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Abstract

As more and more exoplanets have been discovered at a staggering rate, we gradually realised

that the population of the exoplanets exhibits a great diversity. We have seen not only the

wide-range distribution of the planetary architectures over various parameter spaces, but also

specific phenomena that intrigue theorists for a long time, such as Hot Jupiters, large spin-orbit

misalignment and free-floating planets. While many models have been proposed to account for

these observational facts and some of them can yield very promising results, these theories

have not yet been examined in the realistic situation, as their investigations start from either

fine-tuned or purely theoretical initial conditions.

In 2015, Atacama Large Millimeter Array changed this picture by releasing the high-resolution

image of the HL Tau protoplanetary disk. This image revealed the concentric rings and gaps on

the HL Tau disk, which are commonly interpreted as the results of planet formation. Following

this assumption, we can extract the configuration of HL Tau system and use that as the initial

conditions for planetary evolution to see whether the diverse configurations of the observed

planetary systems can be reproduced.

The main objective of this thesis is to investigate the evolution outcomes of the HL Tau system

based on initial conditions deduced from the current observation. We first reviewed the basic

structure of the protoplanetary disk, the planet-disk interaction, and the observational facts

about the HL Tau. We then presented our theoretical methodology and numerical approaches

to evolve the HL Tau system. We considered the combined e↵ects of the planetary migration

and accretion by adopting the exiting migration theory and modelling the disk structure that

hosts multiple planets. We also implemented the migration and accretion model to the N -

body numerical simulation framework which was subsequently used for simulations. In total

we examined 75 cases of 3-planet system, and each system was evolved for up to 0.1Gyr after

disk dispersal.

We present the results at two di↵erent epochs, one at three times the disk lifetime(3⌧disk) and

one at 0.1Gyr after the disk dispersal. For each epoch, we present the example evolution and

explain the pattern that emerged from the plots. We also break down the results in parameter

spaces of flaring index, disk lifetime and viscosity. Our main findings include:

1. After 3⌧disk, the final semi-major axis of planets ranges from 0.007 au to 30 au, while the
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planet mass ranges from 0.4MJ to 10MJ, which is significantly more diverse than the

previous study on HL Tau.

2. When the flaring index, disk lifetime and viscosity increase, the final semi-major axis

decreases and the final mass increases, and vice versa.

3. All planet systems remain stable up to the simulation time. No instability has been

observed.

We also find that all systems survive much longer than the lower limit of instability time pre-

dicted from the mutual hill radius, and from which we conclude that the disk-planet interaction

at early stage of the planetary evolution can stabilise the system. We further study the sta-

bility by investigating the period ratios and the separation between adjacent planets in their

mutual hill radius. We find that the migration coupling prevents the planet-pair from entering

resonance states smaller than 2 : 1 resonance.
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Chapter 1

Introduction: an Overview

Human beings have a long history of observing planets, which can be traced back to Babylonian
period when Mercury, Venus, Mars, Jupiter and Saturn were, for the first time, identified by
the ancient astronomers(Sachs, 1974). However, only after the telescope was invented and
Newton’s law of universal gravitation was formulated, were astronomers able to discover more
planets inside the solar system as well as to acquire more details about those planets that had
already been identified. The 7th planet Uranus was discovered in 1781 by William Herschel
using his own telescope, and then Neptune by Galle in 1846 inspired by the calculation from
the French mathematician Le Verrier, marking the culmination of the 19th century’s celestial
mechanics. As the observation techniques continue to evolve over the years, nowadays we have
a repertoire of means to unveil the remaining unknowns of our solar system. For example, in
1970s we sent the Voyagers space probes which visited Jupiter, Saturn and Uranus in succession
and then sent back unprecedented in-situ observation data. As similar projects are going to
be launched in a steady pace, our solar system will eventually be thoroughly studied in the
foreseeable future.

In contrast to the good knowledge that we have on our solar system, our understanding of the
exoplanetary systems is just at the very beginning. Though historically many attempts had
been made, it was generally believed that there was no confirmed observation until the year of
1992, when the first exoplanet was discovered to be orbiting around the pulsar PSR 1257+12
by analysing the pulsar timing variations(Wolszczan & Frail, 1992). Observing exoplanets via
direct imaging is challenging because exoplanets are both tiny compared to the star(⇠ 10�3 in
mass ratio) and generally distant from the earth, which are light years away compared to a few
AUs for planets in our solar system. Therefore, other supplementary methodologies, such as
transit photometry, Doppler spectroscopy(radial velocity) and gravitational micro-lensing, were
developed for the sake of more e�cient observation. Since the beginning of the 21st century,
particularly after the launch of the Kepler space observatory, the number of newly discovered
exoplanets per year grows rapidly. Up to now, in total 5,311 exoplanets have been identified,
including both confirmed planets and Kepler candidates(Exoplanets.org, 2018).

While the fast-growing number of the exoplanets that had been discovered brought us into
a new world never seen before, new intriguing problems also appeared along side with the
discoveries. A good example is the Hot Jupiter(HJ), which is a Jupiter-size planet however
very close to its hosting star. In 1995, for the first time, a planet orbiting a main-sequence star
was detected, namely the 51 Pegasi b. This planet, later considered as a HJ, has a minimum
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2 Chapter 1. Introduction: an Overview

mass(m sin i) 0.46MJ and an orbital period only 4.23 days(Mayor & Queloz, 1995). Later many
other HJs were discovered via the radial velocity method, indicating that HJs were not rare in
our galaxy. Contrary to the previous understanding of the Jupiter-size planets, the existence of
HJ nevertheless challenges the traditional in-situ formation theory of planet, as a contradictorily
much larger orbit is necessary to have the su�cient mass-accretion for such a massive planet
to form. We may also realise that the formation of HJ is not the only problem that ba✏es
those exoplanet scientists: many related others, such as the large spin-orbit misalignment and
number estimate of free floating planets, all remain as open questions. It thus poses a need to
find the physical explanations to cater these new discoveries.

Figure 1.1: Mass against semi-major axis of exoplanets. Exoplanets.org (2018)

Throughout the years, many new insights have been added to the old theoretical framework,
which greatly enriched our understanding of the exoplanetary evolution. To reconcile HJ’s mass
to its position, theorists came out with the Type II disk migration model (e.g., Lin et al., 1996)
and later-proposed dynamical evolution model(e.g., Wu &Murray, 2003; Nagasawa et al., 2008).
The spin-orbit misalignment may be either due to the famous Kozai mechanism(Kozai, 1962) or
the primordial misalignment interpretation due to the binary evolution(Batygin, 2012). While
these new theories can partially solve the contradictions, their initial conditions are either fine-
tuned to specific purposes or purely theoretical. A new challenge is: “can we find the realistic
initial conditions to test the validity of these models?”

Important clues have been brought from the ground-breaking observation of Atacama Large Mil-
limeter Array(ALMA) on the protoplanetary disks. In 2015, the high resolution image(Partnership
et al., 2015) on the HL Tau system taken by ALMA revealed the concentric ring and gap struc-
ture on the disk, which were commonly interpreted as a result of the gap-opening process due to
the formation of planets. If this interpretation is correct, it is possible that we can then extract
the initial conditions of the planetary system from the properties of the gaps. Even some pa-
rameters like orbital phases cannot be directly inferred from the observation, this discovery can
still serve as a strong constraint on the initial conditions. Simbulan et al. (2017) took this idea
by connecting the observation on HL Tau disk to the initial planetary configurations and then
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evolved the system to Giga-year time-scale. With a particular focus on creating the unstable
configurations, their research showed that given the range of parameters that they surveyed, the
HL Tau system can produce HJ candidates and planet ejections, as well as diversely-distributed
planetary systems.

The pioneering work from Simbulan et al. (2017) is inspiring, and it can be extended further
by considering the e↵ects of the planet-disk interactions. Since HL Tau is only one-million-year
old and the disk usually has a lifetime of a few million years, we may expect that the migration
and accretion will take place for the rest of the disk lifetime, which can further shape the
configurations of the planetary system just after the disk dispersal. It is not well understood
that whether the combination of migration and accretion will impact on the evolution outcomes
of the planetary system, such as the diversity and stability. Based on this motivation, we start
this research to investigate on the future of planets emerged from HL Tau in a more realistic
physical picture.

This research aims to see if the diverse configurations of the exoplanetary systems can be repro-
duced using initial conditions deduced from the observed protoplanetary disks, particularly the
HL Tau disk. our approach consists of mainly two parts, the disk modelling and simulation. In
the disk modelling, we consider the detailed migration and accretion processes of planets inside
the disk and also the feedback to the global disk density profile due to individual planet’s accre-
tion. In the numerical simulation, we incorporate and implement the planet-disk interactions
into the simulation environment and subsequently use the enhanced N -body numerical code to
evolve the systems. We analysed the results by showing the patterns emerged, interpreting the
physical origins and comparing with the results from other past research. Finally we conclude
that to what extent that we can reproduce a diverse population of planetary systems within
the range of initial conditions that we survey during the project and what are the impacts of
the planet-disk interaction on the final configurations of planetary systems.

We begin by reviewing the protoplanetary disk, the planet-disk interactions and the HL Tau
system in Chapter 2, 3, and 4, respectively. In Chapter 5 we explain the methodologies of this
research, including both disk modelling and numerical approach. In Chapter 6 we present our
discoveries from the numerical simulations and in Chapter 7 we summarise our research and
discuss the future work.



Chapter 2

The Protoplanetary Disk

The protoplanetary disk(PPD) is the disk-structured objects that have been observed to be
around young stars with a lifetime of a few million years. Commonly recognised as the birthplace
for planets, PPD is mainly composed of dust and gas, which structure can be well described
by the model based on quasi-equilibrium state. The structure of the PPD strongly shapes
the migration and accretion of the planets that form inside the disk; in addition, since the
evolution of PPD tightly couples with its structure as well, both the structure and evolution of
the disk deserve equal attention while the overall influence on the evolution path of the planet
is considered. The review below generally follows the book Armitage (2010) and the review
paper Armitage (2015).

2.1 Structure

While considering the structure of the disk, we adopt the approximation that the disk evolves
axisymmetrically and slowly enough that the quasi-equilibrium state can be applied at any
instant. Starting from the assumptions, we will mainly consider the vertical structure, radial
structure and temperature profile of the disk. We use the cylindrical coordinate system (R, z)
centered at the star and align the z-direction with the total angular momentum. We define
T (R, z), ⌦(R, z) and v = (vR, v�, vz) to be the temperature, angular velocity and velocity of
the gas, and use the subscript ‘dust’ to distinguish the respective quantities that associate with
the dust from those that associate with the gas. We also define ⇢(R, z) and ⌃(R) to be the
density and surface density. Particularly, the density and surface density of the gas are denoted
as ⇢g and ⌃g to avoid any confusion.

2.1.1 Vertical structure

The vertical structure of the PPD can be derived by considering the hydrostatic equilibrium,
that is, the balance between the gravitational force exerted by the star and the gas pressure.
In order to proceed, three further assumptions have to be introduced:

(i) the disk is vertically isothermal,

4



2.1. Structure 5

(ii) the disk is not self-gravitational, i.e., the disk mass to the stellar mass ratio is much
smaller than unity, and

(iii) the disk is geometrically thin.

If we assume irradiation from the star is the only source to heat up the disk, the temperature of
the disk is only a function of the cylindrical distance to the star, and thus the first assumption
is reasonable. The second assumption ensures that the star is the only source of the gravity
which shapes the disk. Finally, the third assumption ensures that the hydrostatic equilibrium
is valid as generally pressure inside a disk is small due to the large surface to volume ratio of
the disk that favors e↵ective cooling. Therefore, geometrically-thick disks cannot balance the
gravity by the gas pressure and only thin disks are relevant to the later discussion.

Figure 2.1: Illustration of the basic set-up.

From hydrostatic equilibrium, we can write down the following equation:

1

⇢g

dP

dz
=

�GM⇤

R2 + z2
sin ✓,

dP

dz
=

�GM⇤

R2 + z2
z

(R2 + z2)1/2
, ⇢g

=
�GM⇤z

(R2 + z2)3/2
⇢g, (2.1)

where G is the gravitational constant, P is the gas pressure, andM⇤ is the mass of the star. From
the isothermal equation of state, we have P = ⇢gc

2
s, where cs is the sound speed. Substituting

to equation (2.1), one obtains

c2s
d⇢g
dz

=
�GM⇤z

(R2 + z2)3/2
⇢g. (2.2)

(2.3)

Equation (2.2) can be integrated to give

⇢g = ⇢g,0 exp


GM⇤

c2s(R
2 + z2)1/2

�
. (2.4)

Consider the case when z ⌧ R. Given the Keplerian orbital velocity at the mid-plane ⌦K ⌘p
GM⇤/R3, We define h as the scale height that takes the form

h ⌘ cs
⌦K

. (2.5)



6 Chapter 2. The Protoplanetary Disk

Equation 2.4 can then be re-expressed as

⇢g = ⇢g,0 exp
�
�z2/2h2

�
, (2.6)

and ⇢g,0 is the gas density at the mid-plane. Further we can write the mid-planet surface density
as ⌃g =

R �1
+1 ⇢dz and obtain the following relation for ⇢g,0 and ⌃g:

⇢g,0 =
1p
2⇡

⌃g

h
. (2.7)

Equation (2.6) shows that the vertical density profile follows the Gaussian distribution. At
a range where z/h is around unity, even the full treatment which does not assume condition
z ⌧ R produces a density ⇢g that only deviates slightly from the Gaussian profile. Although
there exist other factors which can cause significant deviation from the Gaussian profile, such
as the non-isothermal temperature profile, magnetic pressure(e.g Hirose & Turner (2011)), etc.,
the detailed discussion of these e↵ects is beyond the scope of this review.

2.1.2 Radial Structure

Compared to the relatively trivial derivation of the vertical density profile, the radial density
profile of the disk involves detailed considerations of the transport of the angular momentum
and therefore will be discussed later in Section 2.2. Nevertheless, when the surface density
⌃g and temperature T distribution are known, the orbital velocity of the gas v�,gas at the
mid-planet can be derived from the Euler equation by considering force balance in the radial
direction

@v

@t
+ (v ·r)v =

1

⇢g
rP �r�, (2.8)

where � is the gravitational potential. Since we are interested in the steady state of the disk,
@/@t ⌘ 0. Taking only the radial component of equation (2.8), we have

v2�
R

=
GM⇤

R2
+

1

⇢g

dP

dR
. (2.9)

Assuming ⌃g / R� and T / R� and using the relations:

c2s / T, (2.10)

⇢g /
⌃g

h
, (2.11)

we get

P / R�� 3��

2 / Rn, (2.12)

where we define n ⌘ � � 3��
2 . Substitute the expression of P into equation 2.9 and define the

mid-planet Keplerian speed as vK ⌘ ⌦KR ⌘
p
GM⇤/R, the final result is

v2�
R

=
v2K
R

+
c2s
P

dP

dR
, (2.13)



2.1. Structure 7

Hence, we can obtain v� as

v� = vK


1 + n

c2s
v2K

�1/2
,

= vK

"
1 + n

✓
h

R

◆2
#1/2

. (2.14)

It can be concluded here that the di↵erence between the gas speed v� and Keplerian speed
vK is in the order of square of h/R. Although this deviation is only a tiny fraction of the
Keplerian speed(for example, when n = �3 and [h/R]R=1au = 0.05, the fractional di↵erence
(vK �v�)/vK is 0.4%), this di↵erence is vitally important in considering the growth of particles
inside the disk: since large particles orbit at Keplerian speed, they will experience a headwind
while moving inside the sub-Keplerian disk, therefore losing angular momentum due to the
viscous drag and moving inwards in a spiral.

The above derivation only considers the Keplerian speed deviation at the mid-plane. More
detailed treatment, provided by Takeuchi & Lin (2002), also includes the vertical dependence.
Using the same set-up, their result gives

⌦ ⇡ ⌦K

"
1 +

1

4

✓
h

R

◆2✓
� + 2� � 3 + �

z2

h2

◆#
, (2.15)

Considering the o↵-plane Keplerian orbital velocity ⌦K,z written as a function of z:

⌦K,z =


GM⇤

(R2 + z2)3/2

�1/2
,

=

✓
GM⇤

R3

◆1/2 
1 +

⇣ z

R

⌘2��3/4

,

⇡ ⌦K


1� 3

4

⇣ z

R

⌘2�
. (2.16)

Therefore, to the first order to (z/R)2, we obtain

⌦� ⌦K,z ⇡
1

4

✓
h

R

◆2

⌦K


� + 2� � 3 + (� + 3)

⇣z
h

⌘2�
. (2.17)

Choosing typical values as � = �0.5 and � = �1, when ⌦� ⌦K,z = 0, we have

z

h

���
⌦=⌦

K

⇠ 1.48.

The result shows that near the mid-plane region below z ⇠ 1.48h, particles rotate faster than
the gas and therefore experience a headwind; otherwise, particles rotate slower than the gas.
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Figure 2.2: Illustration of the flux from the star.

2.1.3 Temperature Profile

To investigate the temperature profile of the PPD, one may assume that the PPD is in thermal
equilibrium, and what remains is to find the temperature at which the energy gain and loss
balance out each other. There are mainly two sources that the PPD can gain thermal energy
from: the irradiation from its hosting star and the gravitational energy released by the accretion
matter. On the other hand, the PPD also loses energy through re-emission process. In the
following derivation we will start from a simplified disk model, which is the razor-thin and
passive disk. If the disk energy income can be solely determined by the irradiation from the
hosting star, the disk is called ”passive” and thus the temperature profile will be determined
by its geometrical shape. A razor-thin disk will then ensure that the mid-plane of the disk
intercept all the radiation and then re-emit in black body spectrum.

Consider a star in radius R⇤ with a constant stellar surface brightness I⇤. Let ✓ and �
be the polar and azimuthal angles. If we write the unit vector n̂ of the light direction as
(sin ✓ cos�, sin ✓ sin�, cos ✓), then the light flux F can be expressed as

F =

Z
I⇤(n̂ · x̂)d⌦

=

Z
I⇤ sin

2 ✓ cos�d✓d�. (2.18)

Since only half of the star can contribute to the total flux, equation (2.18) is integrated over
0 < ✓ < sin�1

�
R⇤
R

�
and �⇡/2 < � < ⇡/2 and we obtain

F = I⇤

Z ⇡/2

�⇡/2

cos�d�

Z sin�1(R⇤/R)

0

sin2 ✓d✓

= 2I⇤


1

2
� 1

4
sin 2✓

�sin�1(R⇤/R)

0

= I⇤

2

4sin�1

✓
R⇤

R

◆
� R⇤

R

s

1�
✓
R⇤

R

◆2
3

5 . (2.19)
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The brightness of the star at its surface can be related to the e↵ective temperature of the starby
using the Stefan-Boltzmann law (Rybicki & Lightman, 1979)

I⇤ =
F

⇡
=
�T 4

⇤
⇡

. (2.20)

For one side of the disk, the flux F = �T 4. Substituting back to both sides of the equation
(2.19) gives

✓
T

T⇤

◆4

=
1

⇡

2

4sin�1

✓
R⇤

R

◆
� R⇤

R

s

1�
✓
R⇤

R

◆2
3

5 . (2.21)

In the region far from the star, i.e., R⇤ ⌧ R, equation (2.21) is reduced to a simple power law
temperature profile

T / R�3/4. (2.22)

Using the relation c2s / T and h ⌘ cs/⌦K , the aspect ratio is

h

R
/ R� 3

4 ·
1
2+

3
2�1 / R1/8. (2.23)

Defining the flaring index f through (h/R) / Rf , the temperature profile for a razor-thin,
passive disk gives f = 0.125. This shows that when R increases, the aspect ratio also increases,
resulting in a disk which is called ‘flared’.

Flared disk

We note that the above result is over-simplified in many aspects. At large R, the flared part
of the disk contributes to additional absorption area and therefore gaining higher temperature
than the originally-assumed razor-thin disk. The full solution that takes account of the flaring
e↵ect can be derived in a similar way, but a simplified consideration that takes the limit R⇤ ⌧ R
and the star to be a point source is su�cient to understand the e↵ect qualitatively.

Figure 2.3: Illustration of a flared disk.

Following the arguments in Armitage (2010), we define a maximum absorption height hp at
radius R and then define ⇠ as the angle between the incoming radiation and the tangent of the
local disk surface:

⇠ ⌘ dhp

dR
� hp

R
. (2.24)

⇠ is determined by the relation between hp and scale height h. Assuming black-body emission,
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we can equate the local heating rate(left-side) and the cooling rate(right-side) as

⇠

✓
L⇤

4⇡R2

◆
= �T 4. (2.25)

Using L⇤ = 4⇡R2
⇤�T

4
⇤ , we obtain

✓
T

T⇤

◆4

= ⇠

✓
R⇤

R

◆2

, (2.26)

T / ⇠1/4R�1/2. (2.27)

This shows that at large radii the temperature of a flared disk drops slower than that of a
razor-thin disk, as R increases(c.f. equation (2.23)).

So far we also only consider a single-composition model of the disk, where in reality the dust
dominates the absorption inside the disk and thus its radiative thermal properties have to be
taken care of. We define the ✏ as the e�ciency of emission/absorption of dust relative to the
black-body. When the wavelength of the incoming radiation is smaller than the radius of the
dust, the dust absorbs and emits like a blackbody with emissivity ✏ = 1; when the wavelength
is longer than the dust radius, the dust emissivity drops with ✏ / ��1. Using the same thermal
equilibrium argument, the dust temperature Tdust can be expressed as

Tdust

T⇤
=

✓
✏⇤
✏dust

◆1/4✓
R⇤

2R

◆1/2

=

✓
Tdust

T⇤

◆1/4✓
R⇤

2R

◆1/2

,

) Tdust

T⇤
=

✓
R⇤

2R

◆2/5

/ R�2/5, (2.28)

where ✏dust is the weighted emissivity of the dust averaged over the dust thermal emission, and
✏⇤ is the weighted emissivity for the absorption averaged over the stellar spectrum. The above
analysis follows the two-layer model developed by Chiang & Goldreich (1997). For a star with
0.5M� mass, 2.5R� radius and 4000K e↵ective temperature, the dust temperature profile is

Tdust = 550

✓
R

1 au

◆�2/5

K. (2.29)

2.2 Evolution

The PPD evolves as the gas keeps accreting onto the central star, whereas the disk wind
launched by the magnetic field and photoevaporation e↵ect continues to cause the mass loss.
The movement of the gas is governed by the gain and loss of the angular momentum. Therefore,
the key idea to understand the evolution of the PPD is to understand how the angular momen-
tum is transferred and redistributed within the disk. Starting from the basic conservation laws,
we can write the hydrodynamical equations in the context of the PPD and then obtain various
characteristics of the disk evolution. The following review mainly follows Pringle (1981).
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2.2.1 Classical Picture

The classical picture of the disk evolution concerns the evolution of a vicious, axisymmetric
and geometrically-thin disk. Construct the cylindrical coordinate system (R, z) as before, the
conservation of mass and angular momentum can be written as

R
@⌃g

@t
+

@

@R
(R⌃gvR) = 0 (2.30)

R
@

@t
(R2⌦⌃g)+

@

@R
(R2⌦ ·R⌃gvR) =

1

2⇡

@G

@R
. (2.31)

Compared with equation (2.8), equation (2.31) is derived from the Navier-Stokes equation which
also takes account of the viscosity. G on the right side of the equation (2.31) is the vicious
torque that acting on the edge of the annulus:

G = 2⇡R · ⌫⌃gR
d⌦

dR
·R, (2.32)

where ⌫ is the kinematic viscosity. From equation (2.30) we have

@⌃g

@t
= � 1

R

@

@R
(R⌃gvR). (2.33)

Substituting equations (2.33) and (2.32) to equation (2.31) and use prime to denote d
dR

, then

�R2⌦
@

@R
(R⌃gvR) +R⌃g

@

@t
(R2⌦) +

@

@R
(R2⌦ ·R⌃gvR) =

@G

@R
, (2.34)

R⌃g
@

@t
(R2⌦) +R⌃gvR

@

@R
(R2⌦) =

@

@R
(v⌃gR

3⌦0). (2.35)

Since d
dt
⌘ @

@t
+ vR

@
@R

,

R⌃g
dR

dt
(R2⌦)0 =

@

@R
(v⌃gR

3⌦0), (2.36)

R⌃gvR =
1

(R2⌦)0
@

@R
(v⌃gR

3⌦0). (2.37)

Substituting equation (2.37) back to equation (2.33),

@⌃g

@t
= � 1

R

@

@R


1

(R2⌦)0
@

@R
(v⌃gR

3⌦0)

�
. (2.38)

Using Keplerian ⌦ / R�3/2,

@⌃g

@t
=

3

R

@

@R


R1/2 @

@R
(v⌃gR

1/2)

�
, (2.39)

and the radial velocity is given by

vR = � 3

⌃gR1/2

@

@R

�
⌫⌃gR

1/2
�
. (2.40)
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The above result describes the di↵usion of the gas. Additional terms need to be considered if
other sources of mass loss(e.g. thermal wind) or external torques are present. In the case of
the extra mass loss ⌃̇gext, equation (2.39) simply becomes

@⌃g

@t
=

3

R

@

@R


R1/2 @

@R
(v⌃gR

1/2)

�
+ ⌃̇gext. (2.41)

With the presence of the radial flow vext driven by external torque, it becomes

@⌃g

@t
=

3

R

@

@R


R1/2 @

@R
(v⌃gR

1/2)

�
� 1

R

@

@R
(R⌃gvext). (2.42)

We can define a new set of variables

X ⌘ 2R1/2, (2.43)

f ⌘ 3

2
⌃gX, (2.44)

to write equation (2.39) in a more enlightening way:

2

3

@

@t

✓
f

X

◆
= 3

✓
2

X

◆2 2

X

@

@X


X

2

2

X

@

@X
(⌫f/3)

�
. (2.45)

Then trivial calculations give

@f

@t
=

12⌫

X2

@f 2

@X2
, (2.46)

which is a di↵usion equation with a di↵usion coe�cient 12⌫/X2. If a disk has a characteristic
scale of �R, the di↵usion time scale can be written as

⌧⌫ ⇠ (�X)2

D
⇠ (�R)2

⌫
. (2.47)

2.2.2 Solutions of the surface density ⌃g

Consider the steady-state of equations (2.30) and (2.31) as well as equation (2.32), then the
time derivative will vanish and we obtain:

2⇡R⌃gvR ·R2⌦ = 2⇡R3⌫⌃g
d⌦

dR
+ C (2.48)

where C is a constant of integration. The left-hand side of the equation can be re-expressed by
realising that the accretion rate Ṁ is equal to �2⇡R⌃gvR:

�ṀR2⌦ = 2⇡R3⌫⌃g
d⌦

dR
+ C. (2.49)

To determine the value of the constant C, the boundary condition of ⌦ is needed. When
R = R⇤, i.e., at the surface of the star, the angular frequency ⌦ of the disk should be equal
to that of the star ⌦⇤. In the region where R � R⇤, ⌦ can be approximated by the Keplerian
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angular frequency ⌦K / R�3/2. Due to the discrepancy between ⌦⇤ and ⌦K , it is expected that
there must be a point at some R0 where the viscous stress vanishes or d⌦/dR = 0. In general
R0 is very close to R⇤, and using this approximation, the value of C is

C ⇡ �ṀR2
⇤⌦⇤. (2.50)

Substituting the equation (2.50)to equation (2.49) at the region where ⌦ / R�3/2, we have

�ṀR2⌦ = 2⇡R3⌫⌃g
d⌦

dR
� ṀR2

⇤⌦⇤, (2.51)

3⇡R2⌦(⌫⌃g) = Ṁ
�
R2⌦�R2

⇤⌦⇤
�
, (2.52)

⌫⌃g =
Ṁ

3⇡

 
1�

r
R⇤

R

!
. (2.53)

If the region R � R⇤ is considered, equation (2.53) becomes

⌃g ⇡
Ṁ

3⇡⌫
. (2.54)

This is the steady state solution of the surface density at large radii.

2.2.3 Viscosity and the Shakura-Sunyeav ↵ prescription

We may realise that the viscosity plays a central role in the angular momentum transport that
takes place inside the disk, and thus it is important to understand the physics that contributes
to the viscosity. One might think that the molecular collision is one of the sources. Denote
such viscosity as ⌫m, then ⌫m is approximately given by �cs, where � is the mean free path and
cs is the sound speed. Since � = (n�m)�1, where n is the density and �m is the cross-section, if
typical values �m ⇡ 2⇥ 10�15 cm2 and n = 1012 cm�3 are used for R = 10 au, the viscous time
scale given by equation (2.47) is

⌧⌫ ⇠ O(1013)yr. (2.55)

This time-scale is much longer than the lifetime of the protoplanetary disk, so the molecular
viscosity alone cannot explain the total viscosity required.

It is widely recognised that the turbulence caused by the instabilities makes the major con-
tribution to the viscosity, and to characterise it, we follow the prescription introduced by the
paper Shakura & Sunyaev (1973), and define the dimensionless ↵ parameter

⌫ = ↵csh. (2.56)

It is possible to assume that the value of ↵ is a constant, and by taking the power-law profile
of the temperature T / R�, the kinematic viscosity ⌫ can be expressed as ⌫ / r�, where
� = � + 3/2.
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2.2.4 Stability of the disk

It is obvious that the disk is not guaranteed to be stable for arbitrary values of the parameters;
to remain in a stable state, the PPD is subjected to various stability criteria. The Rayleigh
criterion(e.g.Pringle & King (2007)) that describes the linear stability of the shear flow requires

d

dR
(R2⌦) > 0, (2.57)

which is trivially satisfied in the context of the PPD, since the specific angular momentum
R2⌦K always follows this criterion. There are many other factors to consider, and due to the
limitation of this paper, only the self-gravity will be discussed in detail here, while some of the
others will only be briefly mentioned.

When the disk is considered as self-gravitating, not only the gravitational force from the central
star but also the gravitational force between the disk elements have to be taken account of. A
formal discussion of this instability can be found in Toomre (1964), in which the criterion of
the self-gravitating disk is described by Toomre’s Q parameter:

Q ⌘ cs⌦

⇡G⌃g

. (2.58)

For a disk to be gravitational stable, its Q value should be less than a critical value Qcrit ⇠ 1.
Using the profile derived for the steady-state given by equation (2.54), the expression of Q can
be re-written as

Q =
3⌫cs⌦

GṀ
=

3↵c3s
GṀ

. (2.59)

It is a reasonable assumption that both ↵ and accretion rate Ṁ are approximately constant,
therefore the Q value in this context is a function of cs only. Since that c2s / T , the disk
will become gravitationally unstable when its temperature drops below a certain critical value.
From the disk mass point of view, equation (2.58) can also be written in terms of the total
mass of the disk Mdisk ⇠ ⇡R2⌃

Q ⇠ cs⌦K⇡R
2

⇡GMdisk

· M⇤

M⇤
=

cs⌦K

⌦2
KR

· M⇤

Mdisk

=
h

R
· M⇤

Mdisk

. (2.60)

So the instability criterion becomes
h

R
<

Mdisk

M⇤
. (2.61)

To the same order of magnitude of the aspect ratio, this criterion agrees with the rough anal-
ysis which considers the condition when the gravitational field strength created by the disk is
comparable to that fo the star. Using the typical values of the aspect ratio h/r ⇠ 0.05 and star
mass M⇤ = 1M�, the critical disk mass is around 0.05M�. Gravitational instability can lead
to fragmentation, which is thought to be one of the channels for the formation giant planet.

Under the presence of the magnetic field, magnetorotational instability(MRI) may arise. The
process that how this instability occurs is illustrated by Figure 2.4. Consider the vicinity of
the point at a distance R co-rotating with the star, with two point masses well-coupled with
the magnetic field. Under the perturbation, the two masses are then separated radially, and
due to the Keplerian motion radial displacement causes subsequent angular separation. The
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Figure 2.4: Illustration of the magnetorotational instability(MRI). (a) initially unperturbed
state; (b) perturbation causes small radial displacement, resulting in angular displacement; (c)
magnetic tension removes the angular momentum and further separates two elements.

magnetic tension then acts on and transfers angular momentum from the inner mass element to
the outer one, which further enhances the radial displacement and lead to instability. Detailed
magnetohydrodynamical(MHD) calculation and stability analysis showed that given any power-
law angular velocity ⌦ / R�q, if the condition q > 0 is fulfilled, arbitrarily weak magnetic field
can still induce this instability.

Other instabilities, such as purely hydrodynamical instability and shear instability, are also
important in generation of turbulence and structure formation. The situation will be further
complicated if solid is present and couples with the gas, while additional channel of instability,
e.g. streaming instability, may emerge as a result of the angular momentum exchange between
solid and gas.

2.2.5 Disk Dispersal

The total mass of the PPD is obviously not conserved: during the disk evolution the PPD
continuously loses mass and eventually enters the gas-free stage after most of the gas is lost.
The dominant channel of mass loss is the gas accretion onto the star. Taking the accretion
rate to be the median of the observed value, which is 10�8 M�yr�1, one can estimate that the
disk has a lifetime in the order of million year. However, if the accretion is the only channel
that contributes to the mass loss, the discrepancy between the theory and observation arises
as the mass loss rate will be too low at the final stage of the disk. This contradicts the fact
that disks in such stages have not been observed(Alexander et al., 2013). It is then reasonable
to consider other means of mass removal which can produce a sharp cut-o↵ of surface density
evolution rather than a tail. Based on this motivation, the two main candidates for mass loss
are the photoevaporation and MHD winds.
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Figure 2.5: Illustration of the thermal winds launched due to photoevaporation.

Photoevaporation

Mass loss due to photoevaporation is caused by the thermal winds launched from the surface
of the disk. The high-energy photons from the star or other sources can ionise the molecule
on the surface of the disk and raise the temperature. When the thermal energy of the particle
exceeds the gravitational potential energy, the particle will no longer remain bounded, resulting
in thermal winds that carry matter away. To understand this e↵ect quantitatively, we define a
critical distance Rcrit at which the gas particle is able to escape. Careful calculations considering
wind structure and rotation show that

Rcrit ⇡ 0.2Rgrav, (2.62)

where

Rgrav =
GM⇤

c2s
(2.63)

is the distance when the thermal energy kBT is equal to the gravitational energy, and cs is the
sound speed of the gas. Figure 2.5 shows the illustrative picture of photoevaporation. Within
the critical radius, the gas is bounded by the flared disk surface; beyond the critical radius,
thermal winds were launched from the base, which carry away the mass at around sound speed.
The mass loss rate per unit area, ⌃̇evap, can thus be expressed as

⌃̇evap ⇡ 2µmHn0cs, (2.64)

where µ is the mean molecular weight, n0 is the number density at the base and is a function
of distance R. Generally solving the radiative transfer equation is required to obtain n0(R).
The mass loss rate can then be trivially obtained by integrating equation (2.64) over the inner
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radius Rin to the outer radius of the disk Rout:

Ṁevap =

Z R
out

R
in

2⇡R⌃̇evapdR. (2.65)

The photoevaporation e↵ect obviously depends on the energy of the photons, and the above
analysis is mainly valid in the case of the extreme ultraviolet(EUV) photon. Under the flux of
EUV photon, there will be a sharp ionising front separating the heated layer and the remaining
cool part of the disk. In the case of the X-ray and far ultraviolet photons, the sharp front is
absent, making the analytical modelling even harder. Given the flux of EUV to be �, the mass
loss rate estimated by Font et al. (2004) is

Ṁevap ⇡ 1.6⇥ 10�10

✓
M⇤

M�

◆1/2✓
�

1041 s�1

◆1/2

M�yr
�1. (2.66)

MHD Wind

The MHD wind is an alternative source of the mass loss, which can be launched by the magneto-
centrifugal driving force in the presence of the magnetic field lines. To understand this e↵ect,
we can first write down the Lorentz force per unit volume as

J⇥B

c
= �r

✓
B2

8⇡

◆
+

B ·rB

4⇡
. (2.67)

Here J is the current density and B is the magnetic field. The first and second terms on the
right-hand side are the magnetic pressure and tension, respectively. In the region close to the
mid-plane of the disk, i.e., z ⌧ h where z is the height, the thermal pressure ⇢gc2s is larger than
the magnetic pressure B2/8⇡; however, as z increases thermal pressure drops due to decrease in
density, where magnetic pressure stays almost constant due to conservation of flux. Therefore,
beyond a certain height the magnetic pressure will dominate over the thermal pressure and
the wind is launched. The wind is then supported by the field line until the Alfvén surface is
reached, where kinetic energy density ⇢gv2 surpasses the magnetic energy density. Beyond this
boundary the wind will be strong enough to bend the field lines. Between where the wind is
launched and the Alfvén surface, the acceleration due to magnetic field is assumed to be nearly
zero, which means J⇥B ⇡ 0. This region is called the force-free region.

Compared to the thermal wind driven by photoevaporation, MHD wind depends only on the
magnetic flux and thus can be launched at even very inner part of the disk, since it is not
constrained by the star’s potential. The investigation on the coupling between these two e↵ects
remains as an open question; nevertheless in reality the disk winds are more likely to be driven
by both the photoevaporation and MHD e↵ect.



Chapter 3

Planetary Migration

A planet is never an isolated object: along its evolution history it keeps interacting gravita-
tionally with its surroundings, including the PPD where it was born and the star that it was
bound to. In this chapter we will review the various interactions between the planet and its
surrounds, mainly the planet-disk interaction. This review basically follows Armitage (2010).
When a planet is embedded in a PPD, it keeps exchanging of the angular momentum via
gravitational torques and, as a result, migrates. This is called the planetary migration. The
planetary migration is particularly important in considering the early evolution phase of a
planetary system as it can significant change the planetary configuration in a short time-scale.
Modelling the planetary migration requires the quantitative understanding the physical ori-
gins of the torques arising from the non-axisymmetric structure of the disk. Here we follow
the treatment of Goldreich & Tremaine (1979), which approached this problem by considering
the linear perturbation of the gravitational potential followed by the responses of the disk in
di↵erent resonant modes.

3.1 The Resonant Torques

Using the same mathematical formalism as Goldreich & Tremaine (1979), we use the cylindrical
coordinate system (R, ✓, z). Let v0 = R⌦ê✓ and �0 be the unperturbed azimuthal velocity and
surface density, while v1 and �1 are the first order perturbations of the respective quantity.
We introduce an external perturbation potential  1(R, ✓, t) and denote the additional potential
perturbation due to �1 as  D

1 . The linearised hydrodynamical perturbation equations then
reduce to

@v1

@t
+ (v0 ·r)v1 + (v1 ·r)v0 = �r( 1 +  D

1 + ⌘1), (3.1)

@�1
@t

+r · (�0v1) +r · (�1v0) = 0, (3.2)

18
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where

⌘1 = c2s0

✓
�1
�0

◆
, (3.3)

r2 D
1 = 4⇡G�1�(z). (3.4)

Here cs0 is the unperturbed sound speed, �(z) is the Dirac delta function, and ⌘ is the enthalpy
related to the sound speed. Equations (3.1) and (3.2) are derived from the angular momentum
conservation and mass conservation, respectively. Then by writing each perturbation variable
in the form of X = X(R) exp i(m✓�!t) with m being an integer, the momentum conservation
can be re-written as

i(m⌦� !)v1,R � 2⌦v1,✓ = � d

dR
( 1 +  D

1 + ⌘1), (3.5)

2Bv1,R + i(m⌦� !)v1,✓ = � im

R
( 1 +  D

1 + ⌘1), (3.6)

where v1,R and v1,✓ are R̂ and ✓̂ components of v1. B is the Oort parameter defined as

B(R) = ⌦(R) +
R

2

d⌦

dR
, (3.7)

Solving v1,R and v1,✓ from the above equations, we obtain

v1,R = � i

D


(m⌦� !)

d

dR
+

2m⌦

R

�
( 1 +  D

1 + ⌘1), (3.8)
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( 1 +  D

1 + ⌘1), (3.9)

D = 2 � (m⌦� !)2, (3.10)

where  = 2
p
B(R)⌦(R) is the epicyclic frequency. We can then substitute the above solution

to the mass conservation equation, and the resulting di↵erential equation shows that there will
be singularities at both m⌦� ! = 0 and D = 0. These correspond to

1. Co-rotational resonance: ⌦(R) = !,

2. Lindblad resonance: m(⌦(R)� !) = ±(R).

In the case that the planet is the perturbation source, ! = ⌦p, where ⌦p is the angular velocity
of the planet. This means that the co-rotational resonance happens at the same R as the planet.
For the Lindblad resonance, if the disk is Keplerian, ⌦(R) = (R), and

⌦p = ⌦(R)

✓
1⌥ 1

m

◆
. (3.11)
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If the planet is in a circular orbit with semi-major axis ap,

a�3/2
p = R

�3/2
L

✓
1⌥ 1

m

◆
, (3.12)

RL =

✓
1⌥ 1

m

◆2/3

ap, (3.13)

where RL is the position that Lindblad resonance takes place. This shows that Lindblad
resonance can take place at multiple places. Further detailed calculation of the torques can be
found in Goldreich & Tremaine (1979).

The modelling described above provides a unified framework for two di↵erent types of the
migrations, namely the Type I and Type II migrations. We will review each of them in the
following subsections.

3.2 Type I migration

The Type I migration happens when the planet mass is low so that the the disk structure can
be approximately assumed to be unperturbed due to relatively weak planet-disk interaction.
In this case the viscous torques dominates the local angular momentum transport around the
planet, we can neglect the change of structure of the disk due to the planet’s gravitational
torques and all the resonance modes are available. The total torque �tot that is experienced by
the planet can be written as a summation of both the co-rotational and Lindblad torques

�tot =
X

(�L,out + �C)

=
1X

m=1

�L,out +
1X

m=2

�L,in + �C . (3.14)

Here �L,in and �L,out are the Lindblad partial torques at inner and outer resonances and �C is
the co-rotational torque.

The computation of the torque requires special mathematical expertise to solve the wave equa-
tions, and this is usually done by performing numerical integrations. The solutions given by
Tanaka et al. (2002) shows that given a planet in a circular orbit located at Rp and the disk
surface density profile d ln⌃/d lnR = �s, the Lindblad and corotational torques experienced
by the planet can be approximated by:

�L = �(2.34 + 0.10s)�0, (3.15)

�C = (0.98 + 0.64s)�0, (3.16)

�0 =
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◆2✓
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⌃(Rp)R
4
p⌦

2
K(Rp), (3.17)

where Mp/M⇤ is the planet-star mass ratio, hp/Rp is the aspect ratio at the planet’s position
and ⌦K is the Keplerian angular velocity. More recent results with consideration of non-linear
horseshoe drag can be found in Paardekooper et al. (2010) and will be introduced in section
5.1.4. To translate the torque to the motion of planet, we can introduce an e-fold migration
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timescale, and the methodology will be described in Section 5.1.1.

3.3 Type II migration

Figure 3.1: Gap carved by a giant planet, as shown by hydrodynamical simulation. Color coded
according to the surface density. Credit: Dr. K. Kanagawa.

The Type II migration happens when the planet mass is high so that the viscous torques around
the planet cannot compete with the strong gravitational torques exerted by the planet. As a
result, the gas at the vicinity of the planet is repelled and a gap is formed since the vicious
di↵usion cannot replenish the gas. The low density at the gap means that all the resonant
modes that are close to the planet will be ine↵ective, and therefore the total inward migration
torque is weaker compared to that of the Type I migration. In the classical picture of Type II
migration, the planet keep removing the the angular momentum of the gas from the inner edge
of the gap and adding the same amount of momentum to the outer edge, and thus the inward
mass flow and angular momentum flow will be una↵ected as an unperturbed case without a
planet. The planet will migrate inward at the same viscous speed as the gas, which we have
already derived in Section 2.2.1, the equation (2.40):

vR = � 3⌫

2R
. (3.18)

Compared with Type I migration, Type II migration is much slower, which corresponds to a
longer migration timescale. Following the same idea, we may think the time-scale to form a
steady gap tgap is equal to the viscous di↵usion time derived in equation (2.47):

tgap =
h2

⌫
. (3.19)

Recent studies also revealed that the depth of the gap depends on the mass, the temperature
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profile and the viscosity of the disk. We will consider the dependence of these parameters in
details in Chapter 5.



Chapter 4

The HL Tau system

In the previous chapters, we have already reviewed the basic properties of PPD and also inter-
actions inside the disk, which can then be implemented numerically to perform the simulation.
We are now one-step away from a complete picture of the simulation, and the last piece is the
initial conditions. One of the highlights of this project is that we start from the realistic initial
conditions that are deduced from the HL Tau system, a young star hosting a PPD in the Taurus
star forming region. Being regarded as “an excellent example of a system just emerging from its
protostellar cocoon” by Partnership et al. (2015), the HL Tau system is the first PPD observed
to have the concentric ring and gap structure. Thanks to the high resolution imaging of ALMA,
we are able to deduce and extract rich information from its disk structure and properties, such
as the surface density profile, the gap structure and possible locations of the planets. In this
chapter, we will review the observation of ALMA, the follow-up analysis and the pioneering
work that links such observation to the evolution of multi-planetary system.

4.1 Disk Structure and Properties

ALMA observed the HL Tau from October 2014 to November 2014. The dust continuum images
were taken at three di↵erent bands, the Band 6(1.3mm), Band 7(0.87mm) and Band 3(2.9mm).
The achieved resolution ranged between 0.07500 to 0.02500, corresponding to 10 au to 3.5 au. One
can refer to Partnership et al. (2015) for the full technical details of the observation and data
calibration. Figure 4.1 is the dust continuum image of HL Tau taken at Band 6(233GHz).

Kwon et al. (2015) used both the viscous accretion and power-law disk model to fit the con-
tinuum data, and found out that the accretion model can fit better. Assuming the gas-to-dust
ratio to be 100, the fitting result shows that the disk of HL Tau has a mass of 0.105(1)M�,
with inner edge at 8.78(19) au and outer edge(exponential cut-o↵) extended to 80.20(34) au. If
the gas-to-dust ratio is assumed to be 100, the fitting result of its disk surface density can be
expressed as

⌃g(R) = 5.66⇥ 10�4

✓
R

80 au

◆0.2

exp

"
�
✓

R

80 au

◆2.2
#
M�au

�2, (4.1)

where R is the cylindrical distance.
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Figure 4.1: The ALMA image of HL Tau (https://www.eso.org/public/images/eso1436a/).

The accretion rate of the HL Tau is estimated to be 8.7⇥ 10�8 M�yr�1. The upper limit of
viscosity ↵ can thus be estimated via accretion rate as

↵(R) =
Ṁ

3⇡cs(R)h(R)⌃g(R)
. (4.2)

At R = 100 au, h ⇠ 10 au, ⌃g ⇠ 10�5 M�au�2. This gives the upper limit of the viscosity to be
10�2. Alternatively, viscosity can also be estimated from the dust settling, and the result is in
order of 10�4(Pinte et al., 2015).

4.2 Planetary signatures: the gap structure

The most important accomplishment of Partnership et al. (2015) is the alternate bright and
dark ring-like structure that can be clearly seen from Figure 4.1. In total seven rings and seven
gaps were observed, and their respective positions and properties are summarised in Table 4.1.
To avoid any confusion, we will follow the nomenclature that uses the term ‘ring’ to denote
bright ring and ‘gap’ to denote the dark ring.

The discovery of the gaps deserves particular attention as it can potentially indicate the presence
of giant planets. Although theories (e.g., Lin & Papaloizou, 1979; Goldreich & Tremaine, 1980;
Crida et al., 2006) have long predicted that a giant planet inside a disk can gravitationally
interact with its surroundings and create a gap by clearing its orbit, until Partnership et al.
(2015) there was no direct proof to confirm the existence of such structures. On the other hand,
alternative interpretations of the gap origin, including instability (e.g., Takahashi & Inutsuka,
2016) and snow lines (e.g., Zhang & Jin, 2015), are also possible. In this thesis, we take the
assumption that the gaps are created by planets.

Recent studies on the gaps of the PPD suggested that the depth of the gap can be related the



4.2. Planetary signatures: the gap structure 25

Dust
Ring Number Position/au Density

(cm2g�1)
1 20.4± 0.1 5.7
2 38.1± 0.1 6.6
3 ⇠ 47 6.9
4 ⇠ 55 6.8
5 68.8± 0.1 7.1
6 81.3± 0.1 4.6
7 ⇠ 97 4.9

(a) Ring positions and dust opacity of HL Tau.
Dust opacity corresponds to � = 1mm.

Gap Number Position/au Depth Width/au

1 13.2± 0.2 18 12
2 32.3± 0.1 16 11
3 ⇠ 42 6.9 6.6
4 ⇠ 50 3.8 4.5
5 64.2± 0.1 8.0 12
6 73.7± 0.1 12 8.1
7 ⇠ 91 11 9.9

(b) Gap positions and gap depth of HL Tau. Gap depth
is the ratio of density at vicinity of the gap to the mini-
mum density at the gap.

Table 4.1: Ring and gap properties of HL Tau (Partnership et al., 2015).

planet’s mass, the viscosity and the aspect ratio of the disk. The analytical estimates given by
Kanagawa et al. (2015) show that this relation has the form

⌃min

⌃
=

1

1 + 0.04K
. (4.3)

Here ⌃min is the minimum density at the bottom of the gap and ⌃ is the density at vicinity of
the gap. The dimensionless parameter K is expressed as

K =

✓
Mp

M⇤

◆2✓
hp

Rp

◆�5

↵�1. (4.4)

Using two-dimensional hydrodynamical simulations, Kanagawa et al. (2016) further obtained
an empirical formula which gave the relation between the width of the gap �g the planet’s
location Rp

�g

Rp

= 0.41

✓
Mp

M⇤

◆1/2✓
hp

Rp

◆�3/4

↵�1/4, (4.5)

which yields the mass of the planet in terms of the gap width, aspect ratio and viscosity as

Mp

M⇤
= 2.1⇥ 10�3

✓
�g

Rp

◆2✓
hp/Rp

0.05

◆3/2 ⇣ ↵

10�3

⌘1/2
. (4.6)

The above equation can be used to estimate the mass of hidden planets in HL Tau. Given
↵ = 3⇥ 10�4 and the width of the respective gap, the fiducial values for the mass of the
innermost three planets are estimated as 0.77, 0.11, and 0.27MJ when the mass of HL Tau is
1M�.
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No. of Planets Case a1(au) a2(au) a3(au) a4(au) a5(au) ein eout inc f

5 Nominal 13.2 32.3 64.2 73.7 91.0 0 0 [0�, 1�] Random
5 Resonant 13.2 32.3 64.4 74.8 90.8 10�5 10�3 10�2 Resonant
4 Nominal 13.2 32.3 69.0 91.0 0 0 [0�, 1�] Random
4 Resonant 13.2 32.3 69.1 90.8 10�5 10�3 10�2 Resonant

Table 4.2: HL Tau initial conditions used by Simbulan et al. (2017).

4.3 Previous Study: Planetary Dynamics in HL Tau
System

We have seen that a large amount of information about the possible configuration of a young
multi-planetary system is hidden inside the revolutionary ALMA image of HL Tau. Simbulan
et al. (2017) took this idea and connected the HL Tau image to the initial conditions of planetary
systems. In this pioneering work, they extracted the orbital information from the gaps of
HL Tau and systematically examined the possible outcomes of its evolution using numerical
simulations. The main focus of their research is to investigate whether the initial conditions
extracted from the HL Tau can reproduce a diverse configurations of multi-planetary systems
that have been observed, given the allowed ranges of free parameters.

Figure 4.2: An example evolution of a 5-planet system reproduced from the initial conditions
specified by Simbulan et al. (2017). The planet will be removed if it is ejected from the system
or collide with the hosting star/another planet. In this system, four planets are either ejected
or collided with the star within 3.5⇥ 107 yr, and only one planet remains.

The orbital initial conditions that were used by Simbulan et al. (2017) are summarised in Table
4.2. Since the total number of planets that HL Tau may host are unknown, they considered
both the 4-planet and 5-planet cases. Each case was further divided into nominal and resonant
cases: for nominal cases, the initial positions of the planets are basically assigned to be the
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location of the ring; for resonant cases, the planetary systems are first allowed to enter the
resonant states via a ‘warm-up’ test, and the real simulations will start after the resonance is
reached. The mass of the planets are assumed to be equal: 1.1MJ was set to be the mass of
each planet for the five-planet case and 4.7MJ for the four-planet case. Particularly, the planet
mass for the four-planet case is larger than that of five-planet case since the planetary system
is intentionally set to be dynamically unstable.

For each case, 100 instances with randomised phase angles were simulated and each instance was
evolved up to 5Gyr. Simulation results show that a significant fraction of planets were ejected
for both five-planet and four-planet case, with some planets collided with the star or another
planet. Figure 4.2 shows an example evolution of semi-major axis in a 5-planet system from
initial conditions specified in Table 4.2. The surviving planets showed a diverse distribution
of eccentricity, inclination and semi-major axis. Simbulan et al. (2017) also compared the
results with the population of eccentric Jupiters, hot Jupiters and free-floating planets and
they concluded that starting from the HL Tau initial conditions these populations can be
reproduced.

We may realise that the assumption of the mass assignment that Simbulan et al. (2017) relies
on is unnatural as it is intentionally biased towards unstable systems. Their work can be further
extended by including the disk-planet interaction and mass accretion process, from which we
can get more realistic initial conditions. As the HL Tau system is still young, it is possible that
the disk-planet interaction can strongly shape the initial conditions before the disk dispersal.
Further investigation can also show how the planet-disk interaction will a↵ect the stabilities as
well as the diversity of the planetary systems after long time evolution.
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Methods

5.1 Theoretical framework

5.1.1 Equations of Motion

When the disk is present, in addition to the gravitational forces from the central star and other
planets, the planet will experience additional forces due to the disk. Consider the forces acting
on the i -th planet inside the gap of the disk, the equation of motion can be written as

r̈i = fgrav,i + fa,i + fe,i (5.1)

where ri is the position vector of the i -th planet. The f notations on the right hand side of
the equation are respective forces per unit mass exerting on the ith planet. We assume the
planets to be co-planar in this research, and thus ri can be replaced by the position vector Ri

in cylindrical coordinate system. We will continue using capital R to denote the cylindrical
position vector unless stated otherwise.

Gravity

The first term fgrav is the gravitational force exerted by the central star and other planets,
which takes the form(e.g.Murray & Dermott (2000)):

fgrav,i = �G(M⇤ +Mi)
Ri

R3
i

+
k 6=iX

k

GMk

k Rk �Ri k3
(Rk �Ri)�

k 6=iX

k

GMk

R3
k

Rk, (5.2)

where R = |R|. As in the previous chapters, we use symbol ⇤ to denote the central star and
subscripts i, k as the indices of planets only. Since later we are going to perform the N -body
simulation framework to carry out the simulations, in practice this term requires no special
attention as it has been fully absorbed into the N -body integration framework.

28
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Migration force

The second term fa,i denotes the force that drives the inwards-migration of planets. As discussed
in Section 3, a planet with index i embedded inside the disk experiences an e↵ective torque �i

and migrates inwards. We define an e-fold migration timescale ⌧a,i

ȧi
ai

⌘ � 1

⌧a,i
, (5.3)

where ai is the semi-major axis of the planet. To see the physical meaning of ⌧a,i, assuming
small eccentricity, we can write the migration velocity Ṙi in terms of the torque and angular
momentum as:

Ṙi =
2�i

Li

Ri, (5.4)

where Li = a2i⌦K,iMi is the orbital angular momentum, ⌦K,i is the Keplerian angular velocity
at Ri. For small eccentricity, |Ri| ⇡ ai, and equation (5.4) implies

⌧a,i = � Li

2�i

. (5.5)

To incorporate this migration into the N -body simulation, we implement the migration as an
e↵ective force. Further di↵erentiation of equation (5.4) gives the acceleration:

R̈i =
�iṘi

Mia2i⌦K,i

=
�i

Li

Ṙi. (5.6)

Substituting equation (5.5) to (5.6) then the expression of fa,i is simply

fa,i = R̈i = � Ṙi

2⌧a,i
. (5.7)

Eccentricity damping force

The disk also tends to circularise the planet’s orbit if the planet is in a eccentric orbit. Using
the same spirit as equation 5.3, we define the eccentricity damping timescale, ⌧e,i and assume
the following linear relationship with ⌧a,i(Lee & Peale, 2002; Kley et al., 2004):

⌧e,i = ⌧a,i

✓
hi

Ri

◆2

c, (5.8)

where h/R is the aspect ratio and c is a constant. Following Kanagawa et al. (2018), we take
c = 1.282 in our simulation. We can then compute the eccentricity damping force as

fe,i = � vi

(1� e2i )(3/2)⌧e,i
+ l̂i ⇥ R̂i

r
µ

ai(1� e2i )

1

(3/2)⌧e,i
, (5.9)

where vi = Ṙi and l̂i is the unit vector of the specific angular momentum.
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5.1.2 Model of the Disk Structure Hosting Multiple Planets

In sections 2.2.1 and 2.2.2, we reviewed the classical picture of the disk surface density profile
and derived the static solution. Since our simulations takes account of the change of surface
density due to mass accretion onto the planets, we generalised equation (2.53) to the N -planet
case to make it applicable in multi-planetary systems.

Consider the steady state with in total N planets located at Ri, i 2 {1, 2, ..., N}, and treat
each planet as a mass sink with accretion rate Ṁi. Then the conservation of mass gives

Ṁ(R) =

8
>>>><

>>>>:

Ṁ⇤ (R < R1),

Ṁ⇤ +
nP

i=1
Ṁi (Rn < R < Rn+1, n 2 {1, 2, ...N � 1}),

Ṁ⇤ +
NP
i=1

Ṁi (R > RN).

(5.10)

Similarly, conservation of the angular momentum flow gives

Ṁ(R)j(R) =

8
>>>><

>>>>:

Ṁ⇤j⇤ (R < R1),

Ṁ⇤j⇤ +
nP

i=1
Ṁiji (Rn < R < Rn+1, n 2 {1, 2, ...N � 1}),

Ṁ⇤j⇤ +
NP
i=1

Ṁiji (R > RN),

(5.11)

where ji = j(Ri) = R2
i⌦i is the specific angular momentum. Now consider the case of when

Rn < R < Rn+1. Using the boundary conditions at R = Ri, we can solve equation (2.49) as

3⇡⌫j(R)⌃g(R) = Ṁj(r)� Ṁ⇤j⇤ �
nX

i

Ṁiji. (5.12)

Substituting equation 5.10 to the above equation, we have
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3⇡⌫

✓
1� j⇤

j(R)

◆
+

nX

i=1

Ṁi
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. (5.13)

The above formula shows that given the positions of all the planets, the surface density at
position R is specified by the accretion rate Ṁi alone. We define the global accretion rate as
the sum of all the accretion rates:

Ṁglob = Ṁ⇤ +
NX

i=1

Ṁi (5.14)

Our simulation assumes that Ṁglob is a constant. It can be seen from the next section that once
Ṁglob and the planet system configuration are specified, the individual Ṁi can be calculated
iteratively.
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We adopt a simple exponential decaying model to account for the time dependence of the
surface density due to disk dispersion:

⌃g(R, t) = ⌃g(R) exp

✓
� t

⌧disk

◆
, (5.15)

where ⌧disk is the e-fold disk lifetime. Since the disk lifetime is very uncertain, we treat ⌧disk as
a global free parameter in the simulation and consider di↵erent values.

5.1.3 Accretion Model

Figure 5.1: The planetary accretion rate against the planet mass(single planet) at constant
⌃R=5au. Parameters: ↵ = 4⇥ 10�3, Rp = 5.2 au,M⇤ = 1M�, Ṁ⇤ = (2⇡)�110�8 Ṁ�yr�1.

We follow Tanigawa & Tanaka (2016) to determine the accretion rate of each planet, Ṁi. This
model shows the accretion rate is related to the accretion surface density(disk surface density
at the planet’s accretion site) ⌃acc as

Ṁi = Di⌃acc,i, (5.16)

where Di is the accretion area of the protoplanetary disk per unit time given by

Di = 0.29

✓
hi

Ri

◆�2✓
Mi

M⇤

◆4/3

R2
i⌦i. (5.17)

In the above, ⌦i is the angular velocity of the i-th planet, which may not be equal to ⌦K,i;
nevertheless we take the approximation that ⌦i ⇡ ⌦K,i. We also assume that the accretion
density is roughly equal to the minimum density at the bottom of the gap, which can be
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expressed as(c.f. equation 4.3)

⌃acc,i ⇡ ⌃min,i =
1

1 + 0.034Ki

⌃(Ri), (5.18)

where ⌃(Ri) is given by equation (5.13) and K is a dimensionless factor related to the depth
of the gap(equation (4.4)):

Ki =

✓
Mi

M⇤

◆2✓
hi

Ri

◆�5

↵�1 (5.19)

Figure 5.1 shows how the accretion rate varies with the planet mass given the parameters
specified. The accretion rate first increases as mass increases from Mi = 10�3 MJ, reaches
maximum when the planet mass is around 3⇥ 10�1 MJ, and then decreases as mass increases
further. From equation (5.18), when the planet mass is small so thatKi ⌧ (0.034)�1, Ṁi / D /
M

4/3
i ; When the planet mass get larger and Ki � (0.034)�1, Ki dominates the denominator

and thus Ṁi / D / M
(�2/3)
i .

5.1.4 Migration Model
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Figure 5.2: The dimensionless migration time-scale versus the K value. Coloured symbols
represent results of the hydrodynamical simulations, which shows good agreement with the
model prediction (Kanagawa et al., 2018).

In Section 5.1.1 we defined the migration time-scale ⌧a,i to empirically capture the physics of
the migration process. Here we adopted ⌧a expression from Kanagawa et al. (2018), as shown
by Figure 5.2. Their model connects both Type I and Type II migration of the planets in a
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single framework. In this model, the migration time-scale of the i-th planet ⌧a,i is expressed as

⌧a,i =
1 + 0.04Ki

�L,i + �C,i exp(�Ki/Kt)
⌧0,i(Ri), (5.20)

where �C,i and �L,i are the ratios between the torques �C,i and �L,i to the characteristic torque
�0,i, respectively, Kt is the co-rotational cut-o↵ value of Ki. The characteristic time-scale ⌧0,i
is defined as

⌧0,i =
Li

2�0,i
. (5.21)

The explicit expressions of � are adopted from Paardekooper et al. (2010) assuming locally
isothermal disk:

�C,i =
�c,i

�0,i(Ri)
= 1.1(1.5� s)bi + 2.2�b0.71i � 1.4�b1.26i , (5.22)

�L,i =
�L,i

�0,i(Ri)
= �(2.5� 0.1s+ 1.7�)b0.71i , (5.23)

where bi = (0.4hi)/✏, ✏ is the softening parameter, s = �d ln⌃/d lnR is the surface density
gradient, � = � lnT/ lnR is the temperature gradient, and �0,i is defined as

�0,i(Ri) =

✓
Mi

M⇤

◆2✓
hi

Ri

◆�2

⌃(Ri)R
4
i⌦

2
K,i. (5.24)

We may notice that K value controls the evolution of the migration. When the planet mass is
small, small K value indicates the gap is not formed, and thus the migration is dominant by
Type I migration and the time-scale is short. As the planet gains enough mass from accretion,
K gradually increases, indicating that a gap is formed and the slower Type II migration becomes
dominant, resulting in larger migration time-scale. The dependence on K also shows the strong
coupling between the mass accretion and the migration of the planet.

5.2 Numerical Approaches

Since the strong coupling among the surface density evolution, planetary migration and ac-
cretion of the planet is di�cult to consider analytically, we resorted to numerical integration,
namely the modified N -body simulations. Based on the original N -body gravitational simula-
tion, we implemented the planet-disk interactions as additional forces and then incorporated
into the N -body framework.

5.2.1 Simulation Environment

Our simulation uses the publicly available N -body code REBOUND(Rein & Liu, 2011) and its
extension REBOUNDx. Both REBOUND and REBOUNDx are also used by Simbulan et al. (2017). Since
they are originally developed for generic-purpose gravitational N -body simulation, there are a
variety of choices to customise REBOUND and tailor it to our purpose. Among the integrators that
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are available in REBOUND, we choose the ias15 integrator(Rein & Spiegel, 2014), which is a non-
symplectic, adaptive time-step integrator down to machine precision(10�15) over 109 dynamical
time-scales. Before the actual simulation, We systematically went through various tests to
ensure the reliability of this integrator, and the test results will be presented in Appendix A.

REBOUNDx is an extension to REBOUND developed by D.Tamayo, who is one of the major con-
tributors to the REBOUND as well. Although REBOUND itself has an option to specify customised
force, the functionality is rather limited. REBOUNDx provides the interface to introduce ad-
ditional forces and post-orbit modification, which allows implementation of a wider range of
interactions and e↵ects, such as velocity-dependent drag force and mass modification. Within
the framework of REBOUNDx, we implemented the additional forces in Section 5.1.1 and mass
accretion in 5.1.3 as force modules and calculated the real-time surface density using iterative
methods.

We performed all the major calculations on computation clusters powered by Linux environ-
ment at Centre for Computational Astrophysics(CfCA), National Astronomical Observatory of
Japan(NAOJ). We adopted gcc compilers to compile the C code, and the results were analysed
by Python 3.7.

Notation Meaning Type Range Fiducial Value
Varied Parameters
f Flaring index varied 0.15� 0.35 0.25
⌧disk Disk lifetime varied 1� 3Myr 2Myr
↵ Shakura’s Viscosity varied 2⇥ 10�4 � 6⇥ 10�4 3⇥ 10�4

Disk-Related
Mdisk Disk mass fixed 0.105M�
⌃g/⌃dust Gas-to-dust ratio fixed 100
(h/r)1 au Aspect Ratio at 1 au fixed 0.03
M⇤ Stellar Mass fixed 1.0M�
�C Co-rotational torque
�L Lindblad torque
Rin Disk inner edge fixed 10 au
Rout Disk outer edge fixed 80 au
�0 Characteristic torque
�C �C/�0

�L �L/�0

K Gap depth parameter
Kt Co-rotation cut-o↵ fixed 20
Planet-Related
N Number of planets fixed 3
ai1, a

i
2, a

i
3 Initial semi-major axis fixed 13.2, 32.3, 73.7au

ei1, e
i
2, e

i
3 Initial eccentricity fixed 10�7

ii1, i
i
2, i

i
3 Initial inclination fixed 0

M i
1 Initial Planet 1 Mass 1.4(↵/10�3)1/2MJ

M i
2 Initial Planet 2 Mass 0.2(↵/10�3)1/2MJ

M i
3 Initial Planet 3 Mass 0.5(↵/10�3)1/2MJ

Table 5.1: Initial parameters and variables in our simulation. The superscript ‘i’ stands for the
initial value of planet-related parameters.
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(a) 5-Planet case in Simbulan et al.
(2017).

(b) 3 planets in our simulation

Figure 5.3: Comparison between the initial locations of the planets in Simbulan et al. (2017)
and our simulation. The number represents the index of each planet.

5.2.2 Parameters and Initial Conditions

Table 5.1 summarises all the parameters and intermediate variables employed in the simulation.
We have surveyed 5 values of the flaring indices f , 3 values of the disk lifetime ⌧disk and 5 values
of the viscosity ↵ parameter. The surveyed values are in equal interval within the range specified
in Table 5.1. We therefore simulated 75 instances for 3 planets each, and thus there are 225
planets in total.

We fix the star mass to be 1.0M�, and we set the disk mass to be 0.105M�(Kwon et al., 2015).
We also fix the initial positions of the planets to be 13.2, 32.3 and 73.7 au, which corresponds
to the top three deepest gap stated in Pinte et al. (2015). The initial positions of the planets
are also identical to those of the first, second and fourth planets of the ”5-planet-nominal”
case in the investigation of Simbulan et al. (2017), shown by Figure 5.3. We assume that the
planets are initially in near-circular orbits and set the initial eccentricity to be identical 10�7

for all three planets. All planets are set to have zero inclination and their orbital phases are
randomised. The values of the initial mass are determined by the model from Kanagawa et al.
(2016), which deduced the planet mass from the gap width. In this model the initial planet
mass is scaled by ↵1/2, and since ↵ is a free parameter that has been surveyed, we vary the
initial mass of the planet according to the di↵erent ↵ values.

5.2.3 Simulation Structure

We divide the simulation into two stages, as illustrate by Figure 5.4: the disk stage and the
disk-free stage. At the disk stage, the planet-disk interaction and mass accretion modules are
switched on. The total simulation time for this stage is set to be 3⌧disk. At 3⌧disk, most of the
gas has already been removed, which is e↵ectively the end of the planet-disk interaction. The
orbital information of all three planets as well as other parameters are stored every (103/2⇡)yr.
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Figure 5.4: Illustration of the timeline of the two-stage simulation.

At the disk-free stage, only gravitational force is considered. The initial conditions at this
stage were extracted from the final states of the previous stage and the system is evolved for
another 0.1Gyr. Ideally we should evolve the system for around 1 to 2 Gyr, which correspond
to the mode of stellar age reported by Walkowicz & Basri (2013). However, due to the limited
computing time of the simulation, we take 0.1Gyr as a final epoch of the simulation. We plan to
continue the simulation later, but according to the previous criteria of the instability time-scale,
most of our systems are supposed to have the least instability time at around 0.1Gyr(see section
6.2.1), therefore N -body simulation up to 0.1Gyr is expected to be useful in understanding the
final outcome of the system to some extent. The output interval at this stage is (105/2⇡)yr.



Chapter 6

Results

In the previous chapter, we described the two-stage numerical approach and the implementation
of various interactions. This final chapter will be devoted to present the simulation results at
3⌧disk and 0.1Gyr after disk dispersal, with the corresponding post-analysis of the emerging
trends and patterns breaking down in di↵erent parameter spaces. We will also investigate on
the stability of the systems with references to the empirical stability criteria.

6.1 Evolution during the Disk-planet Interaction (t <

3⌧disk)

6.1.1 A Typical Example of Planetary Evolution

For the disk phase, we simulated in total 75 instances of 3-planet system, with interactions
implemented and initial conditions described in Section 5.2. Figures 6.1 and 6.2 show an
example of their evolution. The three free parameters mentioned in Section 5.2.2 are chosen
to be the best-guess fiducial values: flaring index f = 0.25, disk lifetime ⌧disk = 2Myr and
viscosity ↵ = 3⇥ 10�4. The evolution time for this case is 3⌧disk = 6Myr.

An example of the evolution of semi-major axis and mass is shown in Figure 6.1. Within
6Myr, planets 1, 2, 3 migrates from [13.2, 32.3, 73.7]au to [1.97, 3.27, 5.55]au and their masses
also increase from [0.77, 0.11, 0.27]MJ to [1.84, 2.36, 4.23]MJ. In the first 0.3Myr, the outer two
planets(planet 2 and 3) quickly grow and migrate inward, and until planet 2 becomes close
enough to planet 1, the migration of the inner-most planet (planet 1) does not commence. As
the mass of the planet grows, planets carve the gap, switch to Type II migration, and the
migration speed slows down. The three planets then continue growing and migrating inward
together, and gradually reach their final states as the disk density decays.

The details of the migration history can be further revealed from Figures 6.1c and 6.1d , which
shows the evolution of eccentricity and migration time-scale, respectively. The eccentricity of
planet 2 is firstly excited due to the encounter of planet 3; the second excitation, together with
that of planet 1, happens at the same time when planet 1 encounters planet 2 and starts to
migrate. Due to the eccentricity damping of the disk, the eccentricities of both planet 1 and 2

37
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(a) Semi-major axis evolution (b) Mass evolution

(c) Eccentricity evolution (d) Migration time scale ⌧a evolution

Figure 6.1: An example of the evolution of a, m, e and ⌧a for planets 1, 2 and 3 (f = 0.25,
⌧disk = 2Myr and ↵ = 3⇥ 10�4).

are then damped along the evolution and reach the same level at the end, which is about 0.02.
The migration time-scale also shows similar features. Except the planet 3, both planet 1 and 2
have experienced similar ”acceleration-maximum-deceleration” dips in their migration process,
as shown in Figure 6.1d. It is worth noting that once three planets start to migrate together,
their migration time-scales also tend to grow at almost the same rate.

Figure 6.2 shows the evolution of the gas surface density ⌃g. Figure 6.2a shows the global
surface density profile at di↵erent epochs, while Figure 6.2b shows the surface density at the
locations of the planets. We neglect the detailed structure of the gaps. At t = 0, the strong
mass accretion on the outside planets 2 and 3 creates a steep bump on the profile, and therefore
both the migration and accretion of the planet 1 are quenched. The rapid inward migration of
planet 2 and 3 results in increase of the surface densities at their respective positions. As the
mass of planet 2 and 3 continues to grow, their accretion rates drop as Ṁi / M

�2/3
i , causing

the density bumps becomes less steep and raising the surface density at the location of planet 1.
At t = 2Myr, since the planet system becomes more packed together and accretion rates of all
three planets drop to low level, the bumps become almost negligible. The density at location
of each planet reaches the maximum, and then drops as the global disk decaying dominates
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(a) The global evolution of the gas surface density profile. The purple dotted line is the unperturbed
density profile at t = 0 if no planet is present. Planets are located at the discontinuous dips of each
line.

(b) Variation of the gas surface density at the planet’s location Ri. Note that Ri also varies with time
due to migration.

Figure 6.2: Global evolution of the gas surface density profile and the evolution of gas surface
density at each planet’s location.



40 Chapter 6. Results

(a) t = 0 (b) t = 0.5Myr

(c) t = 2Myr (d) t = 6Myr

Figure 6.3: 2-D visualisation of the disk surface density at di↵erent epochs. The colour bar at
the side represents the surface density at each epoch in units of M�au�2.

the change of surface density. The same trend continues and at t = 6Myr the density bumps
become further negligible and the surface density of planet 1 starts to surpass those at planets
2 and 3, as the global profile tends to be a straight line with gradient proportional to ⌫�1.

To visualise the evolution of the disk surface density, we also plot the gas surface density at 4
di↵erent epochs in two dimentional heat maps, shown by Figure 6.3. The width of the gap is
given by equation (4.5) and the surface density inside the gap is given by equation (5.18). For
illustration purposes we ignore the detailed structure of the gap and assume that the boundary
of the gap is like a step function. At t = 0, there are three separate gaps and each centred
at the initial orbit of the respective planet. At 0.5Myr, due to the inward migration of the
outermost planet, the third gap combined with the second gap. The migration continues and
at 2Myr, all three gaps merge into a single gap and an inner-hole is formed. At 6Myr, the size
of the hole shrinks as all planets migrate further inward. When the gaps are combined, the
migration speed may deviate from that given by equation (5.20), since the depth and width
of the common gap is di↵erent from the gap formed by a single planet(e.g., Du↵ell & Chiang,
2015). In the future, we need to investigate the impacts on the formation of the common gap
on the migration speed and accretion rate onto the planet.
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6.1.2 Distribution of Planet Mass and Semi-major axis

The overall distribution of the planets after the disk-phase is plotted in Figure 6.4, where a is
the semi-major axis in units of au and m is the mass of the planet in units of MJ. Overall we
found that the final position of the planets stretched from around 0.007 au to 30 au, with the
final mass ranging from 0.4MJ to around 10MJ. The general trend shows that the closer the
planet to the star, the larger the mass of the planet. Since the initial mass of the planets range
from Saturn mass to one Jupiter mass and there is no mass reduction mechanism implemented,
it is expected that mass of some planets can grow up to the brown dwarf mass while migrating
to the very inner region given long enough disk lifetime. As mentioned in the previous chapter,
we will set the final results at 3⌧disk to be the initial conditions of the disk-free stage. On the
same graph, we make the comparison between initial conditions that are used in Simbulan et al.
(2017) and our results. The comparison suggests that the configuration of the planetary system
can undergo dramatic changes and become more diverse after including the disk migration and
accretion mechanism.

Figure 6.4: Overall Distribution of Planet’s mass m/MJupiter in the semi-major axis a/au
after disk phase. Planet 1, 2, 3 refers to the planet initially positioned at 13 au, 32 au, 74 au.
Labels ‘Simbulan+17: 4P’ and ‘Simbulan+17: 5P’ correspond to 4-planet and 5-planet cases
in Simbulan et al. (2017).

6.1.3 Parameter Dependence of Planetary Mass and Semi-major
Axis

The overall final distribution shown in Figure 6.4 does not reveal individual dependence of m
and a on f , ⌧disk and ↵. We thus break down the distribution into di↵erent parameter spaces
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(a) Semi-major axis versus flaring index. (b) Mass versus flaring index f .

Figure 6.5: Semi-major axis and Mass dependence on flaring index.

(a) Semi-major axis versus Disk lifetime ⌧disk. (b) Mass versus ⌧disk.

Figure 6.6: Semi-major axis and Mass dependence on disk lifetime ⌧disk.

(a) Semi-major axis versus viscosity ↵. (b) Mass versus viscosity ↵.

Figure 6.7: Semi-major axis and Mass dependence on viscosity ↵.
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and perform fitting to empirically see the trends. In each investigation, we plot a and m of
each planet by varying only one free parameter and fix the other two free parameters to fiducial
values. Figures 6.5, 6.6 and 6.7 show the break-down plots in di↵erent parameter spaces.

The dependence on flaring index f is shown by Figure 6.5a and 6.5b. As the flaring index
increases from 0.15 to 0.35, the final semi-major axis decreases and the final mass increases.
This can be explained by the global surface density profile solution equation (2.54), which
implies ⌃ / ⌫�1. With a constant ↵, ⌫�1 / R�(0.5+2f), therefore f controls the slope of the
density profile. In the course of the inward migration, the surface density at the location of the
planet increases more rapidly for larger f , which gives stronger positive feedback on both mass
accretion and migration.

Figures 6.6a and 6.6b show that how the disk lifetime a↵ects the final position and mass. As
expected the final semi-major axis decreases and final mass increases when ⌧disk increases from
1Myr to 3Myr. By definition ⌧disk is the e-fold lifetime of the disk, which determines the speed
of disk dispersal. Planets in long-lived disk will simply have longer time to migrate and accrete
and therefore larger and inner-migrated planets are expected for longer disk lifetime.

Finally, the dependence on the viscosity ↵ is shown in Figure 6.7a and 6.7b. With an increasing
viscosity, the planet tends to have stronger migration and accretion, as evident by the decreasing
semi-major axis and increasing final mass. The key to understanding this dependence is the
expression of K parameter equation (5.19). Since K / ↵�1, when ↵ become larger, K becomes
smaller; back to physical context, this means that a larger value of ↵ favours faster di↵usion as
the di↵usion timescale ⌧⌫ / ⌫�1. Under this condition, the planet carve a shallower gap and as
a result, planet will stay longer in Type I migration and have longer migration distance. The
mass accretion dependence on K is similar if we recall equation (5.18). The accretion density
⌃acc is higher for a shallower gap, therefore planet gains larger accretion rate and grow larger.

6.2 Stable Evolution for the First 0.1 Gyr after the Disk-
dispersal

After disk dispersal, we adopt the final states of the results at 3⌧disk as initial conditions for
the subsequent N -body simulation. We then evolve the systems for another 0.1Gyr with
gravitational force alone. At the time of this writing, 67 out of 75 cases were completed up
to 0.1Gyr. Due to the 240 hours limit of the CfCA computing system, the remaining 8 cases
were not completed yet. In Figure 6.8, we plot an example of evolution of semi-major axis
and eccentricity for three planets at 0.1Gyr after the disk dispersal. In this case, there is no
significant change of a and e within 0.1Gyr, except tiny variations due to secular perturbations.

In fact, out of the 67 systems, no unstable case has been observed during the simulation, and the
final states at 0.1Gyr are almost identical to their initial states. Our result is largely di↵erent
from the result of Simbulan et al. (2017), as they found most instabilities quickly occurs within
million-year timescale, as shown by Figure 4.2. Therefore, in this section we will first compare
our simulation with the previous empirical criteria of stability, and then we will discuss why
our systems are more stable than the previous prediction.
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(a) Semi-major axis evolution (b) Eccentricity evolution

Figure 6.8: Evolution of the semi-major axis and eccentricity for three planets (f = 0.25,
⌧disk = 2Myr and ↵ = 3⇥ 10�4).

6.2.1 Comparison with the Previous Criteria in terms of the Hill
Radius

The past studies, e.g. Chambers et al. (1996); Marzari & Weidenschilling (2002), have shown
that there exist a rough relationship between the instability time of a planetary system and the
separations between adjacent planets in their mutual hill radius RH

i,j:

RH
i,j =

✓
ai + aj

2

◆✓
Mi +Mj

3M⇤

◆1/3

. (6.1)

We further define a parameter K to be the separation of two adjacent planets divided by their
mutual Hill radius:

Ki =
ai+1 � ai
RH

i,i+1

. (6.2)

Particularly we define K0 = a1/(M1/3M⇤)1/3. The “Hill Stable” criterion given by Gladman
(1993) states that K has to be greater than 2

p
3 in order to be stable. A recent paper, Wu

et al. (2018), investigated on the stability criteria for 3, 4, 5 planet systems with a variety of
mass distributions. The results suggested that the minimum of K values in a multi-planetary
system, Kmin, is the decisive factor that determines the dynamical instability time of a system,
while the . By carrying out simulations in a wide range of parameter space, Wu et al. (2018)
showed that the lower limit of the instability time t has a log-linear relation:

log10

✓
t

T0

◆
= cKmin + d, (6.3)

where T0 is the orbital period of the innermost planet, c and d are constants. In the case of
equally-spaced 3 planets with equal mass, Chambers et al. (1996) found that c = 1.65 and
d = 3.71 for planet mass up to 10�5 M�. Marzari & Weidenschilling (2002) investigated on the
Jupiter-size planets(10�3 M�) in the similar set-up and they obtained c = 2.52 and d = �5.79.
The range of the K parameter that Chambers et al. (1996) investigated was around 2 to 10,
whereas that investigated by Marzari & Weidenschilling (2002) was around 3 to 5.
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(a) Kmin versus semi-major axis a/au.

(b) Kavg versus semi-major axis a/au.

Figure 6.9: Plot of Kmin against the semi-major axis/au of the innermost planet after 3⌧disk.
Cross and plus signs are the results of the 4-planet nominal and 5-planet nominal cases of
Simbulan et al. (2017). The red and salmon lines are the prediction of the 0.1Gyr instability
time based on the respective model, and the purple line is the Hill stable criterion given by
Gladman (1993).
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Figure 6.9 plots the Kmin and Kavg of the all 75 systems at 3⌧disk. On the same plots we also
add the 4-planet and 5-planet nominal cases of Simbulan et al. (2017) for comparison. We
plot Gladman’s Hill stability criterion and 0.1Gyr lower-limit instability time line from both
Chambers et al. (1996) and Marzari & Weidenschilling (2002). Figure 6.9a shows that most
of the systems in our simulation are located above the Hill stable line, while Simbulan et al.
(2017)’s systems are well below the line. In addition, almost all systems in our simulation stay at
the left side of the 0.1Gyr lower-limit instability time contours, which means the configurations
of these systems are relatively stable as they survive much longer than the lower limit of the
instability time. The plot of Kavg shown in Figure 6.9b reveals a similar pattern, and the
conclusion on the instability comparison does not change qualitatively. From these results we
may conclude that the planet-disk interaction has the stabilising e↵ect on the configuration of
the planetary systems, that is, systems which undergo migration and accretion are more stable
than their counterparts with the same Kmin but randomised initial conditions.

6.2.2 Hints to the Stability: the Period Ratios

The resonance between neighbouring planets can induce both instability and promote long-
term stability of a planetary systemMalhotra (1998). To see whether planets have reached
their resonance states, we plot the histogram of period ratios between adjacent planets, as
shown by Figure 6.10. Figure 6.10a shows the period ratios just after 3⌧disk and Figure 6.10b
shows the period ratios at 0.1Gyr after disk dispersal. We found both graphs show a clear
cut-o↵ at “2:1” resonance, which means most of the planet-pairs fail to enter major resonance
states. This may be due to the fact that the migration coupling between two planets are too
strong, so by the time the incoming planet reach resonance closer than 2:1, two planets already
start co-moving. Larger than 2:1 period ratio, P2 : P1 shows di↵erent statistical distribution
from P3 : P2. While P3 : P2 are widely distributed between 2.0 to 3.0 range, P2 : P1 are
concentrating within the range from 2.0 to 2.4. This shows that the migration coupling between
Planet 3 and 2 is stronger than that of Planet 2 and Planet 1.

To see how the period ratios vary with the parameter, we also plot the contour map of period
ratio in the parameter space of the ↵ viscosity and flaring index. The colour gradient stretching
from bottom-left to top-right corner shows the clear trend that the period ratio monotonically
increases with both flaring index and the viscosity. From the analysis in Section 6.1.3 we know
that the migration speed also increases with these two parameters; therefore, it seems that the
migration has the positive correlation with migration coupling. This agrees well with the above
analysis that the migration coupling between Planet 3 and 2 is stronger, as the migration speed
is higher for the outside planets at the early stage, shown by Figure 6.1d.

We may also compare the two histograms before the 0.1Gyr evolution and after. While gen-
erally two histograms have similar distribution and range, one significant di↵erence is that the
histogram before 0.1Gyr displays more small splitting than the other one. In Figure 6.10b
there is also a larger spike at period ratio 2.05, where in Figure 6.10a the spike is not that
pronounced. To account for these features, we may expect that planet systems are su�ciently
interacted during the 0.1Gyr evolution. To find the local minima of the gravitational potential,
planets converge to nearby resonance or sub-resonance period ratios, leaving splits as well as
enhancing spikes.

In addition, we plot the normalised histogram of period ratios of the all adjacent planet-pairs in
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(a) Histogram of the period ratios after 3⌧disk.

(b) Histogram of the period ratios at 0.1Gyr after disk dispersal.

(c) Normalised histogram of the period ratios of the adjacent planet-pairs. Observational data is plot-
ted from Exoplanet.eu database and simulation results at 0.1Gyr after disk dispersal are compared.

Figure 6.10: Histograms of the period ratios. ‘P2:P1’ is the period ratio between Planet 2 and
Planet 1. ‘P3:P2’ is the period ratio between Planet 3 and Planet 2.
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Figure 6.11: Contour Map of the Period Ratio P2:P1 after 3⌧disk. The two axis are ↵ viscosity
and flaring index.

Figure 6.10c using Exoplanet.eu database, and we find out that the simulation results do not
agree with the observation data well. The observed period ratios clearly have a significant pop-
ulation smaller than 2.0, which is not reproduced by the simulation. Moreover, the observation
data has a continuous tail extending from 2.6 to 3.0, while the our results show clear splitting
at around 2.650, 2.825 and 2.950. The discrepancy between the simulation and the observation
may suggest that the evolution of HL Tau system is not typical, i.e., there are other possible
channels which contribute to the observed diversity of the planetary system configurations. It
is also possible that some important physical mechanisms are missing in the current theories
which can profoundly influence the evolution of planets before the disk dispersal.

we further investigate on this issue by plotting the evolution of both P2 : P1 and P3 : P2
period ratios up to 3⌧disk. The evolution of the P2 : P1 ratio lags slightly behind the P3 : P2
ratio because the outermost planet 3 starts to migrate first, then followed by planets 2 and 1.
Since the migration time-scale is relatively small, the lag is negligible compared to the entire
disk lifetime. Compared the fiducial case(Figure 6.12a) with other cases (Figure 6.12b, 6.12c
and 6.12d), we find that regardless of the choice of free parameters, both periods quickly drop
to around 2.0 in all four cases and then slowly increases until the disk almost disperses. This
can be explained by our previous argument that the planets are bound to migrate together due
to strong 2 : 1 resonance. After reaching around the 2 : 1 resonance, the migration coupling
between the adjacent planets tends to ‘repel’ the planet and stop the planet-pair from being
closer. Planet pairs in systems with smaller f, ⌧disk and ↵ only couple weakly, which means
they can stay closer to the 2 : 1 resonance. This agrees well with the trend of the final period
ratios emerged from Figure 6.11.
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(a) f = 0.25, ⌧disk = 2Myr and ↵ = 3⇥ 10�4. (b) f = 0.15, ⌧disk = 2Myr and ↵ = 3⇥ 10�4.

(c) f = 0.25, ⌧disk = 3Myr and ↵ = 3⇥ 10�4. (d) f = 0.25, ⌧disk = 2Myr and ↵ = 6⇥ 10�4.

Figure 6.12: Evolution of the period ratios with di↵erent f, ⌧disk,↵.
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Conclusion

7.1 Summary

In this thesis, we review the structure and evolution of protoplanetary disk, the planet-disk
interaction and planet-planet interaction, the observational facts as well as the pioneering work
on HL Tau system. We build the theoretical framework that describe the evolution of planet
inside a disk, including the equation of motion of a planet in a disk, modelling the surface
density evolution in multi-planetary system and adoption of the migration/accretion model
from the reference studies. For the numerical approaches, we implement all the interactions
and incorporate them in the REBOUND simulation environment and we started simulations of
the HL Tau system based on initial conditions derived from the current observations, each with
three planets located at the deepest gaps. We also survey three free parameters, the flaring
index f , the disk lifetime ⌧disk and the viscosity ↵. In total 75 cases have been simulated and
results are analysed in the respective parameter space. The simulation results after 3⌧disk show
that the final semi-major axis of the planets ranges from around 0.007 au to 30 au, and the
final mass of the planets ranges from 0.4MJ to around 10MJ. After breaking down the results
in di↵erent parameter spaces, we reveal and explain the trend that the final semi-major axis
decreases while f , ⌧disk and ↵ increases, while the final mass of the planets increases as f ,
⌧disk and ↵ increases. We further evolve the systems to 0.1Gyr after the disk dispersal, and
all systems remain stable and no significant changes occur. We explain the stability of the
systems by investigating on the separation between planets in their mutual hill radius and we
also statistically analyse the period ratios of adjacent planets. From the results we can conclude
the the disk-planet interaction has stabilising e↵ect on the planetary systems, as all the systems
survive much longer than the lower limit of instability time predicted by previous studies and
the majority of the planet pairs are not in the principal modes of resonance due to migration
coupling. We investigate the period ratios between adjacent planet-pairs and find out none of
the planet-pair is closer than 2 : 1 resonance. We further study the evolution of period ratios
and find out that planet-pairs first approach 2 : 1 resonance due to the migration of the outer
planet, and then move away from the 2 : 1 resonance due to migration coupling. This may
imply that why the systems that we investigated are stable up to 0.1Gyr since the migration
coupling prevent the planet moving too close to instigate instability.
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7.2 Future Work

There are a few ongoing work of this study. First, in our modelling of the disk, we assume that
the disk is always in steady state rather than solving the disk di↵usion equation in real time.
We will consider adopting a more realistic disk model by including the real-time evolution of
the disk structure. Second, the parameter space that we surveyed is also limited. We will
examine a wider range of parameter space, such as adding inclinations, including more planets,
and testing di↵erent mass distributions on the planet. We will continue evolving the system to
Gyr time-sacle so as to check the stability criteria that we referenced. Third, we will expand
our investigation to other HL Tau-like PPD system discovered by ALMA and see whether the
results obtained from HL Tau is representative. We will compare our results with the current
observation and eventually concluded on the possibility of reproducing the observed diversity
of planetary systems from the initial configurations of planetary systems that we derived from
the PPDs.



Appendix A

The Integrator tests

Before carrying out the actual simulation, it is important to know the accuracy that our numeri-
cal calculation can achieve; to ensure that the result is reliable, one has to know the performance
of the integrator and tune the integrator by determining the optimal working parameters. We
therefore perform two tests to examine the accuracy of the integrator: the conservation test and
reproduction of the previous result. In the conservation test, we consider a two-body Keplerian
system and evaluate the accuracy by checking the conservation of energy of the system. As a
further check, we try to reproduce the N -body simulation results in Simbulan et al. (2017).

A.1 The Energy Conservation Test

-2x10-11

-1.5x10-11

-1x10-11

-5x10-12

 0

 5x10-12

 1x10-11

 1.5x10-11

 2x10-11

 0  2x107  4x107  6x107  8x107  1x108

d
a
/a

time/yr

da/a against time(Non-Symp)

5-0-10-0MS
5-0-10-1MJ

5-0-100-0MS
5-0-100-1MJ

5-99-10-0MS
5-99-10-1MJ

5-99-100-0MS
5-99-100-1MJ

(a) Two body system which a = 5au. The mass
of the primary object is 1M�. The formatted
string key represents ‘semi-major axis’, ‘eccentric-
ity/100’, ‘✏/10�11 ’, and ‘mass of the second body’
respectively, where ✏ is the parameter that controls
the error that the iterative loop intends to achieve.
The same below.

-1.5x10-11

-1x10-11

-5x10-12

 0

 5x10-12

 1x10-11

 1.5x10-11

 2x10-11

 2.5x10-11

 0  2x107  4x107  6x107  8x107  1x108

d
a
/a

time/yr

da/a against time(Non-Symp)

10-0-10-0MS
10-0-10-1MJ

10-0-100-0MS
10-0-100-1MJ

10-99-10-0MS
10-99-10-1MJ

10-99-100-0MS
10-99-100-1MJ

(b) Two body system which a = 10 au.

Figure A.1: Result of the energy conservation test.
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The integrator ias15 is a non-symplectic integrator with adaptive time-step. Although it is
designed to achieve the machine precision (10�15), the non-symplectic nature makes the energy
conservation test necessary. We therefore consider a conservative two-body Keplerian system,
perform the integration up to 108 yr and then evaluate the level of energy conservation in
configurations with di↵erent orbital and integrator working parameters.

The results of the test are shown in Figure A.1. The color lines shows the time evolution of
the fractional error of the semi-major axis a. For a two body Keplerian system, the energy E
is a function of a only, therefore dE/E / da/a. The parameter space that has been surveyed
includes a, the eccentricity e, the fractional error controlling parameter ✏ and the mass of the
second body. For each of the parameter we tested two values, so in total there are 16 cases
corresponding to 16 di↵erent lines in both Figure A.1a and A.1b. All fractional errors fall
within the range of O(10�11), and most of the cases the error is in the order of O(10�12). The
most significant factor that a↵ects the error is the eccentricity, since the periastron distance
at high eccentricity(e = 0.99) is only 1% of the circular case, resulting a larger error due to
stronger interactions. At e = 0, regardless of other parameters, the fractional error is negligible
and the good conservation near machine precision is achieved. The impact of ✏ parameter
depends on the specific configurations: at low e the di↵erence is negligible but at high e and a
generally smaller ✏ performs better, as evidenced by Figure A.1b. The results also show that
the conservation is rather insensitive to the the semi-major axis and mass.

Based on this result, we conclude that the ias15 integrator generally can achieve a good level
of energy conservation to the order of 10�12 within the parameter range that has been tested.
Since planets are very closed to the circular motion inside the PPD due to eccentricity damping
e↵ect of the disk, choosing the default ✏ = 10�9 is su�cient to achieve a satisfactory level of
conservation.

A.2 Reproduction of result in Simbulan et al. (2017)

Dynamical Events Ejection P-S Collision P-P Collision Remaining

Simbulan et al. 2.41 0.68 0.07 1.84
Our results 2.51 0.66 0.07 1.76
Fractional Di↵erence(%) 4.15 2.94 0.0 4.35

Table A.1: Comparison between Simbulan et al.’s result and the reproduction test result.
Number represents the averaged event rate per 5-planet system over 100 instances. “Ejection”:
planet ejected from the system with total energy > 0; “P-S Collision”: collision events between
planets and the central star; “P-P Collision”: collision events between planets and planets.

We further check the reliability of the integrator by trying to reproduce the results stated in
Simbulan et al. (2017). Using the identical initial condition, we initialised 100 instances of HL
Tau system with 5 planets in non-resonant initial positions and integrated for up to 5Gyr. All
the dynamical events during the evolution, such as ejections and collisions, were also collected.
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Figure A.2: Final distributions of the remaining planets in space of semi-major axis a/au and
eccentricity e.

Figure A.2 shows the final distribution of eccentricity against semi-major axis of all the remain-
ing planets, which agrees well with Simbulan et al.’s result: the “wall” of planet due to energy
conservation at around a = 7 au is reproduced and the right boundary a = 500 au also coin-
cides with the original figure. The statistical results of the dynamical events are summarised
in Table A.1. For all types of dynamical events there is a good agreement with a fractional
di↵erence smaller than 5 percent, which can be attributed to the statistical fluctuation. We
therefore conclude that the reproduction is faithful and the performance of the integrator meets
our expectation.
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