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Abstract

The accurate determination of stellar rotation period P and stellar inclination angle i∗ has been

important in studying the distribution of spin-orbit angle ψ of exoplanetary systems. Spin-

orbit angle ψ is the angle between stellar rotational spin and planetary orbital axis. Unlike our

solar system, some exoplanetary systems show a misalignment between these two axes. Such

misalignment is revealed by the study of a spectroscopic phenomenon, the Rossiter-McLaughlin

effect. Most of the misaligned cases reported are hot Jupiter systems due to the selection bias

of the spectroscopic RM effect. As spectroscopic RM effect is a minor effect, it can only be

detected for systems with giant transiting planets in close orbits. Different theories have been

proposed on the origin of such misalignment. However, consensus has not been reached due to

the limited sample of observations. The determination of the spin-orbit angle ψ for other types

of system is urged.

Nowadays, space missions like CoRoT, Kepler and the TESS provide high quality photometric

data for a large number of stars. The precise determination of stellar inclination angle i∗, as

a complementary constraint on ψ, by the asteroseismic analysis becomes possible. Current

problem encountered by asteroseismic analysis is the bias of parameter estimation for slow

rotators and around i∗ close to 0◦ and 90◦. Our work explores three methods in improving the i∗

measurement. The first one is to use the photometric estimation of rotation period as a prior for

asteroseismic analysis. For this purpose, we examine the three widely used photometric analyses

and then discuss about the suitability of using photometric periods as priors for extracting i∗.

The remaining two methods modify the mostly used strategy in fitting stellar oscillation pattern.

This last part is an ongoing project. Our main findings are summarized as follows:

• Firstly, we measure the rotation period for 91 solar type stars using three photometric

methods. Three photometric analyses show more than 80% consistency within 1σ uncer-

tainty in their measurement. Discrepancy occurs when there are multiple periodic signals

with different period in the light curve. Photometric analyses are not able to distinguish

between the signal of rotation period and that of contamination from other light source.

Hence, we classify our targets into two groups, a reliable Pphoto group (22/91) where tar-

gets have only one dominant peak in their power spectra and a less reliable Pphoto group

(69/91) where multiple signals are found in the light curve of targets.
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• We combine our Pphoto with stellar radius R to give estimations of rotational velocities

v. Then we compare our result with reliable spectroscopic estimations of v sin i∗ for 25

targets, 9 from reliable Pphoto group and 14 from less reliable Pphoto group. Only 2/25

targets from less reliable Pphoto group lie in physically unreasonable region (sin i∗ < 1).

Hence, the reliability of photometric period is validated by spectroscopic analysis.

• Next, we compare our Pphoto with asteroseismic estimations Pastero from Kamiaka et al.

(2018). Kamiaka et al. (2018) also divide their targets into reliable Pastero group and

less reliable Pastero group. A general comparison for all targets gives ∼ 80% consistency.

For targets with reliable Pphoto and Pastero, 7 out of 8 targets show good consistency

within 1σ uncertainty. For the remaining one target, KIC 5773345, we suggest that

either differential rotation or presence of close companion lead to the discrepancy between

estimations from different approaches. Hence, We think that Pphoto are suitable choices

for priors in asteroseismic analysis when they meet two criteria. Firstly, in the power

spectra of photometric analysis of the target, there is only one dominant peak. Secondly,

Pphoto has overlapped 1σ confidence regions with Pastero. From our sample, we identify 3

candidates that fit the requirement, which are one planet hosting star KIC 3425851 and

two planet-less stars KIC 9098294 and KIC 1225851.

• Finally, we attempt additional two methods that might improve the accuracy of the stellar

inclination i measurements using asteroseismic analysis. Firstly, instead of traditional

global fitting, We apply local fitting to slices of power spectrum. Then we average the

posterior samples of inclination angle i∗ using a Hierarchical Bayesian inference. This

method improve the measurement around i∗ ∼ 0◦ and 90◦. However, we spot a large

underestimation of i∗ from input value in the range of i ∈ [20.40◦] with this attempt.

Our second approach is to remove the influence of non-linear relation between the mode

height H and the stellar inclination i∗ from the global fitting. We perform the global

fitting of power spectrum by fitting the mode Height H directly instead of i∗ and then

derive inclination angle independently using posterior arrays of H. This approach aims

to test whether the introduction of non-linear relation between mode height H and i∗

jeopardizes the fitting of spectrum. This attempt does not improve much the results

comparing to traditional global fitting which indicates that the non-linear relation is not

largely responsible for the inaccuracy in asteroseismic estimations.
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Chapter 1

Introduction

Determining the stellar rotation period is important for various fields such as stellar evolution,
stellar dynamo, and the formation and evolution of exoplanetary system. We are particularly
interested in its contribution to determine of spin-orbit angles of exoplanetary systems. In
the following paragraphs, we will start by giving a brief review of current exoplanet detection.
Then we discuss about why the determination of spin-orbit angles is important in exoplane-
tary science. Finally we talk about how the accurate measurement of stellar rotation period
contributes to the estimation of spin-orbit angles.

In 1995, Mayor & Queloz (1995) detected the first exoplanet around a solar type star via
spectroscopic observation of stellar radial velocity. Since then, more attentions were drawn to
exoplanetary science and the number of exoplanets discovered increased in a steady pace. At
that time, the major technique to detect planets was the radial velocity of stars (spectroscopy).
After the Launch of the Kepler telescope (Borucki et al., 2010) in 2009, high quality photometric
data for more than 500,000 stars become available. Regular dips are found in the light curve
(photometric data) of some stars. These dips are considered as the signatures of planets which
occur as the planet move in front of its host star and block a part of the stellar flux. Transiting
signal of planets has since become a powerful indicator of exoplanetary systems. With the help
of this transit method, the number of exoplanets detected starts to soar. Figure 1.1 shows the
cumulative number of planet detection from the late 20th century to now. Nowadays, there are
more than 4000 confirmed exoplanets1, most of which have been discovered by transit method.
The ongoing space mission, TESS (Ricker et al., 2015), has continuously provided us with new
photometric data. We are now in the golden age of exoplanet exploration.

An intriguing discovery that caught our attention is the significant misalignment between the
stellar rotational spin and the planetary orbital axis found in some exoplanetary systems, which
is very different from our solar system. In our solar system, the orbits of planets are nearly co-
planer, and the angles between orbital axes and the solar rotation spin (spin-orbit angles ψ) are
less then 7◦. One might easily expect to see such good alignments for all exoplanetary systems.
However, a spectroscopic phenomenon called the Rossiter-McLaughlin effect (Rossiter, 1924;
McLaughlin, 1924) reveals a different picture. As a star rotates, half of its light is blue shifted
and half is red-shifted. However, when a planet transits its host stars, it blocks the light from
different regions of the apparent disk of the star during its passage. Such blocking breaks the

1NASA Exoplanet Archive: https://exoplanetarchive.ipac.caltech.edu. Accessed date:Dec 2020

1
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2 Chapter 1. Introduction

Figure 1.1: Cumulative histogram for number of planets detected. Figure credits to NASA1.

symmetry and causes a pseudo-shift of the spectral line. This spectroscopic phenomenon is
named the Rossiter-McLaughlin effect.

The Rossiter-McLaughlin effect contains the information of the sky projected spin-orbit angle
λ. By modeling this effect, a wide range of projected spin-orbit angles are reported, with some
systems exhibiting very significant misalignments. Two extreme examples are WASP-7 and
WASP-17: the former system has λ ∼ 90◦, while the latter system has λ > 90◦, meaning
the planet is in retrograde orbit. However, the application of the Rossiter-McLaughlin effect
has its own limitation. Since the Rossiter-McLaughlin effect is just a mild anomaly, it can
only be resolved by high resolution spectrographs. In addition, since the amplitude of such
effect is positively related to the transit depth of the planet, this method has a strong selection
bias towards systems with giant planets in close orbits. Indeed, most systems with reported
λ measurements are hot Jupiter systems which perfectly fit the requirement for the Rossiter-
McLaughlin effect. An important question then follows: is the misalignment confined to a
specific type of exoplanetary systems? To get the answer, we need to examine more exoplanetary
systems, meaning that we have to rely on alternative methods to measure the misalignment.

After the advent of space missions (e.g. Kepler and TESS) at the beginning of this century,
the photometric and asteroseismic analyses become increasingly popular. Reliable estimation
of stellar parameters such as the rotational period and the inclination angle i∗ relative to our
line of sight become possible for a large group of stars. With the additional information, the
spin-orbit angle ψ can then be constrained from a new perspective. For a transiting planet,
we can assume that planetary orbital axis is nearly perpendicular to our line of sight. With
estimation of stellar inclination angle i∗, we can set a lower limit for the spin-orbit angle ψ.

There are two methods to measure the stellar inclination angle i∗. The first one is a composite
method of photometric analysis and spectroscopic analysis. The photometric analysis estimates
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the stellar rotation period P by studying the periodic variation of stellar flux caused by the
rotations of active region on the stellar surface. Then with the help of rotational velocity v sin i∗
from spectroscopic analysis as well as stellar radius R from the stellar evolution model, we can

obtain the stellar inclination angle from i∗ = sin−1
(
v∗ sin i∗Prot

2πR∗

)
(e.g. Hirano et al., 2012, 2014;

Kovacs, Geza, 2018).

The second approach is the asteroseismic analysis. Asteroseismology studies the pulsations of
stars induced by the interplay between gravity and pressure within the star. These stellar oscil-
lations show regular patterns in the power spectrum. The information of the stellar inclination
angle i∗ and stellar rotation period P is encoded in these patterns. Hence, by modeling the
oscillation patterns, we can obtain both parameters. One problem that asteroseismic analysis
faces is a coupling between P and i∗ in the fitting of pulsation model which leads to a possible
bias in the estimation of both parameters. Another problem is the low precision of estimation
when signal to noise ratio is relatively low (see e.g. Kamiaka et al., 2018). A possible solution
to these problems is to provide a reliable prior knowledge of the rotation period P to the fitting.
Photometric analysis of rotation period could potentially be a good candidate for this purpose,
the suitability of which will be discussed in this thesis.

In both methods, the photometric analysis of rotation period P plays an important part. Hence,
in our project, we explore the reliability of photometric analyses by examining the three widely
used photometric methods: Lomb-Scargle periodogram (LS) (Lomb, 1976; Scargle, 1982), Auto-
correlation function (ACF) (see e.g. McQuillan et al., 2014), and wavelet analysis (see e.g.
Torrence & Compo, 1998; Garćıa et al., 2014). Then, we discuss the suitability of using the
photometric period P as the prior in asteroseismic analysis. Finally, we introduce some other
ongoing attempts that we made to improve the asteroseismic estimation of stellar inclination
angle i∗.

This thesis is organized as follows. In Chapter 2, we first discuss about several proposed
theories on the origin of misalignment between stellar spin and planetary orbital axis. Then,
we give a more detail account of the methods to constrain the spin-orbit angle. Finally, we
introduce the current updates in the measurement of spin-orbit angle and our motivation. In
Chapter 3, we estimate the stellar rotation period of 91 solar-type stars with three photometric
methods. Then we examine the reliability of photometric estimations by comparing them with
the spectroscopic and asteroseismic measurements. Finally, we discuss about the suitability
of using the photometric period P as a prior to improve the asteroseismic analysis of stellar
inclination i∗. In Chapter 4, we introduce some other ongoing attempts to improve asteroseismic
analysis. In Chapter 5, we summarize the findings of this thesis and discuss future perspectives
of our study.



Chapter 2

Spin-orbit Angles of Exoplanetary
Systems

2.1 On The Origin of Spin-Orbit Misalignment

The misalignment between the stellar spin and the planetary orbital axis has been one of the
most intriguing discoveries from the exploration of exoplanetary systems. In our solar system,
the solar rotation spin and the planetary orbital axis is nearly aligned, with the spin-orbit angle
ψ ≈ 7◦. The measurement of sky projected spin-orbit angles λ by the Rossiter-McLaughlin
effect indicates that in exoplanetary systems, the spin-orbit angles ψ are diverse. Examples
include WASP-7 which has λ ≈ 90◦ (Albrecht et al., 2011) and HAT-P-7 with λ even larger
than 90◦ (Winn et al., 2009).

As most of the discovered misaligned systems are hot Jupiter systems, the origin of misalign-
ments has been linked with the formation mechanism of hot Jupiter. The two most well known
scenarios are the Lidov-Kozai mechanism and the planet-planet scattering. The Lidov-Kozai
mechanism (Lidov, 1962; Kozai, 1962) states that for a hierarchical triple system where a
near-circular orbit of the inner binary system is perturbed by a distant third body, there will
be a periodic exchange between eccentricity and inclination of the orbit if the initial mutual
inclination between the inner and outer orbits is within the range imut ∈ [icrit, 180◦− icrit] with:

icrit = arccos(

√
3

5
) ≈ 39.2◦. (2.1)

This scenario applies to systems with an orbiting planet and a distant perturber. As the
planet orbits around its host stars, the distant perturber excites the oscillations of orbital
inclination and eccentricity. The periapsis of the planetary orbit moves closer to the star as
the orbit becomes more eccentric. The host star then gradually circularizes the planetary orbit
through their tidal interaction, while leaving the inclination of orbital plane intact. Accordingly,
the planet settles in a close orbit around the star with a large spin-orbit angle (Fabrycky &
Tremaine, 2007; Naoz et al., 2011).

The second scenario is the planet-planet scattering mechanism proposed by Chatterjee et al.
(2008). In a planetary system where multiple giant planets are formed, there are mutual

4
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gravitational interactions among planets. The perturbations increase the orbital eccentricity
to an extent that planetary orbits overlap (Lin & Ida, 1997). The close encounters of the
planets randomize the eccentricity and inclination of their orbits, and consequently tilt the
planetary orbital axes relative to the stellar rotation spin of the central star. The subsequent
circularization combined with occasional large eccentricity could move the giant misaligned
planet to a close-in orbit. As a result, the hot Jupiter system with a spin-orbit misalignment
forms.

Some other theories suggested that the misalignment is not confined to hot Jupiter systems
and could have existed even before planets form. Batygin (2012) proposed that the spin-orbit
misalignment may be a typical outcome of disk migration in binary systems. At the initial state
of the exoplanetary system when planets are not yet formed, the central star of the system is
surrounded by a proto-planetary disk. If the star happens to be in a binary system, its distant
companion could cause a precession of the proto-planetary disk with respect to the stellar
binary orbital axis. Such precession then excites the misalignment between the stellar spin and
the rotation spin of the disk which is later inherited by the planet (see also e.g. Lai et al., 2011).

Bate et al. (2010) alternatively suggested that the misalignment could come from the turbulent
molecular cloud where star and planetary disc form. They proposed that if the planetary
disc is truncated by dynamical encounters, its spin could be tilted relative to the stellar spin.
Consequently, the planet formed from the disc will have a misaligned orbital axis relative to
the rotation spin of its host star. However, this theory is challenged by Takaishi et al. (2020)
who found that the angle between the rotation spins of star and disc always converges to a
value smaller than 20◦, regardless of the initial value.

Observations of projected spin-orbit angle λ reveal an interesting pattern that systems with
hot stars (T > 6100 K) tend to have a wider range of spin-orbit angles ψ than those with cold
stars (see Figure 2.1).

Figure 2.1: Sky-projected spin-orbit angle as a function of the stellar effective temperature for
110 transiting hot Jupiter systems. We define stars with temperature T < 6100K as cool star
and those with T > 6100K as hot star (see e.g. Kraft, 1967). Large spin-orbit misalignments
are observed in systems with hot stars. (Data from TEPCat, Southworth, 2011)

Winn et al. (2010) explained this obliquity pattern using realignment mechanism of cool stars.



6 Chapter 2. Spin-orbit Angles of Exoplanetary Systems

They suggested that hot Jupiter systems begin with a broad range of spin-orbit angles. Cool
stars realign the stellar spins with planetary orbital axes through tidal dissipation in their con-
vective zone. Hot stars with thin convective zone retain their original tilt relative to planetary
orbital spin.

Alternatively, Rogers et al. (2012) proposed a theory using the effect of internal gravity waves.
Rogers et al. (2012) assumed that the stellar rotation spin and planetary orbital axis are rel-
atively aligned initially. Internal gravity waves, which are generated at the layer between the
core and radiative envelope of star, transport the angular momentum outwards. The angular
momentum will eventually dissipate near the stellar surface and change the rotation configu-
rations such as the rotational spin of the star. Such mechanism only applies to hot stars with
mostly radiative envelope, so that only the stellar spin of hot stars could be tilted relative to
planetary orbital axis.

Spalding & Batygin (2015) further elaborated the disc precession scenario brought up by Baty-
gin (2012). They state that the planetary orbit inherited from the proto-planetary disc could
be tilted relative to the rotational axis of their host star under the influence of a distant com-
panion. However, the strong magnetic field of low mass stars, which are usually cool stars
(Gregory et al., 2012; Alecian et al., 2013), realigns the stellar spin and disk. Consequently,
large spin-orbit misalignments are mostly found in systems with hot stars.

The origin of spin-orbit misalignment remains as one of the most intriguing mysteries in exo-
planetary science. More observational data, especially for other types of systems, are urged for
further clarification. In the following section, we introduce mostly used methods to constrain
the spin-orbit angle.

2.2 Methods to Constrain The Spin-Orbit Angle ψ

The spin-orbit angle ψ can not be directly measured. Instead, it is constrained by three
observables, the projected spin-orbit angle λ, the stellar inclination angle i∗, and the planetary
orbital inclination angle, iorb. Figure 2.2 illustrates the geometry of the spin orbit angle ψ.
Z-axis is the line of sight. The stellar spin vector s and planetary orbital spin vector l are
expressed as

s =

 0
sin i∗
cos i∗

 , l =

sin iorb sinλ
sin iorb cosλ

cos iorb.

 (2.2)

The dot product of the two vectors

cosψ = s · l = sin i∗ sin iorb cosλ+ cos i∗ cos iorb, (2.3)

shows the relation between the spin-orbit angle, ψ, and three other parameters.

In the following subsections, we discuss about the current approaches to measure the projected
spin-orbit angle λ, the stellar inclination angle, i∗ and the planetary orbital inclination angle,
iorb respectively.
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Figure 2.2: Schematic illustration of the geometry of star-planet system. The coordinate system
is centered on the star with +Z axis pointing towards observer and +Y axis in the direction
of sky projected stellar spin.The red dot represents the host star of the exoplanetary system.
The red arrow is the stellar rotational spin and the green arrow is the planetary orbital axis.

2.2.1 The Projected Spin-orbit Angle λ

Before the launch of Kepler telescope, modeling the Rossiter-McLaughlin (RM) effect (Rossiter,
1924; McLaughlin, 1924) is the major technique to study the alignment between the stellar spin
and the planetary orbital axis. This method estimates the projected spin-orbit angle λ. The
Rossiter-McLaughlin (RM) effect describes a spectroscopic distortion when a planet transits
its host star. As a star rotates, one of its hemisphere is blue-shifted and the other red-shifted
in the light spectrum. The resulting spectral line is broadened symmetrically. If there is an
orbiting planet, the star wobbles around their common center of mass. The movement causes
a periodic shift of the entire spectral line, the rate of which corresponds to the radial velocity
of the star.

If the orbiting planet happens to transit the star, it will then block part of the stellar flux as it
moves across the apparent stellar disk. If the light from the red shifted region is blocked, the
spectral line will further blue shifted and vice versa. Figure 2.3 illustrates the blocking of the
blue and red shifted light respectively as a planet transits its host star. Such blocking of light
causes an additional pseudo shift of the spectral line. This pseudo shift caused by the transit of
a planet is called the the Rossiter-McLaughlin effect and it appears as a small anomaly on the
radial velocity curve. Figure 2.4 shows the schematic illustration of the radial velocity curve
when a planet transits its host star. The shape of anomalies induced by transits varies as the
projected spin-orbit angles, λ.

By modeling the Rossiter-McLaughlin effect(see e.g. Ohta et al., 2005; Hirano et al., 2011;
Boué et al., 2013), we can then estimate the projected spin-orbit angle λ. However, since the
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Figure 2.3: Pole on views of an exoplanetary system which illustrates of the configuration which
causes the Rossiter-McLaughlin effect. The black circle is the orbit of a planet. In this plot,
an aligned stellar rotation spin and planetary orbital axis is assumed. The stellar inclination
relative to the line of sight is 90◦. As the planet move in front of its host star with respect to
the observer, it blocks a part of light from the star.

Figure 2.4: Schematic illustration of radial velocity anomaly due to the Rossiter-McLaughlin
effect for different values of projected spin-orbit angle λ. λ = 0◦ represents an aligned system.
The blue curve is the radial velocity curve when the planet transits and the dotted line shows
the curve when the planet does not. Figure adapted from Gaudi & Winn (2007).

Rossiter-McLaughlin effect is a mild phenomenon, the detection of it requires high resolution
spectrograph. In addition, since the amplitude of the Rossiter-McLaughlin effect is positively
correlated to the transit depth, this method prefers system with large planets and close in
orbits. Consequently, most estimations of λ are for hot Jupiter systems.
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With the photometric data from Kepler, another way to constrain the projected spin orbit angle
is proposed, which is the modeling of planet’s transit across star spots. In the photometric
data from Kepler, regular dips are observed for some stars. These dips are considered as the
signatures of a planet as it moves across (transits) the apparent disk of its host star. When
the planet happens to transit above a star spot (spot-crossing event), the integrated flux will
slightly increase which cause a small anomaly in the transit dip. By modeling the transit
dipping, the projected spin-orbit angle λ can be obtained (see e.g. Sanchis-Ojeda et al., 2011).
However, since this method only applies when successive spot crossing events are observed, it
has a small applicable range.

2.2.2 The Stellar Inclination Angles i∗

With the launch of Kepler and TESS, photometric data with high precision becomes available
for a large number of stars, which provides the opportunity for a better estimation of the stellar
inclination angles. There are in general two methods to determine the inclination angle i∗. The
first one is a composite method which requires both photometric and spectroscopic analysis
of the star. The second one is the asteroseismic analysis which estimates i∗ by modeling the
oscillation patterns of the pulsating stars.

Composite Method

The composite method requires three parameters, the stellar rotation period P , the projected
stellar rotational velocity v sin i∗ and the stellar radius R∗, from independent measurements.
The derivation of i∗ is given by (see e.g. Winn et al., 2007; Hirano et al., 2014; Kovacs, Geza,
2018)

i∗ = sin−1

(
v∗ sin i∗

2πR∗/Prot

)
, (2.4)

where R∗ is the stellar radius from the stellar evolution model, Prot is the stellar rotation period
from photometric analysis and v∗ sin i∗ is the projected rotational velocity from spectroscopic
analysis. Photometric analysis of stellar rotation period P studies the variation of light curve
caused by active features on the stellar surface. As a star rotates, the active regions like
star spots on its surface also rotate with it, causing a regular variation of flux with period
associated to the stellar rotation period P . There are three major photometric methods which
can extract the period of such variations, which are the Lomb-Scargle periodogram (e.g. Lomb,
1976; Scargle, 1982; Nielsen et al., 2013), the Auto-correlation function (e.g. McQuillan et al.,
2013a) and the wavelet analysis (e.g. Garćıa et al., 2014). These methods have been applied to
a large number of stars in the past literature. For example, McQuillan et al. (2014) measure
stellar rotation period of 34,030 Kepler main-sequence stars using ACF method and Nielsen
et al. (2013) apply LS method to 12,000 Kepler main-sequence stars. The estimation of Prot

using photometric methods is the main part of this thesis which will be discussed extensively
in Chapter 3.

The projected stellar rotational velocity v sin i∗ is determined from the rotational broadening of
the spectral line. To extract the v sin i∗ value, one approach is to study the Fourier transform
of the observed spectrum(see e.g. Carroll, 1928, 1933). There will be consecutive zeros at
frequencies inversely proportional to the rotational velocity v sin i∗ in the Fourier spectrum. By
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measuring these frequencies, v sin i∗ can be deduced. However, this method only works well
for fast rotators (e.g. v sin i∗ > 30kms−1) (Bouvier, 2013). Other more common approaches
include the direct measurement of the line broadening, and the cross-correlation of the observed
spectral line with a template spectrum from a model star with similar effective temperatures but
no rotation. For the spectroscopic analysis, caution needs to be taken to discern the rotational
broadening from other contributions like the velocity field of granules.

This composite method has a large applicable range. However, since this method includes
inputs from three independent approaches, the uncertainty for measured i∗ could be large.

Asteroseismology

The second method to measure stellar inclination angle is asteroseismic analysis, which is
believed to give a potentially more precise estimation. Asteroseismology studies the oscillations
of pulsating stars which are caused by the interplay between gravity and pressure within the
stars. It is a powerful tool to probe the inner part of stars, which first proves itself in its
application to the Sun (Helioseismology). The first observation of solar oscillations is made by
Leighton et al. (1962) which was later identified as trapped standing acoustic waves by Ulrich
(1970). By studying these pulsations, one gets to know properties of the Sun like its density
profile (e.g. Basu et al., 2009) and rotation profile (Thompson et al., 1996). With the launch
of space telescopes like CoRoT and Kepler, a large amount of high quality photometric data
become available for asteroseismic study (see e.g. Huber et al., 2011; Chaplin et al., 2011).

The pulsations of stars cause regular variation of flux in time series, which appears in the
power spectrum as regular patterns of modes (peaks). The power spectrum of oscillations is
approximated as (see e.g. Anderson et al., 1990; Gizon & Solanki, 2003)

P (ν) =
nmax∑
n=nmin

lmax∑
l=0

+l∑
m=−l

H(n, l,m, i∗)

1 + 4[ν − ν(n, l,m)]2/Γ2(n, l,m)
+N(ν), (2.5)

where N(ν) is a background noise. Γ(n, l,m) is the width of the each mode and ν(n, l,m) is
the central frequency of mode. Since solar type stars have mild rotation, it is reasonable to
assume that they are spherically symmetric. Hence, the stellar pulsation can be described by
spherical harmonics which are characterized by radial order n, angular order l, and azimuthal
order m.

The rotation of stars plays a part in splitting each degenerate mode(peak) centered at ν(n, l,m)
into 2l + 1 equally spaced m modes, which can be approximated as

ν(n, l,m) = ν(n, l) +mδν (2.6)

The δν∗ is the splitting between successive m modes. The inverse of δν∗ is the stellar rotation
period P averaged over regions on stellar surface defined by modes(n, l,m) fitted.

H(n, l,m, i∗) is the mode height described by H(n, l,m, i∗) = E (l,m, i∗)H(n, l) (Gizon &
Solanki, 2003), with

E (l,m, i∗) =
(l − |m|)!
(l + |m|)!

[
P
|m|
l (cos i∗)

]2

, (2.7)
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where i∗ is the inclination angle of star. The information of stellar inclination is contained in
the height ratio of different m peaks splitted from an angular l mode.

By fitting the observed power spectrum with this model, we can extract both the stellar incli-
nation i∗ and the stellar rotation period P of stars (e.g. Benomar et al., 2009; Kamiaka et al.,
2018).

Asteroseismic analysis has an advantage that its measurements of stellar inclination angle and
rotation period are less affected by the complex configuration on the stellar surface. However,
this technique has a very strict requirement on the signal to noise ratio of the time series. The
current available asteroseismic analysis for solar type stars is only around tens to hundreds.

In addition, asteroseismic analysis behaves poorly for stars with stellar inclination angle larger
than 80◦ or smaller than 20◦ Kamiaka et al. (2018) as well as for slow rotators even with high
signal to noise ratio. There is also a correlation between the stellar inclination and stellar
rotation period in the fitting of asteroseismic model. Hence, in the region where either i∗ or
P can not be properly measured, the other parameter is also biased (e.g. Ballot et al., 2006;
Ballot et al., 2008; Kamiaka et al., 2018). A possible solution is to provide a prior knowledge of
stellar rotation period to the fitting of model. The rotation period obtained from photometric
analyses is potentially a good candidate. In this thesis, we will discuss about this possibility in
the last part of Chapter 3, after we examine the three widely used photometric methods.

2.2.3 The planetary orbital inclination iorb

Despite that iorb ≈ 90◦ is a good approximation for transiting stars, a more accurate estimation
of iorb can be obtained by modeling the transiting dip in the light curve. Our introduction to
the estimation of the planetary orbital inclination iorb follows Winn (2010).

Figure 2.5: Schematic illustration of planetary transit with impact parameter b. Transit of
planet causes a dipping with flux variation δ. Figure adapted from Winn (2010).

Transit is the eclipse of part of the star by an orbiting planet. It usually refers to non-grazing
eclipse where the full disk of planet passes within that of star. Figure 2.5 illustrates the transit
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in a reference frame with Z-axis pointing towards the observer, projected sky in X-Y plane and
X = 0 at the center of conjunction. During the ingress and egress of the planet, there are four
contact points at which planetary disk is tangent to stellar disk, tI − tIV. Total duration Ttot

and full duration Tfull of transit are approximated as

Ttot ≡ tIV − tI =
P

π
sin−1

[
R∗
a

√
(1 + k)2 − b2

sin iorb

]( √
1− e2

1 + e sinω

)
, (2.8)

Tfull ≡ tIII − tII =
P

π
sin−1

[
R∗
a

√
(1− k)2 − b2

sin iorb

]( √
1− e2

1 + e sinω

)
, (2.9)

where k = Rp/R∗ is the ratio between the radius of planet, Rp, and that of the star, R∗, a is the
semi-major axis, ω is the argument of pericentre, P is the orbital period, and b is the impact
parameter, which is defined as the sky-projected distance at X = 0:

b =
a cos iorb

R∗

(
1− e2

1 + e sinω

)
(2.10)

The orbital inclination iorb may be obtained by fitting the transiting light curve with the model
given by equation (2.8), (2.9) and (2.10)

2.3 Constraints on Spin-orbit Angle From Stellar Incli-

nation

With the high quality photometric data from space mission like Kepler and TESS, we are now
ready to collect more information about spin-orbit angle from the side of stellar inclination
angle i∗. Hirano et al. (2012) applied the combined analysis of photometric and spectroscopic
measurements (see Section 2.2.2) to obtain the stellar inclination i∗ for 15 exoplanetary systems
with detected planets. They report a possible misaligned system KOI-261. Hirano et al. (2014)
used the same technique on 25 systems and detected three possible misaligned multi-planet
systems (KOI-304, 988, 2261). Based on the same method, Winn et al. (2017) measured i∗ for
156 planets and discovered three systems with possible large spin-orbit angles.

Huber et al. (2013) used asteroseismic analysis to measure the stellar inclination angle i∗ and
detected a misaligned system, Kepler-56, with i = 43◦ ± 4◦. Kamiaka et al. (2019) discovered
a system, Kepler-408, with high obliquity of i∗ = 42+5

−4 through asteroseismic analysis. So far,
Kepler-408b is the smallest planet (Earth-sized) discovered to have large spin-orbit misalign-
ment. These results of stellar inclination angle i∗ suggest that the spin-orbit misalignment is
not confined to hot Jupiter systems.

Now that stellar inclination angle i∗ could potentially become the major approach to constrain
the spin-orbit angle ψ, the accuracy of measured i∗ needs to be studied as well as improved.
Our study of photometric analysis contributes to this purpose. In Chapter 3 of this thesis, we
examine the three widely used photometric methods to determine the stellar rotation period
on 91 solar-type stars. We aim to understand the reliability of photometric methods and the
suitability of using the photometric periods as priors for asteroseismic analysis. In Chapter 4,
we discuss about the bias found in asteroseismic estimation of stellar inclination angle i∗ and
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introduce some ongoing attempts to reduce the bias.

Last but not least, thanks to the great effort of various groups working on the determination
of the 3D spin-orbit angle ψ, there are so far estimates of ψ for 20 exoplanetary systems. We
summarize these systems in table 2.1.

System ψ(deg) Reference Method

HAT-P-36 0.00+63.00
−0.00 Mancini et al. (2015) the RM effect/Composite method

Kepler-17 0.00+15.00
−15.00 Désert et al. (2011) Spot crossing/Composite method

WASP-43 0.00+20.00
−0.00 Esposito et al. (2017) the RM effect/Composite method

HD 189733 7.00+12.00
−4.00 Cegla et al. (2016) the RM effect/Transit modeling

WASP-84 17.30+7.70
−7.70 Anderson et al. (2015) the RM effect/Composite method

CoRoT-18 20.00+20.00
−20.00 Hébrard et al. (2011) the RM effect/Composite method

HAT-P-22 24.00+18.00
−18.00 Mancini, L. et al. (2018) the RM effect/Composite method

Kepler-25c 26.90+7.00
−9.20 Benomar et al. (2014) the RM effect/Asteroseismology

XO-2 27.00+12.00
−27.00 Damasso et al. (2015) the RM effect/Composite method

HAT-P-20 36.00+10.00
−12.00 Esposito et al. (2017) the RM effect/Composite method

Kepler-13 60.25+0.05
−0.05 Howarth & Morello (2017) Gravity darkening

WASP-117 69.50+3.60
−3.10 Lendl et al. (2014) the RM effect/Composite method

GJ 436 80.00+21.00
−18.00 Bourrier et al. (2018) the RM effect/Composite method

WASP-121 88.10+0.25
−0.25 Bourrier, V. et al. (2020) the RM effect/Composite method

WASP-107 90.00+50.00
−50.00 Dai & Winn (2017) Spot crossing/Composite method

WASP-189 90.00+5.89
−5.80 Anderson et al. (2018) the RM effect/Composite method

MASCARA-4 104.00+7.00
−13.00 Ahlers et al. (2020) Gravity darkening

HAT-P-7 115.00+19.00
−16.00 Benomar et al. (2014) the RM effect/Asteroseismology

KELT-17 116.00+4.00
−4.00 Zhou et al. (2016) Doppler tomography

Kepler-63 145.00+9.00
−14.00 Sanchis-Ojeda et al. (2013) the RM effect/Spot crossing

Table 2.1: Summary of exoplanetary systems with spin-orbit angle ψ measured.



Chapter 3

Stellar Rotation Period

3.1 Introduction

In this chapter, we examined the reliability of three photometric methods (LS periodogram,
ACF, and wavelet analysis) in determining the stellar rotation periods on 91 Kepler solar-
type stars. Photometric analysis measures the rotation period by studying the variation of
light curve caused by active features on the stellar surface. Before jumping into the detail of
data analysis, we would like to briefly introduce the surface rotation profile of solar-type stars,
focusing on our Sun as a well studied example, and discuss about the behavior of active features
(star spots) on the stellar surface.

Solar-type stars are similar to the Sun in their effective temperatures. The rotation periods of
these stars usually lie within 1 to 50 days. The well studied solar-type star, the Sun, shows a
non-uniform surface rotation with the fastest rotation rate near the equator (P ≈ 25 days) and
a gradual decrease in rate towards the pole (P ≈ 35 days). Its surface rotation rate is later
generalized as (Howard & Harvey, 1970)

Ω(θ)

2π
= A+B sin2 θ + C sin4 θ, (3.1)

where θ refers to the latitude, A is the rotation rate at the equator, while B and C describe
the decrease of rotation rate along the latitude. Differential rotations are also observed in
other solar-type stars (see e.g. Benomar et al., 2018). In some extreme cases, the rotational
rates around the equator are more than twice of those near the mid-latitudes. Due to the
differential rotation on the stellar surface, we might detect multiple periodic signals for a single
star, depending on the number of active regions and their latitudes on the stellar surface.

The most common active feature on the stellar surface is the star spot. Star spots (Figure 3.1)
are dark regions on the stellar surface. In these regions, the concentrated magnetic field flux
limits the heat transport by convection, which in turn causes a decrease in temperature.

A star spot is composed of a central region called umbra and a peripheral region called penum-
bra. The temperature decrease in umbra is larger than that in penumbra. In the case of the
Sun, the temperature decrease, ∆T , in umbra is around 1700 K, while that in penumbra is
around 700 K. Current observations suggest that the temperature difference between spotted

14
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Figure 3.1: Figure of sunspots on solar surface. The upper panel shows a series of shots for
one spotted region as it rotates with the Sun. The bottom panel shows a enlarged version of
the region. The darkest part in the center of spot is the umbra and the slightly brighter region
in peripheral is the penumbra. Credit to NASA/SOHO https://sohowww.nascom.nasa.gov/

home.html.

regions and photosphere ranges from around 200 to 2000 K for M-G stars. In addition, this dif-
ference increases with temperature (Berdyugina, 2005). This trend could indicate that for stars
like M dwarfs, the size of spots is relatively small. For small spots, the penumbra dominates so
that the temperature decrease in this region is relatively small.

The size of spotted regions on the Sun ranges from around 16 to 160.000 km while for other
observed stars, the spot coverage is in general much larger. An extreme example could be HD
12545 which is an active K0 giant with spotted regions covering around 40% of the apparent
stellar disk (Strassmeier, 1999). Hall & Henry (1994) suggested that, for relatively small spots
like those on the Sun, their lifetimes are proportional of to their size. For large spots, the shear
of latitudinal differential rotation could be the key factor which determines how long they live
(Berdyugina, 2005). Small spots usually last for days to months while large spots could last
for years.

During their lifetimes, spots move either towards the equator (e.g.the Sun) or towards the
pole (e.g.HR 1099, Vogt et al., 1999; Strassmeier & Bartus, 2000) with a time scale of years.
Furthermore, the place where spotted areas emerge also migrates. The famous butterfly diagram
for sunspots illustrates the migration of spotted areas within a 11-year activity cycle (Figure
3.2). At the beginning of a cycle, sun spots normally form near the intermediate latitude while
at the end of a cycle, they merge around the equatorial region.

Usually there are multiple spotted regions evolving and migrating on the stellar surface, which
lead to complex configurations on the stellar surface. One of the interesting patterns observed

https://sohowww.nascom.nasa.gov/home.html
https://sohowww.nascom.nasa.gov/home.html
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Figure 3.2: Butterfly diagram of the Sunspot. Y-axis is the latitude. X-axis is the Date. This
plot illustrates the change of spot distribution over the 11-year solar cycle. The color mark
indicates the % of band area covered by spots. Credit to Hathaway at NASA Marshall Space
Flight Center http://SolarCycleScience.com.

for sunspots is the existence of two active longitudes separated by 180◦. Between these two
regions, there is a periodic exchange of activity strength, which is named the flip-flop cycle.

The complex configuration of star spots on the stellar surface have pros and cons. If the
spotted regions locate at different latitude, we are likely to detect multiple periodic signals,
each corresponding to the an actual rotation period at a certain latitude of the stellar surface.
We could utilize this information to obtain an averaged surface rotation which is best suited
for a combined analysis with spectroscopy and asteroseismology. On the other hand, when
the active regions distributed with equal spacing in longitude like the flip-flop case, we are
likely to detect a significant peak (aliases) at period P/n in the power spectrum of photometric
analysis, depending on the number n of active regions. This brings us a risk to underestimate
the rotation period by an integer factor of n.

With the advent of Kepler space telescope, photometric data of more than 100,000 stars in
the field of Cygnus and Lyra constellations (Figure 3.3) become available, which benefits the
photometric analysis of stellar rotation period to a large extent. Kepler contains a Schmidt
camera whose focal plane is made out of 42 CCDs (50× 25 mm), possessing a total resolution
of 94.6 megapixels. There are two types of time series data which Kepler provides: One is the
short-cadence data with 58.89 seconds-interval, and the other is the long-cadence data with
29.4 minutes-interval. The long-cadence data usually lasts around 4 years which is much longer
than the typical rotation period of solar type stars (∼ 1 − 50 days), and hence is ideal for
photometric analysis.

There are three widely used methods for photometric analysis which are Lomb-Scargle Peri-
odogram (LS periodogram, Lomb, 1976; Scargle, 1982), Auto-correlation Function (ACF), and
wavelet analysis (e.g. a good practical guide, Torrence & Compo, 1998). Examples of appli-
cations include Nielsen et al. (2013) in which LS periodogram has been applied to infer the
stellar rotation period for 12,000 main-sequence Kepler stars, McQuillan et al. (2014) in which
ACF has been used to estimate the rotation period for 34,030 main-sequence Kepler stars, and

http://SolarCycleScience.com
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Figure 3.3: A depiction of Kepler’s field of view. Each square represents the view of a
CCD module composed of 2 CCDs. Credit to NASA www.nasa.gov/mission_pages/kepler/

multimedia/images/fov-kepler-drawing.html.

Garćıa et al. (2014) in which both Wavelet analysis and ACF have been utilized to obtain the
rotation period for 310 solar-type Kepler stars.

Due to the likely differential rotation on the stellar surface, the rotation periods at different
latitudes could vary. Photometric analysis measures the rotation period at the latitude where
active features show asymmetric distribution. Since the Kepler telescope has a limited spatial
resolution, it does not provide the information on the latitude of active features. As a result,
the rotation period detected by the photometric analysis refers to a period within the range of
differential rotation on the stellar surface. This nature of photometric analysis leads to possible
discrepancy of measurement from spectroscopic and asteroseismic analysis which estimate an
averaged surface rotation period. For the Sun, such discrepancy stays within ∼ 40%. Hence,
the similar situation is expected for most of the other solar-type stars.

In the following sections, we examine these three photometric methods on 91 solar-type stars
and discuss about the suitability of using photometric period as a prior for asteroseismic infer-
ence of stellar inclination angle i∗.

3.2 Target Selection

We first adopted the same group of targets as Kamiaka et al. (2018) (see Figure 3.4), which
include 94 solar-type Kepler stars. This group contains the entire LEGACY sample (Lund
et al., 2017) which are 66 Kepler solar-like stars with clear pulsation patterns. The LEGACY

www.nasa.gov/mission_pages/kepler/multimedia/images/fov-kepler-drawing.html
www.nasa.gov/mission_pages/kepler/multimedia/images/fov-kepler-drawing.html
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sample are chosen from 500 Kepler main-sequences and sub-giant candidates with observed
stellar oscillations (Chaplin et al., 2011). The selection criteria is based on the data quality
for conducting reliable asteroseismic analysis (Aguirre et al., 2017; Lund et al., 2017). Since
the LEGACY sample contains only 5 stars with reported planet candidates (Kepler object
of interest, KOI stars), Kamiaka et al. (2018) included additional 28 solar-type stars with
planet detections and observable oscillation patterns for comparison purpose. We performed a
preliminary check for light curves of these 94 stars and removed 3 targets with either reported
contamination from other light source or significant missing of long-cadence data.

As a result, our final sample contains 91 solar-type Kepler stars,with 60 stars having no planet
detection and 31 KOI stars.

Figure 3.4: HR diagram in the form of surface gravity vs effective temperature. The 94 solar-
type stars in the sample of Kamiaka et al. (2018) is plotted. The blue circles represent the
planet host stars (KOI stars) and the red circle represent the planet less stars. Plot adopted
from the doctoral thesis of Shoya Kamiaka.

3.3 Preparation of Light Curves

In this subsection, we discuss about the preparation of light curve for later photometric analysis.
The CCDs on Kepler telescope provide pixel data every few seconds (∼ 6.5 seconds). A standard
pixel mask (aperture) is assigned to each target, which determines the pixels that is related to
this target. These pixels are then summed over a fixed time duration (cadence) to create the
1-D light curve of this target. Kepler provides both the short-cadence data which is summed
over every 58.89 seconds and the long cadence data which is summed over each 29.4 minutes.
Since Kepler adjusts its orientation every 90 days to keep the solar panel in the direction of the
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Sun, the Kepler data is further divided into quarters with 90-day duration,except for quarter 0
(Q0) with 10-day duration and quarter 1 (Q1) with 34-day duration.

The Kepler science team provides two type of light curve. The SAP light curve is the raw
light curve obtained from background corrected pixels. The PDC light curve undergoes further
preliminary correction to remove signatures of instrumental perturbations like pointing drift.
We used the PDC light curve (PDC-msMAP, see Stumpe et al., 2014) for analysis.

To start with, we downloaded quarter-2 to quarter-14 of the Kepler long-cadence PDC light
curve (Data Release 25) from Mikulski Archive for Space Telescope (MAST), upon availability.
For some of our targets, there is missing of several quarters. To remove any remaining systematic
trends in the time series y(t)initial of each quarter, we first fitted a 4-th order polynomial
p(t) to the data. Then we normalized the light curve with the fitted polynomials as y(t) =
y(t)initial/p(t) − 1. Then, we concatenated all quarters into a single array of time series while
preserving gaps between quarters. The starting time of this series is set to be 0. Figure 3.5
gives an example of normalized and concatenated light curve.

Figure 3.5: Normalized Q2-Q14 light curve from KIC 7206837, which is one of our target with
no reported planet detection. The normalized flux is in the unit of parts per million (ppm).
The black dotted lines mark the boundary between quarters.

In the light curve of some targets, we find abrupt increases in flux variation in some quarters.
Such increases are limited to single quarters with no sign of gradual emergence and decay nearby
(e.g. Figure3.6). We suspect that these variations might be due to unknown contamination
or instrumental perturbation. Hence, we compute the median absolute magnitude of flux for
each quarter. If the median value of a quarter is more than three times larger than the median
values of its nearby quarters, we removed that quarter from the light curve. Such quarters are
found in KIC 4141376, 6521045, 9955598, 11904151, 8694723 and 10730618.

Next, we removed signatures of planets. As a planet transits its host star, it causes regular
dips in the light curve (see the upper panel of Figure 3.7). To mitigate the influence of these
regular modulations, we fold the light curve using the orbital period of each planet candidate
and removed the part of transit dip. In addition, when a planet moves to the back of its host
star, the reflected light of the planet is blocked. Such secondary eclipse induces eclipse dips
in the light curve, at a phase lag of 0.5 relative to the transit dips (see the bottom panel of
Figure 3.7). Despite that the eclipse dips are minor effects which are visible in only a few of
our targets, we removed the eclipse dip for all of our targets as a precautionary measure. The
typical time scale of transit and eclipse duration is hours, while the time scale of planetary
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Figure 3.6: An example of light curve with sudden increase in flux variation within single
quarters. Normalized Q2-Q14 light curve from KIC 4141376. Q4, Q8, and Q12 shows the
sudden increase in flux variation. The variations only retain within these quarters themselves
with no gradual transition from nearby quarters. We remove these quarters from the light
curve.

orbital period is days. Therefore, the removed intervals are small enough not to influence the
determination of stellar rotation period.

For practical reason, we only removed transit and eclipse dip caused by planets with orbital
period smaller than 100 days. We failed to locate the transit dip for two planets by phase
folding, which are KOI 5.02 orbiting around KIC 8554498 and Kepler-37 b around KIC 8478994.
However, as the magnitudes of these transit dips are smaller than 20 ppm, they have negligible
influence on the determination of stellar rotation period (Barclay et al., 2013; Burke et al.,
2014).

Then, we removed outliers which are data points being 5σ away from the median of the light
curve. As each quarter of light curve is of 90-day duration, any signal with longer period would
be unreliable. We suppressed long-period signals by high-pass filtering the light curve with a
box-car function of a 50-day width. Since Kepler data is nearly evenly sampled, we mapped the
light curve to a uniformly sampled grid with interval of δt = 29.4 minutes. Finally, we padded
the light curve. We attempted two padding schemes which are Gaussian noise padding and
zero padding. For the Gaussian noise padding, N (0, σ2

noise), we define σnoise as 1σ deviation
from the median of the flux value in the light curve.

By comparing the power spectra that we used to determine the stellar rotation, we noted
that two padding schemes shows negligible difference in the determination of stellar rotation
period. Figure 3.8 shows the power spectra (LS periodogram) of two targets computed using
zero-padded and noise-padded light curves respectively. In each subplot, the upper panel is
the padded light curve and the lower panel is the power spectrum computed from the light
curve. We present two targets with relative large gaps in their light curve. As we can see, the
power spectra of differently padded light curve looks very similar. In the case of KIC 10963065,
the choice padding scheme does not affect the measurement of stellar rotation period. For
4141376, however, since there are two peaks with similar height in each power spectrum, the
tiny difference in relative peak height leads to different choice of the highest peak, and hence
stellar rotation period. The extreme case as KIC 4141376 is found in only two of our targets
(KIC 4141376 and 9812850). Hence, the padding scheme does not affect the estimation of
period significantly. We therefore only discuss the results from the noise-padded light curve in
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Figure 3.7: A section of normalized light curve from KIC 8349582 (top panel) and phase folded
light curve at the planetary orbital period Porb from KIC 8349582 (bottom panel). The red
triangles point at the transit dips in the light curve. In the phase folded light curve, the red
bars mark the regions of transit dips and possible eclipse dips. We removed these regions from
the light curve.

the following sections.

The entire procedure for preparation of light curve in summarized in a flow diagram in Figure
3.9.

3.4 Method

In this section, we introduce the three photometric methods we applied to extract the stellar
rotation period, which are the Lomb-Scargle periodogram, the auto-correlation function and
the wavelet analysis.

3.4.1 The Lomb-Scargle Periodogram

The Lomb-Scargle periodogram Lomb (1976); Scargle (1982) is the least-square-based estimator
of the power spectrum. The model is a sinusoidal function

y(t) = a cosωt+ b sinωt, (3.2)

with candidate frequency ω. We adopt a slightly modified model which adds an additional
offset term c to y(t) introduced by Zechmeister & Kürster (2009). This modified model is
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(a) KIC 10963065 with zero-padded light curve. (b) KIC 4141376 with zero-padded light curve.

(c) KIC 10963065 with noise-padded light curve. (d) KIC 4141376 with noise-padded light curve.

Figure 3.8: Examples of power spectra computed using differently padded light curve for KIC
10963065 (subplot (a) and (c))and KIC 4141376 (subplot (b) and (d)). The upper panel of
each subplot shows the padded light curve and the bottom panel shows the power spectrum
(LS periodogram) computed from the light curve. LS periodogram is one of the methods we
applied to extract rotation period which will be introduced in the following section. Power
spectra of differently padded light curve show high resemblance. KIC 4141376 represents an
extreme case found in only 2 of our targets, where the highest peak (choice of rotation period) in
the power spectra differs for differently padded light curve. 89 out of 91 targets shows consistent
estimations of period within the error using different padding schemes as KIC 10963065.

named generalized Lomb-Scargle periodogram. We normalize the periodogram to unity so that
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Figure 3.9: Flow diagram of light curve preparation.

the power P(ω) will lie within the range [0,1]. The normalized periodogram takes the form

P (ω) =
χ2

0 − χ2(ω)

χ2
0

, (3.3)

where χ(ω)2 is the minimized squared difference between the time series yi and the sinusoidal
model y(ti) for each frequency ω as

χ(ω)2 =
N∑
i=1

[
yi − y(ti)

]2
, (3.4)

and χ2
0 is a non-varying reference model given by

χ2
0 =

N∑
i=1

y2
i . (3.5)

For evenly sampled time series, the Lomb-Scargle periodogram can be reduced to the classical
periodogram which is described by
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1
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, (3.6)
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We computed the LS periodogram using astropy package (Vanderplas & Ivezić, 2015; Van-
derPlas et al., 2012). We chose a linear frequency grid with f ∈ [0.014 d−1, 4 d−1] and interval
∆f = 1/(nT ). T is the span of the time series and n is the oversampling factor. The over-
sampling factor n determines the frequency resolution of the periodogram. Normally, n ≥ 5
is chosen (VanderPlas, 2018). We used n = 20. Then, we smoothed the periodogram with a
0.1µHz box car window to reduce the influence of any spurious peaks.

The height of peaks in the periodogram is associated with the goodness of fit. The highest peak
usually corresponds to the most significant periodic signal in the data. Hence, we chose the
period associated to the highest peak in the LS periodogram as the stellar rotation period and
the full width half maximum (FWHM) of this peak as the 1σ uncertainty of our measurement.
To differentiate peaks caused by real signal from those caused by noise, we computed the false-
alarm probability (FAP) of the peaks we chose, which estimates the probability of detecting a
peak caused by noise (Baluev, 2008) and set a detection threshold of 0.01%.

The Lomb-Scargle periodogram is an effective tool to extract the rotation frequency from a time
series especially when the data contains multiple periodic signals with various amplitude and
phase. However, VanderPlas (2018) pointed out that the major concern for LS periodogram
is not the imprecision of the period detected but rather the inaccuracy caused by false peaks
and aliases. For Kepler light curve, false peaks in periodogram may come from the residuals of
instrumental perturbation like the monthly Earth-pointing events. As for aliases, they usually
occur at P/n in the periodogram, where n is an integer number (Reinhold & Reiners, 2013).
One cause of such aliases could be the presence of n active features on the stellar surface
distributed near-uniformly in longitude. Another cause is the fitting of a non-sinusoidal wave
with a sinusoidal model. The shape of variation in the light curve modulated by an active
feature falls between a sine wave and a square wave. As a result, aliases appear at harmonics
(P/2, P/3, ..., P/n), often with a decrease in peak height as n increases.

3.4.2 The Auto-correlation Function

Auto-correlation function (ACF) measures the correlation between the data itself and a delayed
copy of it. For a uniform time series with time interval δt, the correlation coefficient rk is given
by

rk =

∑N−k
i=1 (yi − ȳ)(yi+k − ȳ)∑N

i=1(yi − ȳ)2
, (3.7)

where the lag k describes the extent of delay, ȳ =
∑N

i yi is the average of time series, yi is the
data, i is the time index of the data, and N is the total number of data point. The correlation
coefficient rk lies between −1 to 1. The sign of the coefficient represents the sign of correlation.
The larger the |rk| is, the stronger the correlation. For example, rk = +1 stands for a perfect
positive correlation while rk = −1 represents a perfect anti-correlation. For our Kepler light
curve with time span T and δt = 29.4 minutes, we computed the correlation coefficients from
0 to a lag of kmaxδt = T/2. In the correlation series, aliases caused by multiple active features
on the stellar surfaces also occur. The aliases appear as small fluctuations along the peak of
actual period. The top panel of Figure 3.10 gives an example of aliases most likely caused by
the presence of three active regions on the stellar surface. To mitigate the influence of aliases,
we smoothed all the correlation series with a Gaussian smoother (scipy, Virtanen et al., 2020)
with a σ = 50 δt width.
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Figure 3.10: Examples of original (upper panel) and smoothed (bottom panel) ACF
(KIC8292840). This example illustrates the aliases which are most likely caused by three
active regions with near uniform distribution along longitude on the stellar surface. In the
upper panel, the peak of actual period P is modulated by a higher frequency signal with P/3,
leading to three additional small peaks around each the of period P . The red arrows marked
the three aliasing peaks. After applying the smoothing function (bottom panel), the influence
of aliases on ACF is removed.

To extract the stellar rotation period from ACF, there are overall two strategies in the past
literatures. The first one is to adopt the lag value at the first maxima as the rotation period P
(e.g. Garćıa et al., 2014). The second one is to note down the lag values of successive maxima
and apply a linear fit to them with respect to the number of maxima. The gradient of the linear
fit is chosen as the rotation period P (e.g. McQuillan et al., 2014). Considering that coefficient
series of our sample do not always give clear repetitive maxima, we instead computed the LS
periodogram of the coefficient series. The frequency grid and smoothing window follows the
last subsection. We selected the highest peak in the power spectra as the rotation period P
and the FWHM of this peak as the uncertainty.

Figure 3.11: An example of smoothed ACF (KIC 7296438) which does not have clear repetitive
maxima.
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3.4.3 Wavelet Analysis

The third method is the wavelet analysis or more specifically the continuous wavelet transform.
Wavelet transform decomposes data xn into a set of basis wavelet functions. Fourier transform
is one type of wavelet transform which decomposes data into a set of sinusoidal wave functions.
The mathematical definition of continuous wavelet transform is given by (see e.g. Torrence &
Compo, 1998).

Wn(s) =
N−1∑
n′=0

xn′ψ
∗[

(n′ − n)δt

s
], (3.8)

where ∗ is the notation for the complex conjugate, n is the localized time index, ψ is the
wavelet function of choice and s is the scale of the wavelet function which will be discussed in
the following part. n indicates that the center of the wavelet function locates at nδt of the time
series during the transformation.

There are a variety of wavelet functions designed for different purposes like Meyer wavelet,
Mexican hat wavelet and Haar wavelet. One of the most widely used wavelet function in
astrophysics and geophysics is the Morlet wavelet (e.g. Garćıa et al., 2014; Ceillier et al., 2016),
which has the form of a plane wave modulated by a Gaussian:

ψ0(t/s) = π−1/4eiω0t/se−(t/s)2/2, (3.9)

where t is the time parameter, ω0 is the dimensionless frequency and s is the scale of wavelet.
Morlet wavelet is a sinusoidal like variation with emergence and decay which is well suited for
describing the behavior of active features on the stellar surface. ω0 is chosen to be ω0 ≈ 6
such that the wavelet function can be averaged to around 0 (see e.g. Torrence & Compo, 1998;
Farge, 1992). The scale s is associated to the period of variation of the wavelet function.
Figure 3.12 gives several examples of the Morlet wavelet functions with scale s = 1, 5 and
10 days respectively. If we choose a small scale the wavelet will be more compact while if we
select a large scale, the wavelet will be more stretched in time axis.

Figure 3.12: Examples of three Morlet wavelets with scale s = 10, 5 and 1 days respectively
from top to bottom panels. Scale s corresponds to the period of variation in the Morlet wavelet.
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Wavelet analysis provides two powerful tools to study the periodic signals in times series.
The first one is the wavelet power spectrum which is a time localized power spectrum. The
second one is the global wavelet power spectrum (GWSP) which is an average of power over
all localized time for each scale s. We compute both wavelet spectra using waipy package
(Mabelcalim, 2014).

The wavelet power spectrum is defined as |Wn(s)|2. We first computed a series of Wn(s0) as
we slid the wavelet function of scale s0 through the time axis. Then we repeated the same
procedure for a group of scales s0, s1, ...sm of our choice. We chose a linear scale for s with a
range of s ∈ [0, 65] and a spacing of 0.01. With the n×m values of Wn(s), we then computed
the wavelet power spectrum |Wn(s)|2. The left panel of Figure 3.13 shows an example of wavelet
power spectrum for KIC 3425851. The great advantage of the wavelet power spectrum is its
ability to visualize the change of periodic signal along time. In this example, the periodic
signal has a period around P = 8 days and lasts during the entire 4-year observation. We can
utilize the wavelet power spectrum to trace the duration of a signal and its location in the time
axis. One thing to note is that due to the finite length of time series, errors of transformation
will appear at the start and end of the power spectrum. The region is defined as the cone of
influence and is shaded in black in our wavelet spectrum. An example of the cone of influence
can be seen in the bottom left corner and the bottom right corner in Figure 3.13.

The global wavelet power spectrum (GWPS) is defined as

W̄ 2(s) =
1

N

N−1∑
n=0

|Wn(s)|2. (3.10)

which is an average of power over the time span. The blue curve in the right panel of Figure
3.13 gives an example of GWPS. GWPS behaves like a smoothed spectra which combines a
range of close peaks in the Fourier spectrum (gray curve) into one single peak. Garćıa et al.
(2014) describes such behavior as a degraded resolution of GWPS. On the other hand, Mathur
et al. (2010) suggested the width of peak in GWPS takes into account the differential rotation
which shows up as close peaks in Fourier spectrum so that GWPS gives a more complete picture
of rotation on stellar surface. The GWPS is the major tool in the wavelet analysis which we
use to extract the stellar rotation period. We chose the period corresponding to the highest
peak as the stellar rotation period P and use the FWHM of the peak as the 1σ uncertainty of
the measurement. In the example given in Figure 3.13, we chose the the highest peak located
at P ≈ 8 days as the stellar rotation period for this target.

Liu et al. (2007) pointed out that this widely used global wavelet spectrum (Torrence & Compo,
1998) is biased in that when there are multiple periodic signals in a time series, the global
wavelet spectrum assigns higher power to the low frequency signal. However, we consider this
bias as an advantage of GWPS. The major aliases in the determination of stellar rotation
period are the high frequency peaks at P/2, P/3, ..., etc. caused by the presence of multiple
active regions on the stellar surface. In GWPS, the high frequency aliases is suppressed which
benefits the extraction of actual period P .
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Figure 3.13: Power spectra given by wavelet analysis of KIC 3425851. The left panel is the
wavelet power spectrum. The vertical axis is period. The horizontal axis is time. The shaded
region near the bottom edge of the waver power spectrum is the cone of influence within which
power is less reliable. In the right panel, blue curve is the global wave power spectrum (GWPS)
and the gray curve shows the Fourier power spectrum of the light curve.
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3.5 Results and Discussion: Stellar Rotation Period

In this section, we first examine our photometric estimations by comparison with previous
works on photometric analysis and comparison among our different methods. Next, we design
a set of criteria to select reliable photometric period estimations Pphoto. We then investigate
the reliability of our estimation, especially for reliable Pphoto, with spectroscopic analysis (CKS,
Petigura et al., 2017)) and asteroseismic analysis (Kamiaka et al., 2018). Finally we discuss
about the suitability of using Pphoto as a prior for asteroseismic analysis.

3.5.1 Comparison with Previous Photometric Analysis

Comparison with Nielsen et al. (2013) and Karoff et al. (2013)

Figure 3.14: Comparison of LS method (15 targets). The x-axis is our LS estimation and the
y-axis is the LS results from the other two literatures.

In Figure 3.14, we compare our LS results with those from Nielsen et al. (2013) and Karoff
et al. (2013) for 15 targets. Most estimations show reasonably good consistency. We examine
the periodogram for cases of disagreement. We noticed that the periods reported by other
works are also detected in our periodogram, while the peaks corresponding to those periods
are not the most significant one(see e.g. Figure 3.15). Such difference in relative peak height
occurs, though rare, when the processing of light curve differs. In addition, a difference in peak
selection could happen when visual inspection is involved.

The multiple detected signals in a power spectrum could be the actual signals of rotation (e.g. in
the case of differential rotation), or false peaks and aliases. A fair judgement requires additional
information. KIC 9139151 and KIC 9139163, which have inconsistent period estimations, are
two reported binary systems 1. Hence, for these two targets, it is likely that multiple periodic
signals in the periodogram comes from different stars.

1Refer to Kepler EB catelog http://keplerebs.villanova.edu/

http://keplerebs.villanova.edu/
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Figure 3.15: Lomb-Scargle periodogram of KIC 9139151. The highest peak at P = 6.3 days
selected by our method is marked by the blue vertical line. The period selected by Karoff
et al. (2013) is marked by red bar around P = 10.4 days. This is an example of inconsistent
estimations for LS method.

Comparison with McQuillan et al. (2013b) and McQuillan et al. (2014)

Figure 3.16: Comparison of ACF method (21 targets). The x-axis is our ACF estimation and
the y-axis is the ACF results from the other two literatures.

In Figure 3.16, comparison of ACF estimations for 21 targets is plotted. All but one target (KIC
6521045) show good agreement within 1σ uncertainty. KIC 6521045 is the target with sudden
increase in flux variation in one quarter (see Section 3.3). In our preparation of light curve, we
delete the strange quarter. We suspect that this processing cause the difference between our
measurement and others’. We apply the ACF method again on the light curve without quarter
deletion and get the same result as McQuillan et al. (2013b). Hence, there are two periodic
components with different period in the light curve of KIC 6521045, a strong one in a single
quarter and a mild in the remaining quarters.

If the strong modulation in the strange quarter is caused by a large active region, the lifetime
of the signal is expected to be longer than the mild signal, as the lifetime of features like star
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spots scales with their size. Hence, it is possible that the variation comes from an apparent
binary of this system or other systematic perturbation.

Comparison with Ceillier et al. (2016) and Garćıa et al. (2014)

In the work of Ceillier et al. (2016) and Garćıa et al. (2014), multiple photometric analyses have
been applied to give one best estimation. Ceillier et al. (2016) apply three methods respectively:
ACF, wavelet and a so-called Composite spectrum which is the product of ACF coefficients
and normalized global wavelet power spectrum (GWPS). They use a different pipeline of light
curve (KADACS) from us. They retain all signals with period shorter than 55 days. Garćıa
et al. (2014) apply both ACF and wavelet methods on two pipelines of light curve (PDC
and KADACS) respectively and selected the result having at least partial agreement between
different types of light curve. We compare our ACF and wavelet results respectively with
their estimations for 41 targets. Since we do not know whether their result comes from ACF
or wavelet method, we consider the agreement between their result and one of our ACF and
wavelet estimations as a good enough consistency.

(a) (b)

Figure 3.17: Comparison of rotation period between our work and previous literature for 41
targets. In plot(a), we use our ACF results for comparison. In plot (b), we use our wavelet
results for comparison. In all plots, our estimations are plotted in x-axis.

Overall, 10 targets shows complete inconsistency between us. We examined the power spectra
of these 10 targets. There are in general three scenarios of discrepancy. The first case includes
6 targets (KIC 3656476, 8179536, 10644253, 12069127, 9025370, 9139163). For them, there
are multiple significant peaks in the power spectra. We suspect that the discrepancy comes
from the slight difference in relative peak heights between our analysis and theirs, which can
be attributed to the difference in processing of light curve.
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KIC 9025370 and 9139163 are reported binaries 2, so that the two periodic signals found in
their power spectra could come from different stars. For the remaining four targets, additional
evidence is required to tell whether the multiple peaks come from the surface rotation or
contaminations.

The second case contains two targets (KIC 8349582 and 9410862). In our power spectra, we find
barely any signal at the periods indicated by previous literatures. In this two cases, the periods
measured by Garćıa et al. (2014) and Ceillier et al. (2016) are larger than our estimations,
especially for KIC 8349582 where Pothers > 50 days. Such disagreement could be caused by
different high-pass filters applied. Any period Pphoto > 50 days is not within our detectable
region.

The third case includes 2 targets which are KIC 6521045 and 9955598. For these two targets,
we deleted those strange quarters with sudden increase in variation during the processing of
light curve, which causes the inconsistency in period measurement.

In conclusion, our comparison shows a reasonably good consistency (80%) with previous lit-
erature. When the light curve contains homogeneous periodic signal, photometric analyses
conducted by different works show nearly perfect consistency. When there are multiple peri-
odic signals (multiple peaks in the power spectrum), the processing of light curve, choice of
pipeline and selection criteria of peaks in the power spectra lead to a small portion of different
estimations for the same photometric analysis. The multiple peaks in the power spectra could
either come from contaminations like binaries and instrumental perturbation (false peaks), or
caused by the complex spot configuration on the stellar surface (aliases at P/2, P/3, ..., etc.)
and surface differential rotations. Hence, the major concern of photometric methods is the
inaccuracy in the selection of peak rather than the imprecision of estimations.

3.5.2 Comparison Among Three Photometric Method

In this subsection, we compare our period estimations from different photometric methods. In
Figure 3.18, we plot the ratio Pmethod/ 〈PWavelet〉 against 〈PWavelet〉 for all three methods. The
comparison shows a more than 80% of agreement among all methods within 1σ uncertainty.
We then examine the case where discrepancy shows up.

We find that when the light curve contains only one dominant signal, three photometric analyses
give perfect consistency within 1σ uncertainty (see e.g. Figure 3.19). When there are multiple
periodic signals embedded in the light curve, power spectra shows multiple significant peaks.
All photometric analyses captures the same group of peaks in their power spectra, while the
power assigned to each peak is slightly different for each method.

Wavelet has a preference for low frequency signal which is due to an intrinsic bias of this
method (see Liu et al., 2007). Such bias induces the discrepancy between wavelet analysis and
the other two methods, when there are two or more significant peaks in the power spectrum.
An example of such phenomenon is given in Figure 3.20 where LS and ACF methods select
the high frequency peak as the period and wavelet method select the low frequency peak.
The accumulation of points at Pmethod/ 〈PWavelet〉 ≤ 0.5 further validates the existence of this
bias. Mathur et al. (2010) suggested that this property of wavelet could be an advantage in

2Refer to Kepler EB catelog http://keplerebs.villanova.edu/

http://keplerebs.villanova.edu/
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Figure 3.18: Comparison of estimations from different photometric method. Y-axis is the ratio
of period from each method to period of wavelet. X-axis is the periods from wavelet method

Figure 3.19: Global wavelet power spectrum, LS periodogram, ACF spectrum of KIC 3425851.
The power spectra are dominated by one significant peak, which indicates that the light curve
contains a rather homogeneous periodic signal. Estimations from three photometric analyses
agree well within uncertainty.

that it suppresses the high frequency aliases (at P/2, P/3, ..., etc). High frequency aliases are
caused by the presence of evenly distributed active regions along the longitudinal direction as
well as the non-sinusoidal variation of light curve. On the solar surface, active regions with
180◦ separation in longitude is occasionally observed. In the case where multiple peaks comes
from transient contamination, we can make a rudimentary judgement by checking the cycle
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of variations in the wavelet power spectrum and rule out the signals with extremely short life
time. However, when the time spans are long for multiple signals, photometric analysis can not
discern the rotation period from the other source. Such situation could occur when there is a
close (apparent) binary around the target.

Figure 3.20: Global wavelet power spectrum, LS periodogram, ACF spectrum of KIC 10068307.
There are multiple significant peaks at the same location in the power spectra of all photometric
methods. LS and ACF method choose the peak at smaller period while wavelet method chooses
the peak at larger period.

Another thing to note is that LS method has the best frequency resolution while wavelet has
a most degraded resolution. Figure 3.20 serves as an example to illustrate this point. From
top to bottom panels, we have the global wavelet power spectrum, LS periodogram and ACF
periodogram of KIC 10068307. All spectra capture the same group of peaks. LS and ACF
periodograms show much more features than the global wavelet spectrum. Consequently, the
1σ uncertainty range, which is defined as the FWHM of the selected peak, is largest for wavelet
method. Mathur et al. (2010) argues that the uncertainty range of wavelet gives a more realistic
account of surface rotation of stars. Since the small features in LS and ACF periodograms could
indicate the signals of differential rotations, the uncertainty of wavelet, which covers the range
of most features, better describes the surface rotation.

Lastly, we notice that there are two ACF results which are significantly larger than estimations
from LS and wavelet analysis. This could happen when the periodic signal is weak and the
ACF series is over-smoothed, so that small periodic features given captured by LS and wavelet
method are missing in ACF spectrum. There are only two such cases in our sample so we
consider our smoothing window for ACF method reasonable.

In conclusion, three widely used photometric methods show a reasonably good consistency
in period estimation (> 80%). When the light curve contains homogeneous variation, all
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photometric analyses give perfect consistency. When there are multiple signals in the light
curve, all three photometric methods capture the same group of periodic signal from the data,
but assign different power to a same peak. Wavelet analysis tends to prefer low frequency
signals. Photometric analyses can not distinguish between the actual rotation signal from
other long lasting contamination. Therefore, we have a better chance to obtain a reliable Pphoto
when there is only one dominant periodic signal in the light curve which also lasts for a long
time.

3.5.3 Classification

In the next step, we would like to compare our results with spectroscopic and asteroseismic
analyses. Before that, we classify our targets upon the reliability of their photometric estima-
tions. First of all, we select targets with consistent measurement from all three photometric
methods within 1σ uncertainty. For these targets, we set a few criteria for the next screening.
As we mentioned in the previous discussion that contamination of light curve gives false signal
which lasts for a short time, we design a rule for each photometric methods to choose the
targets with persistent signals.

• Lomb-Scargle Periodogram: We introduce a concept called median absolute deviation
ratio (MADR) which is adapted from the MAD value defined in Nielsen et al. (2013). We
apply the Lomb-scargle periodogram to each quarter i of the processed light curve and
assign a period Pi to it. Then we computed MADR values for each target as

MADR =
〈|Pi− < Pi >|〉

P
, (3.11)

where Pi is the period measured for each quarter, P is the period estimated for the entire
light curve, <> is the median operator. This MADR value evaluates the deviation of P
signal in each quarter. We set an upper limit of MADR to be 8% (heuristic choice).

• ACF: The ACF series of the target should have at least four clear successive maxima.

• Wavelet: The signal of estimated P lasts for more than one year in the wavelet power
spectrum of the target.

If a target with consistent period measurements satisfies all the above criteria and does not
belong to a binary or multiple star system3, we put it in reliable Pphoto group. For the remaining
targets, we assign them to the less reliable Pphoto group. In total, there are 22 targets in reliable
Pphoto group and 69 in less reliable Pphoto group. In the following subsections, we will examine
the consistency of photometric analysis with spectroscopy and asteroseismology.

3.5.4 Comparison with Spectroscopic Analysis

We used the projected rotational velocity measurements from spectroscopic analysis and reliable
rotation period measurement from asteroseismology Kamiaka et al. (2018) to further examine

3Refer to Kepler EB catelog http://keplerebs.villanova.edu/, Open Exoplanet Catelog http://www.

openexoplanetcatalogue.com/ and Table 4 of Garćıa et al. (2014).

http://keplerebs.villanova.edu/
http://www.openexoplanetcatalogue.com/
http://www.openexoplanetcatalogue.com/
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our photometric estimations. First of all, we computed three rotational velocities v = 2πR∗
P

using three photometric periods for each target4. Then we choose the 25 spectroscopic v sin i∗
estimations validated by asteroseismic analysis in Kamiaka et al. (2018) from CKS (Petigura
et al., 2017). We compare v sin i∗ values with out estimated rotational velocities v in Figure
3.21.

Figure 3.21: Plot of projected rotational velocity v sin i from spectroscopic analysis against
rotational velocity v computed using P from three photometric analyses. v∗ sin i∗ measurements
come from California-Kepler Survey (CKS:california−planet−search.github.io/cks−website).
The shaded region is the non-physical region where sin i∗ > 1. Corresponding Pphoto for targets
in shaded region should not be trusted.

In general, most of our results (∼ 90%) lie in the physically meaningful region where sin i∗ < 1.
We identify 2 targets (KIC 10666592 and KIC 4349452 from less reliable Pphoto group) in the
non-physical region giving sin i∗ > 1, indicating that their Pphoto might be larger than the actual
values. The light curve of KIC 10666592 is a too messy to detect a reliable rotation signal. In
the power spectrum of KIC 4349452, we capture two significant peaks, one at our estimated
period P and the other at P/2. Spectroscopic analysis seems to support the period at P/2.
This raises a caution that high frequency signals could be the actual signals of rotation but not
just aliases of the actual low frequency signal. If the high frequency signal (at P/2) is an actual
signal, then the low frequency signal could either indicates the presence of strong differential
rotation or a contamination of light curve by other source.

4Radius from NASA Exoplanet Archive, Chaplin et al. (2014), Rowe et al. (2014), Stassun et al. (2017),
Marcy et al. (2014), Borucki et al. (2010), Carter et al. (2012)
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In conclusion, 90% of Pphoto lie in the reasonable range indicated by spectroscopic analysis. All
estimations in reliable Pphoto group is included in this 90%.

3.5.5 Comparison with Asteroseismic Analysis

In this subsection, we compare photometric estimations with asteroseismic measurements.
Kamiaka et al. (2018) give asteroseismic inferences of rotation period P for all 91 targets
in our sample. They empirically classify their targets into two groups: reliable Pastero and less
reliable Pastero. We first compare targets with reliable Pphoto and Pastero to see whether a good
photometric estimation also indicates a consistency between photometric and asteroseismic
method. Next we compare the rest of stars to evaluate the percentage of overall consistency
between these two analyses. Finally, we discuss whether reliable Pphoto can serve as a proper
prior for asteroseismic inference of stellar inclination angle i∗. Since photometric methods show
relatively good consistency among themselves, we heuristically choose the wavelet result as a
fiducial base in our comparison.

Reliable Pphoto Versus Reliable Pastero

Figure 3.22: Comparison of rotation period for targets with reliable Pastero and Pphoto. X-axis
is the index assigned to each target. In table in Appendix A.2, we can locate each target with
this index. Y-axis is the ratio of period Pmethod/ 〈Pwavelet〉. For these 10 targets, all but one
show good consistency within 1σ uncertainty between photometric methods and asteroseismic
analysis.

First we compare targets with reliable Pphoto and Pastero (10 targets) in Figure 3.22. The
comparison for targets with reliable Pastero and Pphoto shows relatively good consistency within
1σ uncertainty between photometric methods and asteroseismic analysis. The only target
showing discrepancy between two analyses, KIC 5773345 (No. 5), shows no significant peak at
the period indicated by Pastero in the power spectra of photometric methods (Figure 3.23).

There are two main possible scenarios for this disagreement. Firstly, several possible scenarios
for this disagreement. Firstly, despite that this target does not belong to a binary or multiple-
star system, it could still have an apparent companion, which refers to the neighboring star
along the sky projected view. Secondly, there could be differential rotation on the stellar
surface. Since the asteroseismic analysis measures an averaged rotation period over the stellar
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Figure 3.23: Power spectra of photometric analyses (KIC 5773345). Pphoto ≈ 11 days while
Pastero = 5.43 days.

surface while photometric analysis probes the period at the latitude where active features locate,
disagreement could occur from these two analyses.

We first try to see whether spectroscopic analysis of this target gives us a clue about the source
of these two periods. There are two spectroscopic v sin i∗ measurement of this targets, one
is 6.6 ± 1.46 km/s from Bruntt et al. (2012) and the other is 3.4 ± 1.1 km/s from Molenda-
Żakowicz et al. (2013). Kamiaka et al. (2018) point out that the spectroscopic measurements
from Bruntt et al. (2012) are systematically larger than those from Molenda-Żakowicz et al.
(2013). Hence, the discrepancy does not account for the two independent photometric period
estimation for KIC 5773345. The rotational velocity of this star computed using Pphoto is around
9.3 km/s and that computed using Pastero is about twice the value. Therefore, both period
estimations lie in a physically reasonable range (sin i∗ < 1) when compared with spectroscopic
v sin i∗ measurements. We can not identify the actual source of two different periods by this
comparison.

Next, we use the Gaia data to check for close companions. Gaia has a spatial resolution of
0.4 arcsec while Kepler telescope has 4 arcsec per pixel. Hence Gaia has a better chance to
identify close companions. Figure 3.24 shows the image of KIC 5773345 and its surrounding
field of radius r ∼ 30 arcsec, taken by DDS2 5. The blue boxes mark the targets identified in
Gaia EDR3 (Brown et al., 2020). At the center of image, Gaia only identifies one star which
indicates that there is no overlapped targets which can be resolved by Gaia.

The central star is significantly brighter than the surrounding objects. Since the amplitude of
observed stellar pulsation pattern scales with luminosity, the resulting asteroseismic estimation

5Digitized Sky Survey - STScI/NASA, Colored & Healpixed by CDS.
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Figure 3.24: Image of KIC 5773345 and its surrounding field of radius r ∼ 30 arcsec from DDS2
(Digitized Sky Survey - STScI/NASA). The blue box mark the target identified in Gaia EDR3
(Brown et al., 2020). The central star is KIC 5773345.

most likely describes the central star. The central star has a G-band mean flux of ∼ 4.32 ×
106e−/s. Its closest companions (within 5 arcsec) has the mean flux of scale ∼ 102e−/s.
We notice that the variability of the light curve of KIC 5773345 is also of scale ∼ 102e−/s.
Hence, it is quite unlikely that the photometric variation of light curve comes from these
closest companions, because it would require the presence of spots which cover a whole visible
disk of the star. The brightest companion around 10 arcsec away from the central star has a
mean flux of scale ∼ 103e−/s. The photometric variation could possibly come from this star. A
further examination of photometric data for this brightest star would give us stronger evidence
on the source of discrepancy between period estimation.

Overall, there is a good consistency between reliable Pastero and Pphoto (90%) which indicates
that our classification for reliable Pphoto is also supported by asteroseismic analysis. Next, we
compare the rest of our targets (Figure 3.25).

Overall Comparison

We find 75/91 targets (∼ 80%) show consistency between at least one photometric results
(wavelet) and asteroseismic estimations. The 16 targets showing inconsistency can be general-
ized into 4 cases. The first case contains three reported binary systems (KIC 8379927, 7510397,
9139163). The photometric and asteroseismic analyses might capture the rotation signal from
different stars.

The second case includes 6 targets (KIC 5773345, 6933899, 7970740,8006161, 10666592, 8349582).
For them, there is no peak associated to Pastero in the power spectra of photometric analyses.
One target in this group has both reliable Pphoto and Pastero. KIC 8349582 has Pastero > 50 days
which is not within our detectable region. Spectroscopic estimation of v sin i∗ casts doubt on
the reliability of Pphoto for KIC 10666592. The light curve of this target is relatively noisy
with no persistent signal so we are not able to capture reliable rotational modulation. For the
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Figure 3.25: Comparison of rotation period from photometric analysis and asteroseismic anal-
ysis. X-axis is the index assigned to each target. In table in Appendix A.2, we can locate each
target with this index. Y-axis is the ratio of period Pmethod/ 〈Pwavelet〉. The overall comparison
between asteroseismic estimations and photometric results (from at least one method) shows
more than 80% consistency within 1σ uncertainty.
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remaining targets, possible reason includes contamination of light curve by instrumental issue,
apparent close companion and bias from asteroseismic analysis.

The third case includes 5 targets (KIC 3656476,3544595, 6225718, 9965715, 4349452). For these
5 targets, there are multiple peaks, significant or mild, in their power spectra of photometric
analyses, one of which corresponds to Pastero. For these targets, some significant peaks could
be false peaks caused by contamination from other source or high frequency aliases. Pastero can
be a reference for choosing a more reliable peak.

The fourth case is KIC 6521045, 9955598. We find sudden increase in variation in some isolated
quarters of these two quarters. We remove this quarters in our analysis. It turns out that Pastero

corresponds to variations found in the those deleted quarters.

In general, photometric and asteroseismic analyses show a reasonably good consistency (80%)
within 1σ uncertainty.

Is Pphoto a proper prior for asteroseismic analysis?

Now we are ready to address the problem: Is Pphoto a proper prior for asteroseismic analysis?
First of all, targets with light curve of consistent level of variation is better suited for this
purpose. Next, photometric analyses provide precise estimations: the uncertainty of Pphoto

is smaller than the less reliable Pastero in most cases. However, the accuracy of photometric
analyses is not ensured when there are multiple signals captured by the power spectra. Hence,
for targets with multiple peaks in their power spectra (less reliable Pphoto), it is not safe to use
Pphoto as a prior for asteroseismic analysis.

Next we consider targets with relatively clean power spectra showing only one dominant peak
(reliable Pphoto). Among these targets, we also find 6 showing inconsistency between pho-
tometric and asteroseismic analysis, indicating certain occurrence rate of possible (apparent)
binary or strong differential rotation. Hence, a preliminary result from asteroseismic analysis
is required. According to the results, we can select targets with overlapped confidence region
between photometric and asteroseismic estimations (see e.g. target No. 22 in Figure 3.25).
Also, a further validation of Pphoto from spectroscopic side is preferred. However, we should
bear in mind that the constraint given by spectroscopic analysis is not a strong one.

We find three targets which fit these requirement in our sample, which are KIC 3425851 (No.
9, verified with spectroscopic analysis), KIC 9098294 (No.20, no comparison with spectroscopic
analysis) and KIC 12258514 (No.22, no comparison with spectroscopic analysis). Figure 3.26,
for example, gives the asteroseismic result for KIC 12258514 from Kamiaka et al. (2018). The
top right panel shows the correlation between rotational frequency and stellar inclination angle.
The uncertainty range of Pphoto is much smaller than that of Pastero (see top panel of Figure
3.25). With the input of Pphoto as prior, the tail of i∗ distribution towards 90◦ can be shorten
and the precision of i∗ could be improved.

In conclusion, we think that reliable Pphoto selected by our criteria, with overlapped confidence
region with Pastero could be a reasonable prior for asteroseismic analysis. We find three targets,
1 KOI and 2 planet-less stars, that fit the criteria. However, there are around 7% of our targets
having possible strong differential rotation and apparent companion, the signals of which are
not captured by photometric analysis at all. In addition, the constraint from spectroscopic
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Figure 3.26: Asteroseismic results of KIC 12258514. Top left, bottom left and bottom right
panels give posterior distribution of δν, δν sin i∗ and i∗ respectively. The green solid line marks
the median of each distribution and the dashed lines indicate the 1σ confidence interval. Top
right panel is the correlation plot of δν and i∗. We can see the correlation between P and i∗ in the
correlation plot. The red line marks the rotational frequency indicated by photometric analysis.
A prior from photometric analysis could largely improve the precision of i∗ measurement. Data
adopted from Kamiaka et al. (2018).

analysis is not a strong one. Hence, we need to be very cautious about this approach and the
selection of suitable targets.

3.6 Conclusion and Future Perspective

In this Chapter, we examine the three widely used photometric analyses to extract stellar
rotation period, which are LS periodogram, Auto-correlation function (ACF), and wavelet
analysis, on 91 solar-type stars. We notice that for our sample there are in general two types
of light curve. The first type contains only one dominant periodic signal. The power spectra
of such light curve is relatively clean with only one significant peak associated to the period of
variation. For targets in this group, all photometric analyses give consistent estimation of period
within 1σ uncertainty. The second type contains multiple periodic signals with different periods.
Power spectra of all photometric analyses capture the same groups of peaks. The multiple
peaks in the power spectra could be caused by contamination from instrumental perturbation
or close (apparent) companions. They could also be the high-frequency aliases of the actual
periodic signal. The high-frequency aliases have significant power under a combination of two
circumstances:when the variation of light curve is not perfectly sinusoidal and when multiple
active regions on stellar surface distributed evenly along longitudinal direction.
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When there are multiple peaks in the power spectra, the power assigned to each peak is different
for each method. Wavelet analysis (Torrence & Compo, 1998) assigns relatively high powers
to peaks at low frequency, which is due to an intrinsic bias of this method Liu et al. (2007).
Mathur et al. (2010) consider this property of wavelet analysis as an advantage in that it
suppresses the high frequency aliases. LS periodogram has the highest frequency resolution
while wavelet analysis has the most degraded resolution. As a result, wavelet analysis tends
to have a larger error bar. However, we notice that the major concern of photometric method
is not the imprecision of estimation but rather the inaccuracy. Wavelet power spectrum can
rule out the transient contamination by tracing the duration of a signal. However, when there
are multiple long lasting periodic signals, photometric analysis by its own is not enough to
discern the rotation period (e.g. differential rotations) from contamination of other light curve
or high frequency aliases. In such case, validation from other approach like spectroscopic and
asteroseismic analyses is needed.

Then, we design a set of criteria to select reliable photometric estimations Pphoto, based on
the persistence of the periodic signal and the homogenity of light curve variation. The reliable
Pphoto group contains 22 targets. The less reliable Pphoto group contains 69 targets. We combine
our Pphoto with stellar radius R to give estimations of rotational velocities v. Then we compare
our result with reliable spectroscopic estimations of v sin i∗ for 25 targets, 9 from reliable Pphoto

group and 16 from less reliable Pphoto. All 9 targets in the reliable Pphoto group lie in the
physically meaningful region (sin i∗ < 1).

Next, we compare our result Pphoto with asteroseismic estimations Pastero from Kamiaka et al.
(2018). A general comparison for all targets and find ∼ 80% consistency, which indicates a
reasonable reliability of photometric methods to extract stellar rotation period. Kamiaka et al.
(2018) also divide their targets into reliable Pastero group and less reliable Pastero group. We
compare the 8 targets with reliable Pphoto and Pastero. 7 out of 8 targets show good consistency
within 1σ uncertainty. For the remaining one target (KIC 5773345), we examine their power
spectra from photometric analyses. We found no peak that corresponds to Pastero.

One possible reason for such discrepancy is the presence of differential rotation on the stellar
surface. Since the asteroseismic analysis measures an average rotation period on the stellar
surface while the photometric analysis measures the period at the latitude where active features
locate, discrepancy in estimation could occur when rotation period at the stellar surface varies
along latitude. The second possibility is the presence of close (apparent) companions. We
check the Gaia EDR3 (Brown et al., 2020). We identify two bright stars located about 10
arcsec away from KIC 5773345 which could be the source of flux variation. However, since
both Kepler and TESS do not provide photometric data of these two stars, extra observation
of them are required to verify the actual source of the two periodic signals revealed by different
analysis.

Finally, we discuss about the suitability of using Pphoto as a prior to improve asteroseismic
estimation of stellar inclination angle i∗. We think that Pphoto values are suitable choices for
priors in asteroseismic analysis when they meet two criteria. Firstly, in the power spectra of
photometric analysis of the target, there should be only one dominant peak, which is the case
for targets in reliable Pphoto group. Secondly, Pphoto has overlapped 1σ confidence regions with
Pastero. When the uncertainty range of Pastero is much larger than Pphoto, the improvement in i∗
will be significant. However, we should bear in mind that such approach has a high risk: More
than 60% of stars are from binary or multiple star systems, the rotational modulation of light
curve for which could be too weak to detect by photometric analysis. Under such circumstance,
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asteroseismic and photometric analyses are analyzing different stars so that Pphoto will not be a
proper prior. To conclude, reliable Pphoto could potentially improve the asteroseismic inference
of stellar inclination i∗ significantly. However, the selection of target should be very careful.
From our sample, we find 3 targets which fit the requirement.

In the future, we first plan to implement our Pphoto as priors for asteroseismic analysis for the
three targets we identified. Next, we plan to apply star spot modeling to stars which show
possible signs of differential rotation (e.g. KIC 5773345). Star spot modeling is a potentially
powerful technique to trace the location of active features. Davenport et al. (2015) demonstrate
its power to reveal the differential rotation and spot evolution on the stellar surface. They
successfully detect a differential rotation rate of ∆Ω = 0.012± 0.002 rad day−1 on an active M4
dwarf. Furthermore, for systems with transiting planet, the modeling of transit over star spots
is likely to provide further hint on the spot location as well as the configuration of exoplanetary
system (Dai & Winn, 2017).



Chapter 4

Asteroseismic Analysis of Stellar
Inclination Angle

4.1 Motivation

Asteroseismology has been an important independent approach to estimate stellar rotation
period and inclination angle. However, it is pointed out by e.g. Ballot et al. (2006) and
Kamiaka et al. (2018) that the estimation of stellar rotation period becomes more difficult and
less reliable for a slow rotator which has a period of tens of days, especially when the signal to
noise ratio is not high enough. In addition, Ballot et al. (2006) suggested that the rotational
splitting δν and the stellar inclination i∗ are correlated for slow rotators as δν sin i∗ ≈ constant,
so that a bias in either the rotational splitting δν or stellar inclination angle i∗ may have huge
influence on the other. Kamiaka et al. (2018) noticed similar correlation, an example of which
is illustrated in Figure 4.1. Furthermore, Kamiaka et al. (2018) found that even for stars with
high SNR spectrum and for fast rotators, the accurate estimation of stellar inclination angle
can only be done within the range i∗ ∈ [20◦, 80◦]. New perspective is needed to improve the
asteroseismic estimation of stellar inclination. In this Chapter, we first discuss about the past
method to extract stellar parameters, and then introduce two ongoing attempts to improve
asteroseismic analysis.

4.2 Model of Stellar Oscillation Spectrum

Solar-like stars have sub-surface convection zones. The turbulent motions in this zone stochas-
tically excite and damp acoustic oscillations (pressure p modes) (e.g. Duvall Jr & Harvey, 1986;
Goldreich & Kumar, 1988), which can be described by the simple oscillator equation with a
damping term and a stochastic energy source term (see e.g. Anderson et al., 1990; Appour-
chaux, T. et al., 1998). Consequently, in the Fourier spectrum, these oscillation modes can be
approximated as Lorentzian profiles:

L(A, ν0,Γ; ν) =
H

1 + (ν−ν0
Γ/2

)2
, (4.1)

45
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Figure 4.1: Asteroseismic results of KIC 8077173. Top left, bottom left and bottom right plots
give posterior distribution of δν, δν sin i∗ and i∗ respectively. Top right is the correlation plot
of δν and i∗. The green solid line marks the median of each distribution and the dashed lines
indicate the 1σ confidence interval. Data adopted from Kamiaka et al. (2018).

where H is the mode height, Γ is the mode line width and ν0 is the mode frequency.

The rotation rate of the solar type stars is not too rapid to distort severely the spherical
symmetry of the star. Therefore, the oscillation modes can be described by the spherical
harmonics, characterized by three wave numbers n, l and m. The modeled power spectrum is
a superposition of all oscillation modes:

M(ν, θ) = P (ν)

=
nmax∑
n=nmin

lmax∑
l=0

+l∑
m=−l

H(n, l,m, i∗)

1 + 4[ν − ν(n, l,m)]2/Γ2(n, l,m)
+N(ν), (4.2)

with a background noise model N(ν). The main sources of noise are granules and spots on
the stellar surface. Granules are convective structures with characteristic life times ranging
from a few minutes to days. The stellar spots are dark region on the stellar surface caused by
magnetic activity. They exist within a limited lifetime which is positively correlated with their
size. Hence, the noise model can be well approximated by a generalized semi-Lorentzian which
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is a monotonically decreasing function of frequency with gentle slope, as well as a white noise:

N(ν) =
∑
i

Ai
1 + (2πτiν)pi

+N0, (4.3)

where τ is the characteristic lifetime, A is the height and p is the slope of semi-Lorentzian.

In the real practice, the choice of background model depends on the number of mode included
in the fitting. Usually if only one radial mode (n0, l,m) is fitted, the background is considered
as flat (e.g. Kuszlewicz et al., 2018). As the noise background is a monotonic function which
varies slowly with frequency, for the small range of frequency, the variation is negligible. If
multiple radial modes are fitted, a combination of semi-Lorentzian functions and white noise is
adopted. In Kamiaka et al. (2018), for example, the background is modeled as the sum of two
semi-Lorentzian functions with white shot noise.

The height H(n, l,m, i∗) of each mode in the power spectrum is expressed as H(n, l,m, i∗) =
E (l,m, i∗)H(n, l) with

E (l,m, i∗) =
(l − |m|)!
(l + |m|)!

[P
|m|
l (cos i∗)]

2, (4.4)

where P
|m|
l is the associated Legendre polynomials with degree l and order m (Gizon & Solanki,

2003). The intrinsic height of the oscillation H(n, l) is approximated as

H(n, l) = V 2
l H(n, l = 0), (4.5)

where Vl is the mode visibility. The mode visibility is a geometric effect as a function of l which
is calculated by the integration of pulsations over the stellar disk, taking into account the limb
darkening effect (Ballot, J. et al., 2011; Chaplin, W. J. et al., 2008).

Γ(n, l,m) represents the peak width of each mode (n, l,m). Since the dependence of Γ on m is
weak, it is usually reduced to Γ(n, l) in the fitting of model. The central frequency ν(n, l,m) is
given by

ν(n, l,m) = ν(n, l) +mδν∗ ≈ (n+
l

2
+ εn,l)∆ν +mδν∗, (4.6)

where ∆ν is the frequency spacing between neighboring radial modes, εn,l is a small correction
term (see Ledoux, 1951; Tassoul, 1980; Mosser, B. et al., 2013). The rotation of star breaks the
degeneracy of l mode and splits then into (2l+ 1) m modes. δν∗ represents the splitting width
between successive m modes. The inverse of δν∗ is the averaged rotation period of a star.

4.3 Past Attempt to Extract Stellar Parameters

Stellar parameters like rotational frequency and inclination can be extracted by fitting the
observed Fourier spectrum with its model. Bayesian statistics is a popular technique for the
regression. First and most importantly, a likelihood function which contains the information of
model need to be constructed. Assuming the noise in time series is Gaussian, the noise statistics
of its power spectrum obeys χ2 distribution with two degrees of freedom (see e.g. Groth, 1975).
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Figure 4.2: Power spectrum of KIC 12069424. Black and Grey curve are power spectra
smoothed with Gaussian filters of width 0.25∆ ≈ 25.5µHz and 0.05∆ ≈ 5.2µHz respectively.
Red curve is the ground level and blue curve is the fitted power spectrum. Plot is adopted from
Kamiaka et al. (2018).

Hence, the probability density of power spectrum is given by (Duvall Jr & Harvey, 1986)

p(y|θ,M) =
N∏
i=1

1

M(νi, θ)
exp

(
−yi

M(νi, θ)

)
, (4.7)

where i is the index for frequency, θ represents the parameters, M is the modeled power spec-
trum and yi is the value of the observed power spectrum at frequency νi. This probability
density is the likelihood function which measures the goodness of fit of the modeled power
spectrum to the observed data.

Next, there are two main approaches to do the regression. The first one is the maximum
likelihood estimation which refers to a maximization of the likelihood function p(y|θ,M) in
Equation (4.7)(e.g. Anderson et al., 1990; Gizon & Solanki, 2003; Ballot et al., 2006; Appour-
chaux, T. et al., 2008). The second one is the posterior sampling over a region of parameter
space(Kamiaka et al., 2018).

Posterior sampling makes use of Bayes’ theorem

p(θ|y) =
p(θ)p(y|θ)
p(y)

, (4.8)

which combines the prior knowledge of parameter θ into the fitting of model. p(θ) is the prior,
p(y|θ) is the likelihood function and p(θ|y) is the posterior probability of of the fitted parameter.
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Markov Chain Monte Carlo (MCMC) method is used to estimate the posterior distribution by
random sampling in a probabilistic space. There are various strategies of MCMC method like
Metropolis-Hasting algorithm (e.g. Benomar, 2008; Benomar et al., 2009) and Gibbs sampling.
The choice of strategies vary among work.

Both attempts have been made for asteroseismic analysis. Maximum likelihood Estimation is
faster to compute relative to posterior sampling. However, it has a higher chance to obtain a
local maxima, instead of the actual one. The posterior sampling not only conducts a better
exploration over the parameter space but also evaluates the uncertainty of inferences by giving
a relatively continuous sampling of probability.

One thing that current asteroseismic studies found in common is the bias of δν and i∗ mea-
surements in certain parameter space (e.g. Ballot et al., 2006; Kamiaka et al., 2018). Ballot
et al. (2006) attempt to study the source of bias. Firstly they simulate spectra of 150-day
long CoRoT-type observations. Then, they use MLE method to fit their simulated spectra of
several successive modes (l = 0,1 and 2 ). During the fitting, they fix all the input parameters
θ to their true values except for i∗ and δν. Also, instead of fitting i∗ and δν as two separate
parameters, they fit δν sin i∗ and i∗.

In their results, bias in δν sin i∗ measurements vanishes, while that in i∗ remains. This indicates
that δν and i∗ are strongly correlated. To illustrate the possible reason for such correlation,
we plot a schematic illustration of modeled power spectra of a l = 1 mode, with different
inclination angle i∗ and rotation rate in Figure 4.3. In this figure, the variation of rotation
rate is represented by different splitting to width ratio δν/Γ. For slow rotators with small
δν/Γ (right column of Figure 4.3), the different m modes are blended together so that it
is difficult to distinguish between different inclination angle according to their total power
spectrum (black line). In addition, if we look at power spectrum of δν/Γ = 0.5 and i∗ = 40
and that of δν/Γ = 0.3 and i∗ = 60, we will find that they are actually quite similar with only
subtle difference. Hence, the similarity in the power spectra could lead to a strong degeneracy
between δν and i∗ values.

Kamiaka et al. (2018) use the Bayesian-MCMC sampling method (Benomar, 2008) to their
simulated spectra of 1 year and 4 year kepler-type observations. Similarly, their results also
show a bias in the estimation of i∗ and δν. Measurements of i∗ around the edge at 90◦ and 0◦

are shifted towards the middle values within the range [0◦, 90◦]. Only stars with 20◦ . i∗ . 80◦,
δν/Γ & 0.5 with reasonably high SNR and long observations (∼ 4 years) could obtain reasonably
reliable results.

In the next session, we will introduce our attempts to tackle this biasing problem.

4.4 Method

In this section, we introduce two attempts to improve the biased measurement of δν and i∗.
The first attempt is a two-level hierarchical Bayesian model (HBM) introduced by Kuszlewicz
et al. (2018). This model uses a hierarchical structure to analyze clusters of measurements.
In the first level, the theoretical model is fitted for each cluster and a set of parameters is
assigned. In the second level, a new distribution is constructed to describe the distribution of
all sets of parameters from different clusters. This method allows us to evaluate uncertainty
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Figure 4.3: Schematic illustration of power spectrum of l = 1 mode. Rotation splits the l = 1
mode into 3 different m modes. Blue dotted line represents m = 0 mode and red dotted lines
show m = 1/ − 1 peaks. δν is the splitting between different m modes and Γ represents the
width of peaks (Kamiaka et al., 2018).

from each cluster properly so that it is likely to provide us with a more unbiased estimation.
In previous attempts, the entire power spectrum are fitted at once without considering the fact
that every mode (n0, l,m) in the spectrum has different signal to noise ratio which could lead
to different uncertainty level of estimations. By using HBM, we can divide the spectrum into
groups of multiplets (n, l) and evaluate their uncertainty separately so that any bias from one
group will not significantly influence the whole measurements. Kuszlewicz et al. (2018) report
a successfully improvement of inclination estimation around i∗ < 20◦ and i∗ > 80◦ for red giant
stars.

The second attempt that we made also divide the whole estimation process into two steps. In the
first step, we do the fitting of the parameter E (l,m, i∗) from H(n, l,m, i∗) = E (l,m, i∗)H(n, l)
instead of i∗ over the entire spectrum using MCMC package provided by Benomar et al. (2009).
Then we compute a least square fitting of the posterior samples to the modeled E (l,m, i∗) and
extract the i∗ value. The purpose of this process is to avoid the bias caused by complexity and
degeneracy from the non-linear relation between δν and i∗ given in Equation (4.4) and (4.6).

Data

We use simulated 4-year Kepler type data from Kamiaka et al. (2018) to test our method. To
simulate the data, Kamiaka et al. (2018) first carry out the asteroseismic analysis mentioned
in previous section to their reference star KIC 12069424 (16Cyg A) and extract all parameters
described in Equation (4.2). They fit 17 radial orders (n) with their corresponding degrees l =0,
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1, and 2. To compute a variation of simulated power spectrum, they vary three parameters
which are height H(n, l = 0), δν/Γ and i∗.

With the measurements of mode height H(n, l = 0) and the white noise parameter, they
generate grids of height H(n, l = 0) values for simulated spectrum by

Hsim(n, l = 0) = HBRsim(n, l = 0)N0

=
HBRmax,sim

HBRmax,ref

HBRref(n, l = 0)N0, (4.9)

where HBRref is the ratio between mode height H(n, l = 0) and the white noise parameter N0

measured by the asteroseismic analysis of the reference star and HBRmax,ref is the maximum
HBRref among all radial order n. Figure 4.2 illustrates the HBR values for different radial
order. We can see that in the power spectrum, HBRref reaches the maximum value HBRmax,ref

at around 2100µHz (approximately the highest peak) and decreases towards higher can lower
frequencies. They fix the white noise parameter N0 as the value from the reference star and
vary the HBRmax,sim in order to have different simulated height value Hsim(n, l = 0).

Next, they generate a grids of δν/Γ values. They fix the Γ value to the maximum one Γmax,ref

measured from the reference star and vary the δν values. Finally, they also compute a grids of
i∗ values for generating simulated power spectrum. They generate power spectrum using model
4.2. The grids of varying parameters are summarized in table 4.1 (Kamiaka et al., 2018).

Parameter value and range
HBRmax,ref [0, 1, ..., 29, 30]
δν/Γmax,ref [0.1, 0.2,..., 0.9, 1.0]
i∗ [0, 10, ..., 80, 90]

Table 4.1: Grids of the control parameters for simulation of power spectra.

We test our method by comparing our measurements with the input parameters for simulating
the spectrum.

4.4.1 Hierarchical Bayesian Model

Introduction

A hierarchical Bayesian model is a multi-level statistical model which estimates posterior distri-
bution of parameters using the Bayesian method. When an analysis has been made to clusters
within a population, individuals from the same cluster is likely to display more similarity.
Therefore, observations may not be considered as independent in the population. In this case,
statistical inferences within each cluster are preferred before cross-group analysis. Figure 4.4
illustrates the comparison between 1-level Bayesian model on the left and 2-level hierarchical
Bayesian model on the right. Dn represents the cluster of data with Dn = y1, y2....yNDn

, where
yj represents the data point in cluster n and NDn gives the total number of data point in
cluster n. In the 1-level Bayesian model, the inference of parameters θ is made over the entire
population so that
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Figure 4.4: Schematic illustration of 1-level Bayesian model(left) and 2-level hierarchical
Bayesian model(right).

p (θ|y) ∝ p (y|θ) p(θ), (4.10)

where y represent the data from all clusters. With the 1-level Bayesian model, the variations of
data distribution among different clusters might lead to large uncertainty in the model fitting.
Therefore, an additional layer could be introduced to improve the estimation which is given by
the 2-level hierarchical Bayesian model. In the base level, statistical inference of parameters
was made for each cluster so that for data in cluster Dn

yj ∼ Q(θn), (4.11)

where Q is some distribution with parameter θn which varies among cluster. In the upper level,
it is assumed that all θns come from a common distribution W with parameter α so that

θn ∼ W (α). (4.12)

α is also called hyperparameter. For the hierarchical Bayesian model, the posterior distribution
is

p (α, θ|y) ∝ p (y|θ, α) p (θ|α) p(α). (4.13)

Finally, we may only be interested in the marginal distribution of hyperparameter α which is

p (α|y) ∝
∫
p (y|θ, α) p (θ|α) p(α)dθ

∝ Lαp(α) (4.14)

Lα =

∫
p (y|θ, α) p (θ|α) dθ, (4.15)

where Lα is considered as the likelihood function of this Bayesian analysis. Hierarchical
Bayesian model (HBM) evaluates the uncertainty due to the variations among different clus-
ter of data by hyperparameter. As a result, HBM can be applied to study either the group
distribution of a parameter measured from individuals, or the distribution of a parameter for
an individual from different measurements. An example of the first type of application can be
Hogg et al. (2010). Hogg et al. (2010) attempt to use HBM to study the eccentricity distribu-
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tion of a group of exoplanets using their radial velocity data. In their model, the radial velocity
measurements for each star n can be viewed as the Dn. In the base level , the eccentricity en
value is measured for each star n. Then hyperparameter is introduced to describe the group
distribution of all eccentricity values. An example of the second type of application can be
Kuszlewicz et al. (2018) where they attempt to measure the stellar inclination i∗ of a star. In
the base level of their model, they made several inferences of stellar inclination angle based on
different groups of measurements. Then they introduce hyperparameter which describes the
distribution of estimated stellar inclination angles from all group.

Model

We use a two level hierarchical Bayesian model for our analysis. The measurements or data D
used for statistical analysis are stellar power spectrum. We adopt power spectra simulated with
a reference star KIC 12069424 for a 4-year observation from Kamiaka et al. (2018). Firstly, we
crop the slice of frequency covering l = 1 modes in the power spectrum out. An example of
a slice of l = 1 mode is shown in the left embedded plot in Figure 4.2. Each l = 1 mode is
considered as an individual cluster of measurements as suggested in Kuszlewicz et al. (2018).
Then, we do the fitting of each slice of power spectrum using posterior sampling method (see
Equation (4.8)) with modeled power spectrum given by 4.2. The summation of power P (ν) is
made over l = 1 mode with only three folds m = −1, 0, and 1. Next, we embed the posterior
samples of parameters from different clusters to our 2-level HBM to infer the stellar inclination
angle i∗.

The spirit behind this approach is that since the signal to noise ratio is different for slices of
l = 1 mode, HBM would enable us to better consider the uncertainty for each individual fitting
and avoid large bias which are potentially occurring in the fitting of entire power spectrum.
We are using the second type of application of HBM described in the last paragraph which is
to infer a parameter from different groups of measurements hierarchically.

First, we start with fitting of l = 1 modes. Since only l = 1 mode is fitted, the number of
parameters included in the fitting is smaller compared to the fitting of entire power spectrum
in Kamiaka et al. (2018). The background model N(ν) is considered as flat with white noise
N0. The δν and i∗ are fitted as δν sin i∗ and δν cos i∗. The power spectrum now takes the form
of

P (ν) =
+1∑

m=−1

H(n, 1,m, i∗)

1 + 4[ν − ν(n, 1,m)]2/Γ2(n, 1,m)
+N0. (4.16)

The likelihood function is constructed as Equation (4.7). Table 4.2 lists all the parameters and

their priors. We compute the posterior samples of parameters p(θ|y) = p(θ)p(y|θ)
p(y)

for each l = 1

mode using MCMC code provided by Benomar et al. (2009).

Then, we start to embed our posterior samples from each l = 1 mode to the two level HBM
described by Equation (4.14). It would be too computationally expensive to directly evaluate
the marginalized likelihood Lα, so we use a sampling approximation of K-element sampling
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Parameter Prior
δν sin i∗ uniform
δν cos i∗ uniform
ν(n, l) uniform
N0 uniform
Γ Jeffreys
πΓH(n, l = 0) Jeffreys

Table 4.2: Parameters and priors for fitting of l = 1 mode of power spectrum

(Hogg et al., 2010) as suggested by Kuszlewicz et al. (2018)∫
f(x)p(x)dx =

∫
f(x)p(x)

q(x)
q(x)dx

≈ 1

K

K∑
k=1

f(x)(k)p(x)(k)

q(x)(k)
, (4.17)

where q(x) is the sampling distribution. In our analysis, we set the sampling distribution as
the posterior distribution q(x) = p(θ|y) ∝ p(θ)p(y|θ). Therefore, the posterior samples would
become

p (α|y) ∝ p(α)

∫
p (y|θ, α) p (θ|α) dθ

∝ p(α)

∫
p (y|θ, α) p (θ|α)

p(θ)p (y|θ)
dθ

∝ p(α)
1

K

K∑
k=1

p (θ|α)k

p(θ)k
. (4.18)

Since the hyperparameter α we are about to introduce describe only the distribution of stellar
inclinaton i∗ and we assume that probability distribution, we can assume that p(θ|α) = p(θ)
for parameters apart from i∗. p(θ) is the prior used in the first fitting process (see table 4.2).
In addition, we make an assumption that distributions of parameters are separable so that our
hierarchical Bayesian model becomes

p (α|y) ∝ p(α)
1

K

K∑
k=1

p(ik∗|α)

p(ik∗)
, (4.19)

where p(i∗|α) is the likelihood function. Then, extending the model to the full sample of N
l = 1 modes, we have the final form

p (α|y) ∝ p(α)
N∏
n=1

1

K

K∑
k=1

p(ink∗ |α)

p(ink∗ )
. (4.20)

The input data ink∗ is the kth element of i∗ posterior samples that we computed in the first step
for the nth l = 1 mode. The p(i∗|α) we use is a modified fisher distribution of i∗ introduced by
Kuszlewicz et al. (2018)

p(i∗|α(µ, κ)) = exp[κ cos(i− µ)] sin i, (4.21)
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where µ and κ are the two hyperparameters for this model. µ is a location parameter that
describes the value of stellar inclination i∗ and κ is the concentration parameter of the posterior
distribution. We adopt the same prior as Kuszlewicz et al. (2018) for µ and κ

p(κ|γ) =
1

πγ

(
γ2

κ2 + γ2

)
forκ > 0. (4.22)

p(µ) = sin(µ). (4.23)

The prior of concentration parameter κ is a Half-Cauchy prior with γ = 50. The prior of
location parameter i∗ is an isotropic prior.

Finally, we compute the posterior sample of p (α|y) using MCMC sampling package emcee
(Foreman-Mackey et al., 2013). We didn’t use MCMC package provided by Benomar et al.
(2009) in our hierarchical Bayesian analysis because this package is written in C++ and designed
for fitting of power spectrum. The emcee is a python package which is more suitable for testing.

4.4.2 Fitting of Mode Height H

The second method is proposed based on the hypothesis that the correlation between δν and
i∗ bias the measurements of these two parameters (Ballot et al., 2006; Kamiaka et al., 2018).
Parameter δν appears in the relation between ν(n,l,m) and δν given by Equation (4.6) and
parameter i∗ comes from the function of Height H(n, l,m, i∗) = E (l,m, i∗)H(n, l) with E given
by Equation (4.4). Hence, the relation between i∗ and δν is non linear in the modeled power
spectrum given by Equation (4.2). We suspect that if we fit the parameter δν and i∗ directly
as in Kamiaka et al. (2018), the complex relation mentioned above might lead to unknown bias
and degeneracy.

In our attempt, we also do the posterior sampling by fitting over the entire power spectrum.
However, we simplify the process by fitting E (l,m, i∗) and δν instead of δν and i∗ over the
entire power spectrum. After collecting the posterior samples of E (l,m, i∗), we use a separate
step to compute i∗. In the observed power spectrum, signal to noise ratio for l = 3 and above
is usually too low. Therefore, we fit the l = 1 and l = 2 spectra. Since E (l,m, i∗) values don’t
vary with n, we will only have five values for all l = 1 and l = 2 modes in the spectrum

E (1, 0, i∗) = cos2 i∗, (4.24)

E (1,±1, i∗) =
1

2
sin2 i∗, (4.25)

E (2, 0, i∗) =
1

4
(3 cos2 i∗ − 1)2, (4.26)

E (2,±1, i∗) =
3

2
cos2 i∗ sin2 i∗, (4.27)

E (2,±2, i∗) =
3

8
sin4 i∗. (4.28)

(4.29)

As we can see from the above equation, the values of E (l,m, i∗) sum up to 1 over all multiplets of
each l mode. For example, E (1, 0, i∗) +E (1, 1, i∗) +E (1,−1, i∗) = 1. This parameter E (l,m, i∗)
gives an idea of relative height of multiplets in each l mode. Figure 4.3 gives an example which



56 Chapter 4. Asteroseismic Analysis of Stellar Inclination Angle

help us to picture the relative height of multiplets. In each box of this figure, multiplets of l = 1
mode is plotted. The two peaks marked by red dotted line and the one peak marked by the
blue dotted line are the multiplets. We can see that their relative height changes with varying
δν/Γ and i∗. It is the relative height of these multiplets that we fit in our first step. The priors
and model we used for the fitting of entire power spectrum all follows Kamiaka et al. (2018)
except that we fit E (l,m, i∗) instead of i∗. We use Jeffreys prior for E (l,m, i∗). We use the
MCMC package for posterior sampling provided by Benomar et al. (2009).

Next, we carry the five arrays of posterior samples of E (l,m, i∗) to our following analysis to
extract i∗. As mentioned in the paragraph above, the sum of multiplets for each l value is equal
to 1. We compute two arrays of the normalization factor A(l = 1) and A(l = 2) for l = 1 and
l = 2 cases respectively

A(l = 1) = E (1, 0) + 2 ∗ E (1,±1), (4.30)

A(l = 2) = E (2, 0) + 2 ∗ E (2,±1) + 2 ∗ E (2,±2), (4.31)

and normalize the five E (l,m, i∗) arrays with the normalization factors so that the sum of
E (l,m, i∗) of multiplets for each l value is 1. Finally, we compute a least square fitting of
posterior samples of E (l,m, i∗) using the model in Equation (4.24) over i∗ value to extract the
i∗. By computing

∆2
i∗ =

l=2∑
l=1

+l∑
m=−l

(E (l,m, i∗)− E (l,m, i∗)observed)
2, (4.32)

over i∗ ∈ [0◦, 90◦] with a linear spacing of 0.1◦, we select the i∗ from the minimum ∆2
i∗ as the

stellar inclination angle.

4.5 Results

In this section, we summarize our results for the two attempts we made. For the test using
HBM, we apply our method on the 11 most ideal simulated spectra with largest HBR value
and with the splitting to width ratio δν∗/Γ = 1. The only parameter that have different values
for these 11 spectra is i∗. The case of δν∗/Γ = 1 is an ideal case for solar-type stars which rarely
occurs. For solar type star the blending of multiplets are stronger, usually with δν∗/Γ ≈ 0.44,
so that the extraction of true δν value is more challenging. Since we adopt the HBM from
Kuszlewicz et al. (2018) in which they analysis red giant stars. Therefore, we choose the best
δν∗/Γ ratio in the simulated spectrum to make a comparably fair test of this method.

Figure 4.5 shows the measurements of i∗ using our HBM comparing with the input i∗ on the
x-axis. We realize that the HBM method does not show obvious improvement over the past
global fitting (Kamiaka et al., 2018), except for i∗ ∼ 0◦. We also notice that there is a severe
underestimation around i∗ ∈ [20◦, 40◦]. Despite that Kuszlewicz et al. (2018) also report such
bias, it is less severe than us. We suspect that the modified fisher distribution is not a good
approximation for i∗ distribution for i∗ ∈ [20◦, 40◦] where uncertainty of i∗ distribution is large.

To conclude, the behavior of HBM model has no clear advantage over the traditional fitting
of entire spectrum (Kamiaka et al., 2018) for the most ideal group of spectrum. In addition,
since our main goal for studying the stellar inclination angle is to find the portion of misaligned
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Figure 4.5: Measurements of inclination angle i∗ plotted against input value i∗ using global
fitting (orange) and HBI (green).

system, the accurate measurement for i∗ ∈ [60◦, 90◦] is the most important. Given this perspec-
tive, the fitting of entire power spectrum seem to be a better method comparing with HBM.

Next, we perform the fitting of height method to 77 simulated spectra from Kamiaka et al.
(2018) with varying δ/Γ and i∗. In Figure 4.6, we plot our measurements using red arrow in
the grid space of δ/Γ (y-axis) and cos i∗ (x-axis). The starting point of error is the true input
value of these two parameters and the head of error point to the measured values. We also
put the result from Kamiaka et al. (2018) for comparison. We find that our measurements
better perform the estimation from Kamiaka et al. (2018) in the range of cos i∗ ∈ [0.5, 0.9] and
δν/Γ ∈ [0.5, 1]. However, since cos i∗ ∈ [0.5, 1] corresponds to i∗ ∈ [25.8◦, 60◦], the range of
improved measurements do not cover the range of i∗ that we are interested in.

To conclude, HBM and Fitting of height method improve the measurements near i∗ ≈ 0◦ and
in the range i∗ ∈ [25.8◦, 60◦] respectively. However, in the remaining range, these method gives
poorer performance than global fitting method in Kamiaka et al. (2018). However, there is still
huge space to explore for these two methods. For example, we only use slices of l = 1 mode
in HBM which might not be enough for solar-type stars because of their more severe blending
of multiplets. In addition, we could explore more distributions other than the modified Fisher
distribution. Also, the least square fitting of E (l,m, i∗) is not the only approach to extract i∗
from posterior samples. We can even try to combine our two attempts. It is likely that one of
these ideas could improve the measurements of i∗ in the range of i∗ ∈ [60◦, 90◦].
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Figure 4.6: Estimations of δν∗/Γ and stellar inclination angle cosi∗. The red line is given by
our fitting of height method and the black line is from Kamiaka et al. (2018) using the global
fitting.



Chapter 5

Conclusion and Future Work

There are two main parts in our work. In the first part of our thesis, we examine the three
widely used photometric analyses of rotation period estimation on 91 Kepler solar-type stars
(31 KOI stars and 60 non-KOI stars), which are LS periodogram, Auto-correlation function
(ACF), and wavelet analysis. In general, more than 80% consistency within 1σ uncertainty is
found between all three photometric methods. We noticed that when the light curve of a star
contains a homogeneous variation, all photometric analyses give consistent estimation of period
within 1σ uncertainty. On the other hand, when the light curve contains multiple signals, there
will be multiple peaks in the power spectra. Despite three methods capture the same group of
peaks, the power assigned to each peak varies among methods. Comparing with LS and ACF
method, wavelet analysis (Torrence & Compo, 1998) assigns relatively higher powers to peaks
at low frequency, which is due to an intrinsic bias of this method Liu et al. (2007). Mathur
et al. (2010) consider this property of wavelet analysis as an advantage in that it suppresses the
high frequency aliases. LS periodogram has the best frequency resolution while wavelet analysis
has the most degraded resolution. As a result, wavelet analysis tends to have a larger error
bar. However, we think that the major concern of photometric method is not the imprecision of
estimation but rather the inaccuracy. Photometric analyses can not distinguish between signals
of differential rotations and contamination from other light source. We found that more than
70% of our targets have multiple peaks in their power spectra.

We design a criteria for selecting a group of reliable Pphoto. We have 22 targets in the group of
reliable Pphoto and 69 targets in the group of less reliable Pphoto. Then we compare our results
with spectroscopic analysis. We then compare the rotational velocity v computed by our pho-
tometric estimations with the reliable projected rotational velocity v sin i∗ from spectroscopic
analysis. 23 out of 25 targets lie in a physically meaningful region (sin i∗ < 1). All targets in
our reliable Pphoto group are contained within the 23 targets.

Next, we compare our result Pphoto with asteroseismic estimations Pastero from Kamiaka et al.
(2018). Kamiaka et al. (2018) also divide their targets into reliable Pastero group and less
reliable Pastero group. We first compare the 8 targets with reliable Pphoto and Pastero. 7 out of 8
targets show good consistency within 1σ uncertainty. Then we conduct a general comparison
for all targets and find ∼ 80% consistency. In general, photometric analyses produce reasonably
reliable estimation of stellar rotation period.

Finally, we discuss about the suitability of using Pphoto as a prior to improve asteroseismic
estimation of stellar inclination angle i∗. We suggest that reliable Pphoto are suitable choices
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for priors in asteroseismic analysis when they meet two criteria. Firstly, in the power spectra
of the selected target, there should be only one dominant peak. Secondly, estimated Pphoto
has overlapped 1σ confidence regions with Pastero. We find that the improvement in i∗ will be
significant, as the uncertainty of less reliable Pastero is much larger than Pphoto. However, we
should bear in mind that such approach has a high risk: More than 60% of stars are from binary
or multiple star systems, the rotational modulation of light curve for which could be too weak
to detect by photometric analysis. Under such circumstance, asteroseismic and photometric
analyses are analyzing different stars so that Pphoto will not be a proper prior. To conclude,
reliable Pphoto could potentially improve the asteroseismic inference of stellar inclination i∗
significantly. However, the selection of target should be very careful. We find 3 targets in
our sample, KIC 3425851, KIC 9098294 and KIC 12258514, which could be suitable for this
approach.

In the second part of our thesis, we attempt two methods to improve the results in the regime
where the traditional asteroseismic analysis does not perform well. When the star rotation
is slow, the traditional method of asteroseismic analysis becomes less reliable in terms of ex-
tracting stellar inclination angles and rotation periods (Ballot et al., 2006; Kamiaka et al.,
2018). The previous solution is to fit the entire power spectrum of stellar oscillation modes
(e.g. Gizon & Solanki, 2003). In our study, considering the global fitting can be oversensitive
to any slight ill-fitting of parameters for single mode, we therefore fit all l = 1 modes of stellar
oscillation individually to obtain posterior samples of parameters first, and then apply Hierar-
chical Bayesian Inference to average over all posterior samples of stellar inclination angle. Our
second approach is to remove the influence of non-linear relation between the mode height and
the stellar inclination from the global fitting. To achieve this, we perform the global fitting of
power spectrum by fitting the mode Height H directly instead of stellar inclination. We then
use the posterior sample of mode height H to further derive the inclination angle.

This project is still ongoing. We currently find that our new attempts do not improve much
the measurements of sin i∗ and δν. For Hierarchical Bayesian Inference, there is a severe
underestimate in the range of i ∈ [20◦, 40◦]. In addition, the results of our second attempt
suggests that the non-linear relation between the mode height H and stellar inclination angle
i∗ is not largely responsible for the bias of sin i∗ and δν measurement.

In the future work, we would like to apply the spot modeling (e.g. Mosser et al., 2009) to
our targets. Such modeling may better inform us about the latitude and configuration of
star spots on the stellar surface, which possibly reveals a better picture of possible differential
rotation on the stellar surface and accounts for the discrepancy between Pphoto and Pastero.
We may also take the advantage of these additional constraints as a priori to improve the
asteroseismic analysis. We also would like to examine the possibility of using machine learning
to systematically evaluate the uncertainty of each parameters in asteroseismic analysis. We
believe that such improvements of estimation of rotation periods and stellar inclination will
update our current understanding of spin-orbit angle distribution measured from exoplanetary
systems.
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Appendix

A.1 Modeled Power Spectrum of Asteroseismic Analysis

In this section, we summarize main steps for deriving power spectrum given in Gizon & Solanki
(2003). Assuming that the intensity of fluctuation at the stellar surface is proportional to
sum of scalar eigen-functions measured at the stellar surface, the brightness variations can be
presented by

I(t, θ, φ) = <
∑
nlmm′

f ′nlmY
m′

l (θ, φ)r
(l)
m′m(i)eiωn,l,mt, (A.1)

where f ′nlm are the complex amplitudes, r(l) is the rotation matrix which transform the original
frame to an inertial frame with polar axis pointing toward the observer. Integrating over
azimuthal and polar angle with limb-darkening functionW (θ), the observed disk-integrated
intensity signal,I(t) is given by:

I(t) = <
∑
nlm

Vlf
′
nlmr

(l)
0m(i)eiωnlmt, (A.2)

, with the visibility factor Vl given by

Vl = 2π

∫ π/2

0

Y 0
l (θ)W (θ)cos(θ)sin(θ)dθ. (A.3)

Since Y m′

l (θ, φ) is proportional to exp(im′φ), components with m′ 6= 0 disappear after in-
tegration. Assuming equipartition of energy between modes with different azimuthal order,
amplitude f ′nlm is written as

f ′nlm = |f ′nl|eiφnlm , (A.4)

Using Matrix elements r
(l)
0m given by Messiah (1959), the dependence of mode power on az-

imuthal order m is

Elm(i) = [r
(l)
0m(i)]2 =

(l − |m|)!
(l + |m|)!

[
P
|m|
l (cosi)

]2

(A.5)
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The brightness variations can hence be approximated by

I(t) =
l∑

m=−l

√
E (i)cos[(ωnl +mΩ)t+ φm]. (A.6)

where the φnlm is an arbitrary phase.

The model of power spectrum can then be given by Fourier transform of I(t)

I(ωj) = F (I(t)) (A.7)

where ωj = 2πj/T and T is the length of observation interval. Since stellar oscillations are
excited stochastically by near-surface turbulent convection, followed by an exponential decay,
Anderson et al. (1990) proposed that a Lorentzian line profile could be used to describe them:

Lnl(ω) = [1 + (
ω − ωnl

Γ/2
)2]−1, (A.8)

where ωnl is the resonant frequency and Γ represents the damping rate(line width parameter).
The final power spectrum is thus approximated by superposition of all oscillation modes(n,l,m):

P (ν) =
nmax∑
n=nmin

lmax∑
l=0

+l∑
m=−l

H(n, l,m, i∗)

1 + 4[ν − ν(n, l,m)]2/Γ2(n, l,m)
+N(ν), (A.9)

where N(ν) is a background noise modeled as two Harvey-like profiles with white shot noise,
H(n, l,m, i∗) is the mode height described by H(n, l,m, i∗) = E (l,m, i∗)H(n, l), and ν(n, l,m)
is the central frequency of mode following

ν(n, l,m) = ν(n, l) +mδν∗ ≈ (n+
l

2
+ ηn,l)∆ν + δn,l +mδν∗. (A.10)

A.2 Stellar Rotation Period of 91 Solar Type Stars

This section contains tables of our photometric measurements for 91 solar-type stars. In the
Bin./Multi colomn, 1 indicates that there are more than 1 stars in the system while 0 indicates
that there is only 1 star in the system. In planet column, 1 means that this system has planet
detections while 0 means that this system has no reported planet.
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No. target PLS PACF Pwavelet Bin./Multi Planet

1 8077137 13.26+1.19
−0.81 13.29+1.14

−0.49 13.39+2.59
−2.32 0 1

2 10963065 12.59+1.09
−0.99 12.62+0.77

−1.03 12.49+2.31
−2.31 0 1

3 11807274 8.09+0.35
−0.89 7.96+0.34

−0.24 7.91+2.07
−1.55 0 1

4 1435467 7.07+0.52
−0.72 6.82+0.39

−0.37 6.74+2.56
−1.47 0 0

5 5773345 11.20+0.93
−0.61 11.23+0.79

−0.52 11.65+5.35
−2.35 0 0

6 7103006 4.74+0.17
−0.17 4.68+0.12

−0.12 4.73+1.07
−0.85 0 0

7 7206837 4.11+0.01
−0.13 4.04+0.08

−0.06 4.09+0.62
−0.59 0 0

8 12009504 9.62+0.72
−0.56 9.59+0.35

−0.47 9.67+2.28
−1.79 0 0

9 3425851 7.82+0.34
−0.20 7.87+0.27

−0.26 7.96+1.41
−1.24 0 1

10 5866724 8.19+0.56
−0.37 8.21+0.58

−0.35 8.18+1.45
−1.42 0 1

11 7670943 5.35+0.15
−0.20 5.30+0.13

−0.17 5.29+0.85
−0.89 0 1

12 8292840 7.09+1.23
−0.35 7.09+0.31

−0.26 7.48+2.70
−1.67 0 1

13 8349582 16.96+1.68
−1.02 16.87+1.65

−0.95 16.95+3.28
−3.51 0 1

14 9414417 10.75+0.63
−0.39 10.86+0.53

−0.49 10.87+1.66
−1.57 0 1

15 2837475 3.68+0.07
−0.05 3.66+0.08

−0.04 3.84+1.80
−0.90 0 0

16 3656476 16.91+2.11
−1.35 17.07+2.36

−0.57 16.95+3.28
−3.42 0 0

17 6933899 16.18+1.05
−1.58 15.50+1.17

−0.95 15.81+3.32
−3.45 0 0

18 7771282 12.28+0.24
−1.02 12.05+0.39

−0.82 11.90+2.11
−2.00 0 0

19 7940546 11.70+0.96
−0.88 11.62+1.05

−0.60 11.74+2.66
−2.30 0 0

20 9098294 19.31+2.74
−0.84 20.12+1.86

−1.63 20.15+3.24
−3.03 0 0

Table A.1: Stellar rotation period.
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No. target PLS PACF Pwavelet Bin./Multi Planet

21 10454113 14.55+1.20
−1.04 14.33+0.98

−0.83 14.75+2.49
−2.30 0 0

22 12258514 15.24+1.05
−1.16 14.92+1.23

−0.80 14.85+2.75
−2.91 0 0

23 3544595 15.09+1.13
−1.75 14.83+0.66

−1.34 14.65+3.70
−2.95 0 1

24 4141376 13.54+1.30
−0.98 13.71+0.91

−1.35 13.48+3.64
−3.23 0 1

25 6521045 13.78+0.77
−2.37 13.71+0.77

−1.27 13.11+3.20
−3.41 0 1

26 8494142 14.24+0.98
−1.49 14.10+0.38

−1.31 13.76+4.72
−3.65 0 1

27 9955598 13.01+2.35
−1.65 12.98+2.40

−1.32 13.11+4.37
−3.21 0 1

28 11401755 16.82+2.16
−1.10 17.38+1.00

−1.57 16.60+3.77
−4.23 0 1

29 4914923 7.93+0.47
−0.20 7.89+0.39

−0.18 14.55+6.39
−7.20 0 0

30 6225718 35.37+8.57
−5.92 33.92+7.41

−4.67 35.09+7.96
−6.88 0 0

31 6679371 5.80+0.05
−0.25 5.68+0.14

−0.14 15.06+3.68
−10.31 0 0

32 7510397 33.50+12.20
−4.19 39.63+5.76

−7.82 35.33+13.10
−20.53 1 0

33 7680114 30.83+13.19
−6.36 30.02+1.54

−5.49 28.50+18.61
−7.12 0 0

34 7871531 32.28+10.11
−1.82 35.01+7.49

−4.10 35.09+6.21
−6.49 0 0

35 7970740 13.48+1.08
−0.71 13.48+1.12

−0.56 13.96+7.42
−3.98 0 0

36 8006161 33.04+9.43
−4.22 32.37+9.69

−2.83 33.89+7.98
−6.65 0 0

37 8179536 5.35+0.20
−0.26 13.17+0.23

−1.18 5.40+1.32
−1.00 0 0

38 8379927 17.06+1.71
−0.97 17.33+1.39

−1.22 17.30+2.64
−2.60 1 0

39 8394589 11.50+1.25
−0.94 11.53+0.89

−0.38 11.74+5.27
−3.23 0 0

40 9025370 12.35+3.59
−0.80 29.80+8.50

−4.59 30.97+8.10
−11.84 1 0

Table A.2: Stellar rotation period.
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No. target PLS PACF Pwavelet Bin./Multi Planet

41 9139151 6.30+0.22
−0.28 14.10+0.38

−1.42 12.07+7.20
−3.44 1 0

42 9139163 5.91+0.25
−0.14 16.41+2.67

−3.37 15.81+23.53
−5.98 1 0

43 9965715 20.69+2.64
−2.42 20.39+1.35

−2.29 20.29+5.84
−7.32 0 0

44 11253226 3.80+0.04
−0.09 13.32+0.26

−1.23 12.93+8.00
−9.93 0 0

45 3632418 12.68+1.07
−0.72 12.74+0.65

−0.80 12.75+2.57
−2.21 0 1

46 4143755 15.17+12.07
−2.16 15.26+2.06

−2.26 15.59+18.89
−4.61 0 1

47 4349452 22.25+3.62
−1.23 22.49+3.36

−1.36 22.99+4.07
−12.37 0 1

48 4914423 19.40+4.68
−3.45 21.72+2.09

−4.77 19.33+5.74
−10.47 0 1

49 5094751 7.29+0.35
−0.25 16.50+0.85

−3.10 15.06+6.46
−8.48 0 1

50 6196457 16.25+1.89
−1.13 16.02+1.74

−0.88 16.14+3.12
−3.69 0 1

51 7296438 26.42+3.02
−3.50 25.77+3.27

−3.22 25.86+5.22
−4.49 1 1

52 8478994 32.83+9.88
−6.33 33.64+9.79

−2.88 33.89+7.98
−9.34 1 1

53 8554498 13.25+3.99
−1.16 42.88+3.74

−10.98 35.33+11.78
−27.12 1 1

54 9592705 13.67+0.80
−0.95 13.10+1.33

−0.30 13.57+2.62
−2.28 1 1

55 10586004 10.10+0.42
−0.62 9.86+0.45

−0.44 14.85+22.88
−6.70 0 1

56 10666592 32.77+11.76
−7.08 32.11+11.00

−6.14 32.74+11.83
−11.51 0 1

57 11133306 15.75+2.60
−2.28 15.85+2.12

−2.57 15.70+5.23
−3.34 0 1

58 11295426 32.90+12.09
−5.80 35.01+10.04

−7.30 32.96+13.82
−7.54 1 1

59 11853905 35.63+9.15
−16.00 38.86+6.88

−7.30 34.84+9.41
−15.04 1 1

60 11904151 15.40+4.41
−2.39 14.22+4.22

−0.65 15.59+5.20
−3.57 0 1

Table A.3: Stellar rotation period.



66 Appendix A. Appendix

No. target PLS PACF Pwavelet Bin./Multi Planet

61 3427720 13.18+1.50
−0.68 13.24+1.45

−0.42 13.48+2.50
−2.64 1 0

62 3456181 28.85+4.77
−6.83 11.56+0.77

−0.46 27.72+7.49
−16.88 0 0

63 3735871 12.77+1.21
−1.94 12.93+0.98

−0.73 12.40+3.13
−3.60 0 0

64 5184732 6.70+0.31
−0.32 6.69+0.21

−0.34 18.04+4.87
−12.31 0 0

65 5950854 31.44+16.16
−10.88 32.02+19.17

−13.24 30.97+15.81
−11.57 0 0

66 6106415 28.39+21.37
−13.62 36.06+13.04

−8.55 28.30+20.13
−15.68 0 0

67 6116048 16.81+2.28
−1.56 16.85+2.29

−1.36 16.71+3.79
−5.18 0 0

68 6508366 6.87+0.35
−0.20 6.84+0.38

−0.08 3.87+4.06
−0.78 0 0

69 6603624 35.01+7.99
−7.10 33.64+5.93

−5.08 32.74+10.31
−6.78 0 0

70 7106245 36.89+15.82
−11.88 12.54+0.80

−0.62 36.32+15.58
−27.46 0 0

71 8150065 45.39+14.70
−7.84 45.13+14.43

−7.55 45.66+10.75
−8.44 0 0

72 8228742 19.90+2.88
−2.76 19.22+2.40

−2.02 19.46+4.92
−10.23 0 0

73 8424992 33.68+11.07
−6.28 35.21+9.34

−3.40 36.07+9.11
−10.48 0 0

74 8694723 7.87+0.15
−0.42 15.78+0.88

−1.25 7.91+10.96
−1.72 0 0

75 8760414 34.96+9.14
−3.66 34.91+9.31

−3.10 36.58+7.07
−6.56 0 0

76 8938364 16.58+1.50
−3.16 16.52+0.80

−1.63 15.59+4.35
−4.22 0 0

77 9206432 9.96+0.68
−0.66 9.94+0.77

−0.38 9.94+2.95
−3.40 0 0

78 9353712 11.00+4.45
−0.87 14.98+0.39

−1.49 11.90+6.45
−3.57 0 0

79 9410862 12.31+1.57
−1.72 11.33+1.66

−0.77 11.98+3.13
−2.55 0 0

80 9812850 4.84+0.23
−0.15 6.77+0.30

−0.60 5.47+3.27
−1.37 0 0

Table A.4: Stellar rotation period.
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No. target PLS PACF Pwavelet Bin./Multi Planet

81 10068307 9.34+0.59
−0.38 9.33+0.65

−0.15 19.60+10.01
−5.79 0 0

82 10079226 14.87+1.89
−0.50 15.76+0.75

−1.37 15.27+2.95
−3.33 0 0

83 10162436 11.92+2.68
−1.11 12.30+1.00

−1.12 12.23+6.25
−2.73 0 0

84 10516096 6.90+0.34
−0.35 6.75+0.37

−0.20 19.20+4.85
−13.02 0 0

85 10644253 33.31+11.45
−3.64 34.02+8.63

−4.33 34.60+15.53
−6.40 0 0

86 10730618 8.90+0.59
−0.77 9.23+0.19

−1.12 8.55+2.58
−2.45 0 0

87 11081729 2.70+0.04
−0.05 12.44+0.93

−0.48 2.78+2.31
−0.56 0 0

88 11772920 16.10+1.69
−1.67 15.72+2.01

−0.62 16.37+24.64
−4.43 0 0

89 12069127 17.37+1.63
−3.13 17.36+1.42

−1.60 16.83+5.30
−3.85 0 0

90 12069449 34.15+8.56
−6.90 14.51+0.66

−1.21 34.13+7.74
−13.48 0 0

91 12317678 13.36+4.97
−1.12 13.48+1.99

−1.18 14.15+32.95
−4.32 0 0

Table A.5: Stellar rotation period.
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