1 Examples of observed compact binary and triple

systems

LIGO’s discovery of close-in binary black hole strongly implies the presence of wide-
separation ones as progenitors although they are not yet discovered. As mentioned in
Chapter 1, this thesis concerns a system consisting of an outer star and inner unseen
binary, and develops a possible methodology to search for wide-separation unseen
binaries via radial velocity modulations of outer star. Thus, the presence of such
systems should be the key issue in the practical application of this methodology.

Indeed, some systems implying the existence of them have already been announced
although the number is currently quite limited. In this section, we briefly summarize
a few examples for compact binary and triple systems. Figure 2.1 shows schematic
illustrations of the binary and triple systems we summarize in this section.

2.1.1 A binary black hole merger GW150914

First, we have a look at the discovery of close-in binary black hole with LIGO since it
first motivates the research in this thesis. In 2016, Abbott et al. (2016) reported the
first detection of gravitational wave event GW150914 from a binary black hole merger
with the Laser Interferometer Gravitational-Wave Observatory (LIGO). LIGO consists
of two observatories at Hanford, WA, and Livingston, LA, to detect gravitational waves
using laser interferometers. On the 14th of September in 2015, the detectors at two
observatories coincidently detected the gravitational wave signals GW150914. After
matched-filter analyses using relativistic models of compact binary waveforms, they
can reproduce the strains due to GW150914 projected onto each detector.

GW150914 signals have the feature that both frequency and amplitude increase
with time and show a sudden disappearance later. The frequency of signals f changes
from 35 Hz to 150 Hz over the time duration of 0.2 sec. Considering this feature, they

4



2.1 Examples of observed compact binary and triple systems 5

(a)

(b)

(c)

Figure 2.1: Schematic illustrations of observed binary and triple systems. The
crosses denote the centre of mass of the system. The triangles denote the centres
of mass of the inner binary: (a) binary black hole merger GW150914, (b) binary
system 2M05215658+4359220 including an unseen companion, (c) triple system PSR
J0337+1715 consisting of an white dwalf - pulsar inner binary and outer white dwarf.



6 Examples of observed compact binaries and triples

conclude that GW150914 is likely due to coalescence of two black holes. The whole
scenario they propose is as follows. Due to the loss of the orbital energy via grav-
itational wave emission, the orbit of binary black hole shrinks and exhibits inspiral
motion. During this phase, its orbital separation decreases drastically and gravita-
tional wave emission is highly enhanced and becomes detectable with LIGO. Then,
two black holes collide each other and this merger event is reflected in the signals as
strong strains. After that, a spinning single black hole is formed and the gravitational
wave signals are decaying immediately.

With this scenario in mind, they first try to estimate the mass of each black hole by
computing the charp mass. The charp mass M, which is known to well characterize
the merger event at lower frequencies, is defined as

M ≡ (m1m2)
3
5

(m1 +m2)
1
5

=
c3

G

[
5

96
π− 8

3f− 11
3 ḟ

] 3
5

, (2.1)

where m1 and m2 are the masses of two black holes, c is the speed of light, G is the
gravitational constant, and f is the frequency of signals. They find that ∼ 30 M⊙
charp mass explain the data well. Using equation (2.1) and the inequality between the
arithmetic and geometric means:

M ≡ (m1m2)
3
5

(m1 +m2)
1
5

≤ 1

4
3
5

(m1 +m2) ≈
1

2.3
(m1 +m2). (2.2)

Thus, ∼ 30M⊙ charp mass reveals the total mass of systemm1+m2 ≳ 70 M⊙. Besides,
they find that the separation of the two black holes ∼ 350 km when f ∼ 150 Hz.

Then, they proceed a detail parameter survey using about 250000 template wave
forms to find the best-fit values of parameters specifying the system. The parameter
sets cover individual masses from 1 to 99 M⊙, total mass less than 100 M⊙, and
dimensionless spins up to 0.99. The dimensionless spin is defined as the ratio between
a spin angular momentum of a spinning black hole and maximum spin of it above
which a naked singularity appears. As template waveforms, they use the effective-
one-body formalism, which combine the post-Newtonian approach with results from
black hole perturbation theory and numerical relativity. Table 2.1 lists the best-fit
parameters they found from this procedure.

This discovery has a huge impact on formation theory of such systems. Some
scenarios have already been proposed (e.g. Belczynski et al. 2012, 2016, 2002, 2007;
Bird et al. 2016; Dominik et al. 2012, 2013; Kinugawa et al. 2014, 2016; O’Leary et al.
2009; Portegies Zwart & McMillan 2000; Rodriguez et al. 2016; Sasaki et al. 2016, 2018;
Tagawa et al. 2016) and expect long-time dynamical evolution before an orbit shrinks
and finally reaches coalescence. This fact proposes that there should be many wide-
separation binary black holes as progenitors of GW150914 analogs. Although LIGO
has a great precision within the range around 1 - 1000 Hz, the gravitational waves from
wide-separation ones are expected to be significantly weaker and have lower frequency
than ∼ 1 Hz. For example, if orbital period of such a binary is ∼ 10 days, the
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parameter value

Primary black hole mass m1 36+5
−4 M⊙

Secondary black hole mass m2 29+4
−4 M⊙

Final black hole mass 62+4
−4 M⊙

Final black hole spin 0.67+0.05
−0.07

Luminosity distance 410+160
−180 Mpc

Source redshift z 0.09+0.03
−0.04

Table 2.1: Best-fit parameters for GW150914 with 90% credible intervals. Masses are
given in the source frame. Adapted from Abbott et al. (2016)

expected frequency is only ∼ 10−6 Hz. Therefore, it may be difficult to observe them
with the current gravitational wave detectors. Without electromagnetic radiation from
the matter surrounding black holes, direct observation is also impossible. This fact
motivates us to develop an alternative method to search for them.

2.1.2 A binary system 2M05215658+4359220

Second, we move to the discovery of a near-circular binary system containing an unseen
object. This discovery is important bacause such systems can be realistic candidates
to apply our methodology to search for unseen binaries. Many researchers (e.g. Breivik
et al. 2017; Kawanaka et al. 2017; Mashian & Loeb 2017; Masuda & Hotokezaka 2018;
Yamaguchi et al. 2018) propose that binary systems consisting of a star and black
hole should exist and can be observed with Gaia and TESS. The discovery of a binary
system 2M05215658+4359220 is also important as the first sucsessful example.

In 2018, Thompson et al. (2018) report the discovery of a binary system consisting
of a red giant and unseen companion by combining radial velocity and photometric
variation data. They claim that a large collection of binary systems with compact
objects provides good observational data for study on binary stellar evolution models.

They start to search for binary systems with massive unseen companions using
the radial velocity data from the Apache Point Observatory Galactic Evolution Ex-
periment (APOGEE). APOGEE performs near-infrared spectroscopic observation for
more than 105 stars in the Galaxy, providing the radial velocity data useful to search
for the anomalies due to binary motion. The radial velocity anomalies from APOGEE
are useful to pick up possible binaries with unseen companions among huge amount of
stars, although follow-up observations are required to confirm the binaries. They first
calculated the maximum acceleration amax for each system using APOGEE data:

amax ≡ max

(
∆RV

∆tRV

)
, (2.3)

where ∆RV is the difference between two subsequent radial velocity data, and ∆tRV
is the time interval of two observations. This quantity is useful to determine candi-
dates since large acceleration implies the presence of massive object in system. Using
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JD-2450000 Absolute RV(km/s) Uncertainty(km/s)

6204.9537 −37.417 0.011
6229.9213 34.846 0.010
6233.8732 42.567 0.010

Table 2.2: Radial velocity measurements for 2M05215658+4359220 from APOGEE.
Adapted from Thompson et al. (2018).

equation (2.3), the mass of companion in each system can be estimated by

amax ∼
GM(amax)

s2
∼ GM(amax)

(∆RV∆tRV)2
→ M(amax) ∼

(∆RV)3∆tRV
G

, (2.4)

whereM(amax) is the estimated mass of companion and s is the separation between two
bodies. Since they are interested in binary systems with massive compact objects, they
select in total ∼ 200 stars with largest estimated masses M(amax) as the candidates.

Determining the mass of unseen companions requires precise estimates of the orbital
periods, inclinations, and eccentricities. Since the radial velocity data from APOGEE
are not enough to determine the overall radial velocity curve as shown in Table 2.2, the
authors need radial velocity follow-up observations. Before that, they search for peri-
odic photometric variations in data from the All-Sky Automated Survey for Supernovae
(ASAS-SN). Since periodic variations indicate transit signals, ellipsoidal variations, or
starspots, they provide rough estimates of the orbital periods. Although many candi-
dates show no variations, the authors find some systems showing periodic variations in
data. Among all candidates, they pick up a red giant 2M05215658+4359220, which lies
towards Auriga with Galactic co-ordinates (l, b) = (164.774 deg, 4.184 deg), as a feasi-
ble candidate since it shows the longest well-measured photometric variations. They
find that the raw and phased V-band lightcurves for this system from the ASAS-SN
over four observing seasons are consistent with the variations with the period of 83.2
days. Table 2.2 lists up the radial velocity for this system obtained from APOGEE,
showing about 2.9 km/s/day apparent acceleration.

Then, they perform both multi-band photometry and radial velocity follow-up ob-
servations to constrain the orbit and photometric variations further. For photometry
follow-up observation, they use the Post Observatory Mayhill (POM). For radial ve-
locity follow-up observation, they use the spectroscopy with the Tillinghast Reflector
Echelle Spectrograph (TRES) on the 1.5 m Tillinghast Reflector at the Fred Lawrence
Whipple Observatory (FLWO). They find that multi-band photometry show periodic
variations inconsistent with stellar pulsations or ellipsoidal variations but consistent
with spots from the shape of lightcurves. Besides, they find that in total 11 radial
velocity data from TRES are well-fit by a near-sinusoidal curve. Table 2.3 shows the
list of all measured radial velocities from TRES and Figure 2.2 shows the plot for
them. Table 2.4 lists the best-fit orbital parameters they find from TRES.

Table 2.4 shows that the system has a near-circular orbit with the eccentricity
e ≈ 0.0048±0.0026 and the orbital period Porb ≈ 83.2±0.06 days. The mass function



2.1 Examples of observed compact binary and triple systems 9

BJD-2450000 Relative RV(km/s) Uncertainty(km/s)

8006.9760 0.000 0.075
8023.9823 −43.313 0.075
8039.9004 −27.963 0.045
8051.9851 10.928 0.118
8070.9964 43.782 0.075
8099.8073 −30.033 0.054
8106.9178 −42.872 0.135
8112.8188 −44.863 0.088
8123.7971 −25.810 0.115
8136.6004 15.691 0.146
8143.7844 34.281 0.087

Table 2.3: Radial velocity measurements for 2M05215658+4359220 from data with
TRES. In total, 11 spectra were obtained between 10 September 2017 and 25 January
2018. Adapted from Thompson et al. (2018).

parameter value unit meaning

P 83.205± 0.064 days orbital period
T 58115.93± 7.4 BJD− 2450000 pericentre passage
e 0.00476± 0.00255 · · · eccentricity
ω 197.13± 32.07 degrees argument of pericentre
K 44.615± 0.123 km/s RV semi-amplitude
γ −0.389± 0.101 km/s gamma velocity

f(M) 0.766± 0.00637 M⊙ mass function

Table 2.4: Best-fit orbital parameters from radial velocity follow-up observation with
TRES. Adapted from Thompson et al. (2018).

f(M) in Table 2.4 is computed from the observed variables K, Porb and e:

f(M) ≡ K3Porb

2πG
(1− e2)

3
2 , (2.5)

where K is the radial velocity semi-amplitude. Using equation (3.67), equation (2.5)
reduces to

f(M) =
M3

CO sin3 iorb
(Mgiant +MCO)

, (2.6)

where MCO is the mass of unseen companion, iorb is the orbital inclination, and Mgiant

is the mass of red giant 2M05215658+4359220. Therefore, the mass function is widely
used to characterize the mass of unseen companion with the radial velocity observation.
In order to analyze further, they assume that the system is tidally circularized and
synchronized since Porb ≈ Pphot and e ≈ 0. Thus, for simplicity, they assume a fully
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Figure 2.2: The radial velocity data for 2M05215658+4359220 from TRES follow-up
observation. An error in each datum is within a filled circle.

parameter value meaning

MCO 3.2+1.1
−0.4 M⊙ mass of companion

Mgiant 3.0+0.6
−0.5 M⊙ mass of red giant

sin i 0.97+0.02
−0.14 orbital inclination

R 23.8+3.9
−0.6 R⊙ radius of red giant

Table 2.5: Best-fit parameters from TRES, Gaia, and the SED. Adapted from Thomp-
son et al. (2018).

synchronized and aligned orbit:

Prot = Porb = P, irot = iorb = i. (2.7)

Then, they search for the best-fit model in stellar evolution track with the surface
gravity constraint log g = 2.35±0.14 from TRES spectroscopy, the giant radius R, the
bolometric luminosity L and the effective temperature Teff from Gaia and the spectral
energy distribution (SED). This procedure reveals that best-fit value of companion
mass lies on the range between the maximum neutron star and the minimum black
hole masses from theoretical models. Table 2.5 summarizes the best-fit parameters.

Since log g for this sytem is known to include large systematic uncertainties (2.2 ≤
log g ≤ 2.6 depending on observation), they also try fitting procedure without the
constraint on log g. Table 2.6 shows the result. However, they conclude that the
best-fit values in Table 2.5 are better since the best-fit log g is found to be too small
(log g ≈ 1.7+0.2

−0.3) without constraint.
As a result, they reach a conclusion that 2M05215658+4359220 is a binary system

consisting of a red giant and a possible black hole. However, there is the possibility
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parameter value meaning

MCO 5.5+3.2
−2.2 M⊙ mass of companion

Mgiant 2.2+1.2
−0.9 M⊙ mass of red giant

sin i 0.65+0.17
−0.12 orbital inclination

R 35.8+8.3
−7.6 R⊙ radius of red giant

Table 2.6: Same as Table 2.5 but derived without constraint on log g. Adapted from
Thompson et al. (2018).

that the black hole is actually an unseen binary since it is not yet confirmed as a single
object. Later, supposing that it is a binary rather than a single, we put a constraint
on the binary as a practical application of our methodology.

2.1.3 A triple system PSR J0337+1715

As the final part of this section, we have a look at the discovery of a near-circular
coplanar triple consisting of a white dwarf - millisecond pulsar binary and another
outer white dwarf. If the motion of the outer white dwarf is precisely determined, this
system would provide an ideal situation for our methodology. Thus, it is important
since it implies the existence of the system for which the formulae derived in this thesis
are directly applicable.

In 2014, Ransom et al. (2014) announced the discovery of a hierarchical triple
consisting of a millisecond pulsar PSR J0337+1715, an inner white dwarf, and another
outer white dwarf. As a part of large-scale pulsar survey, they discover a millisecond
pulsar PSR J0337+1715 having a spin period of 2.73 ms with the Robert C. Byrd
Green Bank Telescope (GBT). Since a millisecond pulsar emits the beams hundreds
of times per second due to its rotation, the spin rate can be measured with high
precision using pulse arriving time. In addition, analysing its delay in detail, it is
possible to obtain the orbital information. At first, this system is considered to be
a binary consisting of a millisecond pulsar and an inner white dwarf, however, the
large timing systematics later reveal that the time delay is composed of two periodic
variations with different periods. This fact shows that this system should be classified
into triple rather than binary. Although two other millisecond pulsars B1257+12
and B1620-26 have already known to have multiple companions, they contain planet-
mass companions. On the other hand, large timing perturbations in PSR J0337+1715
implies more massive tertiary than a planet-mass companion.

In order to constrain the system’s position and orbital parameters, and the ter-
tiary, they perform intensive multi-frequency radio timing campaign using the GBT,
the Arecibo telescope, and the Westerbork Synthesis Radio Telescope (WSRT). The
Arecibo has median arrival time uncertainties of 0.8 µs in 10 s. Thus, half-hour inte-
grations achieve a precision of about 100 ns, which makes it possible to achieve one of
the highest known precisions to PSR J0337+1715. They first approximate the motion
as two Keplerian orbits, with the centre of inner binary moving around in the outer
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parameter value meaning

P 2.73258863244(9) ms Pulsar period

Ṗ 1.7666(9)(12)× 10−20 Pulsar period derivative
τ 2.5× 109 yrs Characteristic age
aI 1.9242(4) ls Pulsar semi-major axis(inner)
eI 6.9178(2)× 10−4 Eccentricity(inner)
ωI 97.6182(19) deg Longitude of pericentre(inner)
aO 118.04(3) ls Pulsar semi-major axis(outer)
eO 3.53561955(17)× 10−2 Eccentricity(outer)
ωO 95.619493(19) deg Longitude of pericentre(outer)
i 39.243(11) deg Inclination of invariant plane
iI 39.254(10) deg Inclination of inner orbit
δi 1.20(17)× 10−2 deg Angle between orbital planes
δω −1.9987(19) deg Angle between eccentricity vectors
mp 1.4378(13) M⊙ Pulsar mass
mcI 0.19751(15) M⊙ Inner companion mass
mcO 0.4101(3) M⊙ Outer companion mass

Table 2.7: Best-fit system parameters for PSR J0337+1715. Note that values in
parentheses are 1σ errors in the final decimal places. Adapted from Ransom et al.
(2014).

orbit. Then, they determine pulse times of arrival (TOAs) using standard techniques
and correct them to the Solar System barycentre at infinite frequency using a precise
radio position obtained with the Very Long Baseline Array (VLBA). The variations
of TOAs are known to have two physical origins. One is the “Rømer delay”, which is
a geometric effect due to the finite speed of light. The other is the “Einstein delay”,
which is a cumlative effect of time dilation due to the special relativistic transverse
Doppler effect and the general relativistic gravitational redshift. The Rømer delay
reflects the infomation on both inner and outer orbits.

Then, they plot the arrival timing data from the GBT, the WSRT, and the Arecibo
telescope, and compare them with the Rømer delays model. They first calculate the
residuals between data and two-Keplerian-orbit approximation. It shows the large
systematic descrepancies up to several microseconds over multiple timescales, showing
the presence of three-body interactions. Actually, these discrepancies contain much
information about masses and geonetry of system. Thus, it is necessary to find param-
eter sets minimizing the difference between measured TOAs and those by three-body
integration. For this purpose, they use the Monte Carlo techniques to obtain the
best-fit parameters. Table 2.7 summarizes the best-fit and derived parameters they
find.

Besides, they suceed in identifying an object with blue colors in the Sloan Digital
Sky Survey (SDSS). The optical spectroscopy reveals that it is consistent with a inner
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white dwarf in the system confirmed by pulsar timing. It also shows that the outer
companion cannot be a low-mass main-sequence star for lack of near- and mid- infrared
excess, implying it should be a white dwarf with an effective temperature less than
20000 K. Therefore, they finally conclude that the system is a triple consisting of a
millisecond pulsar - white dwarf inner binary and another outer white dwarf.

This system is extremely surprising since its orbits are extraordinarily coplanar and
near-circular. The authors propose a possible scenario to form such a system as follows.
In a multiple star system, the most massive star experiences a supernove turning
into a neutron star. Two companions survive the explosion, probably in eccentric
orbits. After ∼ 109 yrs, the outermost star evolves and transfers mass onto inner
binary. The angular momentum vectors of inner and outer orbits nearly align due to
the torque during this process. After the outer star evolves into a white dwarf and
another ∼ 109 yrs passes, the remaining main sequence star finally becomes a white
dwarf. During this phase, the inner orbit becomes highly circularized and transfers
small amount of mass to a neutron star, speeding up its rotation rate to form a
millisecond pulsar. Then, three-body secular effects have aligned the apsides of two
orbits. Although this scenario is not yet fully confirmed whether or not to work well,
it could produce near-circular and coplanar hierarchical triples if it can really take
place.

2.2 Formation scenarios and observing proposals

Although the formation mechanism of compact binaries is not yet clearly understood,
some scenarios have been proposed. These scenarios are roughly classified into three
categories, isolated binary evolution, dynamical formation in star dense rigions, and
primordial origin. Among these scenarios, the isolated binary evolution and dynamical
formation scenarios are considered to be most promising ones. Since each scenario
has characteristics for produced binaries, it is important to understand them. In
this section, we briefly summarize two major scenarios (i.e. isolated binary evolution
and dynamical formation) and their uniqueness especially on the preferred orbital
parameters.

Besides, recently there are many observing proposals to search for star - black hole
binaries with Gaia and TESS. Since Gaia and TESS have their own preferences for the
property of detectable binaries, the knowledge on them is very useful to presume the
binaries providing the targets to which we will apply our methodology. Thus, we also
briefly summarize Yamaguchi et al. (2018) and Masuda & Hotokezaka (2018), which
are proposals with Gaia and TESS, respectivaly.

2.2.1 Compact binary formation through isolated binary evo-
lution

The isolated binary evolution scenario (e.g. Belczyński & Bulik 1999; Belczynski et al.
2012, 2016, 2002, 2007; Dominik et al. 2012, 2013; Kinugawa et al. 2014, 2016) is
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proposed as a most promising formation mechanism of close binary black holes. Apart
from differences in detail concerns, overall picture of this scenario is summarized as
follows.

This scenaio supposes presence of pre-existing binaries consisting of massive low-
metal stars in the early universe. Since the typical lifetime of massive star is no
more than ∼Myrs, the stars in a binary system quickly evolve off main sequence
phases. First, one star in a binary evolves into a super redgiant and increase its
radius drastically. Once the star fills in its Roche robe, significant mass flows into a
companion, increasing the orbital separation and mass of companion. After the star
finishes its super red giant phase, it evolves into a black hole via either direct collapse or
non-violate supernova. During this phase, a star - black hole binary is formed. After a
while, the companion also evolves into a giant phase. If the mass transfer is too strong
to be stable, the unstable mass flow leads to the common-envelope phase, where the
preformed black hole is absorbed by the envelope of the companion giant. During the
common-envelope phase, since the orbital energy is consumed to eject the envelope,
the orbital separation significantly decreases. Eventually, the giant also evolves into
a black hole without a violate supernova. These successive processes preferentially
form a close binary black hole. Since binary interactions such as the mass transfer and
common-envelope phase well circularize an orbit, a typical produced binary tends to
have vary small eccentricity e ∼ 0.

Although it is confirmed that this scenario works well to produce close black hole
binaries (e.g. Belczynski et al. 2016; Dominik et al. 2013; Kinugawa et al. 2014, 2016),
there are many uncertainties in physical processes during this scenario. For example,
it is known that violate common-envelope phase often leads to coalescense before
compact binaries are formed although this process is important to form close binaries
that merge within the age of universe. Since the efficiency of common-envelope phase
is not yet clearly understood, this phase would change the surviving rate of close
compact binaries. Even more serious problem raises up from uncertain supernova
physics. Several previous researches (e.g. Belczyński & Bulik 1999; Belczynski et al.
2002; Kinugawa et al. 2014, 2016) found that significant mass loss and large natal
kick due to supernova could produce wide and highly eccentric orbits although it
simultaneously disrupts many binaries. If the direct collapse is really preferable for
massive stars as proposed in Fryer et al. (2012), the natal kick and mass loss may be
almost negligible. Thus, this scenario would produce massive compact binaries with
circular close orbits.

No matter whether or not black hole binaries have initially eccentric orbits, the
gravitational wave emission well circularizes the orbits after a long time evolution.
Thus, the orbits are usually expected to have almost zero eccentricities before coales-
cence. On the other hand, our methodology can detect wide and eccentric binaries
if they exist since the methodology is irrelevant to coalescense. Our methodology
could provide even new hints to understand currently uncertain supernova processes
although careful checks are required to distinguish eccentric binaries formed via the
dynamical formation scenario.
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2.2.2 Compact binary formation through dynamical interac-
tions in star dense region

The dynamical formation scenario (e.g. O’Leary et al. 2009, 2006; Portegies Zwart &
McMillan 2000; Rodriguez et al. 2016; Tagawa et al. 2016) is proposed as a counterpart
of the isolated binary evolution scenario. While the isolated binary scenario requires
pre-existing massive binary systems, the dynamical formation scenario enables single
black holes to form binary black holes via strong gravitational interaction in star
dense region. In this subsection, we have a look at the rough sketch of the dynamical
formation scenario and the characteristics of the produced binaries.

Portegies Zwart &McMillan (2000) explored the possibility that black holes become
close binaries via numerous gravitational scatterings with other members in star dense
region, and estimate merger rate of the products. They found that this scenario could
produce many black hole binaries even if their component black holes do not originally
belong to binary systems. The overall picture of this scenario is summarized as follows.
After all massive stars evolve off into black holes in star dense region such as globular
cluster, black holes become most massive objects there. Since massive objects feel the
dynamical friction strongly and lose kinetic energy, black holes tend to sink into the
inner part of star dense region (e.g. Morris 1993). As a result of the condensation of
black holes around core, many gravitational scattering and capture processes take place
among black holes and other stars, resulting in the formation of binary black holes via
three-body encounters. It is known that black holes preferencially form binary black
holes with other black holes (e.g. Kulkarni et al. 1993). Therefore, the typical products
may be binary black holes. While the close binary black holes become more tightly
bound by superelastic encounter with other objects (e.g. Heggie 1975; Kulkarni et al.
1993), they are eventually ejected after getting the velocities large enough to escape
from star dense region. Majority of these escaping binary black holes may have short
enough orbital periods and high enough eccentricities that gravitational wave emissions
lead them to coalescence within a few Gyrs.

In order to confirm this scenario, Portegies Zwart & McMillan (2000) performed
N-body simulation with GRAPE-4, which is a special purpose computer for the multi-
body problem. They used 2048 equal mass stars, with 1% of them 10 times more
massive than the average (i.e. black holes). As a result, they found that ∼ 30% of
in total 204 black holes were ejected from a cluster in the form of binary black holes,
∼ 61% were ejected in the form of single black holes, and ∼ 8% were retained by the
cluster. The binding energy of binary black holes Eb had a roughly log-flat distribution
within the range of 1000kT − 10000kT , where (3/2)kT is mean stellar kiniteic energy
in the cluster. The eccentricities of binaries roughly followed a thermal distirbution
(p(e) ∼ 2e) with high eccentricities slightly overrepresented. They also found that
≳ 90% of black holes were ejected before the cluster had lost 30% of its initial mass
(roughly within a few Gyrs).

After that, they estimated merger rate within 12 Gyr for typical star dense regions.
The result is listed in Table 2.8. Table 2.8 shows that a variety of binary black holes
may be formed depending on the properties of clusters although massive cluster tend
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cluster type
logM
(M⊙)

log rvir
(pc)

1000kT
(R⊙)

Nbh
fmerge

(%)
MR

(Myr−1)

populus 4.5 −0.4 420 7.9 7.7 0.0061
globular 5.5± 0.5 0.5± 0.3 315 150 51 0.0064
nucleus ∼ 7 ≲ 0 ≲ 3.3 2500 100 0.21

zero-age globular 6.0± 0.5 0± 0.3 33 500 92 0.038

Table 2.8: Typical parameters for each star dense region and expected merger rate.
The M is the total mass and rvir is the virial radius. The fourth column denotes
the separation of binary consisting of two 10M⊙ black holes to obtain 1000kT orbital
energy. The Nbh is the expected number of binary black holes. The fmerge is the
fraction of these binaries which merge within 12Gyr. The final column denotes the
contribution to the total black hole merger rate per cluster. Adapted from Portegies
Zwart & McMillan (2000).

to produce tight binaries which merge soon after ejection.

O’Leary et al. (2006) systematically survey the distribution of eccentricities, orbital
energies, and chirp masses for ejected binary black hole mergers. Instead of using ex-
pensive N-body numerical simulation, they consider this scenario using a Monte Carlo
technique to sample interaction rates, and few-body numerical simulation to treat each
interaction. Thus, they succeeded to contain ∼ 106 bodies including ∼ 500 black holes
depending on models in their calculations. Since the ejected binary black holes are cir-
cularized via gravitational wave emissions, their orbits are normally circular just before
merger even though they tend to have high eccentricities when ejected. O’Leary et al.
(2006) found that the eccentricities of almost all orbits would be less than 0.001 when
their gravitational wave frequencies enter LIGO’s detectable range (∼ 10 Hz). They,
however, found that LISA preferencially could detect the binary black holes with their
eccentricities between 0.01 and 1 since LISA would have sensitivity around ∼ 10−3

Hz. More recent analysis including binary - binary interaction in general relativistic
scheme (Zevin et al. 2018) also predicted that LISA would detect gravitational waves
from binary black holes with eccentricities between ∼ 0.00001 and ∼ 0.1 with the peak
at ∼ 0.001 around 10−2 Hz.

Therefore, apart from merger, the binary black holes formed dynamically will have
high eccentricities. They found the chirp masses of merging binary black holes range
from ∼ 10 to ∼ 100 although the distribution highly depend on models. They also
computed the energy distribution of binary black holes ejected before equipartition
using a model. They found that the energy distribution is nearly lognormal with a
peak of ∼ 104kT between ∼ 100kT and ∼ 105kT , almost independent of models.
The authors implied the discrepancy from Portegies Zwart & McMillan (2000) might
be due to small number particles in the simulation in Portegies Zwart & McMillan
(2000). Regardless, the results by Portegies Zwart & McMillan (2000) and O’Leary
et al. (2006) may imply the presence of wider separation for ejected binary black holes.
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Rodriguez et al. (2016) investigated the possibility that the progenitor binary black
hole of GW150914 is formed by dynamical scenario. Although they did not calculate
the distribution of orbital parameters since their concern was possible GW150914
progenitors, they found that the possible progenitors tend to have large eccentricities
≳ 0.5 and relatively wide separation ≳ 0.3 au at ejection. It probably imply the
preference of eccentric and wider orbits indirectly. Interestingly, Rodriguez et al.
(2016) found a temporary hierarchical triple consisting of blackholes among possible
GW150914 progenitors during many scattering events although it was replaced by
binary black holes before ejection. It may imply that this scenario could produce a
hierarchical triple consisting of a star and inner binary black holes even though this
class of objects are not much.

In summary, the dynamical scenario would provide relatively wider and highly
eccentric binary black holes although it is not yet fully confirmed. Although grav-
itational wave emission almost completely circularize the orbits before merger, our
methodology can detect eccentric binaries from this scenario long before coalescence.

2.2.3 Observing proposals for binary systems including black
holes with Gaia

There are many proposals to search for star - black hole binaries using precise astrom-
etry observation with Gaia(e.g. Breivik et al. 2017; Kawanaka et al. 2017; Mashian
& Loeb 2017; Yamaguchi et al. 2018). Yamaguchi et al. (2018) suggest that Gaia
can detect 200 − 1000 binaries dependiong on the parameters in the isolated binary
evolution model within 5 year operation. Since the binaries detected with Gaia will
provide the targets to which we can apply our methodology, it is beneficial to know
which kind of binaries Gaia will detect. In this subsection, we briefly summarize the
proposal Yamaguchi et al. (2018) for this purpose.

First, Yamaguchi et al. (2018) estimate the number of star - black hole binaries in
the Galaxy using the standard isolated binary formation scenario. They use the initial
mass function of stars and binary distribution in terms of mass ratio of component
stars, and estimate the number of binary systems. They assume that the initial sep-
aration distribution of binaries is logarithmically flat, and binary orbits are circular
initially. If the primary collapses into a black hole and the secondary still exists as a
star, they count it as a star - black hole binary. In order to consider spatial distribution
of such systems in the Galaxy, they use the exponentially decreasing number density
in the Galactic plane. Since the systems in the Galactic bulge should not be detected
due to strong interstellar absorption, they do not consider the systems located in the
bulge. For simplicity, they assume that 50% of stellar systems are binaries. Taking
into account the mass transfer and common-envelope phase during evolution, they can
estimate the masses and separations of binary systems after evolution. They consider
several different values of paramaters describing the initial mass function, the binary
distribution for a given mass ratio, the relation between zero-age mass and final black
hole mass, and the common-envelope phase efficiency. They also take into account the
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interstellar extinction to obtain detectable companions with Gaia.
Next, the authors consider the required condition to identify star - black hole binary

systems with the standard errors in Gaia observation. For astrometry observation, we
obtain

(MBH +M2)
2

M3
BH

=
G

4π2

P 2
orb

(a∗D)3
, (2.8)

where MBH and M2 are the masses of black hole and companion, respectively, Porb is
the orbital period, a∗ is the angular semi-major axis, D is the distance. Thus, it is
necessary to obtain Porb, a∗, D precisely to determine MBH. Through the discussion
on the standard errors of the observed quantities, the authors found the required
condition for the semi-major axis of binary A:

A > 10
MBH +M2

MBH

σπ(mV )D ≡ Aast, (2.9)

where σπ(mV ) is the Gaia standard error of parallax at a given apparent V -band
magnitude mV (Gaia Collaboration et al. 2016):

σπ(mV ) ≈
√

−1.631 + 680.8z(mV ) + 32.73z2(mV ), (2.10)

where

z(mV ) = 100.4(max[12.09,mV ]−15). (2.11)

Besides, they consider the required condition for semi-major axis from the viewpoint
of orbital period. Considering the result from astrometry observation with Hipparcos,
it is estimated that the standard errors in observed orbital periods are ≲ 10% if the
periods are shorter than 2/3 of the total observation time. Since they consider 5 year
oparation with Gaia in total, the upper limit of orbital period is ∼ 3 years. In addition,
since the observation cadence of Gaia is 50 days, the lower limit is 50 days. Therefore,
the required condition for semi-major axis is

max[Aast, A(Porb = 50 days)] < A < A(Porb = 3 years). (2.12)

As a result, the authors found that in total 200− 1000 binaries would be detected
with Gaia depending on the values of parameters. They also found that the detectable
binaries would locate within 1 − 10 kpc and the peak would be at 7 kpc. While the
estimated number of binaries increases monotonically within ∼ 5 kpc due to larger
volume, it drastically decreases after the peak ∼ 7 kpc. The distribution of black
hole mass is sensitive to the parameters, especially the mass ratio of zero-age star and
black hole. The distribution is the decreaing powerlaw within 4−30M⊙ in the fiducial
case. However, the maximum mass can reach ∼ 100 M⊙ if they assume high efficiency
from zero-age star mass to black hole mass. They also found that the contribution of
companion less massive that 20 M⊙ is much smaller than those with larger masses.
Since the mass ratio smaller than 0.3 undergo a strong common-envelope phase, the
orbits might be too small to detect with Gaia.
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In summary, considering the required condition (2.12), Gaia will provide the sys-
tems which have relatively larger orbits with au-scale separations. It will be main
difference between the systems TESS can detect. Although they do not consider the
mass loss due to the stellar wind, natal kick, and initial eccentricity, they conclude
that the countable black hole masses may not change drastically even including these
effects from the result in Breivik et al. (2017).

2.2.4 Observing proposals for binary systems including black
holes with TESS

Masuda & Hotokezaka (2018) recently point out that TESS will also detect star - black
hole binaries via the photometric variations in light curves. While the typical targets
of Gaia will be ∼ 10 M⊙ black holes in binary systems with their separations au-scale,
Masuda & Hotokezaka (2018) find that the targets of TESS will be relatively tighter
detached binaries with separations ≲ 0.3au. Thus, TESS will provide complementary
samples of binary systems. In this subsection, we have a look at the observing proposal
Masuda & Hotokezaka (2018).

First, they consider three kinds of effects in lightcurves that unseen massive com-
panions induce. One is the “self-lensing”, which causes pulse-like periodic brightening
due to microlensing during eclipse. Another is the “ellipsoidal variations”, which cause
the phase-curve modulations induced by the change of geometrical shapse of stars due
to tidal forces by massive companions. The other is the “Doppler beaming”, which is
the special relativistic effect and causes the change of shape of light curves. Since they
need consider the required conditions separately from self-lensing effect, they classify
the latter two effects into the phase-curve variation. Although they concentrate on
circular orbits throughaout their paper, this method will also be promising to detect
the eccentric binaries.

Next, they computed the magnitude of each signal for given parameters to esti-
mate the number of stars bright enough to detect the effects above with TESS. They
separately count the number of detectable stars for the self-lensing and phase-curve
variation effects. They define that the self-lensing is detectable if at least two pulses
are observed. They define that the phase-curve variation is detectable if the binary
period is less than half the observing duration. Since they are interested in detached
stable binaries, they exclude the cases that the separation is within the Roche robe or
strong gravitational wave emissions cause rapid orbital decays during observing du-
ration. TESS performs photometric survey for transiting exoplanets around near-by
stars. TESS will observe each sector for 27.4 days with 30 minute cadence usually.
They use these values to estimate the number of targets.

They assume that the self-lensing signals are detectable if the following relation is
satisfied:

√
n

(
ssl
στ

)
> 8.3, στ ≡ σ30 min

( τ

30 min

)−0.5

, (2.13)

where ssl is the pulse hight, n is the number of pulses, τ is the expected duration of a
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single pulse, and σ30 min is the noise level over 30 minute timescale corresponding to
one cadence. They used σ30 min by modifying σ1 hour available in Stassun et al. (2018).
Equation (2.13) corresponds to the false-positive rate of ∼ 10−9 (Sullivan et al. 2015).
For the phase-curve variation, they use the following required condition:√

T

30 min

(
s

σ30 min

)
> 10.4, (2.14)

where T is the observing duration, s is the amplitude of sine waves corresponding to
phase-curve variation effects. Equation (2.14) also corresponds to the false-positive
rate of ∼ 10−9. Assuming that the inclination is random and using the TESS input
catalog, which is a list of stars among which the target of TESS will be chosen, they
found that ∼ O(107) and ∼ O(105) stars with periods up to ∼ 10 days would be
bright enough to detect phase-curve variation and self-lensing, respectively. Since the
self-lensing effect is detectable only when the orbit is quite nearly edge-on, the number
of targets is significantly smaller that that of phase-curve variation.

Next, they consider the occurrencre rate of star - black hole binaries based on two
models. One is the “Field Binary model”, which is a simple estimation constructed
by the combinatation of powerlaw occurence rate of black holes and that of massive
binaries. The other is the “Common-envelope Evolution model”, which consider the
common-envelope phase during evolution. Since they concentrate on large mass ratio,
they need not consider the mass transfer as Yamaguchi et al. (2018). Combining the
occurence rate and the result of searchable stars, they can construct the estimated
number of detectable star - black hole binaries with TESS in terms of the mass of
black hole and the orbital period.

As a result, regardless of the binary occurrence models, they found that TESS
would detect ∼ O(10) and ∼ O(103) binaries by self-lensing and phase-curve vari-
ation, respectively. Unlike the binaries which will be detected by Gaia, the tight
binaries with 0.3 − 30.0 day orbital periods will be detected by TESS. They found
that the peak of orbital period was ∼ 5 days and the peak of mass was ∼ 20 M⊙.
Assuming 0.8 day orbital period and 7M⊙ black hole, which is the representative value
of X-ray black hole binaries, they estimated 0.25 kpc and 1.3 kpc as the maximum
searchable distances for sun-like companions by self-lensing and phase-curve variation,
respectively.

In summary, while Gaia is expected to detect wide-separation and massive binary
systems beyond 1 kpc, TESS will detect the tight star - black hole binaries in near-by
space. Since the performance of radial velocity method is the best for bright near-by
stars, the binaries that TESS will find may provide good samples for our methodology.



Chapter 3

Perturbation theory to the
three-body problem

3.1 Two body problem

Before moving to the detailed formulation of three-body perturbation theory in celes-
tial mechanics, we start from the simplest case for the motion under the gravitational
interaction, i.e. the two-body problem. Many references are available for the two-
body problem (Brouwer & Clemence 1961; Moulton 1914; Murray & Dermott 2000;
Roy 2005, e.g.). This section specifically follows Murray & Dermott (2000). Con-
sider two point particles with mass m1 and m2. They interact each other only by the
Newtonian gravitational force.

Figure 3.1 shows the configuration of the system that we consider here. In terms of
an arbitrary Cartesian co-ordinate system (X,Y, Z), the equations of motion for the
two particles are written as follows:

r̈1 = −Gm2
(r1 − r2)

|r1 − r2|3
(3.1)

and

r̈2 = Gm1
(r1 − r2)

|r1 − r2|3
, (3.2)

where G is the universal gravitational constant, r1 and r2 are the position vectors of
m1 and m2, respectively. We introduce the position vector of the centre of mass R,
and the relative position vector r:

R ≡ m1r1 +m2r2
m1 +m2

(3.3)

and

r ≡ r2 − r1. (3.4)

21
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Figure 3.1: Two-body system in an arbitrary Cartesian co-ordinates

Using equations (3.3) and (3.4), we rewrite equations (3.1) and (3.2) to separate the
motion of the centre of mass and the relative motion:

R̈ = 0 (3.5)

and

r̈ = −Gmtotr

r3
, (3.6)

where mtot is the total mass of the system. Equation (3.5) shows the centre of mass
moves with constant velocity.

Taking the vector product of r with equation (3.6), we obtain

r × r̈ = 0, (3.7)

thus,

r × ṙ = h, (3.8)

where h is a constant vector and called the “specific relative angular momentum”.
Equation (3.8) shows that r and ṙ always lie on the invariant plane perpendicular to
h. This plane is called the “orbital plane”. Since we are interested in the relative
motion between two bodies, we concentrate on the motion fixed on the orbital plane
using the result from equation (3.8).
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Figure 3.2: Cylindrical co-ordinate system.

Consider a cylindrical co-ordinate system (r, θ, z) with the origin at m1 as shown
in Figure 3.2. In the cylindrical co-ordinates, we can define basis vectors {r̂, θ̂, ẑ} as

r̂ ≡

 cos θ
sin θ
0

 , θ̂ ≡

 − sin θ
cos θ
0

 , ẑ ≡

 0
0
1

 . (3.9)

Using these basis vectors, the position vector r, the velocity vector ṙ, and the accel-
eration vector r̈ are written as follows:

r = rr̂, (3.10)

ṙ =
d

dt
(rr̂) = ṙr̂ + r ˙̂r = ṙr̂ + rθ̇θ̂, (3.11)

and

r̈ =
d

dt
(ṙ) = r̈r̂ + ṙ ˙̂r + ṙθ̇θ̂ + rθ̈θ̂ + rθ̇

˙̂
θ

= (r̈ − rθ̇)r̂ +

[
1

r

d

dt
(r2θ̇)

]
θ̂.

(3.12)

Using equations (3.10) - (3.12), equations (3.6) and (3.8) become

(r̈ − rθ̇2)r̂ = −Gmtot

r2
r̂ (3.13)
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and
hẑ ≡ r2θ̇ẑ = h. (3.14)

The areal element dA is

dA =
1

2
|rr̂ × rdθθ̂| = 1

2
r2dθ. (3.15)

Thus, using equation (3.14), the areal velocity dA/dt is written as

dA

dt
=

1

2
r2θ̇ =

1

2
h. (3.16)

Since h is constant, this equation shows that the areal velocity is also constant. This
corresponds to Kepler’s second law.

In order to determine the orbit, we solve equation (3.13). Using u ≡ 1/r and
equation (3.14), ṙ and r̈ are given by

ṙ = −r2θ̇ du
dθ

= −hdu
dθ

(3.17)

and

r̈ = −hu2r2θ̇ d
2u

dθ2
= −h2u2d

2u

dθ2
. (3.18)

Therefore, when we use u instead of r, equation (3.13) reduces to

d2u

dθ2
+ u =

Gmtot

h2
. (3.19)

Thie equations is solved as:

r =
1

u
=

h2/Gmtot

1 + e cos(θ −ϖ)
, (3.20)

where e and ϖ are constants of integration and called the “eccentricity” and the
“longitude of pericentre”, respectively. Equation (3.20) shows that when h ̸= 0, the
orbit is ellipse (0 ≤ e < 1), parabola (e = 1) and hyperbola (e > 1) with m1 at the
focus (see Figure 3.3). Elliptical orbits correspond to Kepler’s first law.

For an elliptical orbit, we can define semi-major axis a so that a(1−e) and a(1+e)
become the minimum and maximum values of r, respectively. The point at which r
takes the minimum value is called the “pericentre” and the point at which r takes the
maximum is called the “apocentre”. If we introduce the “true anomaly” f as θ −ϖ,
the pericentre and apocentre correspond to f = 0 and f = π, respectively (see Figure
3.4). The length b in Figure 3.4 is called the “semi-minor axis”. Using the fact that
the summation of distances from two foci is equal for every point on an ellipse, we can
express b in terms of a and e:

a(1 + e) + a(1− e) = 2
√
b2 + (ae)2 → b = a

√
1− e2. (3.21)
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Figure 3.3: Classification of conical sections depending on eccentricity value.

Figure 3.4: Definition of the eccentric anomaly E. The dashed circle is the circum-
scribed circle of ellipse with its centre at the centre of ellipse O. F and F ′ denote the
focus and the empty focus, respectively.
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Using the semi-major axis and true anomaly, equation (3.20) is written as

r =
a(1− e2)

1 + e cos f
. (3.22)

This is a conventional expression for the elliptical Keplerian orbit.
Integrating equation (3.16) over one period of an elliptical orbit P , we obtain the

following relation:
1

2
hP =

∫
ellipse

dA = πab = πa2
√
1− e2. (3.23)

Using equations (3.20) and (3.22),

h2

Gmtot

= a(1− e2) → h =
√
Gmtota(1− e2). (3.24)

Therefore, equation (3.23) becomes

P 2 =
4π2

Gmtot

a3. (3.25)

Equation (3.25) shows that the orbital period is independent of the eccentricity and
only depends on semi-major axis and the total mass. This is Kepler’s third law.

Since the angle f covers 2π radians during one orbital period, we can introduce a
kind of averaged angular velocity, the “mean motion”:

ν ≡ 2π

P
, (3.26)

which characterizes the Keplerian motion. In terms of a and ν, equations (3.24) and
(3.25) are written as

h = νa2
√
1− e2 (3.27)

and

ν2a3 = Gmtot. (3.28)

We find that the specific angular momentum h is a constant of the motion. We
next consider searching for another constant of the motion. Taking the scalar product
of ṙ with equation (3.6),

ṙ · r̈ = −Gmtot
ṙ · r
r3

. (3.29)

Thus,
dC

dt
≡ d

dt

(
1

2
ṙ2 − Gmtot

r

)
= 0. (3.30)

Equation (3.30) shows that C is a constant of the motion. Since C denotes the orbital
energy per unit mass, it is called the “vis viva integral” or “specific orbital energy”.
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Consider writing C as a function of a, e, and mtot. Using equation (3.11), the square
of velocity ṙ2 can be written as

ṙ2 = ṙ2 + (rθ̇)2 = ṙ2 + (rḟ)2, (3.31)

where θ̇ = ḟ + ϖ̇ = ḟ . Using equations (3.16), (3.22) and (3.27),

rḟ =
h

r
=

νa√
1− e2

(1 + e cos f) (3.32)

and

ṙ =
rḟe sin f

1 + e cos f
=

νa√
1− e2

e sin f. (3.33)

Therefore, ṙ2 is written as

ṙ2 = ṙ2 + (rḟ)2 =
n2a2

1− e2
(1 + 2e cos f + e2)

=
ν2a2

1− e2

[
2a(1− e2)

r
− (1− e2)

]
= Gmtot

(
2

r
− 1

a

)
.

(3.34)

The specific orbital energy C is written down using the equations above:

C =

(
1

2
ṙ2 − Gmtot

r

)
= −Gmtot

2a
. (3.35)

This equation shows that the orbital energy of elliptical motion is independent of the
eccentricity and determined only by the semi-major axis and masses.

We have completed deriving the shape of orbit. However, the position of a body at
a given time is still unknown. In order to determine the motion in a two-body problem,
we derive the relation between the position and time as follows. Using equations (3.27),
and (3.33) - (3.34), ṙ reduces to

ṙ =

√
ṙ2 − (rḟ)2 =

νa

r

√
a2e2 − (r − a)2. (3.36)

In order to integrate equation (3.36), we can introduce the “eccentric anomaly” E
instead of the true anomaly f (Figure 3.4).

The equation of a centred ellipse is( x̄
a

)2
+
( ȳ
b

)2
= 1, (3.37)

where a is the semi-major axis, b is the semi-minor axis, and (x̄, ȳ) is a set of co-
ordinates in rectangular co-ordinates with the origin at the centre of ellipse (see Figure
3.4). Considering equations (3.21) and (3.37), Figure 3.4 shows

x̄ = a cosE (3.38)
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and

ȳ =

√
b2
[
1−

( x̄
a

)2]
= b sinE = a

√
1− e2 sinE. (3.39)

Thus,
x = r cos f = x̄− ae = a cosE − ae (3.40)

and
y = r sin f = ȳ = a

√
1− e2 sinE. (3.41)

Equations (3.40) and (3.41) immediately lead to the following equations:

r =
√
x2 + y2 = a(1− e cosE), (3.42)

sin f =
y

r
=

√
1− e2 sinE

1− e cosE
, (3.43)

cos f =
x

r
=

cosE − e

1− e cosE
. (3.44)

Using the eccentric anomaly, equation (3.36) becomes

Ė =
ν

1− e cosE
. (3.45)

This equation can be integrated with respect to E and we obtain

M ≡ ν(t− τ) = E − e sinE, (3.46)

where M is called the “mean anomaly” and τ is an integration constant called the
“time of pericentre passage”. The mean anomaly denotes the angle of the averaged
orbital motion. Equation (3.46), “Kepler’s equation”, is an important equation in
celestial mechanics since its solution gives the position of body at a given time.

Since it is known that Kepler’s equation cannot be solved as a simple analytical
function ofM , we need use either infinite expansion or numerical calculation. Consider
solving Kepler’s equation with the Fourier expansion. Since E−M is an odd function
from equation (3.46), it can be expanded as an infinite Fourier series of sine functions:

E −M = e sinE =
∞∑
s=1

bs(e) sin(sM), (3.47)

where bs(e) are the coefficients depending only on e and given by

bs(e) =
2

π

∫ π

0

e sinE sin sMdM. (3.48)

Using Kepler’s equation and integrating by parts,

bs(e) =
2

sπ

∫ π

0

cos(sE − se sinE)dE =
2

s
Js(se), (3.49)
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where Js(se) are the Bessel functions. Therefore, Kepler’s equation can be solved　
formally as

E =M +
∞∑
s=1

2

s
Js(se) sin(sM). (3.50)

Computing this series, we can determine E for a given M . Note that it is known that
this series diverges if e > 0.6627434 (e.g. Hagihara 1970) although it rapidly converges
for small value of e

Using the formal expansion solution (3.50), we consider writing important func-
tions of f in terms of e and M . We follows Kinoshita (2007) for this procedure.
Differentiating Kepler’s equation with respect to M and using equation (3.42), we
obtain

∂E

∂M
=

1

1− e cosE
=
a

r
. (3.51)

Using equation (3.22), it leads to

a

r
= 1 + 2

∞∑
s=1

Js(se) cos(sM) (3.52)

and

cos f = −e+ 2(1− e2)

e

∞∑
s=1

Js(se) cos(sM). (3.53)

Differentiating Kepler’s equation with respect to e,

∂E

∂e
=

sinE

1− e cosE
. (3.54)

From equation (3.43), we obtain

sin f =
√
1− e2

∂E

∂e
= 2

√
1− e2

∞∑
s=1

1

s

∂Js(se)

∂e
sin(sM). (3.55)

Later, we can use these formulae to derive the radial velocity formula as a function of
the mean anomaly.

Although we have obtained the relative motion of a body with respect to another
body, it is important to consider the motion of two bodies with respect to the centre
of mass in this system. This can be done as follows. Using equations (3.3) and (3.4),
the position vectors for each body with respect to the centre of mass are

r1 −R = − m2

m1 +m2

r (3.56)

and

r2 −R =
m1

m1 +m2

r. (3.57)
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Figure 3.5: An orbit of the reletive position vector(left panel) and two orbits with
respect to the centre of mass. The white circle denotes the centre of mass.

Equations (3.56) and (3.57) show that each orbit is the reduced orbit for relative
motion (see Figure 3.5).

Next we consider a Keplerian orbit in three-dimentional space. Although a Kep-
lerian orbit is always fixed on the plane, the orbit is not always on the same plane as
the plane including our line of sight. Additionally, if we consider a system containing
more than two bodies, the orbit is usually no longer fixed on one plane. Thus, it is
important to consider an orbit in an arbitrary Cartesian frame.

Figure 3.6 shows the configuration we consider here. We take an arbitrary reference
plane with the orthogonal unit vectors X̂ and Ŷ , then we can take an unit vector Ẑ
as X̂ × Ŷ . (X̂, Ŷ , Ẑ) constitutes a set of base vectors. As shown in Figure 3.6, we
need define some angles to express the orbit in a three dimentional space. The angle
I between h and Ẑ is called the “inclination”. When the inclination has non zero
value, the orbit has two intersection points for the reference plane. The point of them
where the body crosses the reference plane from below to above is especially called the
“ascending node”. The angle Ω between X̂ and the vector towards the ascending node
is called the “longitude of ascending node” Finally, the angle ω between the vectors
towards the ascending node and the pericentre is defined. It is called the “argument of
pericentre”. If I → 0, the orbital plane coincides with the reference plane. In this case,
from equation (3.20), ϖ = Ω + ω. We define ϖ as Ω + ω even for an inclined case.
The dog-leg angle ϖ is called the “longitude of pericentre”. The set of parameters
(a, e, I,Ω, ω, τ) defines a Keplerian orbit in space. Therefore, these parameters are
called the “orbital elements”. Instead of ω, ϖ is often used as one of orbital elements.

Using a set of orbital elements and rotating the co-ordinate system, we can write
down the position of body (X,Y, Z) in the (X̂, Ŷ , Ẑ) frame. As in Figure 3.6, we
consider setting the frame (x̂, ŷ, ẑ) with x̂ towards the pericentre and ẑ towards h.
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Figure 3.6: Keplerian orbit with respect to an arbitrary reference plane.

In this frame, the position of orbiting body can be written as x
y
z

 =

 r cos f
r sin f

0

 . (3.58)

Figure 3.6 shows that we can transform (x, y, z) to (X,Y, Z) combining three rotations
Rz(ω), Rx(I) and Rz(Ω) in order, where Ri(j) is a rotation around i (i = x, y, z) axis
by j (j = ω, I,Ω). Thus, we obtain the relation between (x, y, z) and (X,Y, Z) as
follows:  X

Y
Z

 = Rz(Ω)Rx(I)Rz(ω)

 x
y
z

 , (3.59)

where

Rz(Ω) =

 cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

 , (3.60)

Rx(I) =

 1 0 0
0 cos I − sin I
0 sin I cos I

 , (3.61)

and

Rz(ω) =

 cosω − sinω 0
sinω cosω 0
0 0 1

 . (3.62)
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Equations (3.58) and (3.59) immediately yield X
Y
Z

 = r

 cosΩ cos(ω + f)− sinΩ sin(ω + f) cos I
sinΩ cos(ω + f) + cosΩ sin(ω + f) cos I

sin(ω + f) sin I

 . (3.63)

The orbital velocity V in the (x, y, z) frame can be written using equations (3.33)
and (3.32):

V =

 Vx
Vy
Vz

 ≡ d

dt

 r cos f
r sin f

0

 =
νa√
1− e2

 − sin f
cos f + e

0

 . (3.64)

Since (X,Y, Z) frame is arbitrary, we can define the line towards the ascending node
as X axis. In this frame, Ω = 0 and ω = ϖ. Using equation (3.59) to the velocity
vector V , the explicit form of V in terms of (X,Y, Z) frame is

V = Rz(0)Rx(I)Rz(ϖ)

 − νa√
1−e2

sin f
νa√
1−e2

(cos f + e)

0


=

νa√
1− e2

 − sin(f +ϖ)− e sinϖ
[cos(f +ϖ) + e cosϖ] cos I
[cos(f +ϖ) + e cosϖ] sin I

 .

(3.65)

The velocity component of the orbiting body towards our line of sight is called the
“radial velocity”. Since the radial velocity can be directly observed using spectroscopic
analysis, it is worth while to write down it explicitly. If we choose our line of sight as
Z axis, the radial velocity VRV can be written as

VRV = V ·

 0
0
1

 =
νa√
1− e2

[cos(f +ϖ) + e cosϖ] sin I

= K [cos(f +ϖ) + e cosϖ] .

(3.66)

Note that the inclination I is the angle between the line of sight and h in this case
(see Figure 3.7). In equation (3.66), the radial velocity semi-amplitude K is defined
using equations (3.26) and (3.28) as

K ≡ νa√
1− e2

sin I =
1√

1− e2

(
2πGmtot

P

) 1
3

sin I. (3.67)

Using equation (3.53), the radial velocity is written as a function of mean anomaly:

VRV =
νa√
1− e2

sin I

[
2(1− e2)

e
cosϖ

∞∑
s=1

Js(se) cos(sM)

−2
√
1− e2 sinϖ

∞∑
s=1

∂Js(se)

∂e
sin(sM)

]
.

(3.68)
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Figure 3.7: Schematic illustration for the concept of radial velocity.

The Bessel functions are expanded for x≪ 1 as

J1(x) =
1

2
x− 1

16
x3 +O(x5), (3.69)

J2(x) =
1

8
x2 +O(x4), (3.70)

and

Ji(x) = O(xi) (i ≥ 3). (3.71)

Thus, the radial velocity up to O(e) can be written as

VRV ≈ [νa cos(M +ϖ) + νae cosϖ cos(2M)− νae sinϖ sin(2M)] sin I (3.72)

or

VRV ≈ [νa cosλ+ νae cosϖ cos(2λ) + νae sinϖ sin(2λ)] sin I, (3.73)

where λ ≡ M + ϖ. λ is called the “mean longitude”. Since the mean anomaly is
defined as ν(t− τ) in equation (3.46), the mean longitude is rewritten as

λ =M +ϖ = νt+ (ϖ − ντ) ≡ νt+ ϵ̃, (3.74)

where ϵ̃ is called the “mean longitude at epoch”, and often used as one of orbital
elements instead of τ .
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Figure 3.8: A relative motion in two-body system in terms of spherical co-ordinates.

3.2 Perturbation theory

In the previous section, we consider the motion in a two-body system and define
the orbital elements. In a two-body problem, the orbital elements are constant with
time and completely specify an overall motion (i.e., Keplerian motion). However, the
motions of bodies should not follow one specific Keplerian motion if perturbing forces
act on the system.

Even if perturbing forces exist, we can always define the unique orbital elements at
a given time using the instantaneous position and velocity vectors of bodies. These or-
bital elements are called the “osculating elements” since they specify the instantaneous
Keplerian motion, which is the motion that the bodies would follow if the perturbing
force acting on the system were to dissapear suddenly. The osculating elements are
not constant with time.

In this section, we switch to the perturbation theory and derive the “Lagrange
planetary equations”, the differential equations for orbital elements. These equations
are used to describe the motions of bodies in a hierarchical three-body system later.
The perturbation theory is described in many standard textbooks of celestial mechan-
ics (e.g. Brouwer & Clemence 1961; Danby 1988; Moulton 1914; Murray & Dermott
2000; Valtonen & Karttunen 2006). In this section, we specifically follow Valtonen
& Karttunen (2006) and Danby (1988).　 Another method called the “variation of
constants” to derive the equations is described in Appendix C.

Consider a Hamiltonian H for a relative motion in a two-body system with a
perturbation potential −R. The R is called the “disturbing function”. The minus sign
is a convention in celestial mechanics. The disturbing function represents any external
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forces, but usually comes from multi-body interaction terms. The Hamiltonian is
written down in terms of spherical co-ordinate system illustrated in Figure 3.8 as

H =
1

2µ

(
p2r +

p2θ
r2

+
p2ϕ

r2 cos2 θ

)
− Gµmtot

r
−R, (3.75)

where µ is the reduced mass and mtot is the total mass. First, we consider the case
that R = 0. The Hamilton-Jacobi equation is

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0, (3.76)

where q ≡ (r, θ, ϕ) and S is the action. Therefore, for the Hamiltonian H in equation
(3.75) with R = 0, the explicit form of the Hamilton-Jacobi equation is written as

∂S

∂t
+

1

2µ

[(
∂S

∂r

)2

+
1

r2

(
∂S

∂θ

)2

+
1

r2 cos2 θ

(
∂S

∂ϕ

)2
]
− Gµmtot

r
= 0. (3.77)

It is known that the action S is totally separable in a two-body problem. Thus, we
can set

S = Sr(r) + Sθ(θ) + Sϕ(ϕ) + St(t). (3.78)

Substituting equation (3.78), equation (3.77) can be separated into the following series
of equations:

dSt

dt
= −α1, (3.79)

dSϕ

dϕ
= α3, (3.80)(

dSθ

dθ

)2

+
α2
3

cos2 θ
= α2

2, (3.81)

and (
dSr

dr

)2

+
α2
2

r2
= 2µ

(
α1 +

Gµmtot

r

)
, (3.82)

where α1, α2 and α3 are constants. Integrating equations (3.79) - (3.82), we obtain

S = −α1t+ α3ϕ+

∫ θ
√
α2
2 −

α2
3

cos2 θ
dθ +

∫ r
√
2µ

(
α1 +

Gµmtot

r

)
− α2

2

r2
dr. (3.83)

In order to understand physical meaning of the constants α1, α2 and α3, we consider
the specific angular momentum h using (r, θ, ϕ):

h ≡ r × ṙ =

 r cos θ cosϕ
r cos θ sinϕ
r sin θ

× d

dt

 r cos θ cosϕ
r cos θ sinϕ
r sin θ


= r2

 θ̇ sinϕ− ϕ̇ sin θ cos θ cosϕ

−θ̇ cosϕ− ϕ̇ sin θ cos θ sinϕ

ϕ̇ cos2 θ

 .

(3.84)
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Thus,
h2 = (r2)2(θ̇2 + cos2 θϕ̇2). (3.85)

Using equations (3.77) - (3.85), the constants α1, α2 and α3 are given as

α1 = −∂S
∂t

= H, (3.86)

α3 = pϕ = µ(r cos θ)2ϕ̇ = µhz, (3.87)

α2
2 =

(
∂Sθ

∂θ

)2

+
α2
3

cos2 θ
= (µr2)2(θ̇2 + cos2 θϕ̇2) = (µh)2. (3.88)

These equations show that α1, α2 and α3 correspond to the orbital energy, the magni-
tude of angular momentum and the z component of angular momentum, respectively.
Thus, they are related to the orbital elements as

α1 = −Gµmtot

2a
, (3.89)

α2 = µ
√
Gmtota(1− e2) (3.90)

and
α3 = µ

√
Gmtota(1− e2) cos I. (3.91)

Since α1, α2 and α3 are constant, it is useful to consider the canonical transforma-
tion which constitutes (α1, α2, α3) as the generalized momenta (P1, P2, P3). Then, the
corresponding generalized co-ordinates Q1, Q2 and Q3 are computed from S as

Q1 =
∂S

∂α1

= −t+
∫

µdr√
2µ(α1 +Gµmtot/r)− α2

2/r
2
, (3.92)

Q2 =
∂S

∂α2

= α2

∫
dθ√

α2
2 − α2

3/ cos
2 θ

− α2

µ

∫
µ

r2
√

2µ(α1 +Gµmtot/r)− α2
2/r

2
,

(3.93)

and

Q3 =
∂S

∂α3

= ϕ− α3

∫
dθ

cos2 θ
√
α2
2 − α2

3/ cos
2 θ
. (3.94)

Using equations (3.86) and (3.90),

Q1 = −t+ 1√
Gmtot

∫
rdr√

−r2/a+ 2r − a(1− e2)
. (3.95)

Introducing a new variable E as r = a(1− e cosE) and using Kepler’s equation,

Q1 = −t+

√
a3

Gmtot

(E − e sinE) = −τ, (3.96)
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where τ is the pericentre passage.
Similarly, using equation (3.86) - (3.91), we obtain

Q2 =

∫
dθ√

1− cos2 I/ cos2 θ
− α2√

(Gmtot)3

∫
dr

r2
√
−1/a+ 2/r − a(1− e2)/r2

. (3.97)

Using equation (3.63), we obtain the following variable transformation:

sin θ = sin(ω + f) sin I. (3.98)

Therefore, the first integral in equation (3.97) is∫
dθ√

1− cos2 I/ cos2 θ
= ω + f. (3.99)

If we use the variable transformation in equation (3.22), the second integral in equation
(3.97) can be written as follows:

α2√
(Gmtot)3

∫
dr

r2
√
−1/a+ 2/r − a(1− e2)/r2

= f. (3.100)

Combining equations (3.99) and (3.100), we obtain

Q2 = ω. (3.101)

Finally, using (3.88) and (3.91),

Q3 = ϕ−
∫

cos Idθ

cos2 θ
√
1− cos2 I/ cos2 θ

. (3.102)

Using equations (3.63) and (3.98),

sin(ϕ− Ω) = tan θ cot I. (3.103)

The integral in equation (3.102) can be calculated using the variable transformation
above: ∫

cos Idθ

cos2 θ
√
1− cos2 I/ cos2 θ

= ϕ− Ω. (3.104)

Thus, equation (3.102) reduces to
Q3 = Ω. (3.105)

As a result, the set of canonical variables (Q1, Q2, Q3, P1, P2, P3) is written down
as follows: 

Q1

Q2

Q3

P1

P2

P3

 =



−τ
ω
Ω

−Gµmtot

2a
µ
√
Gmtota(1− e2)

µ
√
Gmtota(1− e2) cos I


. (3.106)
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In terms of these canonical variables, the Hamiltonian is constantly zero.
In celestial mechanics, usually the canonial variables (Q′,P ′) called the “Delaunay

variables” are often used. Consider a generating function F (Q,P ′):

F (Q,P ′) ≡
(
P ′
1 −

Gmtotµ

2νa

)
ν(t+Q1) +Q2P

′
2 +Q3P

′
3. (3.107)

Thus, the Delaunay variables are
Q′

1

Q′
2

Q′
3

P ′
1

P ′
2

P ′
3

 =



M
ω
Ω

µ
√
Gmtota

µ
√
Gmtota(1− e2)

µ
√
Gmtota(1− e2) cos I

 . (3.108)

The Hamiltonian in terms of the Delaunay variables is

H′ =
∂F

∂t
= −(Gmtot)

2µ3

2P ′2
1

. (3.109)

This Hamiltonian shows that only Q′
1 evolves with time and other variables are con-

stant if the disturbing function R = 0.
If R ̸= 0, the Delaunay variables change with time. In this case, the Hamiltonian

in terms of the Delaunay variables is

H′ = −(Gmtot)
2µ3

2P ′2
1

−R. (3.110)

Substituting H′ into the canonical equations for the Delaunay variables and using
equation (3.108), we obtain

Q̇′
1 = Ṁ =

(Gmtot)
2µ3

P ′3
1

− ∂R
∂P ′

1

, (3.111)

Ṗ ′
1 =

µ
√
Gmtot

2
√
a

ȧ =
∂R
∂Q′

1

, (3.112)

Q̇′
2 = ω̇ = − ∂R

∂P ′
2

, (3.113)

Ṗ ′
2 =

µ
√
Gmtot(1− e2)

2
√
a

ȧ− µ
√
Gmtota√
1− e2

eė =
∂R
∂Q′

2

, (3.114)

Q̇′
3 = Ω̇ = − ∂R

∂P ′
3

, (3.115)
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and

Ṗ ′
3 =

µ
√
Gmtot(1− e2)

2
√
a

cos Iȧ− µ
√
Gmtota√
1− e2

e cos Iė− µ
√
Gmtota(1− e2) sin Iİ

=
∂R
∂Q′

3

.

(3.116)

Using equation (3.108),

a =
P ′2
1

µ2Gmtot

, (3.117)

e =

√
1− P ′2

2

P ′2
1

, (3.118)

cos I =
P ′
3

P ′
2

, (3.119)

λ = Q′
1 +Q′

2 +Q′
3, (3.120)

ϖ = Q′
2 +Q′

3 (3.121)

and
Ω = Q′

3. (3.122)

Thus,
∂R
∂P ′

1

=
2
√
a

µ
√
Gmtot

∂R
∂a

+
1− e2

µe
√
Gmtota

∂R
∂e

, (3.123)

∂R
∂P ′

2

= −
√
1− e2

µe
√
Gmtota

∂R
∂e

+
cos I

µ
√
Gmtota(1− e2) sin I

∂R
∂I

(3.124)

∂R
∂P ′

3

= − 1

µ
√
Gmtota(1− e2) sin I

∂R
∂I

, (3.125)

∂R
∂Q′

1

=
∂R
∂λ

, (3.126)

∂R
∂Q′

2

=
∂R
∂λ

+
∂R
∂ϖ

(3.127)

and
∂R
∂Q′

3

=
∂R
∂λ

+
∂R
∂ϖ

+
∂R
∂Ω

. (3.128)

Substituting equations (3.123) - (3.128) into equations (3.112) - (3.115), we obtain

ȧ =
2

µνa

∂R
∂λ

, (3.129)

ϖ̇ = ω̇ + Ω̇ =

√
1− e2

µνa2e

∂R
∂e

+
tan I

2

µνa2
√
1− e2

∂R
∂I

, (3.130)
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ė = −
√
1− e2(1−

√
1− e2)

µνa2e

∂R
∂λ

−
√
1− e2

µνa2e

∂R
∂ϖ

, (3.131)

Ω̇ =
1

µνa2
√
1− e2 sin I

∂R
∂I

, (3.132)

˙̃ϵ = Ṁ + ϖ̇ − d

dt
(νt)

= − 2

µνa

∂R
∂a

+

√
1− e2(1−

√
1− e2)

µνa2e

∂R
∂e

+
tan I

2

µνa2
√
1− e2

∂R
∂I

− ν̇t
(3.133)

and

İ = −
tan I

2

µνa2
√
1− e2

(
∂R
∂λ

+
∂R
∂ϖ

)
− 1

µνa2
√
1− e2 sin I

∂R
∂Ω

. (3.134)

Note that a dependence in ν is not considered when we calculate ∂R
∂a

since a and λ are
independent in terms of the Delaunay variables and ν only appears in λ. The term ν̇t
in equation (3.133) is called secular term since it increases with time. This behaviour
is problematic when we solve this equation either approximately or numerically. In
order to avoid this problem, we introduce the “new longitude at epoch” ϵ as

ϵ ≡ λ−
∫ t

0

νdt′. (3.135)

Using ϵ instead of ϵ̃, equation (3.133) is modified to

ϵ̇ = λ̇− ν = Ṁ + ϖ̇ − ν

= − 2

µνa

∂R
∂a

+

√
1− e2(1−

√
1− e2)

µνa2e

∂R
∂e

+
tan I

2

µνa2
√
1− e2

∂R
∂I

.
(3.136)

A series of equations (3.129) - (3.134) and (3.136) are the “Lagrange planetary equa-
tions”, the differential equations for six orbital elements.　

Equations (3.130) and (3.131) include e in denominators. It causes singularity
when e → 0. In order to avoid the singularities, it is convenient to define the vertical
and horizontal components of eccentricity:

h ≡ e sinϖ (3.137)

and
k ≡ e cosϖ. (3.138)

Using these variables, equation (3.130) and (3.131) are modified to

ḣ =
1

µνa2

√
1− e2

∂R
∂k

+
k

µνa2
tan I

2√
1− e2

∂R
∂I

− h

µνa2

√
1− e2

1 +
√
1− e2

∂R
∂λ

. (3.139)

and

k̇ = − 1

µνa2

√
1− e2

∂R
∂h

− h

µνa2
tan I

2√
1− e2

∂R
∂I

− k

µνa2

√
1− e2

1 +
√
1− e2

∂R
∂λ

. (3.140)
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These equations do not include singularities when e→ 0.
For equations (3.132) and (3.134), we encounter the same problem as above when

I → 0. This can be avoided by introducing the following variables:

P ≡ sin I sinΩ (3.141)

and
Q ≡ sin I cosΩ. (3.142)

Using these variables, equations (3.132) and (3.134) are modified to

Ṗ =
cos I

µνa2
√
1− e2

∂R
∂Q

− 1

µνa2
P cos I√

1− e2(1 + cos I)

(
∂R
∂ϖ

+
∂R
∂λ

)
(3.143)

and

Q̇ = − cos I

µνa2
√
1− e2

∂R
∂P

− 1

µνa2
Q cos I√

1− e2(1 + cos I)

(
∂R
∂ϖ

+
∂R
∂λ

)
. (3.144)

Again, these equations do not have singularities when I → 0.

3.3 Hierarchical three-body problem

In this section, we consider a system consisting of three point particles with masses
m1, m2 and m3. They interact each other only by the Newtonian gravitational force.
Defining r1, r2 and r3 as the position vectors of m1, m2 and m3 in an arbitrary
Cartesian co-ordinates, the Lagrangian L of the system is

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 +

1

2
m3ṙ

2
3 +

Gm1m2

|r2 − r2|
+
Gm1m3

|r3 − r1|
+
Gm2m3

|r3 − r2|
. (3.145)

In what follows, we consider a hierarchcial three-body system as illustrated in Fig-
ure 3.9. A hierarchical three-body system is defined as the system consisting of two
well-separated orbits such that gravitational interactions can be treated as a summa-
tion of the term constructing two Keplerian orbits and a small perturbation on each
orbit. For a hierarchical three-body problem, it is convenient to use the Jacobian
co-ordinates instead of r1, r2 and r3.

The position vectors rCM, r and R in the Jacobian co-ordinates are defined as

rCM ≡ m1r1 +m2r2 +m3r3
m123

, (3.146)

r ≡ r2 − r1 (3.147)

and

R ≡ r3 −
m1r1 +m2r2

m12

, (3.148)
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Figure 3.9: A hierarchical three-body system in terms of the Jacobian co-ordinate
system. The cross denotes the centre of mass for inner binary. The triangle denotes
the centre of mass of system.

where m12 ≡ m1 + m2 and m123 ≡ m1 + m2 + m3. The rCM physically means the
position vector for the centre of mass of this system. The r means the relative position
vector of m2 with respect to m1. The R means the position vector of m3 with respect
to the centre of mass of inner binary. Using equations (3.146) - (3.148), we find

r1 = rCM − m2

m12

r − m3

m123

R, (3.149)

r2 = rCM +
m1

m12

r − m3

m123

R (3.150)

and

r3 = rCM +
m12

m123

R. (3.151)

Therefore, the Lagrangian (3.145) is written in the Jacobian co-ordinates as

L =
1

2
m123ṙ

2
CM +

1

2
µinṙ

2 +
1

2
µoutṘ

2 +
Gm1m2

|r|
+

Gm1m3

|R− β2r|
+

Gm2m3

|R− β1r|
, (3.152)

where µin ≡ m1m2/m12, µout ≡ m3m12/m123, β1 ≡ m1/m12, and β2 ≡ −m2/m12. The
momenta corresponding to rCM, r and R are calculated using L:

pCM ≡ ∂L
∂ṙCM

= m123ṙCM, (3.153)

p ≡ ∂L
∂ṙ

= µinṙ, (3.154)
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and

P ≡ ∂L
∂Ṙ

= µoutṘ. (3.155)

Therefore, the Hamiltonian H of this system is

H ≡ ṙCM · pCM + ṙ · p+ Ṙ · P − L

=
p2
CM

2m123

+

(
p2

2µin

− Gm12µin

|r|

)
+

(
P 2

2µout

− Gm123µout

|R|

)
−
(
−Gm12m3

|R|
+

Gm1m3

|R− β2r|
+

Gm2m3

|R− β1r|

)
.

(3.156)

Note that m12µin = m1m2 and m123µout = m12m3. The equation above shows that
the Hamiltonian H consists of four terms with different physical meanings. The first
term in equation (3.156) corresponds to the constant motion of the centre of mass.
Since it is irrelevant to the motion of bodies due to the gravitational interaction, we
need not consider this term in the following analysis. The second term describes the
Keplerian orbit of the inner binary. This term shows that the Keplerian motion of
the inner binary is equivalent to that for a two-body system consisting of m1 and m2.
Thus, we can define the mean motion of inner binary νin as

νin ≡

√
Gm12

a3in
, (3.157)

where ain is the semi-major axis of the inner binary in the Jacobian co-ordinates. The
third term describes the Keplerian orbit of the outer body m3 around the centre of
mass of the inner binary. Thus, we can define the mean motion of the outer orbit νout
as

νout ≡

√
Gm123

a3out
, (3.158)

where aout is the semi-major axis of the outer orbit in the Jacobian co-ordinates. The
final term in equation (3.156) corresponds to the disturbing functionR which describes
the perturbation in a three-body problem:

R = −Gm12m3

|R|
+

Gm1m3

|R− β2r|
+

Gm2m3

|R− β1r|
. (3.159)

As a result, we find that

H = (Keplerian motion of inner orbit)−R+ (irrelevant to inner orbit) (3.160)

and

H = (Keplerian motion of outer orbit)−R+ (irrelevant to outer orbit). (3.161)
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Figure 3.10: The definition of angles θin, φin, θout, φout in spherical co-ordinates. The
cross denotes the centre of mass for inner binary consisting of m1 and m2.

Considering the discussion in the previous section, these equations show that if we
substitute R into the Lagrange planetary equations, we obtain the differential equa-
tions for both inner and outer orbital elements in a three-body system in the Jacobian
co-ordinates.

Since the Lagrange planetary equations are differential equations for the orbital
elements, it is necassary to write down the disturbing function R in terms of orbital
elements rather than position vectors. This has been studied by many researchers (e.g.
Boquet 1889; Brouwer & Clemence 1961; Brown & Shook 1933; Kaula 1962; Le Verrier
1855; Mardling 2013; Murray 1985; Newcomb 1895; Peirce 1849). We specifically follow
the derivation of disturbing function for a coplanar three-body system by Mardling
(2013).

Using multi-pole expansion in terms of the Legendre polynomials (e.g. Binney &
Tremaine 2008), we obtain

1

|R− βsr|
=

1

R

∞∑
l=0

(
β1r

R

)l

Pl(cosψ) (s = 1, 2), (3.162)

where R ≡ |R|, r ≡ |r|, Pl is the Legendre polynomial of order l, and cosψ ≡
(r · R)/(rR). Using the addition theorem for spherical harmonics (e.g. Binney &
Tremaine 2008; Jackson 1975):

Pl(cosψ) =
l∑

m=−l

4π

2l + 1
Ylm(θin, φin)Y

∗
lm(θout, φout), (3.163)
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where Ylm is the spherical harmonic of degree l andm, and Y ∗
lm is its complex conjugate.

In equation (3.163), (θin, φin) and (θout, φout) are sets of angles for m2 and m3 in
spherical co-ordinates with respect to the centre of mass for inner binary consisting
of m1 and m2, respectively (see Figure 3.10). Thus, the disturbing function R is
expanded to

R = Gµinm3

∞∑
l=2

l∑
m=−l

(
4π

2l + 1

)
Ml

(
rl

Rl+1

)
Ylm(θin, φin)Y

∗
lm(θout, φout), (3.164)

where the mass factor Ml is defined as

Ml ≡ βl−1
1 − βl−1

2 =
ml−1

1 + (−1)lml−1
2

ml−1
12

. (3.165)

For a coplanar case, we can take θin = θout = π/2, φin = fin + ϖin, and φout =
fout+ϖout, where fin and fout are the true anomalies of inner and outer orbits, respec-
tively, and ϖin and ϖout are the longitudes of pericentre for inner and outer orbits,
respectively. Using the standard definiton of spherical harmonics:

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (3.166)

where Pm
l is an associated Legendre polynomials, i is the imaginary unit, and e is

the Nepier constant. We use a Roman font here to avoid confusing i and e with the
inclination and eccentricity, respectively. Thus, for a coplanar case,

Ylm

(π
2
, fin +ϖin

)
Y ∗
lm

(π
2
, fout +ϖout

)
=

2l + 1

4π

(l −m)!

(l +m)!
[Pm

l (0)]2eim(fin−fout)eim(ϖin−ϖout).
(3.167)

Since Pm
l (x) is explicitly given as

Pm
l (x) ≡ (−1)m

2ll!
(1−x2)m/2

l∑
j=⌊(l+m+1)/2⌋

(−1)l−j

(
l
j

)
(2j)!

(2j − l −m)!
x2j−l−m, (3.168)

Pm
l (0) =

(−1)(l+m)/2 (l +m)!

2ll!

(
l

(l +m)/2

)
(l +m even)

0 (otherwise)

. (3.169)

Using the equation above, the disturbing function reduces to

R = Gµinm3

∞∑
l=2

l∑
m=−l,2

1

2
c2lmMle

im(ϖin−ϖout)(rleimfin)

(
e−imfout

Rl+1

)
, (3.170)
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where

c2lm ≡ 8π

2l + 1
[Ylm(π/2, 0)]

2 =
(l −m)!(l +m)!

22l−1[((l +m)/2)!((l −m)/2)!]2
(3.171)

and
mmax∑

m=mmin,2

ξm ≡ ξmmin
+ ξmmin+2 + · · ·+ ξmmax . (3.172)

In equation (3.172), ξm denotes any variables with subscript m. If a system is stable,
(rleimfin) and (e−imfout/Rl+1) in equation (3.170) are nealy periodic in the inner and
outer orbital periods, respectively. Therefore, we can expand them further using the
Fourier expansion in terms of the mean anomalies associated with the inner and outer
orbits:

rleimfin = alin

(
1− e2in

1 + ein cos fin

)l

eimfin = alin

∞∑
n=−∞

X l,m
n (ein)e

inMin (3.173)

and

e−imfout

Rl+1
= a

−(l+1)
out

(
1− e2out

1 + eout cos fout

)−(l+1)

e−imfout

= a
−(l+1)
out

∞∑
n′=−∞

X
−(l+1),m
n′ (eout)e

−in′Mout ,

(3.174)

where Min and Mout are the mean anomalies of the inner and outer orbits, ein and eout
are the eccentricities of these orbits. The coefficients X l,m

n (ein) and X
−(l+1),m
n (eout) in

equations (3.173) and (3.174) are called the “Hansen coefficients” (Hughes 1981) and
are expressed as

X l,m
n (ein) ≡

1

2π

∫ 2π

0

(
r

ain

)l

eimfine−inMindMin (3.175)

and

X
−(l+1),m
n′ (eout) ≡

1

2π

∫ 2π

0

(
R

aout

)−(l+1)

e−imfoutein
′MoutdMout. (3.176)

Since the real parts of the integrands in equations (3.175) and (3.176) are even func-
tions and the imaginary parts of them are odd functions for Min and Mout, both
X l,m

n (ein) and X
−(l+1),m
n′ (eout) are real. Thus,

[X l,m
n (ein)]

∗ = X l,−m
−n (ein) = X l,m

n (ein) (3.177)

and

[X
−(l+1),m
n′ (eout)]

∗ = X
−(l+1),−m
−n′ (eout) = X

−(l+1),m
n′ (eout), (3.178)
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where the superscript ∗ denotes the complex conjugate. Substituting equations (3.173)
and (3.174) into equation (3.170), and using equations (3.177) and (3.178), we obtain

R =
Gµinm3

aout

∞∑
l=2

l∑
m=mmin,2

∞∑
n=−∞

∞∑
n′=−∞

ζmc
2
lmMlα

lX l,m
n (ein)X

−(l+1),m
n′ (eout) cosϕmnn′ ,

(3.179)
where

α ≡ ain
aout

, (3.180)

ζm ≡

{
1/2, m = 0

1, otherwise
, (3.181)

mmin ≡

{
0, l even

1, l odd
. (3.182)

The argument ϕmnn′ of cosine function in equation (3.179) is called the “harmonic
angle” and defined as

ϕmnn′ ≡ nMin − n′Mout +m(ϖin −ϖout)

= nλin − n′λout + (m− n)ϖin − (m− n′)ϖout,
(3.183)

where λin and λout are the mean longitudes of the inner and outer orbits, respectively.
In order to further calculating R, we consider changing the order of summation

for l and m in equation (3.179). This procedure can be achieved using the following
relation:

∞∑
l=2

l∑
m=mmin,2

ξlm

= [ξ20 + ξ22] + [ξ31 + ξ33] + [ξ40 + ξ42 + ξ44] + [ξ51 + ξ53 + ξ55] + · · ·
= [ξ20 + ξ40 + · · · ] + [ξ31 + ξ51 + · · · ] + [ξ22 + ξ42 + · · · ] + [ξ33 + ξ53 + · · · ] + · · ·

=
∞∑

m=0

∞∑
l=lmin,2

ξlm,

(3.184)
where

lmin ≡


2, m = 0

3, m = 1

m, m ≥ 2

. (3.185)

Note that in equation (3.184) ξlm denotes any variables with two subscripts l and m.
As a result, the final expression of the disturbing function R is

R =
∞∑

m=0

∞∑
n=−∞

∞∑
n′=−∞

Rmnn′ cosϕmnn′ , (3.186)
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where

Rmnn′ ≡ Gµinm3

aout

∞∑
l=lmin,2

ζmc
2
lmMlα

lX l,m
n (ein)X

−(l+1),m
n′ (eout). (3.187)

Equation (3.187) shows that the dependence of R on ein, eout and α is completely
separated. Therefore, this expression of R is optimal to control the order of these
parameters when calculating an approximate disturbing function. Later, we use this
expression to obtain the quadrupole (l = 2) part of the disturbing function approxi-
mately.



Chapter 4

Result

4.1 Derivation of perturbation equations

As mentioned in Chapter 1, we consdier developing the methodology to search for
a binary black hole through the motion of outer body in a triple. Figure 4.1 shows
a schematic illustration of a hierarchical three-body system that we consider in this
thesis. An outer body of mass m3 is orbiting around an unseen inner binary of masses
m1 and m2, and both orbits are near-circular on a invariant plane.

Following the formulation in Chapter 3, we derive the basic perturbation equations
in terms of the Jacobian co-ordinates. Major variables adopted in this chapter are
summarized in Table 4.1 for clarity.

4.1.1 Basic formulation of the Lagrange planetary equations

The Hamiltonian H of the system illustrated in Figure 4.1 is given by

H =
p2
CM

2m123

+

(
p2

2µin

− Gm12µin

|r|

)
+

(
P 2

2µout

− Gm123µout

|R|

)
−
(
−Gm12m3

|R|
+

Gm1m3

|R− β2r|
+

Gm2m3

|R− β1r|

)
,

(4.1)

where r and R are position vectors of the inner and outer orbits, respectively, in terms
of Jacobian co-ordinates, and p and P are corresponding momenta, r = |r|, R = |R|,
m12 = m1 +m2, µin = m1m2/m12, µout = m12m3/m123, and m123 = m1 +m2 +m3.

Thus, the disturbing function R in equation (4.1) is explicitly written as

R = −Gm12m3

R
+

Gm2m3

|R− β1r|
+

Gm1m3

|R− β2r|
, (4.2)

where β1 = m1/m12 and β2 = −m2/m12.
Following the derivation in Mardling (2013) (see Section 3.3 for detail), this dis-

turbing function for a coplanar case can be written explicitly as an infinite series of

49
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symbol meaning

ri(i = 1, 2, 3) position vector of mi(i = 1, 2, 3) in arbitrary reference frame
r ≡ r2 − r1 position vector of inner orbit in Jacobian co-ordinate system

R ≡ r3 −
m1r1 +m2r2

m12

position vector of outer orbit in Jacobian co-ordinate system

m12 ≡ m1 +m2 total mass of inner binary
m123 ≡ m1 +m2 +m3 total mass of system
µin ≡ m1m2/m12 reduced mass of inner binary
µout ≡ m3m12/m123 reduced mass of three-body system
a semi-major axis

α ≡ ain/aout semi-major axis ratio; after Section 4.2, α ≡ a
(i)
in /a

(i)
out

β1 ≡ m1/m12

β2 ≡ −m2/m12

λ ≡
∫ t

0

νdt′ + ϵ ≡ νt+ ϵ̃ mean longitude

ϖ longitude of pericentre

Ml ≡
ml−1

1 + (−1)lml−1
2

ml−1
12

ϵ ≡ λ−
∫ t

0

νdt′ new mean longitude at epoch

ϵ̃ ≡ λ− νt mean longitude at epoch
e eccentricity
h ≡ e sinϖ
k ≡ e cosϖ

νin ≡
√
Gm12/a3in mean motion of inner binary

νout ≡
√
Gm123/a3out mean motion of outer body

Table 4.1: Definitions of major variables in the present analysis.
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Figure 4.1: Schematic illustration of a coplanar and near-circular triple system. The
relative position vectors r and R are defined in the Jacobian coordinate.

cosine functions:

R =
∞∑

m=0

∞∑
n=−∞

∞∑
n′=−∞

Rmnn′ cosϕmnn′ . (4.3)

The coefficients of the disturbing function in the right-hand-side of equation (4.3) are
further expanded as

Rmnn′ =
Gµinm3

aout

∞∑
l=lmin,2

ζmc
2
lmMlα

lX l,m
n (ein)X

−(l+1),m
n′ (eout), (4.4)

where the sum over l is in steps of two from lmin:

lmin ≡


2,m = 0

3,m = 1

m,m ≥ 2

. (4.5)

Note that we use two indices {in, out} to indicate the inner and outer orbits, respec-
tively.

The arguments of the cosine function in equation (4.3) are defined as

ϕmnn′ ≡ nλin − n′λout + (m− n)ϖin − (m− n′)ϖout, (4.6)

where λ is the mean longitude and ϖ is the longitude of pericentre. Also the coeffi-
cients X l,m

n (ein) and X
−(l+1),m
n′ (eout) in equation (4.4) are the Hansen coefficients (see
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Appendix A for detail). The other coefficients in equation (4.4) are defined as

α ≡ ain/aout, (4.7)

ζm ≡

{
1/2,m = 0

1,m ̸= 0
, (4.8)

clm ≡
√

8π

2l + 1
Ylm(π/2, 0), (4.9)

Ml ≡
ml−1

1 + (−1)lml−1
2

ml−1
12

. (4.10)

The Lagrange planetary equations for orbital elements in terms of the disturbing
function R reduce to

da

dt
=

2

µνa

∂R
∂λ

(4.11)

and
dϵ

dt
= − 2

µνa

(
∂R
∂a

)
ν,fixed

+

√
1− e2

(
1−

√
1− e2

)
µνa2e

∂R
∂e

, (4.12)

where we define ϵ and ϵ̃ (see Section 3.3 for detail) through

ϵ ≡ λ−
∫ t

0

νdt′ (4.13)

and

ϵ̃ ≡ λ− νt. (4.14)

Since we now consider near-circular orbits, we use h and k instead of e and ϖ to
avoid apparent divergent terms in differential equations for e and ϖ. The Lagrange
planetary equations for h and k are wrriten as (e.g. Danby 1988; Moulton 1914; Murray
& Dermott 2000)

ḣ =
1

µa2ν

√
1− e2

∂R
∂k

− h

µa2ν

√
1− e2

1 +
√
1− e2

∂R
∂ϵ̃

(4.15)

and

k̇ = − 1

µa2ν

√
1− e2

∂R
∂h

− k

µa2ν

√
1− e2

1 +
√
1− e2

∂R
∂ϵ̃

, (4.16)

where h ≡ e sinϖ and k ≡ e cosϖ.

We have two sets of the Lagrange planetary equations both for inner and outer
orbits. We emphasize here that we do not use the orbit-averaged disturbing function,
unlike a conventional analysis for secular evolution, since we are interested in the
short-term modulation in order to identify the signature of the inner binary.
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4.1.2 Perturbation approach to the Lagrange planetary equa-
tions for coplanar near-circular orbits

Next we consider the hierarchical (α ≪ 1) and near-circular (ein ≪ 1, eout ≪ 1)
conditions, and approximate the disturbing function, neglecting the higher-order terms
than O(e2) and O(α3). Under this approximation, the disturbing function reduces to
the quadrupole moment part of the potential:

R ≈ Gµim3M2

aout
α2

{
1

4
+

3

4
cos(2λin − 2λout) +

3

4
(kout cosλout + hout sinλout)

− 1

2
(kin cosλin + hin sinλin)−

3

8
[kout cos(2λin − λout) + hout sin(2λin − λout)]

− 9

4
[kin cos(λin − 2λout)− hin sin(λin − 2λout)]

+
21

8
[kout cos(2λin − 3λout)− hout sin(2λin − 3λout)]

+
3

4
[kin cos(3λin − 2λout) + hin sin(3λin − 2λout)]

}
,

(4.17)
where

hin ≡ ein sinϖin, kin ≡ ein cosϖin (4.18)

and

hout ≡ eout sinϖout, kout ≡ eout cosϖout. (4.19)

Finally we insert equation (4.17) into the Lagrange planetary equations for outer
orbital elements, and obtain the corresponding perturbation equations explicitly:

ȧout ≈
3Gµinm3M2

µoutνouta2out
α2 sin(2λin − 2λout), (4.20)

ϵ̇out ≈
3Gµinm3M2

2µoutνouta3out
α2[1 + 3 cos(2λin − 2λout)], (4.21)

ḣout ≈
Gµinm3M2

µoutνouta3out
α2

[
3

4
cosλout −

3

8
cos(2λin − λout) +

21

8
cos(2λin − 3λout)

]
,

(4.22)

k̇out ≈ −Gµinm3M2

µoutνouta3out
α2

[
3

4
sinλout −

3

8
sin(2λin − λout)−

21

8
sin(2λin − 3λout)

]
.

(4.23)
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4.2 Analytic solutions to the perturbation equa-

tions

4.2.1 Leading-order solutions

While it is not possible to find rigorous analytical solutions for equations (4.20)-(4.23),
we can solve them iteratively. In practice, we perform the iteration just once, and write
down the approximate analytical solutions:

aout

a
(i)
out

≈ 1− 3Gµinm3M2

2µoutν
(i)
out[a

(i)
out]

3(ν
(i)
in − ν

(i)
out)

α2C0[2(ν
(i)
in − ν

(i)
out)t+ 2(ϵ

(i)
in − ϵ

(i)
out)], (4.24)

ϵout ≈ ϵ
(i)
out +

3µinm3M2

2µout(m1 +m2 +m3)
α2ν

(i)
outt

+
9Gµinm3M2

4µoutν
(i)
out[a

(i)
out]

3(ν
(i)
in − ν

(i)
out)

α2S0[2(ν
(i)
in − ν

(i)
out)t+ 2(ϵ

(i)
in − ϵ

(i)
out)],

(4.25)

hout ≈ h
(i)
out +

Gµinm3M2

µout[a
(i)
out]

3ν
(i)
out

α2

[
3

4ν
(i)
out

S0[ν
(i)
outt+ ϵ

(i)
out]

− 3

8(2ν
(i)
in − ν

(i)
out)

S0[(2ν
(i)
in − ν

(i)
out)t+ (2ϵ

(i)
in − ϵ

(i)
out)]

+
21

8(2ν
(i)
in − 3ν

(i)
out)

S0[(2ν
(i)
in − 3ν

(i)
out)t+ (2ϵ

(i)
in − 3ϵ

(i)
out)]

]
,

(4.26)

kout(t) ≈ k
(i)
out +

Gµinm3M2

µout[a
(i)
out]

3ν
(i)
out

α2

[
3

4ν
(i)
out

C0[ν
(i)
outt+ ϵ

(i)
out]

− 3

8(2ν
(i)
in − ν

(i)
out)

C0[(2ν
(i)
in − ν

(i)
out)t+ (2ϵ

(i)
in − ϵ

(i)
out)]

− 21

8(2ν
(i)
in − 3ν

(i)
out)

C0[(2ν
(i)
in − 3ν

(i)
out)t+ (2ϵ

(i)
in − 3ϵ

(i)
out)]

]
,

(4.27)

where

C0[f(t)] ≡ cos[f(t)]− cos[f(t = 0)], (4.28)

S0[f(t)] ≡ sin[f(t)]− sin[f(t = 0)]. (4.29)

Note that λout can be calculated approximately combining the solutions above:

λout ≡
∫ t

0

νout(t
′)dt′ + ϵout =

∫ t

0

√
G(m1 +m2 +m3)

a3out
dt′ + ϵout. (4.30)

In the above expressions and in what follows, the superscript (i) is used to denote
the values for those variables evaluated at the arbitrarily chosen initial epoch (t = 0).

Note also that α denotes a
(i)
in /a

(i)
out below, instead of ain(t)/aout(t) just to simplify the

notation.
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4.2.2 Perturbative analytic expressions for radial velocity

The next task is to derive observable quantities from the solution obtained in §4.2.1,
including variations of the position and radial velocity of the outer body. We focus
on the radial velocity (RV) of the outer star, assuming that the precise RV follow-up
is performed to search for the unseen inner binary after the outer binary is detected.
Since RV method has a great precision up to ∼ 1 m/s for stars brighter than ∼ 10
apparent magnitude in V band (Motalebi et al. 2015), it is feasible to detect tiny
signals due to inner binary.

Because the non-zero inclination iorb of the orbital planes relative to the observer
can change the velocity amplitude by a factor of sin iorb, we assume sin iorb = 1.0
without loss of generality, and obtain the RV of the outer star in barycentric co-
ordinate system:

VRV(t) = F
νout(t)aout(t)√
1− eout(t)2

[eout(t) cosωout(t) + cos[fout(t) + ωout(t)]], (4.31)

where

F ≡ µout

m3

=
m1 +m2

m1 +m2 +m3

. (4.32)

Note that the RV is just VRV sin iorb for the case that sin iorb ̸= 1.0. Neglecting terms
higher than O(e2), we obtain

VRV(t) ≈ F
{
νout(t)aout(t) cos[λout(t)]

+ νout(t)aout(t)kout(t) cos[2λout(t)]

+ νout(t)aout(t)hout(t) sin[2λout(t)]
}
.

(4.33)

Combining with the results in §4.2.1, neglecting O(α5) and O(eα2), equation (4.33)
is approximated by the sum of 9 terms:

VRV ≈
9∑

i=1

Vi. (4.34)

We define the following quantities depending on the frequency:

VKep ≡ V1 + V3 + V7 ≈ V1, (4.35)

Vecc ≡ V2 + V4 ≈ V2, (4.36)

and

Vbinary ≡ V5 + V6 + V8 + V9. (4.37)

The explicit expressions for the frequencies and amplitudes of the 9 terms, and the
definition of VKep, Vecc and Vbinary are listed in Table 4.2, where we use the following
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variables:

VRV,0 ≡ Fν
(i)
outa

(i)
out, (4.38)

p(t) ≈ 9

4

(√
m1

m2

+

√
m2

m1

)−2

F− 1
2α

7
2S0[2(ν

(i)
in − ν

(i)
out)t+ 2(ϵ

(i)
in − ϵ

(i)
out)], (4.39)

∆νout

ν
(i)
out

≈ 3

2

(√
m1

m2

+

√
m2

m1

)−2

α2

[
1− 3

2
F− 1

2α
3
2 cos[2(ϵ

(i)
in − ϵ

(i)
out)]

]
, (4.40)

and

K ≡ VRV,0

(√
m1

m2

+

√
m2

m1

)−2

F− 1
2α

7
2 . (4.41)

Note that in what follows we use K as equation (4.41) rather than the radial velocity
semi-amplitude.

The three terms V1, V3 and V7 constituting VKep basically correspond to the Kepler

motion of the outer body but with their frequencies modified only slightly from ω = ν
(i)
out

due to the presence of the inner binary. Since the frequency difference ∆νout is very
small, the three terms would be degenerate.

The two terms V2 and V4 in Vecc around ω = 2ν
(i)
out come from the second and third

terms in equation (4.33), representing the first order expansion of the true anomaly f
in terms of e and λ. Since they show up always for non-circular orbits, they are not
directly related to the presence of the inner binary.

The remaining four terms V5, V6, V8 and V9 in Vbinary around ω = 2ν
(i)
in represent

the velocity modulation due to the quadrupole moment of the inner binary, and thus
they are the source for the nature of the inner binary. Therefore, we use the word
“signals” referring to Vbinary. Indeed the detection of those signals reveals ν

(i)
in and

K. Since the parameters characterizing the outer orbit, VRV,0, aout and m3 should be
known from VKep, we can estimate m1, m2 and ain separately from Vbinary, or constrain
those parameters even from the upper limits on Vbinary.

While Vbinary is obtained precisely from the perturbation expansion, they can be
derived more qualitatively as follows. Consider a simplified model illustrated in Figure
4.2. If we neglect the motion of the outer body m3 during one orbital period of the
inner binary with Pin ≪ Pout, the force acting on m3 is given by

F =
Gm2m3(

aout − m1

m1+m2
ain

)2 +
Gm1m3(

aout +
m2

m1+m2
ain

)2 . (4.42)

Neglecting O(α3), equation (4.42) reduces to

F ≈ G(m1 +m2)m3

a2out
+

3Gm1m2m3

(m1 +m2)a2out
α2. (4.43)

The first term in the right-hand-side causes the Keplerian motion of m3, and the
second term corresponds to the modulation due to the inner binary. Since the second
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Figure 4.2: A simplified model to derive Vbinary qualitatively. The cross denotes the
center of mass for the inner binary.

term is symmetric with respect to m1 and m2, it induces the modulation of a period
of Pin/2. Therefore, the amplitude of the velocity modulation δV and the frequency
ω are roughly estimated as

δV ≈ 1

m3

[
F − G(m1 +m2)m3

a2out

]
Pin

2
≈ 3πVRV,0F

− 1
2

(√
m1

m2

+

√
m2

m1

)−2

α
7
2 , (4.44)

ω ≈ 2π

Pin/2
= 2νin. (4.45)

These expressions qualitatively reproduce Vbinary.
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symbol value

aout 2.0 au
ain 0.1 au
m1 10.0 M⊙
m2 10.0 M⊙
m3 0.5 M⊙
ein 10−8

eout 10−5

fin π/6
fout 2π/3
ϖin 0.0
ϖout 0.0

Table 4.3: Initial condition for numerical simulation described in Section 4.3

4.3 Comparison of the perturbation solution with

numerical simulation

Before applying our pertubative formulae to the binary system 2M05215658+4359220,
we check their validity and limitation by comparing equations (4.24)-(4.27) and the
radial velocity against the result of numerical simulation based on a public N-body
package rebound. This section focuses on a system with α ≪ 1 and m3 ≪ m1 +m2

whose parameters are summarized in Table 4.3, and the validity in the case of the
binary 2M05215658+4359220 will be considered in Section 5.

Consider first the orbital elements. Figure 4.3 (a) - (c) show the comparison for

aout/a
(i)
out − 1, cosλout, hout − h

(i)
out and kout − k

(i)
out, respectively. As mentioned in the

previous section, since the short-term oscillations reflected in Vbinary are the direct evi-
dence of the inner binary, we also check the corresponding short-period terms hout,short
and kout,short in hout and kout:

hout,short ≡
Gµinm3M2

µout[a
(i)
out]

3ν
(i)
out

α2

[
− 3

8(2ν
(i)
in − ν

(i)
out)

S0[(2ν
(i)
in − ν

(i)
out)t+ (2ϵ

(i)
in − ϵ

(i)
out)]

+
21

8(2ν
(i)
in − 3ν

(i)
out)

S0[(2ν
(i)
in − 3ν

(i)
out)t+ (2ϵ

(i)
in − 3ϵ

(i)
out)]

]
(4.46)
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and

kout,short ≡
Gµinm3M2

µout[a
(i)
out]

3ν
(i)
out

α2

[
− 3

8(2ν
(i)
in − ν

(i)
out)

C0[(2ν
(i)
in − ν

(i)
out)t+ (2ϵ

(i)
in − ϵ

(i)
out)]

− 21

8(2ν
(i)
in − 3ν

(i)
out)

C0[(2ν
(i)
in − 3ν

(i)
out)t+ (2ϵ

(i)
in − 3ϵ

(i)
out)]

]
.

(4.47)
The results are shown in Figures 4.4 and 4.5.

In what follows, we use the subscripts app and sim to denote the quantities from
approximation formulae and numerical simulation, respectively. The upper panel of
Figure 4.3 (a) shows that the fractional modulation amplitude of aout relative to a

(i)
out−1

is O(10−5). The difference between our analytic solution and the numerical result
plotted in the lower panel is about 5 percent of the modulation. The periodic signal at
the frequency νin of the inner binary is also gradually modulated with the frequency
νout.

Figure 4.3 (b) and (c) indicate that cosλout, hout and kout exhibit the very similar
behavior, while their fractional residual amplitudes are significantly smaller than that
of aout.

Figure 4.4 and 4.5 show the comparison for short-term oscillations hout,short and
kout,short, indicating that the fractional deviation of those amplitudes is about 3% at
t ≈ Pout although hout and kout deviates gradually due to the long-term modulation.

Consider next the comparison of the RV. Figure 4.6 compares V1,app (see Table 4.2)
with VRV,sim. As we can see in Figure 4.6, while the major component of the RV can
be explained by V1, the residual shows the presence of the other modes, i.e. V2 to V9 in
Table 4.2. Among the modes in the residual, the short-term oscillations corresponding
to Vbinary include the information of the inner binary.

Figure 4.7 compares Vbinary,app (see Table 4.2) with VRV,sim−(V1,app+V2,app+V3,app+
V4,app + V7,app). The spikes in Figure 4.7 correspond to the short-term spikes in the
residual of Figure 4.6. The Vbinary from approximation shows significant deviation
after about 0.4Pout, however, the amplitude of each spike only deviates about 4% at
t ≈ Pout. Figure 4.8 shows the same plot as Figure 4.7 for longer time. It shows
that the approximation formula is no longer accurate after a long time from the initial
epoch due to the long-term modulation. However, the amplitude of each spike only
deviates about 8% at t ≈ 3.5Pout.

Figures 4.3 to 4.10 confirm that our approximation formulae are sufficiently accu-
rate as long as both α and eccentricities are small enough. Even though the longer-term
modulation starts to dominate the entire amplitude of the signals, the higher-frequency
component of the RV that carries the information of the inner binary can be repro-
duced by our analytic solution within a few percent; see Figure 4.7 and 4.8.

In order to prove that the lower-frequency modulation does not affect the accuracy
of the RV components around at frequency 2νin, we plot Figure 4.9 and 4.10 that are
renormalized adopting the values of all variables at t = 3Pout as their initial values.
They show that the higher-frequency components in our analytic solutions remain
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Figure 4.8: Same as Figure 4.7 but for 0 ≤ t ≤ 5Pout
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Figure 4.10: An enlarged version of Figure 4.9 for 2.5Pout ≤ t ≤ 3.5Pout

accurate at least for a few orbital periods of the inner binary if they are reset at any
arbitrary epoch.



Chapter 5

Application to a binary system
2M05215658+4359220

Thompson et al. (2018) reported the discovery of a binary system 2M05215658+4359220
that consists of a red giant and an unseen massive object. They first searched for sys-
tems exhibiting anomalously large radial accelerations from the Apache Point Observa-
tory Galactic Evolution Experiment (APOGEE) radial velocity data, and selected 200
candidates of binaries. After checking the photometric variations from the All-Sky Au-
tomated Survey for Supernovae (ASAS-SN) data, they identified 2M05215658+4359220
as the most likely binary candidate. Then they performed the radial velocity follow-
up observation with the Tillinghast Reflector Echelle Spectrograph (TRES) on the
1.5 m telescope at the Fred Lawrence Whipple Observatory (FLWO). They obtained
11 spectra with the precision of about 0.1 kms−1 over six months. Since the orbital
period of the system is very close to that of the photometric variations, they assumed
that it is tidally synchronized, therefore the inclination of rotation axis of red giant
irot is equal to the orbital inclination iorb: i ≡ irot = iorb. Then, they estimated the
best-fit parameters of the system (Table 5.1) from the RV data and the spectroscopic
analysis of the red giant.

Thompson et al. (2018) estimated the mass of the unseen companion to bemgiant =

parameter value meaning

Pout 83.205± 0.064 days orbital period
mco 3.2+1.1

−0.4 M⊙ mass of an unseen companion
mgiant 3.0+0.6

−0.5 M⊙ mass of a red giant
eout 0.0048± 0.0026 eccentricity
ϖout 197.13± 32.07 deg longitude of pericentre
sin i 0.97+0.02

−0.14 inclination of the orbital plane

Table 5.1: A list of parameters for the binary system 2M05215658+4359220 (Thomp-
son et al. 2018)
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3.0+0.6
−0.5 M⊙. Since the mass is close to the maximum mass of the neutron star, it could

be a single black hole as well, or even a binary neutron star. Thus we apply our
perturbative result derived in the present analysis to constrain the parameters for the
possible inner binary by setting mgiant = m3 and mCO = m1 +m2. Furthermore we
assume that the inner binary is near-circular and coplanar with the outer orbit.

Under those assumptions, we can constrain the period Pin and mass ratio m2/m1

of the possible inner binary in the 2M05215658+4359220 system. Although K is not
the amplitude of Vbinary itself rigorously, we use K to put a constraint since K well
characterizes the amplitude of Vbinary (see Table 4.2). This is justified using numerical
simulation later. Figure 5.1 shows a contour plot of K computed from equation (4.41)
adopting the parameters in Table 5.1. The color is coded according to the magnitude
ofK, and the plotted contour curves are labelled withK in units of m/s. Note that the
RV normally has a sin i factor if the orbit inclined toward our line of sight, therefore
the signal should be Vbinary sin iorb rigorously although it may not affect much for the
case we consider here (see Table 5.1). The right vertical axis shows the semi-major
axis ratio α corresponding to Pin in the left vertical axis.

We also indicate a dynamically unstable region in gray, following a wildly used
criterion by Mardling & Aarseth (2001):(

ain
aout

)
crit

=
1− eout
2.8

(
(1 +m3/(m1 +m2))(1 + eout)√

1− eout

)− 2
5

≈ 0.272. (5.1)

Even with the current RV follow-up of the system, the data are consistent with a
simple Keplerian orbit of the red giant within the observational precision of ∼ 0.1 km/s
(Thompson et al. 2018). In turn, even the current data exclude the region beyond
Vbinary = 100/ sin iorb ≈ 100 in Figure 5.1. It is very likely that the precision of
the RV measurement over several weeks is significantly better with high-resolution
spectrographs. Thus it would be relatively easy to improve the constraint, or future
RV data might even detect a signature of the presence of the unseen inner binary.

The accuracy of the perturbation formulae, however, is not guaranteed when α be-
comes large. Thus we attempt to check the validity of the constraints using numerical
simulations. Specifically, we consider three cases, black circles labelled A, B, and C in
Figure 5.1, whose parameters are summarized in Tables 5.2 and 5.3. Cases A, B and
C have the same mass ratio m2/m1(= 0.4), but different orbital periods of the inner
binary Pin. Since α monotonically increases with Pin, the accuracy of the approximate
formula should degrade for larger Pin.

Figure 5.2 (a) - (c) compare the RV signals computed with the perturbation formu-
lae and numerical simulations for Case A to Case C. While these figures show that the
entire RV signals are affected by the longer-term modulation with a period of Pout, the
RV component corresponding to the inner binary period is generally underestimated
by a factor of few relative to the numerical result. Furthermore, Vbinary is very similar
to K itself, implying that the different phases among V5, V6, V8, and V9 do not cancel
the overall amplitude of Vbinary. Therefore, the constraints plotted in Figure 5.1 should
be indeed regarded as conservative, and serve as a useful analytical limit on a possible
inner binary.
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Figure 5.1: The estimated RV modulations K due to the inner binary for
2M05215658+4359220 (Eq. (4.41)). Each contour curve is labelled by the value of
K in units of m/s. The gray region specifies the dynamically unstable region calcu-
lated by equation (5.1).



69

parameter value

aout 0.685 au
m3 3.0 M⊙
ein 10−8

eout 0.0048
fin

π
6

fout
2
3
π

ϖin 0.0
ϖout

197.13
180

π

Table 5.2: Initial parameters common for
Cases A to C

parameter value Case

ain 0.11 au A
Pin 7.5 days A
m2/m1 0.4 A
(m1,m2) M⊙ (2.29, 0.91) A
ain 0.13 au B
Pin 10.0 days B
m2/m1 0.4 B
(m1,m2) M⊙ (2.29, 0.91) B
ain 0.16 au C
Pin 12.5 days C
m2/m1 0.4 C
(m1,m2) M⊙ (2.29, 0.91) C

Table 5.3: Initial parameters correspond-
ing to Cases A to C

Also independently of the RV amplitude, it is possible to extract its modulation
frequency:

ν
(i)
in ≡

√
G(m1 +m2)

a
(i)3
in

. (5.2)

Thus if the modulation is detected, one can estimate the semi-major axis of the inner
binary, ain, from νin combined with the total mass of the inner bodies m1 +m2.
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Figure 5.2: Comparison of our approximate formulae against numerical simulation for
the system 2M05215658+4359220 assuming the initial parameters shown in Tables 5.2
and 5.3: (a) Case A, (b) Case B, and (c) Case C.



Chapter 6

Conclusion and future prospect

After LIGO found several close-in binary black-hole systems, many models have been
proposed to explain the formation of such objects (e.g. Belczynski et al. 2012, 2016,
2002, 2007; Bird et al. 2016; Dominik et al. 2012, 2013; Kinugawa et al. 2014, 2016;
O’Leary et al. 2009; Portegies Zwart & McMillan 2000; Rodriguez et al. 2016; Sasaki
et al. 2016, 2018; Tagawa et al. 2016). These scenarios usually assume the presence of
progenitor wide-separation binary black holes, but they are still undetected.

In this thesis, we have developed a methodology to search for an unseen inner
binary from the precise orbital motion of the outer body. We focused on a three-body
system with coplanar near-circular orbits, and derived analytic perturbation formulae
of the orbital elements for the outer body. We have confirmed the validity of our
analytic formulae using numerical simulation.

While these formulae are expected to be applicable for a variety of observational
data, we have examined the radial velocity of the outer body as one of the most feasible
methods, and put a constraint on the binary system 2M05215658+4359220 recently
discovered by Thompson et al. (2018). If the central object inside the system consists
of a binary black hole with roughly equal masses, even the current data turned out to
exclude the the inner binary with more than 12.5 day orbital period. Future precise
RV follow-up observations of this system will either strengthen the constraint or even
detect a signature of the inner binary.

Although our current study assumes a fairly idealized configuration, there are a
couple of known systems that are consistent with the assumption, and more impor-
tantly, our current analytic model will provide a useful analytic constraint on the
system parameter before performing intensive systematic parameter searches using
numerical simulations. This will be particularly useful because Gaia and TESS are
expected to identify ∼ 103 binaries in the future.

There should be future opportunities relevant for our methodology presented in
this thesis. Since it is likely that most of the systems that Gaia or TESS would
discover are not in coplanar near-circular orbits, it is important to generalize our
formulae for eccentric and non-coplanar systems. Specifically, the dynamical formation
scenario (e.g. O’Leary et al. 2009; Portegies Zwart & McMillan 2000; Rodriguez et al.
2016; Tagawa et al. 2016) may provide relatively wider and eccentric binary black
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holes. Thus, this kind of generalization is quite important to test each formation
scenario through observation. We can study these eccentric systems combining both
perturbative approach and systematic numerical simulations.

Besides, in order to accelerate merger time (e.g. Antonini et al. 2014; Blaes et al.
2002; Miller & Hamilton 2002; Silsbee & Tremaine 2017; Thompson 2011) and explain
spin-orbit misalignment (e.g. Liu & Lai 2017, 2018) implied by LIGO observation,
the Lidov - Kozai oscillations (LK oscillations) (Kozai 1962; Lidov 1962) is discussed
widely as a possible origin. In this scenario, eccentricity and inclination oscillations
induced by the LK oscillations lead to highly eccentric orbits and chaotic evolution
of black hole spin axes in a mutually inclined hierarchical triple system. In order to
test the feasibility of this scenario, it will be important to find inclined and eccentric
compact binaries with a tertiary since the systems possibly undergo the LK oscillations.
Generalizing our methodology for finite eccentricity and inclination will also help for
this purpose.

In addition, it may be useful to consider also an unbound configuration (e > 1)
to increase the chance of applications. While the number of triple may be limited,
there is a possibility that stars pass beside unseen binaries more frequently. If Gaia
detects an anomalous motion of star, it will be possible that RV follow-up later finds
the unseen objects including compact binaries. This method is used to estimate the
internal structure of satellites in the solar system during fly-bys of space probes (e.g.
Rappaport et al. 2001). Rappaport et al. (2001) will provide a good resource to extend
our methodology although it requires slight changes.

Finally, application to other class of objects may also be promising. Since this
methodology is equally applicable to any hierarchical three-body system after slight
changes, it is possible to consider broad classes of configurations, including binary
planet for example. Ochiai et al. (2014) find that considerable fraction of planetary
systems containing giant planets form binary planets though planet - planet scattering
and tidal interacrtions. Lewis et al. (2015) discuss the detectablity of them with
transit method. Although the RV modulations of host star due to binary planets
are usually small as already mentioned in Lewis et al. (2015), it may be possible to
detect them depending on the configuration. During the last two decades after the first
discovery of exoplanet, many unexpected planets have been discovered including hot
jupiters, significantly misaligned system, etc. Therefore it is also worth considering
the detection of binary planet through the methodology presented in this thesis.

Apart from the extention of our methodology, it is also practical to perform mock
observations with noises using numerical simulation for a variety of parameter sets. It
is important to understand what condition is required for parameters and noise levels
to distinguish a single black hole and binary black hole from realistic observation.
Applying our methodology to data from mock observation and performing realistic
data analyses, we should study how accurately we can reconstruct orbital parameters
of binary black holes in a variety of condition with current and near future radial
velocity instruments.
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Appendix A

The Hansen coefficients

A.1 Calculating the Hansen coefficients

In order to obtain an appropreate disturbing function R, it is required to calculate
the Hansen coefficients depending on the order of eccentricities we consider. In this
section, we list up the values of them we use to derive the approximate formulae in
the main part of this thesis. The following discussion usually follows Mardling (2013)
and Hughes (1981).

The Hansen coefficients are defined as

X l,m
n (ein) ≡

1

2π

∫ 2π

0

(
r

ain

)l

eimfine−inMindMin (A.1)

and

X
−(l+1),m
n′ (eout) ≡

1

2π

∫ 2π

0

(
R

aout

)−(l+1)

e−imfoutein
′MoutdMout. (A.2)

In order to obtain the approximate disturbing function, it is required to compute the
Hansen coefficients explicitly. This procedure is done as follows. Using the inner and
outer eccentric anomalies Ein and Eout,

r = ain(1− ein cosEin), R = aout(1− eout cosEout), (A.3)

Min = Ein − ein sinEin, Mout = Eout − eout sinEout, (A.4)

sin fin =

√
1− e2in sinEin

1− ein cosEin

, sin fout =

√
1− e2out sinEout

1− eout cosEout

, (A.5)

cos fin =
cosEin − ein
1− ein cosEin

, cos fout =
cosEout − eout
1− eout cosEout

, (A.6)

dMin = dEin(1− ein cosEin) = dEin

(
r

ain

)
, (A.7)

and

dMout = dEout(1− eout cosEout) = dEout

(
R

aout

)
. (A.8)
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Therefore, the Hansen coefficients can be rewritten as

X l,m
n (ein) =

1

2π

∫ 2π

0

rl+1(cos fin + i sin fin)
me−in(Ein−ein sinEin)dEin

=
1

2π

∫ 2π

0

dEin(1− ein cosEin)
l+1

×

(
cosEin − ein
1− ein cosEin

+ i

√
1− e2in sinEin

1− ein cosEin

)m

e−in(Ein−ein sinEin)

(A.9)

and

X
−(l+1),m
n′ (eout) =

1

2π

∫ 2π

0

R−l(cos fout − i sin fout)
mein

′(Eout−eout sinEout)dEout

=
1

2π

∫ 2π

0

dEout(1− eout cosEout)
−l

×

(
cosEout − eout
1− eout cosEout

− i

√
1− e2out sinEout

1− eout cosEout

)m

ein
′(Eout−eout sinEout).

(A.10)

If we expand the integrants in equations (A.9) and (A.10) with respect to ein and
eout up to the order we consider, we can obtain the approximate values of the Hansen
coefficients explicitly. It is known that the the leading order of the Hansen coefficients
are (e.g. Hughes 1981)

X l,m
n (ein) = O(e

|m−n|
in ) (A.11)

and
X

−(l+1),m
n′ (eout) = O(e

|m−n′|
out ). (A.12)

A.2 The list of the Hansen coefficients

In Chapter 3, we neglect the higher order terms than O(e2). Thus, the required
Hansen coefficients are up to O(e). Considering equations (A.11) and (A.12), it is
enough to consider |m− n|, |m− n′| < 2 up to O(ein) and O(eout) for this procedure.
The following is the list of the Hansen coefficients with l = 2 to O(ein) and O(eout).

X2,0
0 (ein) = 1 (A.13)

X2,0
1 (ein) = −ein (A.14)

X2,0
−1 (ein) = −ein (A.15)

X2,2
2 (ein) = 1 (A.16)

X2,2
1 (ein) = −3ein (A.17)

X2,2
3 (ein) = ein (A.18)

X
−(2+1),0
0 (eout) = 1 (A.19)

X
−(2+1),0
1 (eout) =

3

2
eout (A.20)

X
−(2+1),0
−1 (eout) =

3

2
eout (A.21)

X
−(2+1),2
2 (eout) = 1 (A.22)

X
−(2+1),2
1 (eout) = −1

2
eout (A.23)

X
−(2+1),2
3 (eout) =

7

2
eout (A.24)
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Substituting these equations into disturbing function R (see equation (3.179)), we
obtain the approximate disturbing function used in this thesis.



Appendix B

Full comparison with numerical
simulation

The following figures show the comparison between each mode in approximation and
the data from numerical simulation after subtracting the previous mode one by one.
All parameters used in this section are summarized in Table 4.3 and each RV mode is
listed in Table 4.2.
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Figure B.1: Comparison of VRV,sim against V1,app for a system with initial parameters
listed in Table 4.3.
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Figure B.2: Same as Figure B.1 but for VRV,sim − V1,app against V2,app.
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Vi,app against V6,app.
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Vi,app against V7,app.
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Appendix C

Derivation of the Lagrange
planetary equations using variation
of constants

We previously used the Hamilton - Jacobi equation to derive the Lagrange plane-
tary equations. Here, we consider another method called variation of constants for
derivation. The detail discussion is available in many standard textbooks in celestial
mechanics. This section normally follows the descripsion in Kinoshita (2007). Consider
a Hamiltonian H written as

H = HKep −R, (C.1)

where HKep is a Hamiltonian describing the Keplerian motion, and R is a disturbing
function. The canonical equations of motion are

q̇i =
∂H
∂pi

=
∂HKep

∂pi
− ∂R
∂pi

(i = 1, 2, 3) (C.2)

and

ṗi = −∂H
∂qi

= −∂HKep

∂qi
+
∂R
∂qi

(i = 1, 2, 3), (C.3)

where qi are canonical coordinates, and pi are corresponding momenta. Considering
the result for a two-body problem, if R = 0, the solutions can be written by constant
6 orbital elements and time,

qi = fi(c, t), pi = gi(c, t) (i = 1, 2, 3), (C.4)

where fi and gi are solution functions, t is time, and c ≡ (c1, c2, c3, c4, c5, c6) is a set of
6 orbital elements. While c is constant in pure two-body problem, it varies with time
if the perturbations exist. In this case, the time derivative of qi and pi are

dqi
dt

=
∂fi
∂t

+
6∑

j=1

∂fi
∂cj

ċj (C.5)
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and
dpi
dt

=
∂gi
∂t

+
6∑

j=1

∂gi
∂cj

ċj. (C.6)

In order for c to denote the osculating elements,　we can use the following relations:

∂fi
∂t

=
∂HKep

∂pi
,
∂gi
∂t

= −∂HKep

∂qi
(i = 1, 2, 3). (C.7)

Substituting equations (C.5) - (C.7) into equations (C.2) and (C.3), we obtain

6∑
j=1

∂fi
∂cj

ċj = −∂R
∂pi

,
6∑

j=1

∂gi
∂cj

ċj =
∂R
∂qi

(i = 1, 2, 3). (C.8)

After some calculations, equation (C.8) reduces to

6∑
j=1

[ci, cj]ċj =
∂R
∂ci

(i = 1, 2, 3, 4, 5, 6). (C.9)

In equation (C.9), [ci, cj] is called the ”Lagrange bracket” and defined as

[ci, cj] =
3∑

k=1

(
∂fk
∂ci

∂gk
∂cj

− ∂gk
∂ci

∂fk
∂cj

)
. (C.10)

Here, consider taking (a,ϖ, e,Ω, ϵ̃, I) as a set of 6 orbital elements. In general, if
we take an arbitrary canonical coordinates, calculating the Lagrange brackets requires
tedious work. Thus, we consider using the Delauney variables as canonical coordinates
here:

q1
q2
q3
p1
p2
p3

 =



M
ω
Ω

µ
√
Gmtota

µ
√
Gmtota(1− e2)

µ
√
Gmtota(1− e2) cos I

 =



νt+ ϵ̃−ϖ
ϖ − Ω

Ω
µ
√
Gmtota

µ
√
Gmtota(1− e2)

µ
√
Gmtota(1− e2) cos I

 . (C.11)

Then, we obtain the values of the Lagrange brackets as follows:

[a,ϖ] = −[ϖ, a] =
1

2
µνa(1−

√
1− e2), (C.12)

[a,Ω] = −[Ω, a] =
1

2
µνa

√
1− e2(1− cos I), (C.13)

[a, ϵ̃] = −[ϵ̃, a] = −1

2
µνa, (C.14)
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[ϖ, e] = −[e,ϖ] = − µνa2e√
1− e2

, (C.15)

[e,Ω] = −[Ω, e] =
µνa2e√
1− e2

(cos I − 1), (C.16)

[Ω, I] = −[I,Ω] = −µνa2
√
1− e2 sin I, (C.17)

where ν is the mean motion. The other components of the Lagrange brackets have
zero values. Substituting these into the equation (C.9),

1

2
µνa(1−

√
1− e2)ϖ̇ +

1

2
µν

√
1− e2(1− cos I)Ω̇− 1

2
µνa ˙̃ϵ =

∂R
∂a

, (C.18)

−1

2
µνa(1−

√
1− e2)ȧ− µνa2e√

1− e2
ė =

∂R
∂ϖ

, (C.19)

µνa2e√
1− e2

ϖ̇ +
µνa2e√
1− e2

(cos I − 1)Ω̇ =
∂R
∂e

, (C.20)

−1

2
µνa

√
1− e2(1−cos I)ȧ+

µνa2e√
1− e2

(1−cos I)ė−µνa2
√
1− e2 sin Iİ =

∂R
∂Ω

, (C.21)

1

2
µνaȧ =

∂R
∂ϵ̃

, (C.22)

and

µνa2
√
1− e2 sin IΩ̇ =

∂R
∂I

. (C.23)

Note that it is necessary to consider implicit a dependence on ν when evaluating ∂R
∂a

here. Since ν dependence in R is always inside λ ≡ νt+ ϵ̃ in celestial mechanics,

∂

∂ϵ̃
=

∂

∂λ
(C.24)

and
∂R
∂a

=

(
∂R
∂a

)
ν

+
∂R
∂λ

t
ν̇

ȧ
, (C.25)

where
(
∂R
∂a

)
ν
is the a derivative of R with ν fixed. Using equation (C.22), equation

(C.25) reduces to
∂R
∂a

=

(
∂R
∂a

)
ν

+
µνa

2
ν̇t. (C.26)

Therefore, using equations (C.24) and (C.26), equations (C.18) - (C.23) result in the
Lagrange planetary equations (3.129) - (3.134). It is possible to avoid a secular term
in the Lagrange planetary equations using the same technique as that in Chapter 3.
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