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Abstract

Since the discovery of close-in binary black hole with LIGO, the origin and evo-
lution of such systems are active research fields in astrophysics. Current formation
scenarios usually require long-term evolution to achieve coalescence. It implies the
presence of numerous wide-separation binary black holes as progenitors of LIGO’s
black hole analogs. However, the existence of this new population is not yet clear
observationally. Both gravitational wave and direct photometry observations have
difficulty in identifying this kind of systems since they are expected to have neither
detectable gravitational wave signals nor electromagnetic radiations.

In this thesis, as a possible methodology, we propose a new approach to search for
wide-separation binary black holes with radial velocity modulation of the outer star.
Following the perturbation theory for a hierarchical three-body problem in celestial
mechanics, we derive analytic approximation formulae to describe the motion of outer
objects orbiting around an unseen inner binary, including wide-separation binary black
holes. For simplicity, the formulation in this thesis focuses on a triple system with
coplanar and near-circular orbits. This treatment clarifies the origin and characters
of expected observation signals. Although it is for very ideal situations, the currnet
observations imply the presence of such systems. There are a few known systems
relevant for our model; 2M05215658+4359220 and PSR J0337+41715. These formulae
can provide a directly applicable tool for this class of objects.

In order to confirm the validity, we compare the approximate formulae with N-
body numerical simulation. Although these formulae are expected to be applicable for
a variety of observational data, we particularly consider radial velocity as a specific
example. We derive the approximate radial velocity formula of outer body and examine
it with numerical simulation. As a practical application, we derive a constraint on an
unseen companion inside a binary system 2M05215658+4359220 recently discovered
through the radial velocity observation. This constraint reveals that if the unseen
bodies constituting an inner binary have roughly equal masses, even the current data
could exclude the inner binary with more than 12.5 day orbital period. Future radial
velocity follow-up observation will either strengthen the constraint or even detect a
signature of the inner binary.

Since Gaia and TESS are expected to find many binary systems with unseen com-
panions in near future, this radial velocity formulae may be useful to either put a
constraint on these or estimate radial velocity modulations before real follow-up ob-
servation. The detection of wide-separation binary black hole will contribute to the
formation theory currently proposed. Finally, we discuss outlook and future prospects.
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Chapter 1

Introduction

The first direct detection of a gravitational wave (GW) from a binary black-hole (BBH)
merger (Abbott et al. 2016) has convincingly established the presence of very compact
BBHs in the universe. The origin, evolution and distribution of such BBHs are hardly
understood, but several scenarios have already been proposed. The isolated binary
evolution scenario (e.g. Belczynski & Bulik 1999; Belczynski et al. 2012, 2016, 2002,
2007; Dominik et al. 2012, 2013; Kinugawa et al. 2014, 2016) considers that massive
stars like Pop III stars are formed as binary systems, experience supernovae, and
finally evolve into compact binaries including binary black holes. The dynamical
formation scenario (e.g. O’Leary et al. 2009, 2006; Portegies Zwart & McMillan 2000;
Rodriguez et al. 2016; Tagawa et al. 2016) considers that black holes in dense star
clusters experience significant gravitational interactions and binary black holes can be
formed due to occasional capture. The primordial origin scenario (e.g. Bird et al. 2016;
Sasaki et al. 2016, 2018) proposes that abundant primordial black holes are formed in
a very early universe and they finally interacts each other and form binary black holes
through GW emission.

Regardless of such different formation scenarios, however, there should be abundant
progenitor BBHs with wider separations and thus longer orbital periods. Detection
of such unseen BBHs will not only constrain the formation and evolutionary channel
towards the GW emitting BBHs, but also establish a yet unknown species of astro-
physical objects.

Those BBHs do not generate a detectable GW signal until a few seconds before the
final merger. Also they are difficult to be detected directly unless they are surrounded
by appreciable accretion disks. Therefore, the presence of such unseen binaries have
to be searched for through their dynamical influence on nearby visible objects.

Indeed there are a couple of examples that are relevant for such a strategy. One
is a triple system consisting of a white dwarf-pulsar binary and an outer white dwarf
orbiting around the inner binary (Ransom et al. 2014). The system was detected with
the arrival time analysis of the pulsar. Quite interestingly, the inner and outer orbits
of the triple system are near-circular and coplanar; the eccentricities of the inner and
outer orbits are ey, ~ 6.9 x 107 and ey ~ 3.5 x 1072, and their mutual inclination is
i=(1.20 £ 0.17) x 1072 deg.
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The other is a red giant 2M05215658+4359220 with an unseen massive object,
possibly a black hole (Thompson et al. 2018). The system was discovered from a
systematic survey of stars exhibiting anomalous accelerations. The follow-up radial-

velocity (RV) observation indicates that the orbit is also near-circular; ey, = 0.00476+
0.00255.

The two examples are very encouraging, implying that the dynamical search for
unseen companions of visible objects is very rewarding, and even that a near-circular
outer object with a near-circular and coplanar inner binary really exists.

Indeed there are several on-going /future projects that search for unseen companions
around stars. Gaia was launched at the end of 2013, and is performing astrometric
survey for about billion of stars in the Galaxy. Since the astrometry of Gaia has great
astrometric precision especially for bright stars, it can detect a subtle motion of a star
around an unseen object. There are many proposals to search for star — black hole
binaries with Gaia (e.g. Breivik et al. 2017; Kawanaka et al. 2017; Mashian & Loeb
2017; Yamaguchi et al. 2018). Yamaguchi et al. (2018), for instance, estimate that
Gaia can detect 200 — 1000 binaries in 5 year operation.

TESS launched in 2018 is carrying out photometric surveys of near-by stars to
search for transit planets. Masuda & Hotokezaka (2018) propose that TESS will
potentially discover ~ 103 binaries consisting of a star and an unseen compact object
through identifying a relativistic effect in their photometric light-curves.

Thus it is quite likely that Gaia, TESS and other surveys detect numerous binary
systems with an unseen object. Given the LIGO discovery of very tight BBHs, it is
natural to expect that a fraction of those systems are indeed triple systems that host
unseen inner BBHs. Therefore it is important to see if one can distinguish dynamically
between a single black hole and a binary black hole in such triple systems. For that
purpose, we consider the orbital evolution of an outer visible body in a near-circular
and coplanar triple system. While this is a fairly idealized system, there exists at
least one system as we mentioned in the above. Also we can approach the dynamics
of the system analytically by applying a perturbation theory in the hierarchical three-
body problem. This provides a good physical insight on the dynamical behavior of
such systems, and also puts preliminary constraints on the parameter space before
performing an intensive numerical study to unambiguously identify the inner BBHs.

The rest of this thesis is organized as follows. Chapter 2 summarizes the current
observational reports on the binary and triple systems relevant to our study. The
summary of each formation scenario and observing proposals with Gaia and TESS is
also described in Chapter 2. Chapter 3 summarizes the theoretical background for the
research in this thesis. Chapter 4 describes the formulation of the three-body problem
that we adopted, and derives the basic perturbation equations. Here, we also present
the approximate analytic solutions and comparison of them against the result from
numerical simulation. Chapter 5 applies our analytic formulae to put a constraint on
a possible unseen binary inside 2M05215658+4359220 reported in Thompson et al.
(2018), and discusses the validity of the approximation using numerical simulations.
Finally, Chapter 6 is devoted to the summary of result and discussion about future



prospects. Appendices are added in order not to disturb the main part of this thesis.
They summarize the Hansen coefficients, variation of constants method, and show the
full comparison of perturbation and numerical solutions on a term-by-term basis.



Chapter 2

Examples of observed compact
binaries and triples

2.1 Examples of observed compact binary and triple
systems

LIGO’s discovery of close-in binary black hole strongly implies the presence of wide-
separation ones as progenitors although they are not yet discovered. As mentioned in
Chapter 1, this thesis concerns a system consisting of an outer star and inner unseen
binary, and develops a possible methodology to search for wide-separation unseen
binaries via radial velocity modulations of outer star. Thus, the presence of such
systems should be the key issue in the practical application of this methodology.
Indeed, some systems implying the existence of them have already been announced
although the number is currently quite limited. In this section, we briefly summarize
a few examples for compact binary and triple systems. Figure 2.1 shows schematic
illustrations of the binary and triple systems we summarize in this section.

2.1.1 A binary black hole merger GW150914

First, we have a look at the discovery of close-in binary black hole with LIGO since it
first motivates the research in this thesis. In 2016, Abbott et al. (2016) reported the
first detection of gravitational wave event GW150914 from a binary black hole merger
with the Laser Interferometer Gravitational-Wave Observatory (LIGO). LIGO consists
of two observatories at Hanford, WA, and Livingston, LA, to detect gravitational waves
using laser interferometers. On the 14th of September in 2015, the detectors at two
observatories coincidently detected the gravitational wave signals GW150914. After
matched-filter analyses using relativistic models of compact binary waveforms, they
can reproduce the strains due to GW150914 projected onto each detector.
GW150914 signals have the feature that both frequency and amplitude increase
with time and show a sudden disappearance later. The frequency of signals f changes
from 35 Hz to 150 Hz over the time duration of 0.2 sec. Considering this feature, they

4
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Figure 2.1: Schematic illustrations of observed binary and triple systems. The
crosses denote the centre of mass of the system. The triangles denote the centres
of mass of the inner binary: (a) binary black hole merger GW150914, (b) binary
system 2M05215658+44359220 including an unseen companion, (c) triple system PSR
J0337+1715 consisting of an white dwalf - pulsar inner binary and outer white dwarf.
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conclude that GW150914 is likely due to coalescence of two black holes. The whole
scenario they propose is as follows. Due to the loss of the orbital energy via grav-
itational wave emission, the orbit of binary black hole shrinks and exhibits inspiral
motion. During this phase, its orbital separation decreases drastically and gravita-
tional wave emission is highly enhanced and becomes detectable with LIGO. Then,
two black holes collide each other and this merger event is reflected in the signals as
strong strains. After that, a spinning single black hole is formed and the gravitational
wave signals are decaying immediately.

With this scenario in mind, they first try to estimate the mass of each black hole by
computing the charp mass. The charp mass M, which is known to well characterize
the merger event at lower frequencies, is defined as

, (2.1)

(mq + mz)é G

3 3
5 11
_ (mymg)5 _c_[ -3 }

where my and msy are the masses of two black holes, ¢ is the speed of light, G is the
gravitational constant, and f is the frequency of signals. They find that ~ 30 Mg
charp mass explain the data well. Using equation (2.1) and the inequality between the
arithmetic and geometric means:

3
mimsg)s 1 1
M= ﬁ < 4—%(m1 +my) & ﬁ(ml + ma). (2.2)
1 2 :

Thus, ~ 30 M, charp mass reveals the total mass of system mi;+msy 2 70 M. Besides,
they find that the separation of the two black holes ~ 350 km when f ~ 150 Hz.

Then, they proceed a detail parameter survey using about 250000 template wave
forms to find the best-fit values of parameters specifying the system. The parameter
sets cover individual masses from 1 to 99 Mg, total mass less than 100 Mg, and
dimensionless spins up to 0.99. The dimensionless spin is defined as the ratio between
a spin angular momentum of a spinning black hole and maximum spin of it above
which a naked singularity appears. As template waveforms, they use the effective-
one-body formalism, which combine the post-Newtonian approach with results from
black hole perturbation theory and numerical relativity. Table 2.1 lists the best-fit
parameters they found from this procedure.

This discovery has a huge impact on formation theory of such systems. Some
scenarios have already been proposed (e.g. Belczynski et al. 2012, 2016, 2002, 2007;
Bird et al. 2016; Dominik et al. 2012, 2013; Kinugawa et al. 2014, 2016; O’Leary et al.
2009; Portegies Zwart & McMillan 2000; Rodriguez et al. 2016; Sasaki et al. 2016, 2018;
Tagawa et al. 2016) and expect long-time dynamical evolution before an orbit shrinks
and finally reaches coalescence. This fact proposes that there should be many wide-
separation binary black holes as progenitors of GW150914 analogs. Although LIGO
has a great precision within the range around 1 - 1000 Hz, the gravitational waves from
wide-separation ones are expected to be significantly weaker and have lower frequency
than ~ 1 Hz. For example, if orbital period of such a binary is ~ 10 days, the
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’ parameter \ value ‘
Primary black hole mass m; 3677 Mg
Secondary black hole mass my | 291 Mg
Final black hole mass 6271 Mg
Final black hole spin 0.671005
Luminosity distance 4107150 Mpc
Source redshift z 0.097003

Table 2.1: Best-fit parameters for GW150914 with 90% credible intervals. Masses are
given in the source frame. Adapted from Abbott et al. (2016)

expected frequency is only ~ 1076 Hz. Therefore, it may be difficult to observe them
with the current gravitational wave detectors. Without electromagnetic radiation from
the matter surrounding black holes, direct observation is also impossible. This fact
motivates us to develop an alternative method to search for them.

2.1.2 A binary system 2MO05215658+4359220

Second, we move to the discovery of a near-circular binary system containing an unseen
object. This discovery is important bacause such systems can be realistic candidates
to apply our methodology to search for unseen binaries. Many researchers (e.g. Breivik
et al. 2017; Kawanaka et al. 2017; Mashian & Loeb 2017; Masuda & Hotokezaka 2018;
Yamaguchi et al. 2018) propose that binary systems consisting of a star and black
hole should exist and can be observed with Gaia and TESS. The discovery of a binary
system 2M05215658+4359220 is also important as the first sucsessful example.

In 2018, Thompson et al. (2018) report the discovery of a binary system consisting
of a red giant and unseen companion by combining radial velocity and photometric
variation data. They claim that a large collection of binary systems with compact
objects provides good observational data for study on binary stellar evolution models.

They start to search for binary systems with massive unseen companions using
the radial velocity data from the Apache Point Observatory Galactic Evolution Ex-
periment (APOGEE). APOGEE performs near-infrared spectroscopic observation for
more than 10° stars in the Galaxy, providing the radial velocity data useful to search
for the anomalies due to binary motion. The radial velocity anomalies from APOGEE
are useful to pick up possible binaries with unseen companions among huge amount of
stars, although follow-up observations are required to confirm the binaries. They first
calculated the maximum acceleration ay,, for each system using APOGEE data:

ARV
AtRV ’

(max = Max ( (2.3)
where ARV is the difference between two subsequent radial velocity data, and Atgry
is the time interval of two observations. This quantity is useful to determine candi-
dates since large acceleration implies the presence of massive object in system. Using
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| JD-2450000 | Absolute RV (km/s) | Uncertainty(km/s) |

6204.9537 —37.417 0.011
6229.9213 34.846 0.010
6233.8732 42.567 0.010

Table 2.2: Radial velocity measurements for 2M052156584-4359220 from APOGEE.
Adapted from Thompson et al. (2018).

equation (2.3), the mass of companion in each system can be estimated by

GM () G M (Gma) (ARV)?Atry

max "~ ~ M max) ™~ ,
¢ 52 BRVAIR)E M) G

(2.4)

where M (ay.y) is the estimated mass of companion and s is the separation between two
bodies. Since they are interested in binary systems with massive compact objects, they
select in total ~ 200 stars with largest estimated masses M (an.x) as the candidates.

Determining the mass of unseen companions requires precise estimates of the orbital
periods, inclinations, and eccentricities. Since the radial velocity data from APOGEE
are not enough to determine the overall radial velocity curve as shown in Table 2.2, the
authors need radial velocity follow-up observations. Before that, they search for peri-
odic photometric variations in data from the All-Sky Automated Survey for Supernovae
(ASAS-SN). Since periodic variations indicate transit signals, ellipsoidal variations, or
starspots, they provide rough estimates of the orbital periods. Although many candi-
dates show no variations, the authors find some systems showing periodic variations in
data. Among all candidates, they pick up a red giant 2M05215658+4359220, which lies
towards Auriga with Galactic co-ordinates (I,b) = (164.774 deg,4.184 deg), as a feasi-
ble candidate since it shows the longest well-measured photometric variations. They
find that the raw and phased V-band lightcurves for this system from the ASAS-SN
over four observing seasons are consistent with the variations with the period of 83.2
days. Table 2.2 lists up the radial velocity for this system obtained from APOGEE,
showing about 2.9 km/s/day apparent acceleration.

Then, they perform both multi-band photometry and radial velocity follow-up ob-
servations to constrain the orbit and photometric variations further. For photometry
follow-up observation, they use the Post Observatory Mayhill (POM). For radial ve-
locity follow-up observation, they use the spectroscopy with the Tillinghast Reflector
Echelle Spectrograph (TRES) on the 1.5 m Tillinghast Reflector at the Fred Lawrence
Whipple Observatory (FLWO). They find that multi-band photometry show periodic
variations inconsistent with stellar pulsations or ellipsoidal variations but consistent
with spots from the shape of lightcurves. Besides, they find that in total 11 radial
velocity data from TRES are well-fit by a near-sinusoidal curve. Table 2.3 shows the
list of all measured radial velocities from TRES and Figure 2.2 shows the plot for
them. Table 2.4 lists the best-fit orbital parameters they find from TRES.

Table 2.4 shows that the system has a near-circular orbit with the eccentricity
e ~ 0.0048 + 0.0026 and the orbital period P,;, ~ 83.2+0.06 days. The mass function
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| BJD-2450000 | Relative RV(km/s) | Uncertainty(km/s) |

8006.9760 0.000 0.075
8023.9823 —43.313 0.075
8039.9004 —27.963 0.045
8051.9851 10.928 0.118
8070.9964 43.782 0.075
8099.8073 —30.033 0.054
8106.9178 —42.872 0.135
8112.8188 —44.863 0.088
8123.7971 —25.810 0.115
8136.6004 15.691 0.146
8143.7844 34.281 0.087

Table 2.3: Radial velocity measurements for 2M05215658+-4359220 from data with
TRES. In total, 11 spectra were obtained between 10 September 2017 and 25 January
2018. Adapted from Thompson et al. (2018).

’ parameter ‘ value ‘ unit ‘ meaning ‘

P 83.205 + 0.064 days orbital period
T 5811593+ 7.4 BJD — 2450000 pericentre passage
e 0.00476 £ 0.00255 e eccentricity
w 197.13 £ 32.07 degrees argument of pericentre
K 44.615 +0.123 km/s RV semi-amplitude
v —0.389 £+ 0.101 km/s gamma velocity

f(M) 0.766 =+ 0.00637 Mg mass function

Table 2.4: Best-fit orbital parameters from radial velocity follow-up observation with
TRES. Adapted from Thompson et al. (2018).

f(M) in Table 2.4 is computed from the observed variables K, P, and e:

_ K3Porb

JQD) = =22 (1= )z, (2.5)

where K is the radial velocity semi-amplitude. Using equation (3.67), equation (2.5)
reduces to
M, (330 SiIl3 iorb

(Mgiant + MCO)’
where Mco is the mass of unseen companion, iqy, is the orbital inclination, and Mgiant
is the mass of red giant 2M05215658+4-4359220. Therefore, the mass function is widely
used to characterize the mass of unseen companion with the radial velocity observation.
In order to analyze further, they assume that the system is tidally circularized and
synchronized since Py, = Ponot and e =~ 0. Thus, for simplicity, they assume a fully

f(M) =

(2.6)
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Figure 2.2: The radial velocity data for 2M05215658+4359220 from TRES follow-up
observation. An error in each datum is within a filled circle.

] parameter \ value \ meaning ‘
Mco 3.2751 My | mass of companion
Mygiant 3.0708 My | mass of red giant
sin 0.9710% orbital inclination

R 23.875% Re | radius of red giant

Table 2.5: Best-fit parameters from TRES, Gaia, and the SED. Adapted from Thomp-
son et al. (2018).

synchronized and aligned orbit:
Prot - Porb = P, lyot = Lorb = U. (27>

Then, they search for the best-fit model in stellar evolution track with the surface
gravity constraint log g = 2.35+£0.14 from TRES spectroscopy, the giant radius R, the
bolometric luminosity L and the effective temperature T, from Gaia and the spectral
energy distribution (SED). This procedure reveals that best-fit value of companion
mass lies on the range between the maximum neutron star and the minimum black
hole masses from theoretical models. Table 2.5 summarizes the best-fit parameters.

Since log g for this sytem is known to include large systematic uncertainties (2.2 <
logg < 2.6 depending on observation), they also try fitting procedure without the
constraint on logg. Table 2.6 shows the result. However, they conclude that the
best-fit values in Table 2.5 are better since the best-fit log g is found to be too small
(log g =~ 1.715:2) without constraint.

As a result, they reach a conclusion that 2M05215658+4-4359220 is a binary system
consisting of a red giant and a possible black hole. However, there is the possibility
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’ parameter \ value \ meaning ‘
Mco 55752 My | mass of companion
Mgiant 22752 My | mass of red giant
sin¢ 0.65%517 orbital inclination

R 35.8733 Re, | radius of red giant

Table 2.6: Same as Table 2.5 but derived without constraint on log g. Adapted from
Thompson et al. (2018).

that the black hole is actually an unseen binary since it is not yet confirmed as a single
object. Later, supposing that it is a binary rather than a single, we put a constraint
on the binary as a practical application of our methodology.

2.1.3 A triple system PSR J0337+1715

As the final part of this section, we have a look at the discovery of a near-circular
coplanar triple consisting of a white dwarf - millisecond pulsar binary and another
outer white dwarf. If the motion of the outer white dwarf is precisely determined, this
system would provide an ideal situation for our methodology. Thus, it is important
since it implies the existence of the system for which the formulae derived in this thesis
are directly applicable.

In 2014, Ransom et al. (2014) announced the discovery of a hierarchical triple
consisting of a millisecond pulsar PSR J0337+1715, an inner white dwarf, and another
outer white dwarf. As a part of large-scale pulsar survey, they discover a millisecond
pulsar PSR J033741715 having a spin period of 2.73 ms with the Robert C. Byrd
Green Bank Telescope (GBT). Since a millisecond pulsar emits the beams hundreds
of times per second due to its rotation, the spin rate can be measured with high
precision using pulse arriving time. In addition, analysing its delay in detail, it is
possible to obtain the orbital information. At first, this system is considered to be
a binary consisting of a millisecond pulsar and an inner white dwarf, however, the
large timing systematics later reveal that the time delay is composed of two periodic
variations with different periods. This fact shows that this system should be classified
into triple rather than binary. Although two other millisecond pulsars B1257+412
and B1620-26 have already known to have multiple companions, they contain planet-
mass companions. On the other hand, large timing perturbations in PSR J0337+41715
implies more massive tertiary than a planet-mass companion.

In order to constrain the system’s position and orbital parameters, and the ter-
tiary, they perform intensive multi-frequency radio timing campaign using the GBT,
the Arecibo telescope, and the Westerbork Synthesis Radio Telescope (WSRT). The
Arecibo has median arrival time uncertainties of 0.8 us in 10 s. Thus, half-hour inte-
grations achieve a precision of about 100 ns, which makes it possible to achieve one of
the highest known precisions to PSR J0337+1715. They first approximate the motion
as two Keplerian orbits, with the centre of inner binary moving around in the outer
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’ parameter \ value \ meaning
P 2.73258863244(9) ms Pulsar period
P 1.7666(9)(12) x 1072 Pulsar period derivative
T 2.5 x 10% yrs Characteristic age
ar 1.9242(4) 1s Pulsar semi-major axis(inner)
er 6.9178(2) x 1074 Eccentricity (inner)
Wi 97.6182(19) deg Longitude of pericentre(inner)
ao 118.04(3) 1Is Pulsar semi-major axis(outer)
eo 3.53561955(17) x 1072 Eccentricity (outer)
wo 95.619493(19) deg Longitude of pericentre(outer)
i 39.243(11) deg Inclination of invariant plane
i1 39.254(10) deg Inclination of inner orbit
0; 1.20(17) x 1072 deg Angle between orbital planes
0w —1.9987(19) deg Angle between eccentricity vectors
mp 1.4378(13) Mg Pulsar mass
Ml 0.19751(15) Mg Inner companion mass
Meo 0.4101(3) Mg Outer companion mass

Table 2.7: Best-fit system parameters for PSR J0337+1715. Note that values in
parentheses are 1o errors in the final decimal places. Adapted from Ransom et al.
(2014).

orbit. Then, they determine pulse times of arrival (TOAs) using standard techniques
and correct them to the Solar System barycentre at infinite frequency using a precise
radio position obtained with the Very Long Baseline Array (VLBA). The variations
of TOAs are known to have two physical origins. One is the “Rgmer delay”, which is
a geometric effect due to the finite speed of light. The other is the “Einstein delay”,
which is a cumlative effect of time dilation due to the special relativistic transverse
Doppler effect and the general relativistic gravitational redshift. The Rgmer delay
reflects the infomation on both inner and outer orbits.

Then, they plot the arrival timing data from the GBT, the WSRT, and the Arecibo
telescope, and compare them with the Rgmer delays model. They first calculate the
residuals between data and two-Keplerian-orbit approximation. It shows the large
systematic descrepancies up to several microseconds over multiple timescales, showing
the presence of three-body interactions. Actually, these discrepancies contain much
information about masses and geonetry of system. Thus, it is necessary to find param-
eter sets minimizing the difference between measured TOAs and those by three-body
integration. For this purpose, they use the Monte Carlo techniques to obtain the

best-fit parameters. Table 2.7 summarizes the best-fit and derived parameters they
find.

Besides, they suceed in identifying an object with blue colors in the Sloan Digital
Sky Survey (SDSS). The optical spectroscopy reveals that it is consistent with a inner
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white dwarf in the system confirmed by pulsar timing. It also shows that the outer
companion cannot be a low-mass main-sequence star for lack of near- and mid- infrared
excess, implying it should be a white dwarf with an effective temperature less than
20000 K. Therefore, they finally conclude that the system is a triple consisting of a
millisecond pulsar - white dwarf inner binary and another outer white dwarf.

This system is extremely surprising since its orbits are extraordinarily coplanar and
near-circular. The authors propose a possible scenario to form such a system as follows.
In a multiple star system, the most massive star experiences a supernove turning
into a neutron star. Two companions survive the explosion, probably in eccentric
orbits. After ~ 10° yrs, the outermost star evolves and transfers mass onto inner
binary. The angular momentum vectors of inner and outer orbits nearly align due to
the torque during this process. After the outer star evolves into a white dwarf and
another ~ 10% yrs passes, the remaining main sequence star finally becomes a white
dwarf. During this phase, the inner orbit becomes highly circularized and transfers
small amount of mass to a neutron star, speeding up its rotation rate to form a
millisecond pulsar. Then, three-body secular effects have aligned the apsides of two
orbits. Although this scenario is not yet fully confirmed whether or not to work well,
it could produce near-circular and coplanar hierarchical triples if it can really take
place.

2.2 Formation scenarios and observing proposals

Although the formation mechanism of compact binaries is not yet clearly understood,
some scenarios have been proposed. These scenarios are roughly classified into three
categories, isolated binary evolution, dynamical formation in star dense rigions, and
primordial origin. Among these scenarios, the isolated binary evolution and dynamical
formation scenarios are considered to be most promising ones. Since each scenario
has characteristics for produced binaries, it is important to understand them. In
this section, we briefly summarize two major scenarios (i.e. isolated binary evolution
and dynamical formation) and their uniqueness especially on the preferred orbital
parameters.

Besides, recently there are many observing proposals to search for star - black hole
binaries with Gaia and TESS. Since Gaia and TESS have their own preferences for the
property of detectable binaries, the knowledge on them is very useful to presume the
binaries providing the targets to which we will apply our methodology. Thus, we also
briefly summarize Yamaguchi et al. (2018) and Masuda & Hotokezaka (2018), which
are proposals with Gaia and TESS, respectivaly.

2.2.1 Compact binary formation through isolated binary evo-
lution

The isolated binary evolution scenario (e.g. Belezynski & Bulik 1999; Belczynski et al.
2012, 2016, 2002, 2007; Dominik et al. 2012, 2013; Kinugawa et al. 2014, 2016) is
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proposed as a most promising formation mechanism of close binary black holes. Apart
from differences in detail concerns, overall picture of this scenario is summarized as
follows.

This scenaio supposes presence of pre-existing binaries consisting of massive low-
metal stars in the early universe. Since the typical lifetime of massive star is no
more than ~Myrs, the stars in a binary system quickly evolve off main sequence
phases. First, one star in a binary evolves into a super redgiant and increase its
radius drastically. Once the star fills in its Roche robe, significant mass flows into a
companion, increasing the orbital separation and mass of companion. After the star
finishes its super red giant phase, it evolves into a black hole via either direct collapse or
non-violate supernova. During this phase, a star - black hole binary is formed. After a
while, the companion also evolves into a giant phase. If the mass transfer is too strong
to be stable, the unstable mass flow leads to the common-envelope phase, where the
preformed black hole is absorbed by the envelope of the companion giant. During the
common-envelope phase, since the orbital energy is consumed to eject the envelope,
the orbital separation significantly decreases. Eventually, the giant also evolves into
a black hole without a violate supernova. These successive processes preferentially
form a close binary black hole. Since binary interactions such as the mass transfer and
common-envelope phase well circularize an orbit, a typical produced binary tends to
have vary small eccentricity e ~ 0.

Although it is confirmed that this scenario works well to produce close black hole
binaries (e.g. Belezynski et al. 2016; Dominik et al. 2013; Kinugawa et al. 2014, 2016),
there are many uncertainties in physical processes during this scenario. For example,
it is known that violate common-envelope phase often leads to coalescense before
compact binaries are formed although this process is important to form close binaries
that merge within the age of universe. Since the efficiency of common-envelope phase
is not yet clearly understood, this phase would change the surviving rate of close
compact binaries. Even more serious problem raises up from uncertain supernova
physics. Several previous researches (e.g. Belezynski & Bulik 1999; Belczynski et al.
2002; Kinugawa et al. 2014, 2016) found that significant mass loss and large natal
kick due to supernova could produce wide and highly eccentric orbits although it
simultaneously disrupts many binaries. If the direct collapse is really preferable for
massive stars as proposed in Fryer et al. (2012), the natal kick and mass loss may be
almost negligible. Thus, this scenario would produce massive compact binaries with
circular close orbits.

No matter whether or not black hole binaries have initially eccentric orbits, the
gravitational wave emission well circularizes the orbits after a long time evolution.
Thus, the orbits are usually expected to have almost zero eccentricities before coales-
cence. On the other hand, our methodology can detect wide and eccentric binaries
if they exist since the methodology is irrelevant to coalescense. Our methodology
could provide even new hints to understand currently uncertain supernova processes
although careful checks are required to distinguish eccentric binaries formed via the
dynamical formation scenario.
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2.2.2 Compact binary formation through dynamical interac-
tions in star dense region

The dynamical formation scenario (e.g. O’Leary et al. 2009, 2006; Portegies Zwart &
McMillan 2000; Rodriguez et al. 2016; Tagawa et al. 2016) is proposed as a counterpart
of the isolated binary evolution scenario. While the isolated binary scenario requires
pre-existing massive binary systems, the dynamical formation scenario enables single
black holes to form binary black holes via strong gravitational interaction in star
dense region. In this subsection, we have a look at the rough sketch of the dynamical
formation scenario and the characteristics of the produced binaries.

Portegies Zwart & McMillan (2000) explored the possibility that black holes become
close binaries via numerous gravitational scatterings with other members in star dense
region, and estimate merger rate of the products. They found that this scenario could
produce many black hole binaries even if their component black holes do not originally
belong to binary systems. The overall picture of this scenario is summarized as follows.
After all massive stars evolve off into black holes in star dense region such as globular
cluster, black holes become most massive objects there. Since massive objects feel the
dynamical friction strongly and lose kinetic energy, black holes tend to sink into the
inner part of star dense region (e.g. Morris 1993). As a result of the condensation of
black holes around core, many gravitational scattering and capture processes take place
among black holes and other stars, resulting in the formation of binary black holes via
three-body encounters. It is known that black holes preferencially form binary black
holes with other black holes (e.g. Kulkarni et al. 1993). Therefore, the typical products
may be binary black holes. While the close binary black holes become more tightly
bound by superelastic encounter with other objects (e.g. Heggie 1975; Kulkarni et al.
1993), they are eventually ejected after getting the velocities large enough to escape
from star dense region. Majority of these escaping binary black holes may have short
enough orbital periods and high enough eccentricities that gravitational wave emissions
lead them to coalescence within a few Gyrs.

In order to confirm this scenario, Portegies Zwart & McMillan (2000) performed
N-body simulation with GRAPE-4, which is a special purpose computer for the multi-
body problem. They used 2048 equal mass stars, with 1% of them 10 times more
massive than the average (i.e. black holes). As a result, they found that ~ 30% of
in total 204 black holes were ejected from a cluster in the form of binary black holes,
~ 61% were ejected in the form of single black holes, and ~ 8% were retained by the
cluster. The binding energy of binary black holes Ej had a roughly log-flat distribution
within the range of 100057 — 10000kT", where (3/2)kT is mean stellar kiniteic energy
in the cluster. The eccentricities of binaries roughly followed a thermal distirbution
(p(e) ~ 2e) with high eccentricities slightly overrepresented. They also found that
2> 90% of black holes were ejected before the cluster had lost 30% of its initial mass
(roughly within a few Gyrs).

After that, they estimated merger rate within 12 Gyr for typical star dense regions.
The result is listed in Table 2.8. Table 2.8 shows that a variety of binary black holes
may be formed depending on the properties of clusters although massive cluster tend
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log M log 7y 1000kT Jmerge MR
Awterpe | o) | o) | (Re) | M| %) | My
populus 4.5 —-0.4 420 7.9 7.7 0.0061
globular 554+0.5(0.5+0.3 315 150 51 0.0064
nucleus ~ 7 <0 < 3.3 2500 100 0.21
zero-age globular | 6.0+ 0.5 | 0£0.3 33 500 92 0.038

Table 2.8: Typical parameters for each star dense region and expected merger rate.
The M is the total mass and ry; is the virial radius. The fourth column denotes
the separation of binary consisting of two 100 black holes to obtain 1000kT" orbital
energy. The Ny, is the expected number of binary black holes. The fierge is the
fraction of these binaries which merge within 12Gyr. The final column denotes the
contribution to the total black hole merger rate per cluster. Adapted from Portegies
Zwart & McMillan (2000).

to produce tight binaries which merge soon after ejection.

O’Leary et al. (2006) systematically survey the distribution of eccentricities, orbital
energies, and chirp masses for ejected binary black hole mergers. Instead of using ex-
pensive N-body numerical simulation, they consider this scenario using a Monte Carlo
technique to sample interaction rates, and few-body numerical simulation to treat each
interaction. Thus, they succeeded to contain ~ 10° bodies including ~ 500 black holes
depending on models in their calculations. Since the ejected binary black holes are cir-
cularized via gravitational wave emissions, their orbits are normally circular just before
merger even though they tend to have high eccentricities when ejected. O’Leary et al.
(2006) found that the eccentricities of almost all orbits would be less than 0.001 when
their gravitational wave frequencies enter LIGO’s detectable range (~ 10 Hz). They,
however, found that LISA preferencially could detect the binary black holes with their
eccentricities between 0.01 and 1 since LISA would have sensitivity around ~ 1073
Hz. More recent analysis including binary - binary interaction in general relativistic
scheme (Zevin et al. 2018) also predicted that LISA would detect gravitational waves
from binary black holes with eccentricities between ~ 0.00001 and ~ 0.1 with the peak
at ~ 0.001 around 102 Hz.

Therefore, apart from merger, the binary black holes formed dynamically will have
high eccentricities. They found the chirp masses of merging binary black holes range
from ~ 10 to ~ 100 although the distribution highly depend on models. They also
computed the energy distribution of binary black holes ejected before equipartition
using a model. They found that the energy distribution is nearly lognormal with a
peak of ~ 10*kT between ~ 100kT and ~ 10°kT, almost independent of models.
The authors implied the discrepancy from Portegies Zwart & McMillan (2000) might
be due to small number particles in the simulation in Portegies Zwart & McMillan
(2000). Regardless, the results by Portegies Zwart & McMillan (2000) and O’Leary
et al. (2006) may imply the presence of wider separation for ejected binary black holes.
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Rodriguez et al. (2016) investigated the possibility that the progenitor binary black
hole of GW150914 is formed by dynamical scenario. Although they did not calculate
the distribution of orbital parameters since their concern was possible GW150914
progenitors, they found that the possible progenitors tend to have large eccentricities
2 0.5 and relatively wide separation = 0.3 au at ejection. It probably imply the
preference of eccentric and wider orbits indirectly. Interestingly, Rodriguez et al.
(2016) found a temporary hierarchical triple consisting of blackholes among possible
GW150914 progenitors during many scattering events although it was replaced by
binary black holes before ejection. It may imply that this scenario could produce a
hierarchical triple consisting of a star and inner binary black holes even though this
class of objects are not much.

In summary, the dynamical scenario would provide relatively wider and highly
eccentric binary black holes although it is not yet fully confirmed. Although grav-
itational wave emission almost completely circularize the orbits before merger, our
methodology can detect eccentric binaries from this scenario long before coalescence.

2.2.3 Observing proposals for binary systems including black
holes with Gaia

There are many proposals to search for star - black hole binaries using precise astrom-
etry observation with Gaia(e.g. Breivik et al. 2017; Kawanaka et al. 2017; Mashian
& Loeb 2017; Yamaguchi et al. 2018). Yamaguchi et al. (2018) suggest that Gaia
can detect 200 — 1000 binaries dependiong on the parameters in the isolated binary
evolution model within 5 year operation. Since the binaries detected with Gaia will
provide the targets to which we can apply our methodology, it is beneficial to know
which kind of binaries Gaia will detect. In this subsection, we briefly summarize the
proposal Yamaguchi et al. (2018) for this purpose.

First, Yamaguchi et al. (2018) estimate the number of star - black hole binaries in
the Galaxy using the standard isolated binary formation scenario. They use the initial
mass function of stars and binary distribution in terms of mass ratio of component
stars, and estimate the number of binary systems. They assume that the initial sep-
aration distribution of binaries is logarithmically flat, and binary orbits are circular
initially. If the primary collapses into a black hole and the secondary still exists as a
star, they count it as a star - black hole binary. In order to consider spatial distribution
of such systems in the Galaxy, they use the exponentially decreasing number density
in the Galactic plane. Since the systems in the Galactic bulge should not be detected
due to strong interstellar absorption, they do not consider the systems located in the
bulge. For simplicity, they assume that 50% of stellar systems are binaries. Taking
into account the mass transfer and common-envelope phase during evolution, they can
estimate the masses and separations of binary systems after evolution. They consider
several different values of paramaters describing the initial mass function, the binary
distribution for a given mass ratio, the relation between zero-age mass and final black
hole mass, and the common-envelope phase efficiency. They also take into account the
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interstellar extinction to obtain detectable companions with Gaza.
Next, the authors consider the required condition to identify star - black hole binary
systems with the standard errors in Gaia observation. For astrometry observation, we
obtain
(Mpn + Ms)* G P,
M3y 42 (a, D)3’

(2.8)

where Mgy and M, are the masses of black hole and companion, respectively, Py, is
the orbital period, a, is the angular semi-major axis, D is the distance. Thus, it is
necessary to obtain Py, a., D precisely to determine Mpy. Through the discussion
on the standard errors of the observed quantities, the authors found the required
condition for the semi-major axis of binary A:

Mgyn + M,
——Z0

A>10
Mgy

~(my)D = A, (2.9)

where o,(my) is the Gaia standard error of parallax at a given apparent V-band
magnitude my (Gaia Collaboration et al. 2016):

ox(my) = \/—1.631 + 680.82(my ) + 32.7322(my), (2.10)

where
Z(mv) _ 100.4(max[12.09,mv}—15)‘ (211)

Besides, they consider the required condition for semi-major axis from the viewpoint
of orbital period. Considering the result from astrometry observation with Hipparcos,
it is estimated that the standard errors in observed orbital periods are < 10% if the
periods are shorter than 2/3 of the total observation time. Since they consider 5 year
oparation with Gaia in total, the upper limit of orbital period is ~ 3 years. In addition,
since the observation cadence of Gaia is 50 days, the lower limit is 50 days. Therefore,
the required condition for semi-major axis is

max|Aas, A(Pop = 50 days)] < A < A(P,p, = 3 years). (2.12)

As a result, the authors found that in total 200 — 1000 binaries would be detected
with Gaia depending on the values of parameters. They also found that the detectable
binaries would locate within 1 — 10 kpc and the peak would be at 7 kpc. While the
estimated number of binaries increases monotonically within ~ 5 kpc due to larger
volume, it drastically decreases after the peak ~ 7 kpc. The distribution of black
hole mass is sensitive to the parameters, especially the mass ratio of zero-age star and
black hole. The distribution is the decreaing powerlaw within 4 —30 M, in the fiducial
case. However, the maximum mass can reach ~ 100 M, if they assume high efficiency
from zero-age star mass to black hole mass. They also found that the contribution of
companion less massive that 20 M is much smaller than those with larger masses.
Since the mass ratio smaller than 0.3 undergo a strong common-envelope phase, the
orbits might be too small to detect with Gaia.
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In summary, considering the required condition (2.12), Gaia will provide the sys-
tems which have relatively larger orbits with au-scale separations. It will be main
difference between the systems TFESS can detect. Although they do not consider the
mass loss due to the stellar wind, natal kick, and initial eccentricity, they conclude
that the countable black hole masses may not change drastically even including these
effects from the result in Breivik et al. (2017).

2.2.4 Observing proposals for binary systems including black
holes with TESS

Masuda & Hotokezaka (2018) recently point out that TESS will also detect star - black
hole binaries via the photometric variations in light curves. While the typical targets
of Gaia will be ~ 10 Mg, black holes in binary systems with their separations au-scale,
Masuda & Hotokezaka (2018) find that the targets of TESS will be relatively tighter
detached binaries with separations < 0.3au. Thus, TESS will provide complementary
samples of binary systems. In this subsection, we have a look at the observing proposal
Masuda & Hotokezaka (2018).

First, they consider three kinds of effects in lightcurves that unseen massive com-
panions induce. One is the “self-lensing”, which causes pulse-like periodic brightening
due to microlensing during eclipse. Another is the “ellipsoidal variations”, which cause
the phase-curve modulations induced by the change of geometrical shapse of stars due
to tidal forces by massive companions. The other is the “Doppler beaming”, which is
the special relativistic effect and causes the change of shape of light curves. Since they
need consider the required conditions separately from self-lensing effect, they classify
the latter two effects into the phase-curve variation. Although they concentrate on
circular orbits throughaout their paper, this method will also be promising to detect
the eccentric binaries.

Next, they computed the magnitude of each signal for given parameters to esti-
mate the number of stars bright enough to detect the effects above with TESS. They
separately count the number of detectable stars for the self-lensing and phase-curve
variation effects. They define that the self-lensing is detectable if at least two pulses
are observed. They define that the phase-curve variation is detectable if the binary
period is less than half the observing duration. Since they are interested in detached
stable binaries, they exclude the cases that the separation is within the Roche robe or
strong gravitational wave emissions cause rapid orbital decays during observing du-
ration. TESS performs photometric survey for transiting exoplanets around near-by
stars. TESS will observe each sector for 27.4 days with 30 minute cadence usually.
They use these values to estimate the number of targets.

They assume that the self-lensing signals are detectable if the following relation is
satisfied:

o 30 min

—0.5
Jn (ﬂ> > 83, 0. =050 min ( T ) , (2.13)

where sq is the pulse hight, n is the number of pulses, 7 is the expected duration of a
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single pulse, and 039 min is the noise level over 30 minute timescale corresponding to
one cadence. They used 039 min by modifying o7 pour available in Stassun et al. (2018).
Equation (2.13) corresponds to the false-positive rate of ~ 107 (Sullivan et al. 2015).
For the phase-curve variation, they use the following required condition:

[T S
> 104 2.14
30 min (0‘30 min) ’ ( )

where T is the observing duration, s is the amplitude of sine waves corresponding to
phase-curve variation effects. Equation (2.14) also corresponds to the false-positive
rate of ~ 107?. Assuming that the inclination is random and using the TESS input
catalog, which is a list of stars among which the target of TESS will be chosen, they
found that ~ O(107) and ~ O(10%) stars with periods up to ~ 10 days would be
bright enough to detect phase-curve variation and self-lensing, respectively. Since the
self-lensing effect is detectable only when the orbit is quite nearly edge-on, the number
of targets is significantly smaller that that of phase-curve variation.

Next, they consider the occurrencre rate of star - black hole binaries based on two
models. One is the “Field Binary model”, which is a simple estimation constructed
by the combinatation of powerlaw occurence rate of black holes and that of massive
binaries. The other is the “Common-envelope Evolution model”, which consider the
common-envelope phase during evolution. Since they concentrate on large mass ratio,
they need not consider the mass transfer as Yamaguchi et al. (2018). Combining the
occurence rate and the result of searchable stars, they can construct the estimated
number of detectable star - black hole binaries with TESS in terms of the mass of
black hole and the orbital period.

As a result, regardless of the binary occurrence models, they found that TESS
would detect ~ O(10) and ~ O(10%) binaries by self-lensing and phase-curve vari-
ation, respectively. Unlike the binaries which will be detected by Gaia, the tight
binaries with 0.3 — 30.0 day orbital periods will be detected by TESS. They found
that the peak of orbital period was ~ 5 days and the peak of mass was ~ 20 M.
Assuming 0.8 day orbital period and 7 M, black hole, which is the representative value
of X-ray black hole binaries, they estimated 0.25 kpc and 1.3 kpc as the maximum
searchable distances for sun-like companions by self-lensing and phase-curve variation,
respectively.

In summary, while Gaia is expected to detect wide-separation and massive binary
systems beyond 1 kpc, TESS will detect the tight star - black hole binaries in near-by
space. Since the performance of radial velocity method is the best for bright near-by
stars, the binaries that TESS will find may provide good samples for our methodology.




Chapter 3

Perturbation theory to the
three-body problem

3.1 Two body problem

Before moving to the detailed formulation of three-body perturbation theory in celes-
tial mechanics, we start from the simplest case for the motion under the gravitational
interaction, i.e. the two-body problem. Many references are available for the two-
body problem (Brouwer & Clemence 1961; Moulton 1914; Murray & Dermott 2000;
Roy 2005, e.g.). This section specifically follows Murray & Dermott (2000). Con-
sider two point particles with mass m; and my. They interact each other only by the
Newtonian gravitational force.

Figure 3.1 shows the configuration of the system that we consider here. In terms of
an arbitrary Cartesian co-ordinate system (X,Y, 7), the equations of motion for the
two particles are written as follows:

. ("“1 - "“2)
= —Gmyg——= 3.1
7 Mo P— (3.1)
and
. (’1“1 - "“2)
= Gm—= 3.2

where G is the universal gravitational constant, 71 and 75 are the position vectors of
my and may, respectively. We introduce the position vector of the centre of mass R,
and the relative position vector r:

R = Tt mars (3.3)

mi1 + mao

and
T=7T9— 7. (34)

21
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X

Figure 3.1: Two-body system in an arbitrary Cartesian co-ordinates

Using equations (3.3) and (3.4), we rewrite equations (3.1) and (3.2) to separate the
motion of the centre of mass and the relative motion:

R=0 (3.5)
and
. Gmyot T
P=— gt, (3.6)

where my; is the total mass of the system. Equation (3.5) shows the centre of mass
moves with constant velocity.
Taking the vector product of » with equation (3.6), we obtain

rX P =0, (3.7)

thus,
r X7 =h, (3.8)

where h is a constant vector and called the “specific relative angular momentum”.
Equation (3.8) shows that r and 7 always lie on the invariant plane perpendicular to
h. This plane is called the “orbital plane”. Since we are interested in the relative
motion between two bodies, we concentrate on the motion fixed on the orbital plane
using the result from equation (3.8).
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Figure 3.2: Cylindrical co-ordinate system.

Consider a cylindrical co-ordinate system (r, 6, z) with the origin at m as shown
in Figure 3.2. In the cylindrical co-ordinates, we can define basis vectors {#, 0, 2} as

cos 6 R —sinf 0
r=| sinf |, 0= cos 6 ,z=| 0 ]. (3.9)
0 0 1

Using these basis vectors, the position vector 7, the velocity vector 7, and the accel-
eration vector 7 are written as follows:

r =77, (3.10)
Ld
r = %(rr) =7 +rr =717+ 100, (3.11)
and
d .\ i e s A
7= —(r) =it +rr + 700 + 100 + r00
dt
[l (3.12)
= (F —rf)r + {;%(r )}
Using equations (3.10) - (3.12), equations (3.6) and (3.8) become
(i — 12y = — S (3.13)

r2
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and .
hz =r%0%2 = h. (3.14)

The areal element dA is
1 N 1
dA = §|7“72 X rdf0] = §r2d9. (3.15)

Thus, using equation (3.14), the areal velocity dA/dt is written as

dA 1 ,. 1
— = —r“f = —h. 3.16
at 2 T2 (3.16)
Since h is constant, this equation shows that the areal velocity is also constant. This
corresponds to Kepler’s second law.
In order to determine the orbit, we solve equation (3.13). Using u = 1/r and
equation (3.14), 7 and # are given by

f=—r?)— = —h— 3.17
T T (3.17)
and » e
c 2 20U 59 2G7U

Therefore, when we use u instead of r, equation (3.13) reduces to

d*u Gmiot
Thie equations is solved as:

1 h?/Gmy,

r=— /ot (3.20)

u 1+ecos(f —w)’

where e and w are constants of integration and called the “eccentricity” and the
“longitude of pericentre”, respectively. Equation (3.20) shows that when h # 0, the
orbit is ellipse (0 < e < 1), parabola (e = 1) and hyperbola (e > 1) with m; at the
focus (see Figure 3.3). Elliptical orbits correspond to Kepler’s first law.

For an elliptical orbit, we can define semi-major axis a so that a(1—e) and a(1+e¢)
become the minimum and maximum values of r, respectively. The point at which r
takes the minimum value is called the “pericentre” and the point at which r takes the
maximum is called the “apocentre”. If we introduce the “true anomaly” f as 6 — w,
the pericentre and apocentre correspond to f = 0 and f = 7, respectively (see Figure
3.4). The length b in Figure 3.4 is called the “semi-minor axis”. Using the fact that
the summation of distances from two foci is equal for every point on an ellipse, we can
express b in terms of a and e:

a(l+e)+a(l—e) =2+ (ae)? = b=aVv1l—e2 (3.21)
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Figure 3.3: Classification of conical sections depending on eccentricity value.

Figure 3.4: Definition of the eccentric anomaly E. The dashed circle is the circum-
scribed circle of ellipse with its centre at the centre of ellipse O. F and F’ denote the
focus and the empty focus, respectively.
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Using the semi-major axis and true anomaly, equation (3.20) is written as

a(l —e?)

= . 3.22
14 ecos f (322)

This is a conventional expression for the elliptical Keplerian orbit.
Integrating equation (3.16) over one period of an elliptical orbit P, we obtain the

following relation:

1
FhP = / dA = Tab = ma®V1 — €2, (3.23)
ellipse

Using equations (3.20) and (3.22),

h?
Gmtot

=a(l —¢*) — h=+/Gmya(l —e2). (3.24)

Therefore, equation (3.23) becomes

2
47 3

P? a’. (3.25)

GMigot,

Equation (3.25) shows that the orbital period is independent of the eccentricity and
only depends on semi-major axis and the total mass. This is Kepler’s third law.

Since the angle f covers 27 radians during one orbital period, we can introduce a
kind of averaged angular velocity, the “mean motion”:

2
== 3.26
v P ? ( )
which characterizes the Keplerian motion. In terms of a and v, equations (3.24) and

(3.25) are written as
h=va®V1 — e2 (3.27)

and
v2a® = Gmyer. (3.28)

We find that the specific angular momentum h is a constant of the motion. We
next consider searching for another constant of the motion. Taking the scalar product
of 7 with equation (3.6),

. T
r-r= —GmtotF. (329)
Thus,
dC _ d (1., Gmy)
o <2’" - )— - (3:30)

Equation (3.30) shows that C' is a constant of the motion. Since C' denotes the orbital
energy per unit mass, it is called the “wvis viva integral” or “specific orbital energy”.
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Consider writing C' as a function of a, e, and my.. Using equation (3.11), the square
of velocity 72 can be written as

72 =% + (r0)? = % + (rf)?, (3.31)
where § = f + @ = f. Using equations (3.16), (3.22) and (3.27),

rfzg :\/f—iieQ(l—l—ecosf) (3.32)

and .
. rfesinf  wva

r_l—l—ecosf_\/l—e?

1s written as

esin f. (3.33)

Therefore, 72

.9 .9 N\ 2 n2a2 2
=7+ (rf) = (14 2ecos f +¢°)
L—e (3.34)
via? [2a(1 —€?) ) 2 1 '
:1—62[ r _(1_6)}:Gmmt(;_a)'
The specific orbital energy C' is written down using the equations above:
1. GMigoy GMigor
C=(=r"-—""2) =~ : 3.35
(QT r ) 2a (3:35)

This equation shows that the orbital energy of elliptical motion is independent of the
eccentricity and determined only by the semi-major axis and masses.

We have completed deriving the shape of orbit. However, the position of a body at
a given time is still unknown. In order to determine the motion in a two-body problem,
we derive the relation between the position and time as follows. Using equations (3.27),
and (3.33) - (3.34), 7 reduces to

F =72 — (rf)? = %m?ez “(r—a) (3.36)

In order to integrate equation (3.36), we can introduce the “eccentric anomaly” E
instead of the true anomaly f (Figure 3.4).
The equation of a centred ellipse is

T 2 g>2
— =) =1, 3.37
(a) + (b ( )
where a is the semi-major axis, b is the semi-minor axis, and (Z,y) is a set of co-

ordinates in rectangular co-ordinates with the origin at the centre of ellipse (see Figure
3.4). Considering equations (3.21) and (3.37), Figure 3.4 shows

T =acosFE (3.38)
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and
=\ 2
y= \/172 {1— (f) ] =bsinE = aV1 —e?sinE.
a
Thus,
x=rcosf=T—ae=acos E —ae
and

y=rsinf=y=av1l—e2sinFE.

Equations (3.40) and (3.41) immediately lead to the following equations:

r=+va?+y?>=a(l —ecoskE),
V1—e?sinF

sinf:g:
r 1—ecosE ’

f x cosly —e
cosf=—=———.
r 1l—ecoskE

Using the eccentric anomaly, equation (3.36) becomes

. v
F=——
1—ecosFE

This equation can be integrated with respect to £ and we obtain

M=v(t—71)=FE—esink,

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

where M is called the “mean anomaly” and 7 is an integration constant called the
“time of pericentre passage”. The mean anomaly denotes the angle of the averaged
orbital motion. Equation (3.46), “Kepler’s equation”, is an important equation in

celestial mechanics since its solution gives the position of body at a given time.

Since it is known that Kepler’s equation cannot be solved as a simple analytical
function of M, we need use either infinite expansion or numerical calculation. Consider
solving Kepler’s equation with the Fourier expansion. Since £ — M is an odd function
from equation (3.46), it can be expanded as an infinite Fourier series of sine functions:

E—M=esinE = st(e) sin(sM),

s=1
where by(e) are the coefficients depending only on e and given by

2 ™
bs(e) = —/ esin Esin sMdM.
0

™

Using Kepler’s equation and integrating by parts,

™

2 2
bs(e) = — [ cos(sE — sesin E)dE = —J4(se),
s Jo s

(3.47)

(3.48)

(3.49)
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where Jg(se) are the Bessel functions. Therefore, Kepler’s equation can be solved
formally as

E =M+ i g(]s(se) sin(sM). (3.50)

Computing this series, we can determine E for a given M. Note that it is known that
this series diverges if e > 0.6627434 (e.g. Hagihara 1970) although it rapidly converges
for small value of e

Using the formal expansion solution (3.50), we consider writing important func-
tions of f in terms of e and M. We follows Kinoshita (2007) for this procedure.
Differentiating Kepler’s equation with respect to M and using equation (3.42), we
obtain

oF 1 a
= = -, D1
OM 1—ecosE r (3:51)
Using equation (3.22), it leads to
a o
14257 M 3.52
" + Sz:; (se) cos(sM) (3.52)
and
2(1 — €?) &
=—e+ ——F= Js M). 3.53
cos f e+ . ; (se) cos(sM) (3.53)
Differentiating Kepler’s equation with respect to e,
E in K
OF  sin (3.54)

e 1l—ecoskE’

From equation (3.43), we obtain

sin f =1 — 62% =21 — Z ia‘] sin(sM). (3.55)

Later, we can use these formulae to derive the radial velocity formula as a function of
the mean anomaly.

Although we have obtained the relative motion of a body with respect to another
body, it is important to consider the motion of two bodies with respect to the centre
of mass in this system. This can be done as follows. Using equations (3.3) and (3.4),
the position vectors for each body with respect to the centre of mass are

~R=-" 4, (3.56)
mi + msy
and m
rp—R=—"p, (3.57)

mi1 + mo



30 Perturbation theory to the three-body problem

0

Figure 3.5: An orbit of the reletive position vector(left panel) and two orbits with
respect to the centre of mass. The white circle denotes the centre of mass.

Equations (3.56) and (3.57) show that each orbit is the reduced orbit for relative
motion (see Figure 3.5).

Next we consider a Keplerian orbit in three-dimentional space. Although a Kep-
lerian orbit is always fixed on the plane, the orbit is not always on the same plane as
the plane including our line of sight. Additionally, if we consider a system containing
more than two bodies, the orbit is usually no longer fixed on one plane. Thus, it is
important to consider an orbit in an arbitrary Cartesian frame.

Figure 3.6 shows the configuration we consider here. We take an arbitrary reference
plane with the orthogonal unit vectors X and Y, then we can take an unit vector Z
as X x Y. (X, Y, Z) constitutes a set of base vectors. As shown in Figure 3.6, we
need define some angles to express the orbit in a three dimentional space. The angle
I between h and Z is called the “inclination”. When the inclination has non zero
value, the orbit has two intersection points for the reference plane. The point of them
where the body crosses the reference plane from below to above is especially called the
“ascending node”. The angle € between X and the vector towards the ascending node
is called the “longitude of ascending node” Finally, the angle w between the vectors
towards the ascending node and the pericentre is defined. It is called the “argument of
pericentre”. If I — 0, the orbital plane coincides with the reference plane. In this case,
from equation (3.20), w = Q2 + w. We define w as 2 + w even for an inclined case.
The dog-leg angle w is called the “longitude of pericentre”. The set of parameters
(a,e,1,Q,w,T) defines a Keplerian orbit in space. Therefore, these parameters are
called the “orbital elements”. Instead of w, w is often used as one of orbital elements.

Using a set of orbital elements and rotating the co-ordinate system, we can write
down the position of body (X,Y,Z) in the (X,Y,Z) frame. As in Figure 3.6, we

A A

consider setting the frame (&, y, 2) with & towards the pericentre and 2 towards h.
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'?ﬁ“’bericentre

~"ascending node

Figure 3.6: Keplerian orbit with respect to an arbitrary reference plane.

In this frame, the position of orbiting body can be written as

x rcos f
y | =1 rsinf |. (3.58)
z 0

Figure 3.6 shows that we can transform (z,y, z) to (X, Y, Z) combining three rotations
R.(w), R.(I) and R.(Q2) in order, where R;(j) is a rotation around i (i = z,y, z) axis
by j (j = w,I,Q). Thus, we obtain the relation between (z,y,z) and (X,Y,7) as
follows:

X T
A z
where
cos§) —sin) 0
R.(Q) = sinQ cos Q (3.60)
0
1
R, (I)=1 10 cos[ — sm] (3.61)
0 sin/ cosl/
and
COsSw —sinw O
R.(w)=| sinw cosw (3.62)
0
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Equations (3.58) and (3.59) immediately yield

X cos Q cos(w + f) — sin Qsin(w + f) cos [
Y | =r | sinQcos(w+ f)+ cosQsin(w + f)cosI | . (3.63)
Z sin(w + f)sin 1

The orbital velocity V' in the (z,y, z) frame can be written using equations (3.33)
and (3.32):

Vs d rcos f va —sin f
V = X‘;;/ == rsionf :m cosé—{—e : (3.64)

Since (XY, Z) frame is arbitrary, we can define the line towards the ascending node
as X axis. In this frame, 2 = 0 and w = w. Using equation (3.59) to the velocity
vector V' the explicit form of V' in terms of (X,Y, Z) frame is

ra :
—yizsinf

V = R(0)R.(I)R.(w) [ 45 (cos [ +e)
0

va —sin(f + w) —esinw
= ——= | lcos(f + @)+ ecosw]cos ]
1—e [cos(f + w) + ecosw]sin ]

(3.65)

The velocity component of the orbiting body towards our line of sight is called the
“radial velocity”. Since the radial velocity can be directly observed using spectroscopic
analysis, it is worth while to write down it explicitly. If we choose our line of sight as
Z axis, the radial velocity Vzy can be written as

0
va
Vev=V-| O = ——+——cos(f + + e cos w|sin
e V) TV ) e (3.66)

= K [cos(f + w) + ecosw] .

Note that the inclination I is the angle between the line of sight and h in this case
(see Figure 3.7). In equation (3.66), the radial velocity semi-amplitude K is defined
using equations (3.26) and (3.28) as

1
ra A 1 27ertot) 3 .
K= sin/] = sin /. 3.67

1 —e? V1—e? ( P (3.67)

Using equation (3.53), the radial velocity is written as a function of mean anomaly:

va

VRV =

— e2

sin [ [M Cos w Z Js(se) cos(sM)

e
s=1

(3.68)

—2V1 —e?sinw Z 8Jjaise) sin(sM)] .
s=1
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orbit

line of sight

O

Figure 3.7: Schematic illustration for the concept of radial velocity.

The Bessel functions are expanded for x < 1 as

Ji(z) = %x — %x?’ + O(2%), (3.69)
Jo(z) = é:ﬂ + O, (3.70)

and
Ji(z) = O(z") (i > 3). (3.71)

Thus, the radial velocity up to O(e) can be written as
Vkv & [vacos(M + @) + vae cos w cos(2M) — vae sin w sin(2M )] sin 1 (3.72)

or

Vev = [vacos A + vae cos w cos(2\) + vae sin w sin(2\)] sin 7, (3.73)

where A = M + w. M\ is called the “mean longitude”. Since the mean anomaly is
defined as v(t — 7) in equation (3.46), the mean longitude is rewritten as

A=M+w=vt+ (w—vr)=vt+e, (3.74)

where € is called the “mean longitude at epoch”, and often used as one of orbital
elements instead of 7.
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Figure 3.8: A relative motion in two-body system in terms of spherical co-ordinates.

3.2 Perturbation theory

In the previous section, we consider the motion in a two-body system and define
the orbital elements. In a two-body problem, the orbital elements are constant with
time and completely specify an overall motion (i.e., Keplerian motion). However, the
motions of bodies should not follow one specific Keplerian motion if perturbing forces
act on the system.

Even if perturbing forces exist, we can always define the unique orbital elements at
a given time using the instantaneous position and velocity vectors of bodies. These or-
bital elements are called the “osculating elements” since they specify the instantaneous
Keplerian motion, which is the motion that the bodies would follow if the perturbing
force acting on the system were to dissapear suddenly. The osculating elements are
not constant with time.

In this section, we switch to the perturbation theory and derive the “Lagrange
planetary equations”, the differential equations for orbital elements. These equations
are used to describe the motions of bodies in a hierarchical three-body system later.
The perturbation theory is described in many standard textbooks of celestial mechan-
ics (e.g. Brouwer & Clemence 1961; Danby 1988; Moulton 1914; Murray & Dermott
2000; Valtonen & Karttunen 2006). In this section, we specifically follow Valtonen
& Karttunen (2006) and Danby (1988).  Another method called the “variation of
constants” to derive the equations is described in Appendix C.

Consider a Hamiltonian H for a relative motion in a two-body system with a
perturbation potential —R. The R is called the “disturbing function”. The minus sign
is a convention in celestial mechanics. The disturbing function represents any external
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forces, but usually comes from multi-body interaction terms. The Hamiltonian is
written down in terms of spherical co-ordinate system illustrated in Figure 3.8 as

1 2 3 0
2M<pr+—+ Po )—G“m”—R, (3.75)

r2  r2cos?f r

where g is the reduced mass and my, is the total mass. First, we consider the case
that R = 0. The Hamilton-Jacobi equation is

oS oS
LY ( aq) 0, (3.76)

where g = (1,6, ¢) and S is the action. Therefore, for the Hamiltonian H in equation
(3.75) with R = 0, the explicit form of the Hamilton-Jacobi equation is written as

08 | L 1(9S\" 1 (0S\" 1 (0SY’
at  2u [\ or 2\ 00 r2cos? 0 \ 0¢
It is known that the action S is totally separable in a two-body problem. Thus, we
can set

_ Gpie (3.77)

r

S = S,(r) + Sp(6) + So(0) + Si(t). (3.78)

Substituting equation (3.78), equation (3.77) can be separated into the following series
of equations:

ds,
d_tt = —Qq, (379)
s,
d—; = aj, (3.80)
dSp\*  a? )
= .81
<d8> T osze (3:81)
and ,
d T O
( 5 ) + % =2u (041 + G t) ; (3.82)
dr r

where ay, as and g are constants. Integratlng equations (3.79) - (3.82), we obtain

:_a1t+a3¢+/ \/ a3 ag d9+/ \/2u a1+Gum“’t) %dr (3.83)
" cos2f

In order to understand physical meaning of the constants o, as and a3, we consider
the specific angular momentum h using (r, 0, ¢):

r cos 0 cos ¢ r cos 6 cos ¢
h=rxr=| rcosfsing | x — | rcosfsing
) dt .
rsinf rsinf

. : 3.84
0 sin ¢ — ¢sin b cos O cos ¢ ( )

21 —fcosg —@isin@cos@sinqﬁ
¢ cos? 0

I
<
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Thus, ' '

h* = (r*)%(0* + cos® 0¢?). (3.85)

Using equations (3.77) - (3.85), the constants oy, ay and «g are given as

oS
= = 3.86
aq 825 Ha ( )
a3 = py = p(rcos0)?p = ph., (3.87)
9S9\> a2 . .

as = ( 800) + 00339 = (ur®)?(0° + cos® 0¢*) = (uh)>. (3.88)

These equations show that oy, ap and a3 correspond to the orbital energy, the magni-
tude of angular momentum and the z component of angular momentum, respectively.
Thus, they are related to the orbital elements as

_ Gumtot
a; = Y (3.89)
oy = i/ Gmyra(l — e2) (3.90)
and
as = i/ Gmyora(l — e2) cos 1. (3.91)

Since oy, as and ag are constant, it is useful to consider the canonical transforma-
tion which constitutes (o, ag, ag) as the generalized momenta (Py, P, P3). Then, the
corresponding generalized co-ordinates ()1, (2 and ()3 are computed from S as

d
Ql_a_s__t+/ par , (3.92)
oy V2p(ar + Gumie /1) — a3 /12
a8
Q2 = o
(%}
” o . (3.93)
= X _—— s
2/ Vai—a2/cos20  p /7’2\/2,u(oz1—|—Gumtot/r)—a%/’rQ
and 08 o
= ——a , 3.94
©s dag ¢ 3/00829\/04% — a3/ cos? 6 (3.94)
Using equations (3.86) and (3.90),
1 rdr
=—t+ . 3.95
@ VGMyor / V-r?fa+2r —a(l —e?) (3.95)

Introducing a new variable F as r = a(1 — ecos F') and using Kepler’s equation,

3

Q1= —t+ (E —esinFE) = —, (3.96)

Gmtot
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where 7 is the pericentre passage.
Similarly, using equation (3.86) - (3.91), we obtain

dr

Qs = / @ S / . (3.97)
V1—cos2T/cos20 /(Gmie)® ) 72\/—1]a+2/r —a(l —€2)/r?
Using equation (3.63), we obtain the following variable transformation:
sinf = sin(w + f)sin I. (3.98)
Therefore, the first integral in equation (3.97) is
df
/\/1—0082[/(3082(9 =wtf (3.99)

If we use the variable transformation in equation (3.22), the second integral in equation
(3.97) can be written as follows:

dr

&)
=7 3.100
V(Gmtot)3/T2\/—1/a—|—2/7‘—a<1_e2>/r2 f ( )
Combining equations (3.99) and (3.100), we obtain
@ = w. (3.101)

Finally, using (3.88) and (3.91),

I
= ¢ / cos 1d0 . (3.102)
cos?0y/1 — cos? I/ cos? 0

Using equations (3.63) and (3.98),
sin(¢ — ) = tand cot I. (3.103)

The integral in equation (3.102) can be calculated using the variable transformation

above: Id0
/ e —¢— Q. (3.104)
cos? /1 — cos? I/ cos? 0

Thus, equation (3.102) reduces to

Qs = L. (3.105)

As a result, the set of canonical variables (Q1, Q2, @3, P1, Py, P3) is written down
as follows:

1 T

o .

%@ _ G . (3.106)
P 2a

Pz u\/GmtOta(l —e?)

u\/Gmtota(l —e2)cos [
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In terms of these canonical variables, the Hamiltonian is constantly zero.
In celestial mechanics, usually the canonial variables (Q’, P’) called the “Delaunay
variables” are often used. Consider a generating function F(Q, P’):

Gmio
F(Q,P') = (P{ -k ) v(t+ Qi)+ QePy+ Qs (3.107)

Thus, the Delaunay variables are

@ M

Q5 :

Qs | _

P i/ Gmyora(l — €2)

Py i/ Gmyopa(l — €2) cos [

The Hamiltonian in terms of the Delaunay variables is

oF Gy )2
== —%. (3.109)
1

7_[/
This Hamiltonian shows that only @ evolves with time and other variables are con-
stant if the disturbing function R = 0.
If R # 0, the Delaunay variables change with time. In this case, the Hamiltonian
in terms of the Delaunay variables is

Gmyer) 21

r_
H = 257 R. (3.110)

Substituting H’ into the canonical equations for the Delaunay variables and using
equation (3.108), we obtain

(Gmtot ) 2,U3 OR

Q=M= B5 9P (3.111)

Pl = N\/Q%d — gz;l, (3.112)

Qy = = —g—g, (3.113)

p=" G”;tj;g =g “ﬁm%é - SZ;Q, (3.114)
Qy=0= oR (3.115)

_8_P3”
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and
. w(d—e? VG, . o
P = : Gm;\/té ?) cos Ia — & /1G7_nte2ta€c°S[e — i/ Gmygra(l — €?)sin 11
_OR
Qs
(3.116)
Using equation (3.108),
P
N S— A1
a T (3.117)
P/2
e=\1- 7 (3.118)
cosl = %, (3.119)
A= Q)+ Qy+ @, (3.120)
== Q)+ O, (3.121)
and
QO=0Q, (3.122)
Thus,
OR _ _2ya OR _1-¢ OR (3.123)
P a 11/ Gy 0a pien/Gmyora Oe”’ ‘
R~ V1= 8R+ cos [ OR (3.124)
0P pey/Gmygia Oe i/ Gmyora(l — €2) sin [ ol .
1
aR/ — g (3.125)
0P p/Gmyoa(l — €2)sin I 01
OR  OR
= 12
0Qy, O\’ (3.126)
OR O0R OR
_IR IR 12
20, ~ ox T om (3:127)
and OR OR OR IR
_I9R IR  OR 12
20, ~ o om0 (3.128)

Substituting equations (3.123) - (3.128) into equations (3.112) - (3.115), we obtain

2 OR
) V1 — e2 tan L
opp o YIZCOR any IR (3.130)
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, Vi—e}(l—+vV1—-e?)0R V1—-e20R
é=— A s (3.131)
uva’e o\ uva’e Ow

- 1 OR
Q= — 3.132
wra?y/1 —e2sinl 01 ( )

d
= M+ — —(vt)

dt
__20R VI-PQ-VI-@OR  tm) 0R (3.133)
~ uva da pvae de ' uvary/1—e2 0l
and
; tan— OR  OR 1 IR
= wevi-a tom ) —. 3.134
a1 = et (m 8w> pra?y/T — 2sin I 09 (3.134)

Note that a dependence in v is not considered when we calculate R since a and \ are
independent in terms of the Delaunay variables and v only appears in A. The term vt
in equation (3.133) is called secular term since it increases with time. This behaviour
is problematic when we solve this equation either approximately or numerically. In
order to avoid this problem, we introduce the “new longitude at epoch” € as

t
E=\— / vdt'. (3.135)
0
Using € instead of €, equation (3.133) is modified to
E=A—v=M+w—v
2 R, VI—2(1-VI=e?)oR tanl R (3.136)
uva 8@ puvaze de  pva?y/1—e2 01

A series of equations (3.129) - (3.134) and (3.136) are the “Lagrange planetary equa-

tions”, the differential equations for six orbital elements.
Equations (3.130) and (3.131) include e in denominators. It causes singularity

when e — 0. In order to avoid the singularities, it is convenient to define the vertical
and horizontal components of eccentricity:

h = esinw (3.137)

and
k = ecosw. (3.138)

Using these variables, equation (3.130) and (3.131) are modified to

\/7 k tané OR h vV1—e2 OR

—_— = —_—. 3.139
/WCLQ uya%/l—e? ol  pva®1 41 —e2 0A ( )
and
, 1 tan V1— e
o 67% h an; OR k e? JOR (3.140)

1— o o
ura? “on uyaQ V1—e2 0l pra?1++1—e2 0\
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These equations do not include singularities when e — 0.
For equations (3.132) and (3.134), we encounter the same problem as above when
I — 0. This can be avoided by introducing the following variables:

P =sinlsin( (3.141)

and
Q =sin [ cos (. (3.142)

Using these variables, equations (3.132) and (3.134) are modified to

p_ cos | 8_7% B 1 Pcosl (8_R N 8_72) (3.143)
B pra?y/1 —e20Q  pva?y/1 —e2(1+cosl) \Ow O ’
and
g _ cos I IR 1 Qcos [ (8_R+6_R> (3.144)
B pvay/1 —e2 0P pva®\/1 —e2(14cosI) \Ow O\ /)~ '

Again, these equations do not have singularities when I — 0.

3.3 Hierarchical three-body problem

In this section, we consider a system consisting of three point particles with masses
my, me and ms. They interact each other only by the Newtonian gravitational force.
Defining 7y, ro and 73 as the position vectors of mi, ms and ms3 in an arbitrary
Cartesian co-ordinates, the Lagrangian £ of the system is

1

: : r .
L= 577117'% + §m2r§ + §m3r§ +

Gm1m2 Gm1m3 Gm2m3

. 3.145
7o — 1| |z —mi|  |r3— 1y ( )

In what follows, we consider a hierarchcial three-body system as illustrated in Fig-
ure 3.9. A hierarchical three-body system is defined as the system consisting of two
well-separated orbits such that gravitational interactions can be treated as a summa-
tion of the term constructing two Keplerian orbits and a small perturbation on each
orbit. For a hierarchical three-body problem, it is convenient to use the Jacobian
co-ordinates instead of 71, r and r3.

The position vectors rcy, 7 and R in the Jacobian co-ordinates are defined as

miry + MaoToy + M3rs

rem = s (3146)
mia3

r=1Ty— 1T (3.147)

and N
myir moT
R=p;— 122 (3.148)

mia
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outer orbit M3

Figure 3.9: A hierarchical three-body system in terms of the Jacobian co-ordinate
system. The cross denotes the centre of mass for inner binary. The triangle denotes
the centre of mass of system.

where mis = my + my and mqo3 = my + my + m3. The rcy physically means the
position vector for the centre of mass of this system. The r means the relative position
vector of my with respect to m;. The R means the position vector of ms with respect
to the centre of mass of inner binary. Using equations (3.146) - (3.148), we find

rL=TcM — M2, s R, (3.149)
mi2 m123
ro=ron + Ly~ "B R (3.150)
M2 m123
and -
rs=ron + ——R. (3.151)
mi23

Therefore, the Lagrangian (3.145) is written in the Jacobian co-ordinates as

Gm1m2 Gm1m3 Gm2m3

1 1 1 .
L=— e+ =M 4 = four R + ., (3.152
g M2ToM T g HinT T Mot W CTR=far] R=Br Y
where pin = mima/mia, fouw = MaMia/Mass, b1 = mi/maz, and By = —my/mys. The
momenta corresponding to rcy, 7 and R are calculated using L:
oL .
PoM = = = TssToM, (3.153)
rcMm
oL .
= [T, (3.154)

pEW
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and

oL :
P=—=,u:R. 3.155
R Hout ( )
Therefore, the Hamiltonian H of this system is
H=rcm Pom+7 p+R-P—L

_ P < p’ - GleMn) i ( p? B Gml%ﬂout)

 2myas 2 tin || 2fbout |R)| (3.156)
( Gm12m3 Gm1m3 Gm2m3 )
R |[R—por|  |[R=Pir|)

Note that mispy, = myme and myospions = miamg. The equation above shows that
the Hamiltonian H consists of four terms with different physical meanings. The first
term in equation (3.156) corresponds to the constant motion of the centre of mass.
Since it is irrelevant to the motion of bodies due to the gravitational interaction, we
need not consider this term in the following analysis. The second term describes the
Keplerian orbit of the inner binary. This term shows that the Keplerian motion of
the inner binary is equivalent to that for a two-body system consisting of m; and ms.
Thus, we can define the mean motion of inner binary v, as

Gm12
3

in

(3.157)

Vin
a

where ay, is the semi-major axis of the inner binary in the Jacobian co-ordinates. The
third term describes the Keplerian orbit of the outer body mgs around the centre of
mass of the inner binary. Thus, we can define the mean motion of the outer orbit vy
as

G
Vout = ;?123 5 (3158)

out

where aoy is the semi-major axis of the outer orbit in the Jacobian co-ordinates. The
final term in equation (3.156) corresponds to the disturbing function R which describes
the perturbation in a three-body problem:

Gm12m3 Gm1m3 Gm2m3

R: .
|R| |[R—for|  [R—fir|

(3.159)

As a result, we find that
H = (Keplerian motion of inner orbit) — R + (irrelevant to inner orbit)  (3.160)
and

H = (Keplerian motion of outer orbit) — R + (irrelevant to outer orbit). (3.161)
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Figure 3.10: The definition of angles 6., Yin, Oout, Pour in spherical co-ordinates. The
cross denotes the centre of mass for inner binary consisting of m; and msy.

Considering the discussion in the previous section, these equations show that if we
substitute R into the Lagrange planetary equations, we obtain the differential equa-
tions for both inner and outer orbital elements in a three-body system in the Jacobian
co-ordinates.

Since the Lagrange planetary equations are differential equations for the orbital
elements, it is necassary to write down the disturbing function R in terms of orbital
elements rather than position vectors. This has been studied by many researchers (e.g.
Boquet 1889; Brouwer & Clemence 1961; Brown & Shook 1933; Kaula 1962; Le Verrier
1855; Mardling 2013; Murray 1985; Newcomb 1895; Peirce 1849). We specifically follow
the derivation of disturbing function for a coplanar three-body system by Mardling
(2013).

Using multi-pole expansion in terms of the Legendre polynomials (e.g. Binney &
Tremaine 2008), we obtain

= 2 (B Beoss) =12, (5.162)

where R = |R|, r = |r|, P, is the Legendre polynomial of order [, and cosvy =
(r- R)/(rR). Using the addition theorem for spherical harmonics (e.g. Binney &
Tremaine 2008; Jackson 1975):

COS w 1n7 ngn)Y (eouta @OUt)? (3163)
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where Y}, is the spherical harmonic of degree [ and m, and Y} is its complex conjugate.
In equation (3.163), (0in, Yin) and (Gout, Pour) are sets of angles for ms and ms in
spherical co-ordinates with respect to the centre of mass for inner binary consisting
of my; and may, respectively (see Figure 3.10). Thus, the disturbing function R is
expanded to

00 l

4m rt .

R = Guinmfﬂ § § (QZ + 1) Ml (W) Ylm(einy Soin)yim(eouta gpout)a (3164)
=2 m=-1

where the mass factor M; is defined as

-1 _ pl-1 _ my 4 (=1)'mh !

Ml = 1 2 —1 . (3165)

Mo

For a coplanar case, we can take 0, = Oy = 7/2, Yin = fin + @i, and Qo =
fout + @out, where fi, and fou are the true anomalies of inner and outer orbits, respec-
tively, and wy, and w,y,; are the longitudes of pericentre for inner and outer orbits,
respectively. Using the standard definiton of spherical harmonics:

204+ 1 (1 — m)! " i
Vi (6, ) =\/ - EHm;PZ (cos 6™, (3.166)

where P/" is an associated Legendre polynomials, i is the imaginary unit, and e is
the Nepier constant. We use a Roman font here to avoid confusing i and e with the
inclination and eccentricity, respectively. Thus, for a coplanar case,

YZm <g7 fin + win) Yﬁn (g; fout + wout)

— P (0)]2em(fin—fout) gim(@in—wout)
A7 (l + m),[ l ( )] e €

(3.167)

Since P"(z) is explicitly given as

! .

(—1nm 2\m/2 - 1 (25)! 2j—1—

P™ = 1— m/ —1)J . — 7 pHTtiTm 1

P = S e S () () G e (3168)
j=1(l+m+1)/2]

(—1)(”’”)/2M ( ! ) (I + m even) .

P™0) = 24! (I+m)/2 (3.169)
0 (otherwise)
Using the equation above, the disturbing function reduces to
>~ 1 —im fout
R =Gunms » | Y §c§mMZeim<wm—wout>(rleimfm) (QRZH ) (3.170)

=2 m=-1,2
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where
8 (I —m)l(l +m)!
Cim = 57 Yim(7/2. 00 = G = )2 (3.171)
and -
Z Em = Emmim T Emmmt2 T+ Emmax- (3.172)

M=Mmin,2

In equation (3.172), &,, denotes any variables with subscript m. If a system is stable,
(rleimfin) and (e"i™Jfent /RIFL) in equation (3.170) are nealy periodic in the inner and
outer orbital periods, respectively. Therefore, we can expand them further using the
Fourier expansion in terms of the mean anomalies associated with the inner and outer
orbits:

1—¢? :
Limfin __ 1 in 1mfln _ lm mMm
re =a, | —————— X, (e 3.173
(1+€inCOSfin> in Z in) ( )
n=-—o0o0
and
—im fou —(I+1)
e mf t _ a_(l_,’_l) < 1 - e(2)ut ) e_imfout
Rl+1 out 1 + €out COS fout

(3.174)
ou'f—H Z X (1), out) —ln/Mout’

n/=—o0

where M;, and M, are the mean anomalies of the inner and outer orbits, ey, and eqy
are the eccentricities of these orbits. The coefficients X' ™ (ey,) and X, (lH)’m(eout) in
equations (3.173) and (3.174) are called the “Hansen coefficients” (Hughes 1981) and

are expressed as

1 2 r l ) .
X" (em) = —/ <—) Mg =inMin g\ r (3.175)
0

2w Qin

and

11 1 2w R —(1+1)
X;( + )7m(€0ut> / ( ) —1mfout in Mout dMout (3176)

27 Qout

Since the real parts of the integrands in equations (3.175) and (3.176) are even func-
tions and the imaginary parts of them are odd functions for M;, and M., both
Xtm(ey,) and X, (+1),m "(eout) are real. Thus,

(X0 (ew)]” = X5, (em) = XL (ein) (3.177)

and
XD )] = XU (egn) = X H D™ (eou), (3.178)

n —-n
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where the superscript * denotes the complex conjugate. Substituting equations (3.173)
and (3.174) into equation (3.170), and using equations (3.177) and (3.178), we obtain

00 l 00 00
R= SIS SN SN SN 2 Ml X () X (o) €08 Gy,

Qout

=2 m=mupin,2 n=—00 n/=—o00
(3.179)
where o
= — 3.180
“ aout7 ( )
1/2 =0
(o= B =0 (3.181)
1, otherwise
0, 1
M =14 (3.182)
1, [ odd

The argument ¢,,,,,» of cosine function in equation (3.179) is called the “harmonic
angle” and defined as

mnn/ = nMin - n/Mou +m in — Wou
¢ ¢+ m(@in — Four) (3.183)

- n/\in - n/)\out + (m - n)win - (m - n/)woum

where A\, and A\, are the mean longitudes of the inner and outer orbits, respectively.

In order to further calculating R, we consider changing the order of summation
for [ and m in equation (3.179). This procedure can be achieved using the following
relation:

00 l
Z Z glm
=2 m=mpin,2
= [€20 + &) + [E31 + Es3) + [Gao + Eao + Eua) + [E51 + E53 + E55) + -+
=[lo+ &0+ ]+ [+ + ]+t o+ F s+ s+ ]+
= Z Z glma

m=0 l=lpin,2

(3.184)

where
2, m=0

lhin=1¢3, m=1. (3.185)
m, m2>2
Note that in equation (3.184) &;,,, denotes any variables with two subscripts [ and m.
As a result, the final expression of the disturbing function R is

oo o0

R=> > i Ry’ COS Oy (3.186)

m=0n=—ocon’'=—oo
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where

_ G:uint

Qout

Rt > e M X5 (o) X, (eu)- (3.187)

I=lmin,2

Equation (3.187) shows that the dependence of R on ey, eo and « is completely
separated. Therefore, this expression of R is optimal to control the order of these
parameters when calculating an approximate disturbing function. Later, we use this
expression to obtain the quadrupole (I = 2) part of the disturbing function approxi-
mately.



Chapter 4

Result

4.1 Derivation of perturbation equations

As mentioned in Chapter 1, we consdier developing the methodology to search for
a binary black hole through the motion of outer body in a triple. Figure 4.1 shows
a schematic illustration of a hierarchical three-body system that we consider in this
thesis. An outer body of mass ms is orbiting around an unseen inner binary of masses
my and msy, and both orbits are near-circular on a invariant plane.

Following the formulation in Chapter 3, we derive the basic perturbation equations
in terms of the Jacobian co-ordinates. Major variables adopted in this chapter are
summarized in Table 4.1 for clarity.

4.1.1 Basic formulation of the Lagrange planetary equations

The Hamiltonian H of the system illustrated in Figure 4.1 is given by

2 2 G in P2 G ou
H—pCM +(P _ Gmagpt )+< _ GMmagspt t>

 2myas 2ptin 7| 2ftout |R| (4.1)
_ (_Gm12m3 Gm1m3 Gm2m3 ) .
|R| [R—for|  |R—fir|)

where r and R are position vectors of the inner and outer orbits, respectively, in terms

of Jacobian co-ordinates, and p and P are corresponding momenta, r = |r|, R = | R,

Mig = My + Mo, fin = M1Ma/ M2, fouy = M12M3/M2s, and Moz = my + mo + ms.
Thus, the disturbing function R in equation (4.1) is explicitly written as

Gm12m3 Gm2m3 Gm1m3

R = ;
R ’R—ﬁﬁ‘ |R—52"°’

(4.2)

where 5 = my/miy and By = —ma/ms.
Following the derivation in Mardling (2013) (see Section 3.3 for detail), this dis-
turbing function for a coplanar case can be written explicitly as an infinite series of

49
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] symbol meaning ‘
ri(i=1,23) position vector of m;(i = 1,2, 3) in arbitrary reference frame
r=7rs—17; position vector of inner orbit in Jacobian co-ordinate system

miTy + mar .- .- . .
R=p,— 122 position vector of outer orbit in Jacobian co-ordinate system

mi2
mig = My + Mo
M3 = M1 + My +mg3
Hin = m1m2/m12
Hout = m3m12/m123
a
QO = Qi /Gout
pr = m1/77112

52 —tm2/m12
)\E/ydt’—l—ezl/t—i—%
0
w
-1 |
m; -+ (—=1)'m
Ml_ 1 (l_l)
. e
EE)\—/ vdt’
~ 0
E=AN—ut
e
h=esinw
k=ecosw
Vin = /Gmia /a3,

total mass of inner binary

total mass of system

reduced mass of inner binary

reduced mass of three-body system

semi-major axis

O]

. . . . : i
semi-major axis ratio; after Section 4.2, a = ai(n) [

mean longitude

longitude of pericentre

new mean longitude at epoch

mean longitude at epoch
eccentricity

mean motion of inner binary
mean motion of outer body

Table 4.1: Definitions of major variables in the present analysis.
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T  Outer body

Inner binary

Figure 4.1: Schematic illustration of a coplanar and near-circular triple system. The
relative position vectors r and R are defined in the Jacobian coordinate.

cosine functions:

R = i i i Rnnn' COS Oprnnt - (4.3)

m=0n=—ocon’=—oo

The coefficients of the disturbing function in the right-hand-side of equation (4.3) are
further expanded as

G,uinm?)

Rmnn’ = Z CmCZQlialXTlim(ein)X_(H_l)Jn(eout)y (44)

n/
a
Ol pyin,2

where the sum over [ is in steps of two from l,,:
lmin = 3, m = . (45)

Note that we use two indices {in,out} to indicate the inner and outer orbits, respec-
tively.
The arguments of the cosine function in equation (4.3) are defined as

¢mnn’ = 7/L)\in - nl>\out + (m - n)win - (m - 7/L/)wouta (46)

where A is the mean longitude and w is the longitude of pericentre. Also the coeffi-
cients X" (ey,) and X;,(IH)’m(eout) in equation (4.4) are the Hansen coefficients (see
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Appendix A for detail). The other coefficients in equation (4.4) are defined as

Q= Gin/out, (4.7)
1/2,m =20
G = { / , (4.8)
1,m#0
[ 8
Cim = %—HHW(W/Q,O), (49)
-1 I 1—1
+ (—1
M= Cms (4.10)

My

The Lagrange planetary equations for orbital elements in terms of the disturbing
function R reduce to

da 2 0OR
i 4.11
dt  pva O\ (4-11)
and
de 2 (IR +\/1—62(1—\/1—62)8R (4.12)
dt — juva \ Oa v fixed uva’e de’ '

where we define € and € (see Section 3.3 for detail) through

¢
=\ — / vdt' (4.13)
0

and
€=\ — it (4.14)

Since we now consider near-circular orbits, we use h and k instead of e and @ to
avoid apparent divergent terms in differential equations for e and w. The Lagrange
planetary equations for h and k are wrriten as (e.g. Danby 1988; Moulton 1914; Murray
& Dermott 2000)

. 1 — p2

:anV eﬁ_ua%le\/l—e?g
and
. 1 k 1—e2
po L T afR V-t OR (4.16)
pna’y Oh  pa?vi1 41— e2 0

where h = esinw and k£ = ecosw.

We have two sets of the Lagrange planetary equations both for inner and outer
orbits. We emphasize here that we do not use the orbit-averaged disturbing function,
unlike a conventional analysis for secular evolution, since we are interested in the
short-term modulation in order to identify the signature of the inner binary.
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4.1.2 Perturbation approach to the Lagrange planetary equa-
tions for coplanar near-circular orbits

Next we consider the hierarchical (¢« < 1) and near-circular (e, < 1, €p < 1)
conditions, and approximate the disturbing function, neglecting the higher-order terms
than O(e?) and O(a?). Under this approximation, the disturbing function reduces to
the quadrupole moment part of the potential:

R~ G,LLimgMgaz{ 1

3 3
2 + 2 cos(2Ain — 2Aout) + Z(kout COS Aout + Pout SN Aout)

Qout

1
— §(kzin coS Aip + hin sin Ay, ) — g[kout co8(2Ain — Aout) + Pout SIN(2Ain — Aout )]

9
— Z[kin COS()\in — 2)\out> — hin sin()\in — 2)\out)]
21
+ g[kout COS(Q)\in - 3)\out) - hout Sin(2)\in - 3>\0ut)]
3
+ Z[kin cos(3Ain — 2Xout) + hin Sin(3A, — 2/\0ut)]},
(4.17)
where
hin = €in SIN Wiy, Kin = €in COS Win (4.18)
and
h’out = €out Sin Wout kout = €out COS Wout- (419)

Finally we insert equation (4.17) into the Lagrange planetary equations for outer
orbital elements, and obtain the corresponding perturbation equations explicitly:

3C;,Lbilnrfl?)-/\/l 2 92 .

Gout © ———————a“ sin(2\in — 2Aout ), 4.20
‘ ﬂoutyoutagut ( t) ( )
) 3G pinmsMs

out X — 20211 4+ 3¢08(20m — 2Mout )], 4.21
font 2:uoutVouta§ut ¢ [ - COS( t)] ( )

G pin 3 3 21
hout ~ MOP |:Z COS >\out - g C08(2)\in - /\out) + g C05(2)‘in - 3)\out):| )
(4.22)

3
Nout Vout aout

kout ~ —

Cute. 3 3 21 .
wa2 |:— sin /\out - = Sll’l(2>\in - /\out) - g Sln<2)\in B 3)\out)

4 8
(4.23)

3
Nout Vout aout
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4.2 Analytic solutions to the perturbation equa-
tions

4.2.1 Leading-order solutions

While it is not possible to find rigorous analytical solutions for equations (4.20)-(4.23),
we can solve them iteratively. In practice, we perform the iteration just once, and write
down the approximate analytical solutions:

ou 3G in i i
a(i)t ~ - (1) ,uél) 723/\?)2 (1) 200[2(Vi( () )t + 2( () E)l)lt)L (424>
Aoyt 2/’6011ty0ut [aout] (Vin out)
3 in i
o o el 4 5L 0
,uout(ml + ma + mS) (4 25)
9G i i i i i '
- ";)Wﬁf o0 Sol2(v) — vl )t + 2(el) — €],
4lu’outyout[ out] (Vin out)
i G pinms M 3 i i
hout ~ h(()l)lt + . (-1)3 (2) 2 [ (i) S [ (ggtt + Ec(n)lt]
Hout [aout] Vout 4Vout
3 D _ 0 0 _ 0
. Sol(2v) — Vi)t + (265 — eiue)] 4.26
8(2Vi(r11) (llzt) t t ( )
21 @) ()
+ Sol(2vy, — 3vgy 2 3eou N,
@0 3y [( ot + (2¢ ¢ ]
i G inM M 3 i
Foue (1) & iy + — P00 2 [ o Colvamt + €ou
NOU‘D[ out] Vout 4V0ut
3 .
T Col(2) — S+ (26)) — ey)] 4.27
8(2’/1(111) - Vc(:gt) t ( )
21
- —Col (20l — 300t + (2¢) — 30 ]|
sl s O S
where
Co[f(t)] = cos[f(t)] — cos[f(t = 0)], (4.28)
So[f(¢)] = sin[f(t)] — sin[f(t = 0)]. (4.29)

Note that Ay can be calculated approximately combining the solutions above:

Aout = / Vout (B)dt + €ous = / \/ my + mz + mg)dt’ + €out- (4.30)

out

In the above expressions and in what follows, the superscript (i) is used to denote

the values for those Variables evalua,ted at the arbitrarily chosen initial epoch (¢t = 0).
Note also that a denotes am / oy below, instead of ap,(t)/aou(t) just to simplify the

notation.

out
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4.2.2 Perturbative analytic expressions for radial velocity

The next task is to derive observable quantities from the solution obtained in §4.2.1,
including variations of the position and radial velocity of the outer body. We focus
on the radial velocity (RV) of the outer star, assuming that the precise RV follow-up
is performed to search for the unseen inner binary after the outer binary is detected.
Since RV method has a great precision up to ~ 1 m/s for stars brighter than ~ 10
apparent magnitude in V' band (Motalebi et al. 2015), it is feasible to detect tiny
signals due to inner binary.

Because the non-zero inclination i, of the orbital planes relative to the observer
can change the velocity amplitude by a factor of siniyy,, we assume siniy, = 1.0
without loss of generality, and obtain the RV of the outer star in barycentric co-
ordinate system:

F Vout(t)aout (t [

) =5 e

Cout (1) €COS Wout (1) + o[ fout () + wous (¥)]] (4.31)

where
F= Hout my + Mo

= (4.32)

ms my + mo + Mms

Note that the RV is just Viy siniqy, for the case that siniyg, # 1.0. Neglecting terms
higher than O(e?), we obtain

Vrv(t) ~ F{l/out(t)aout(t) cos[Aout (1)]
+ Vout () Gout (t) Kout () c08[2Aous ()] (4.33)
+ Vout () Gout (t) Pous () SIN[2A0ut (1)] }

Combining with the results in §4.2.1, neglecting O(a®) and O(ea?), equation (4.33)
is approximated by the sum of 9 terms:

9
Viy & Z Vi (4.34)
=1

We define the following quantities depending on the frequency:

VKepEVYl—i_‘/S—i_‘/?%‘/l? (435)
Veee = Vo + Vi = Vo, (4.36)

and
Vbinary = ‘/5 + ‘/6 + ‘/8 + ‘/9 (437)

The explicit expressions for the frequencies and amplitudes of the 9 terms, and the
definition of Viep, Veece and Viinary are listed in Table 4.2, where we use the following
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variables:

Vavo = Frial,, (4.38)
9 my ma\ 1z i i i ;

0 3 (1 J72) 7 Pl o) o 2] — ), (49
Avgye 3 my ma\ 3 1 3 i i
0 5( m—2+ o o’ 1—§F 2002 COS[Q(Gi() gat)] ) (4.40)
out

and

w\»a
MN

(4.41)

e ()

Note that in what follows we use K as equation (4.41) rather than the radial velocity
semi-amplitude.
The three terms Vj, V3 and V7 constituting Vi, basically correspond to the Kepler

motion of the outer body but with their frequencies modified only slightly from w = yglft
due to the presence of the inner binary. Since the frequency difference Av,y is very
small, the three terms would be degenerate. _

The two terms V5 and Vj in V.. around w = 2V(§3t come from the second and third
terms in equation (4.33), representing the first order expansion of the true anomaly f
in terms of e and A. Since they show up always for non-circular orbits, they are not
directly related to the presence of the inner binary. .

The remaining four terms Vi, Vg, Vg and Vy in Viinary around w = 2Vi(111) represent
the velocity modulation due to the quadrupole moment of the inner binary, and thus
they are the source for the nature of the inner binary. Therefore, we use the word

“signals” referring to Viinary. Indeed the detection of those signals reveals v, 0 and
K. Since the parameters characterizing the outer orbit, Vgy o, aou and mg should be
known from Vi.p, we can estimate my, my and a;, separately from Viiary, Or constrain
those parameters even from the upper limits on Viinary-

While Viinary is obtained precisely from the perturbation expansion, they can be
derived more qualitatively as follows. Consider a simplified model illustrated in Figure
4.2. 1f we neglect the motion of the outer body ms during one orbital period of the
inner binary with P,, < Py, the force acting on mj is given by

F— Gm2m3 i Gm1m3 . (442)

2
(aout m1+m2 am) <aout + m1+m2 6Lin)

Neglecting O(a?), equation (4.42) reduces to

G(m1 + mz)mg 3Gm1m2m3 2

(2Jut (ml + my ) acz)ut

F =

(4.43)

[0

The first term in the right-hand-side causes the Keplerian motion of ms, and the
second term corresponds to the modulation due to the inner binary. Since the second
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i Aout
' my
bl — a;
bl o mpAmy
3 >i< I mZ
S ——a
1My @ my+m,

Figure 4.2: A simplified model to derive Viinay qualitatively. The cross denotes the
center of mass for the inner binary.

term is symmetric with respect to m; and ms, it induces the modulation of a period
of P, /2. Therefore, the amplitude of the velocity modulation 6V and the frequency
w are roughly estimated as

1 G Pa -
5V o Lo Glmtmama) Ba oy b (, 5+ /@> ai, (444)
ms At 2 Mo my

BES = 2Up. (4.45)

These expressions qualitatively reproduce