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開催趣旨

恒星のエネルギー源が核融合であることが20世紀前半から半ばに確立されて以来, 質量の進化の研究に
精力的に取り組まれ, 恒星の質量毎の光度や表面温度の進化の大枠は理解されてきた. その結果, 恒星
物理の研究課題には対流や質量放出という難問題を残すのみとなったと認識され, 恒星自体を自らの中
心課題として取り組む理論研究者の数は減少し, 分野自体が一時衰退した感がある.

一方, 周辺分野の研究の進展により, 恒星物理の新たな未解明問題も多く浮上してきている. 2015年,
20-30倍の太陽質量の連星系から来る重力波の直接検出に成功したが, このようなブラックホール連星
系の形成に至るまでの, 恒星の進化経路は未だ謎である. 系外惑星観測の副産物として, 現代の太陽で
見られないような大きな黒点やフレア爆発を示す恒星も数多く見付かってきた. このような活動的な恒
星は, 周囲の惑星にも多大な影響を及ぼすため, 惑星系の中心星としての恒星研究の重要性が見直され
てきている. また, 対流による磁場増幅(ダイナモ), 元素合成, 超新星爆発など, 従来からの未解明問題
も依然として残存している.

恒星の物理は, いわば古くて新しい研究分野である. 本シンポジウムでは, 分子雲での星の形成からは
じまり, 進化の最期に残る高密度星までの, 幅広い意味での星の物理の最先端の研究を網羅的に扱い,
理論天文学宇宙物理学を「星」という切り口から俯瞰する. 天体物理学研究が今後進む方向性を決める
指針となるような, 研究会となれば幸いである.

なお, 理論天文宇宙物理学の幅広いトピックの口頭講演およびポスター発表も例年通り募集する．また,
今年度博士取得見込み者は優先的に発表の機会を与えられる．
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開催場所・日程

[場所]: 東京大学 本郷キャンパス 小柴ホール [アクセス・キャンパスマップ]
[日程]: 2017年12月25日（月）- 27日（水）
(12月25日(月)は開始10時20分，27日(水)は終了16時頃の予定です.)
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1. Introduction



Wolf-Rayet (WR) Star

•スペクトルに水素の吸収, 輝線がない.
質量放出により水素層を失った,

Langer 1989a
Heを主成分とする星としてモデル化される.

3) 定常の条件はよいかどうか？ Mbelow/Ṁw > Mup/Ṁw を満たすか？ ここで，
Mbelow(Mup)は r∗ ≤ r ≤ rc (rc ≤ r ≤ rph)に含まれる質量．定常流ならば，r < rcの
部分は物質流の供給源であって欲しい．

1.2 Boundary Conditions

Eq. (6)の特異点で満たされるべき条件は，

v2c −
R
µ
Tc = 0, (7)

T ′
c =

(
2Tc

rc
− GM

r2c

µ

R

)
/(1 + B), B =

4a

3

µ

R
T 3
c

ρc
(8)

ここで，T ′
c ≡ dT

dr

∣∣
c
.

Tc, rc, ρcを与えると，特異点での条件により vc, T ′
cが評価できる．また，Eqs. (??),

(3)より Ṁw and Λが評価できる．

Λ

Ṁw

=
R
µ
Tc(3 + B)− R

µ

T ′
c

C
− GM

rc
(9)

ここで，C ≡ Ṁw
4π

R
µ

1
r2cDc

. これにより，臨界点から内外方向に数値的に積分が行える．
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•進化の進んだ大質量星:

τph = κphρphrph = 32(1− ls − χ/2)/9χ (128)

RTD ∼
(
MBH

M∗

)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)

M∗ ≥ 100 M⊙ (131)

L∗ ≈ LEdd,es ≡ 4πcGM∗/κes, for M∗ ≥ 100 M⊙ (132)

L∗ ≈ LEdd,es > LEdd,local ≡ 4πcGM∗/κ (133)

κes < κH,κH− (134)

MWR ∼ 10-40 M⊙ (135)

•幅が広く, 明るい輝線放射
強い星風の存在を示唆

大きな質量放出率:
大きな速度:

τph = κphρphrph = 32(1− ls − χ/2)/9χ (128)

RTD ∼
(
MBH

M∗

)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)

M∗ ≥ 100 M⊙ (131)

L∗ ≈ LEdd,es ≡ 4πcGM∗/κes, for M∗ ≥ 100 M⊙ (132)

L∗ ≈ LEdd,es > LEdd,local ≡ 4πcGM∗/κ (133)

κes < κH,κH− (134)

MWR ∼ 10-40 M⊙ v∞ ∼ 1000-3000 km s−1 Ṁw ∼ 10−5-10−4 M⊙ yr−1

(135)

τph = κphρphrph = 32(1− ls − χ/2)/9χ (128)

RTD ∼
(
MBH

M∗

)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)

M∗ ≥ 100 M⊙ (131)

L∗ ≈ LEdd,es ≡ 4πcGM∗/κes, for M∗ ≥ 100 M⊙ (132)

L∗ ≈ LEdd,es > LEdd,local ≡ 4πcGM∗/κ (133)

κes < κH,κH− (134)

MWR ∼ 10-40 M⊙ v∞ ∼ 1000-3000 km s−1 Ṁw ∼ 10−5-10−4 M⊙ yr−1

(135)

•星風自体が光学的に厚い.
星表面及び星風加速領域の構造は見えない.
星だけでなく星風も同時に扱ったモデル化
が必要.



Sander et al. 2012
Hamann et al. 2006

星モデルと観測されたWR星の比較
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Mbelow(Mup)は r∗ ≤ r ≤ rc (rc ≤ r ≤ rph)に含まれる質量．定常流ならば，r < rcの
部分は物質流の供給源であって欲しい．

1.2 Boundary Conditions

Eq. (6)の特異点で満たされるべき条件は，

v2c −
R
µ
Tc = 0, (7)

T ′
c =

(
2Tc

rc
− GM

r2c

µ

R

)
/(1 + B), B =

4a

3

µ

R
T 3
c

ρc
(8)

ここで，T ′
c ≡ dT

dr

∣∣
c
.

Tc, rc, ρcを与えると，特異点での条件により vc, T ′
cが評価できる．また，Eqs. (??),
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈

光球
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2.7 (Kato & Iben 1992; Kato & Hachisu 1994). There-
fore, the boundary condition at the photosphere are rep-
resented as

Teff(rph) = T (rph) ≡ Tph and τ(rph) = 2.7. (19)

By using the effective opacity κeff , we perform the out-
ward integration from the sonic radius and find solutions
that satisfy the photospheric condition.
The values of the five parameters, ρc, Tc, rs, ρs, and

Ts, are determined iteratively so that the wind solution
is smoothly connected to the hydrostatic core solution
at some radius rm between the core center and the sonic
point, satisfying T (rm) ≃ 108 K. Therefore, the energy
generation by He-burning is negligible for r ≥ rm. We
first fix the value of ρs, and then iteratively determine
the values of ρc, Tc, rs, and Ts so that the enclosed mass,
density, and temperature should be continuous, and the
total luminosity should be conserved at the matching
radius rm:

Mcore(rm)=Mwind(rm),

ρcore(rm)=ρwind(rm), (20)

Tcore(rm)=Twind(rm),

and

Lcore(rm)=Lwind(rm)

+ Ṁw

(

v2(rm)

2
+

5R

2µ
Twind(rm) +

4arad
3

T 4
wind(rm)

ρwind(rm)

)

=Λ+ Ṁw

∫ rs

rm

GMr

r2
dr. (21)

Next, ρs is determined so that the wind solution satisfies
the photospheric condition Eq. (19). Then, we obtain a
He-star model with an optically thick wind.

2.4. Chemical Composition

In this paper, we consider two types of He-star models,
He-rich and CO-enriched models. Since we consider H-
free stellar models, the mass fraction of H is set to zero,
X = 0, in both models. The mass fraction of He, Y ,
is calculated from Y = 1 − Z̃, where Z̃ is the mass
fraction of metals heavier than He. In He-rich models,
we suppose that Z̃ is identical with the metallicity Z in
the solar composition (Grevesse & Noels 1993), while in
CO-enriched models, the mass fractions of C and O are
enhanced by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z +
dXC+dXO. In each model, we consider two metallicities
of Z = 1 and 2 Z⊙ with Z⊙ = 0.02 (solar metallicity)2.

2 The exact value of the solar metallicity Z⊙ is still un-
certain. We adopt Z⊙ = 0.02 as the solar metallicity, since
the adopted opacity table is based on the solar composition in
Grevesse & Noels (1993).

Our He-star models may be too simple compared to
actual WR stars. Especially, WC stars may have com-
positional gradients between CO cores and He-rich en-
velopes. We note, however, that our purpose in this pa-
per is to construct whole-star models with optically thick
winds, in which a subsonic wind structure is connected
smoothly to a supersonic part at the sonic point. This
enables us to determine a mass-loss rate uniquely for a
given mass, chemical composition, and opacity parame-
ters. Our simple models are enough to understand the
dependences of the structures around the wind launch-
ing regions and photospheres, and of mass-loss rates on
these parameters.

3. RESULTS

3.1. He-rich Models

3.1.1. Stellar Structure

First, we show the stellar structure of a He-rich model
with M∗ = 30 M⊙ and Z = 1 Z⊙ (Fig. 1). Opacity
parameters are adopted as (v∞/vesc(rs),β) = (1.0, 1.0).
In this model, the matching point to the static core is
located at rm ≃ 0.660 R⊙, the sonic point (filled cir-
cle) at rs ≃ 1.76 R⊙, and the photospheric radius at
rph ≃ 6.29 R⊙. While the wind velocity is sufficiently
subsonic (v ! 1 cm s−1) around rm, it is steeply accel-
erated to a supersonic speed passing through the sonic
radius rs (panel a). It finally reaches a constant speed
of v∞ ∼ 1750 km s−1, which is larger than the escape
velocity at the photosphere rph. The photospheric ra-
dius rph is several times larger than the sonic radius
rs. In this model, the mass-loss rate is evaluated as
Ṁw ≃ 3.98 × 10−5 M⊙ yr−1. These values are within
the range of the observed WNE stars (Hamann et al.
2006).
The density and temperature decline outward steeply

to the sonic radius rs in subsonic layers (see panels b and
c of Fig. 1). In the highly supersonic region, the density
is inversely proportional to the square of radius, ρ ∝ r−2,
since the wind velocity is almost constant there. The
integration is terminated at the photosphere rph with
log Tph ≃ 4.85. We also find that the radiation pressure
dominates the gas pressure over the supersonic region,
while they are almost the same order of magnitude in
the hydrostatic core and deep subsonic part.
The luminosity generated via the nuclear burning

in the core, Lcore ≃ 9.29 × 105 L⊙ (panel d of Fig.
1), is consistent with the mass−luminosity relation ob-
tained from the hydrostatic He-star models (Eq. 3 of
Schaerer & Maeder 1992), which gives Lhs ≃ 1.02 ×

106 L⊙ for M∗ = 30 M⊙. At r = rm, a portion of
the core luminosity is converted into the mechanical lu-
minosity of the wind, which causes a tiny discontinuity
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τph = κphρphrph = 32(1− ls − χ/2)/9χ (128)

RTD ∼
(
MBH

M∗

)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)

M∗ = 20 M⊙ 1R⊙ 3R⊙ 10R⊙ (131)

L∗ ≈ LEdd,es ≡ 4πcGM∗/κes, for M∗ ≥ 100 M⊙ (132)

L∗ ≈ LEdd,es > LEdd,local ≡ 4πcGM∗/κ (133)

κes < κH,κH− v∞,β Lph, Ṁw v∞/vesc(rs),β (134)

κFe ≫ κes at ≈ 105.2 K (135)

MWR ∼ 10-40 M⊙ v∞ ∼ 1000-3000 km s−1 Ṁw ∼ 10−5-10−4 M⊙ yr−1

(136)

Γr ≡ Lrad/LEdd,local v → 0 v(r) = v∞
(
1− rs

r

)β
r ≥ rs C∞ = v∞/vesc(rs)
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(136)

Γr ≡ Lrad/LEdd,local v → 0 v(r) = v∞
(
1− rs

r

)β
r ≥ rs C∞ = v∞/vesc(rs)

(137)

τph = κphρphrph = 32(1− ls − χ/2)/9χ (128)

RTD ∼
(
MBH

M∗

)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)

M∗ = 20 M⊙ 1R⊙ 3R⊙ 10R⊙ (131)

L∗ ≈ LEdd,es ≡ 4πcGM∗/κes, for M∗ ≥ 100 M⊙ (132)

L∗ ≈ LEdd,es > LEdd,local ≡ 4πcGM∗/κ (133)

κes < κH,κH− v∞,β Lph, Ṁw v∞/vesc(rs),β (134)
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)β
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κes < κH,κH− v∞,β Lph, Ṁw v∞/vesc(rs),β (134)

κFe ≫ κes at ≈ 105.2 K (135)
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(136)

Γr ≡ Lrad/LEdd,local v → 0 v(r) = v∞
(
1− rs

r

)β
r ≥ rs C∞ = v∞/vesc(rs)

(137)
星風と滑らかに繋がったHe星モデルを構成する. 
星風付きHe星モデルの表面温度はどの程度か.

He星モデルの表面温度 >> 観測されたWR星の表面温度.
＊ 既存のHe星モデル: 星風がない境界条件の下構成される.



2. 計算手法について



3) 定常の条件はよいかどうか？ Mbelow/Ṁw > Mup/Ṁw を満たすか？ ここで，
Mbelow(Mup)は r∗ ≤ r ≤ rc (rc ≤ r ≤ rph)に含まれる質量．定常流ならば，r < rcの
部分は物質流の供給源であって欲しい．

1.2 Boundary Conditions

Eq. (6)の特異点で満たされるべき条件は，

v2c −
R
µ
Tc = 0, (7)

T ′
c =

(
2Tc

rc
− GM

r2c

µ

R

)
/(1 + B), B =

4a

3

µ

R
T 3
c

ρc
(8)

ここで，T ′
c ≡ dT

dr

∣∣
c
.

Tc, rc, ρcを与えると，特異点での条件により vc, T ′
cが評価できる．また，Eqs. (??),

(3)より Ṁw and Λが評価できる．

Λ

Ṁw

=
R
µ
Tc(3 + B)− R

µ

T ′
c

C
− GM

rc
(9)

ここで，C ≡ Ṁw
4π

R
µ

1
r2cDc

. これにより，臨界点から内外方向に数値的に積分が行える．

2

Wind

sonic 
point

He 
Core

4 D. Nakauchi and H. Saio

where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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2.7 (Kato & Iben 1992; Kato & Hachisu 1994). There-
fore, the boundary condition at the photosphere are rep-
resented as

Teff(rph) = T (rph) ≡ Tph and τ(rph) = 2.7. (19)

By using the effective opacity κeff , we perform the out-
ward integration from the sonic radius and find solutions
that satisfy the photospheric condition.
The values of the five parameters, ρc, Tc, rs, ρs, and

Ts, are determined iteratively so that the wind solution
is smoothly connected to the hydrostatic core solution
at some radius rm between the core center and the sonic
point, satisfying T (rm) ≃ 108 K. Therefore, the energy
generation by He-burning is negligible for r ≥ rm. We
first fix the value of ρs, and then iteratively determine
the values of ρc, Tc, rs, and Ts so that the enclosed mass,
density, and temperature should be continuous, and the
total luminosity should be conserved at the matching
radius rm:

Mcore(rm)=Mwind(rm),

ρcore(rm)=ρwind(rm), (20)

Tcore(rm)=Twind(rm),

and

Lcore(rm)=Lwind(rm)

+ Ṁw

(

v2(rm)

2
+

5R

2µ
Twind(rm) +

4arad
3

T 4
wind(rm)

ρwind(rm)

)

=Λ+ Ṁw

∫ rs

rm

GMr

r2
dr. (21)

Next, ρs is determined so that the wind solution satisfies
the photospheric condition Eq. (19). Then, we obtain a
He-star model with an optically thick wind.

2.4. Chemical Composition

In this paper, we consider two types of He-star models,
He-rich and CO-enriched models. Since we consider H-
free stellar models, the mass fraction of H is set to zero,
X = 0, in both models. The mass fraction of He, Y ,
is calculated from Y = 1 − Z̃, where Z̃ is the mass
fraction of metals heavier than He. In He-rich models,
we suppose that Z̃ is identical with the metallicity Z in
the solar composition (Grevesse & Noels 1993), while in
CO-enriched models, the mass fractions of C and O are
enhanced by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z +
dXC+dXO. In each model, we consider two metallicities
of Z = 1 and 2 Z⊙ with Z⊙ = 0.02 (solar metallicity)2.

2 The exact value of the solar metallicity Z⊙ is still un-
certain. We adopt Z⊙ = 0.02 as the solar metallicity, since
the adopted opacity table is based on the solar composition in
Grevesse & Noels (1993).

Our He-star models may be too simple compared to
actual WR stars. Especially, WC stars may have com-
positional gradients between CO cores and He-rich en-
velopes. We note, however, that our purpose in this pa-
per is to construct whole-star models with optically thick
winds, in which a subsonic wind structure is connected
smoothly to a supersonic part at the sonic point. This
enables us to determine a mass-loss rate uniquely for a
given mass, chemical composition, and opacity parame-
ters. Our simple models are enough to understand the
dependences of the structures around the wind launch-
ing regions and photospheres, and of mass-loss rates on
these parameters.

3. RESULTS

3.1. He-rich Models

3.1.1. Stellar Structure

First, we show the stellar structure of a He-rich model
with M∗ = 30 M⊙ and Z = 1 Z⊙ (Fig. 1). Opacity
parameters are adopted as (v∞/vesc(rs),β) = (1.0, 1.0).
In this model, the matching point to the static core is
located at rm ≃ 0.660 R⊙, the sonic point (filled cir-
cle) at rs ≃ 1.76 R⊙, and the photospheric radius at
rph ≃ 6.29 R⊙. While the wind velocity is sufficiently
subsonic (v ! 1 cm s−1) around rm, it is steeply accel-
erated to a supersonic speed passing through the sonic
radius rs (panel a). It finally reaches a constant speed
of v∞ ∼ 1750 km s−1, which is larger than the escape
velocity at the photosphere rph. The photospheric ra-
dius rph is several times larger than the sonic radius
rs. In this model, the mass-loss rate is evaluated as
Ṁw ≃ 3.98 × 10−5 M⊙ yr−1. These values are within
the range of the observed WNE stars (Hamann et al.
2006).
The density and temperature decline outward steeply

to the sonic radius rs in subsonic layers (see panels b and
c of Fig. 1). In the highly supersonic region, the density
is inversely proportional to the square of radius, ρ ∝ r−2,
since the wind velocity is almost constant there. The
integration is terminated at the photosphere rph with
log Tph ≃ 4.85. We also find that the radiation pressure
dominates the gas pressure over the supersonic region,
while they are almost the same order of magnitude in
the hydrostatic core and deep subsonic part.
The luminosity generated via the nuclear burning

in the core, Lcore ≃ 9.29 × 105 L⊙ (panel d of Fig.
1), is consistent with the mass−luminosity relation ob-
tained from the hydrostatic He-star models (Eq. 3 of
Schaerer & Maeder 1992), which gives Lhs ≃ 1.02 ×

106 L⊙ for M∗ = 30 M⊙. At r = rm, a portion of
the core luminosity is converted into the mechanical lu-
minosity of the wind, which causes a tiny discontinuity

Kippenhahn et al. 2012Kato & Iben 1992Basic Equations DN, Hosokawa, Omukai, Saio, Nomoto 2017
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Kato & Iben (1992) theoretically derived mass-loss rates
for their simple He-star models and compared them with
the observed WR winds, although they assumed an ar-
tificial opacity law in the wind launching region and the
supersonic region.
In this paper, we construct a center-to-surface stellar

model to study the structures around the wind launching
regions and photospheres, and to derive mass-loss rates
theoretically. We have obtained trans-sonic wind solu-
tions by using a method similar to Kato & Iben (1992),
but assuming a β-type velocity law (Eq. 1) in the super-
sonic layers. We compare the Ṁw to luminosity relations
and the positions in the Hertzsprung-Russell (HR) dia-
gram with the observations of Galactic WR stars. We
also compare the Ṁw to luminosity relations and the
ratio of radiation pressure to gas pressure (Prad/Pgas)
at the sonic point with the results of Gräfener & Vink
(2013) and Gräfener et al. (2017).
The rest of the paper is organized as follows. In Sec-

tion 2, we discuss the basic equations for the hydrostatic
core and steady wind, and the boundary conditions. In
Section 3, we first show the stellar structures of our He-
star models. Then we discuss how the structures in the
wind launching regions and photospheres, and mass-loss
rates depend on the model parameters. In Section 4,
we compare our models with the observations of Galac-
tic WR stars. The implications and uncertainties of our
study are discussed in Section 5. In Section 6, we briefly
summarize the results of this paper.

2. MODELS AND METHODS

Our He-star models consist of two regions: a hydro-
static core and steady wind. The latter is further divided
into the inner subsonic and the outer supersonic regions.

2.1. Hydrostatic He-Core

The basic equations to construct a hydrostatic He-
burning core are as follows (e.g., Kippenhahn et al.
2012):

dr

dMr
=

1

4πr2ρ
, (2)

dP

dMr
= −

GMr

4πr4
, (3)

dLr

dMr
= ϵnuc, (4)

Lr = Lrad + Lconv, (5)

where G is the gravitational constant, P the total pres-
sure, Mr the enclosed mass within the radius r, ρ the
density, Lr the total luminosity, ϵnuc the nuclear energy
generation rate via the triple-α reaction (3He4 → C12;

Eq. 5-104 of Clayton (1983)), Lrad the radiative lumi-
nosity, and Lconv the convective luminosity. The total
pressure P is composed of the radiation pressure Prad

and the gas pressure Pgas:

P = Pgas + Prad =
R

µ
ρT +

1

3
aradT

4, (6)

where arad is the radiation constant, R the gas constant,
T the temperature, and µ the mean molecular weight.
Since we consider chemically homogeneous He stars, µ
is taken as a constant throughout the core and wind in
this paper. Radiative luminosity Lrad is calculated using
the diffusion approximation:

Lrad = −
16πaradcr2T 3

3κRρ

dT

dr
, (7)

where c is the speed of light, and κR(ρ, T ) the Rosseland
mean opacity. The opacity, κR, is obtained from the ta-
bles provided by the OPAL project (Iglesias & Rogers
1996), and is calculated by using the bilinear interpola-
tion. Convective luminosity Lconv is calculated by us-
ing the mixing-length theory (Eggleton 1971), if the ra-
diative temperature gradient, ∇rad, is larger than the
adiabatic one, ∇ad (the Schwarzschild criterion, e.g.,
Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (8)

where ∇ad ≡ (d logT/d logP )ad = 2(4 − 3βP )/(32 −

24βP − 3β2
P ) with βP ≡ Pgas/P and

∇rad =
d logT

d logP
=

3κRLrP

16πaradcGMrT 4
, (9)

in the core. Otherwise, all of the luminosity can be
transported by radiation, so that Lr = Lrad and Lconv =
0.

2.2. Steady Wind Model

The structure of a steady wind is calculated from the
following equations. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992; Nakauchi et al. 2017).

Ṁw ≡ 4πr2ρv = const., (10)

dMr

dr
= 4πr2ρ, (11)

v
dv

dr
+

1

ρ

dP

dr
+

GMr

r2
= 0, (12)

Λ ≡ Lr+Ṁw

(

v2

2
+

5RT

2µ
+

4aradT 4

3ρ
+

∫ r

rs

GMr

r2
dr

)

= const.,

(13)
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Kato & Iben (1992) theoretically derived mass-loss rates
for their simple He-star models and compared them with
the observed WR winds, although they assumed an ar-
tificial opacity law in the wind launching region and the
supersonic region.
In this paper, we construct a center-to-surface stellar

model to study the structures around the wind launching
regions and photospheres, and to derive mass-loss rates
theoretically. We have obtained trans-sonic wind solu-
tions by using a method similar to Kato & Iben (1992),
but assuming a β-type velocity law (Eq. 1) in the super-
sonic layers. We compare the Ṁw to luminosity relations
and the positions in the Hertzsprung-Russell (HR) dia-
gram with the observations of Galactic WR stars. We
also compare the Ṁw to luminosity relations and the
ratio of radiation pressure to gas pressure (Prad/Pgas)
at the sonic point with the results of Gräfener & Vink
(2013) and Gräfener et al. (2017).
The rest of the paper is organized as follows. In Sec-

tion 2, we discuss the basic equations for the hydrostatic
core and steady wind, and the boundary conditions. In
Section 3, we first show the stellar structures of our He-
star models. Then we discuss how the structures in the
wind launching regions and photospheres, and mass-loss
rates depend on the model parameters. In Section 4,
we compare our models with the observations of Galac-
tic WR stars. The implications and uncertainties of our
study are discussed in Section 5. In Section 6, we briefly
summarize the results of this paper.

2. MODELS AND METHODS

Our He-star models consist of two regions: a hydro-
static core and steady wind. The latter is further divided
into the inner subsonic and the outer supersonic regions.

2.1. Hydrostatic He-Core

The basic equations to construct a hydrostatic He-
burning core are as follows (e.g., Kippenhahn et al.
2012):

dr

dMr
=

1

4πr2ρ
, (2)

dP

dMr
= −

GMr

4πr4
, (3)

dLr

dMr
= ϵnuc, (4)

Lr = Lrad + Lconv, (5)

where G is the gravitational constant, P the total pres-
sure, Mr the enclosed mass within the radius r, ρ the
density, Lr the total luminosity, ϵnuc the nuclear energy
generation rate via the triple-α reaction (3He4 → C12;

Eq. 5-104 of Clayton (1983)), Lrad the radiative lumi-
nosity, and Lconv the convective luminosity. The total
pressure P is composed of the radiation pressure Prad

and the gas pressure Pgas:

P = Pgas + Prad =
R

µ
ρT +

1

3
aradT

4, (6)

where arad is the radiation constant, R the gas constant,
T the temperature, and µ the mean molecular weight.
Since we consider chemically homogeneous He stars, µ
is taken as a constant throughout the core and wind in
this paper. Radiative luminosity Lrad is calculated using
the diffusion approximation:

Lrad = −
16πaradcr2T 3

3κRρ

dT

dr
, (7)

where c is the speed of light, and κR(ρ, T ) the Rosseland
mean opacity. The opacity, κR, is obtained from the ta-
bles provided by the OPAL project (Iglesias & Rogers
1996), and is calculated by using the bilinear interpola-
tion. Convective luminosity Lconv is calculated by us-
ing the mixing-length theory (Eggleton 1971), if the ra-
diative temperature gradient, ∇rad, is larger than the
adiabatic one, ∇ad (the Schwarzschild criterion, e.g.,
Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (8)

where ∇ad ≡ (d logT/d logP )ad = 2(4 − 3βP )/(32 −

24βP − 3β2
P ) with βP ≡ Pgas/P and

∇rad =
d logT

d logP
=

3κRLrP

16πaradcGMrT 4
, (9)

in the core. Otherwise, all of the luminosity can be
transported by radiation, so that Lr = Lrad and Lconv =
0.

2.2. Steady Wind Model

The structure of a steady wind is calculated from the
following equations. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992; Nakauchi et al. 2017).

Ṁw ≡ 4πr2ρv = const., (10)

dMr

dr
= 4πr2ρ, (11)

v
dv

dr
+

1

ρ

dP

dr
+

GMr

r2
= 0, (12)

Λ ≡ Lr+Ṁw

(

v2

2
+

5RT

2µ
+

4aradT 4

3ρ
+

∫ r

rs

GMr

r2
dr

)

= const.,
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Kato & Iben (1992) theoretically derived mass-loss rates
for their simple He-star models and compared them with
the observed WR winds, although they assumed an ar-
tificial opacity law in the wind launching region and the
supersonic region.
In this paper, we construct a center-to-surface stellar

model to study the structures around the wind launching
regions and photospheres, and to derive mass-loss rates
theoretically. We have obtained trans-sonic wind solu-
tions by using a method similar to Kato & Iben (1992),
but assuming a β-type velocity law (Eq. 1) in the super-
sonic layers. We compare the Ṁw to luminosity relations
and the positions in the Hertzsprung-Russell (HR) dia-
gram with the observations of Galactic WR stars. We
also compare the Ṁw to luminosity relations and the
ratio of radiation pressure to gas pressure (Prad/Pgas)
at the sonic point with the results of Gräfener & Vink
(2013) and Gräfener et al. (2017).
The rest of the paper is organized as follows. In Sec-

tion 2, we discuss the basic equations for the hydrostatic
core and steady wind, and the boundary conditions. In
Section 3, we first show the stellar structures of our He-
star models. Then we discuss how the structures in the
wind launching regions and photospheres, and mass-loss
rates depend on the model parameters. In Section 4,
we compare our models with the observations of Galac-
tic WR stars. The implications and uncertainties of our
study are discussed in Section 5. In Section 6, we briefly
summarize the results of this paper.

2. MODELS AND METHODS

Our He-star models consist of two regions: a hydro-
static core and steady wind. The latter is further divided
into the inner subsonic and the outer supersonic regions.

2.1. Hydrostatic He-Core

The basic equations to construct a hydrostatic He-
burning core are as follows (e.g., Kippenhahn et al.
2012):

dr

dMr
=

1

4πr2ρ
, (2)

dP

dMr
= −

GMr

4πr4
, (3)

dLr

dMr
= ϵnuc, (4)

Lr = Lrad + Lconv, (5)

where G is the gravitational constant, P the total pres-
sure, Mr the enclosed mass within the radius r, ρ the
density, Lr the total luminosity, ϵnuc the nuclear energy
generation rate via the triple-α reaction (3He4 → C12;

Eq. 5-104 of Clayton (1983)), Lrad the radiative lumi-
nosity, and Lconv the convective luminosity. The total
pressure P is composed of the radiation pressure Prad

and the gas pressure Pgas:

P = Pgas + Prad =
R

µ
ρT +

1

3
aradT

4, (6)

where arad is the radiation constant, R the gas constant,
T the temperature, and µ the mean molecular weight.
Since we consider chemically homogeneous He stars, µ
is taken as a constant throughout the core and wind in
this paper. Radiative luminosity Lrad is calculated using
the diffusion approximation:

Lrad = −
16πaradcr2T 3

3κRρ

dT

dr
, (7)

where c is the speed of light, and κR(ρ, T ) the Rosseland
mean opacity. The opacity, κR, is obtained from the ta-
bles provided by the OPAL project (Iglesias & Rogers
1996), and is calculated by using the bilinear interpola-
tion. Convective luminosity Lconv is calculated by us-
ing the mixing-length theory (Eggleton 1971), if the ra-
diative temperature gradient, ∇rad, is larger than the
adiabatic one, ∇ad (the Schwarzschild criterion, e.g.,
Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (8)

where ∇ad ≡ (d logT/d logP )ad = 2(4 − 3βP )/(32 −

24βP − 3β2
P ) with βP ≡ Pgas/P and

∇rad =
d logT

d logP
=

3κRLrP

16πaradcGMrT 4
, (9)

in the core. Otherwise, all of the luminosity can be
transported by radiation, so that Lr = Lrad and Lconv =
0.

2.2. Steady Wind Model

The structure of a steady wind is calculated from the
following equations. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992; Nakauchi et al. 2017).

Ṁw ≡ 4πr2ρv = const., (10)

dMr

dr
= 4πr2ρ, (11)

v
dv

dr
+

1

ρ

dP

dr
+

GMr

r2
= 0, (12)

Λ ≡ Lr+Ṁw

(

v2

2
+

5RT

2µ
+

4aradT 4

3ρ
+

∫ r
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GMr

r2
dr

)

= const.,
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Kato & Iben (1992) theoretically derived mass-loss rates
for their simple He-star models and compared them with
the observed WR winds, although they assumed an ar-
tificial opacity law in the wind launching region and the
supersonic region.
In this paper, we construct a center-to-surface stellar

model to study the structures around the wind launching
regions and photospheres, and to derive mass-loss rates
theoretically. We have obtained trans-sonic wind solu-
tions by using a method similar to Kato & Iben (1992),
but assuming a β-type velocity law (Eq. 1) in the super-
sonic layers. We compare the Ṁw to luminosity relations
and the positions in the Hertzsprung-Russell (HR) dia-
gram with the observations of Galactic WR stars. We
also compare the Ṁw to luminosity relations and the
ratio of radiation pressure to gas pressure (Prad/Pgas)
at the sonic point with the results of Gräfener & Vink
(2013) and Gräfener et al. (2017).
The rest of the paper is organized as follows. In Sec-

tion 2, we discuss the basic equations for the hydrostatic
core and steady wind, and the boundary conditions. In
Section 3, we first show the stellar structures of our He-
star models. Then we discuss how the structures in the
wind launching regions and photospheres, and mass-loss
rates depend on the model parameters. In Section 4,
we compare our models with the observations of Galac-
tic WR stars. The implications and uncertainties of our
study are discussed in Section 5. In Section 6, we briefly
summarize the results of this paper.

2. MODELS AND METHODS

Our He-star models consist of two regions: a hydro-
static core and steady wind. The latter is further divided
into the inner subsonic and the outer supersonic regions.

2.1. Hydrostatic He-Core

The basic equations to construct a hydrostatic He-
burning core are as follows (e.g., Kippenhahn et al.
2012):

dr

dMr
=

1

4πr2ρ
, (2)

dP

dMr
= −

GMr

4πr4
, (3)

dLr

dMr
= ϵnuc, (4)

Lr = Lrad + Lconv, (5)

where G is the gravitational constant, P the total pres-
sure, Mr the enclosed mass within the radius r, ρ the
density, Lr the total luminosity, ϵnuc the nuclear energy
generation rate via the triple-α reaction (3He4 → C12;

Eq. 5-104 of Clayton (1983)), Lrad the radiative lumi-
nosity, and Lconv the convective luminosity. The total
pressure P is composed of the radiation pressure Prad

and the gas pressure Pgas:

P = Pgas + Prad =
R

µ
ρT +

1

3
aradT

4, (6)

where arad is the radiation constant, R the gas constant,
T the temperature, and µ the mean molecular weight.
Since we consider chemically homogeneous He stars, µ
is taken as a constant throughout the core and wind in
this paper. Radiative luminosity Lrad is calculated using
the diffusion approximation:

Lrad = −
16πaradcr2T 3

3κRρ

dT

dr
, (7)

where c is the speed of light, and κR(ρ, T ) the Rosseland
mean opacity. The opacity, κR, is obtained from the ta-
bles provided by the OPAL project (Iglesias & Rogers
1996), and is calculated by using the bilinear interpola-
tion. Convective luminosity Lconv is calculated by us-
ing the mixing-length theory (Eggleton 1971), if the ra-
diative temperature gradient, ∇rad, is larger than the
adiabatic one, ∇ad (the Schwarzschild criterion, e.g.,
Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (8)

where ∇ad ≡ (d logT/d logP )ad = 2(4 − 3βP )/(32 −

24βP − 3β2
P ) with βP ≡ Pgas/P and

∇rad =
d logT

d logP
=

3κRLrP

16πaradcGMrT 4
, (9)

in the core. Otherwise, all of the luminosity can be
transported by radiation, so that Lr = Lrad and Lconv =
0.

2.2. Steady Wind Model

The structure of a steady wind is calculated from the
following equations. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992; Nakauchi et al. 2017).

Ṁw ≡ 4πr2ρv = const., (10)

dMr
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+
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+
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+
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Kato & Iben (1992) theoretically derived mass-loss rates
for their simple He-star models and compared them with
the observed WR winds, although they assumed an ar-
tificial opacity law in the wind launching region and the
supersonic region.
In this paper, we construct a center-to-surface stellar

model to study the structures around the wind launching
regions and photospheres, and to derive mass-loss rates
theoretically. We have obtained trans-sonic wind solu-
tions by using a method similar to Kato & Iben (1992),
but assuming a β-type velocity law (Eq. 1) in the super-
sonic layers. We compare the Ṁw to luminosity relations
and the positions in the Hertzsprung-Russell (HR) dia-
gram with the observations of Galactic WR stars. We
also compare the Ṁw to luminosity relations and the
ratio of radiation pressure to gas pressure (Prad/Pgas)
at the sonic point with the results of Gräfener & Vink
(2013) and Gräfener et al. (2017).
The rest of the paper is organized as follows. In Sec-

tion 2, we discuss the basic equations for the hydrostatic
core and steady wind, and the boundary conditions. In
Section 3, we first show the stellar structures of our He-
star models. Then we discuss how the structures in the
wind launching regions and photospheres, and mass-loss
rates depend on the model parameters. In Section 4,
we compare our models with the observations of Galac-
tic WR stars. The implications and uncertainties of our
study are discussed in Section 5. In Section 6, we briefly
summarize the results of this paper.

2. MODELS AND METHODS

Our He-star models consist of two regions: a hydro-
static core and steady wind. The latter is further divided
into the inner subsonic and the outer supersonic regions.

2.1. Hydrostatic He-Core

The basic equations to construct a hydrostatic He-
burning core are as follows (e.g., Kippenhahn et al.
2012):

dr

dMr
=

1

4πr2ρ
, (2)

dP

dMr
= −

GMr

4πr4
, (3)

dLr

dMr
= ϵnuc, (4)

Lr = Lrad + Lconv, (5)

where G is the gravitational constant, P the total pres-
sure, Mr the enclosed mass within the radius r, ρ the
density, Lr the total luminosity, ϵnuc the nuclear energy
generation rate via the triple-α reaction (3He4 → C12;

Eq. 5-104 of Clayton (1983)), Lrad the radiative lumi-
nosity, and Lconv the convective luminosity. The total
pressure P is composed of the radiation pressure Prad

and the gas pressure Pgas:

P = Pgas + Prad =
R

µ
ρT +

1

3
aradT

4, (6)

where arad is the radiation constant, R the gas constant,
T the temperature, and µ the mean molecular weight.
Since we consider chemically homogeneous He stars, µ
is taken as a constant throughout the core and wind in
this paper. Radiative luminosity Lrad is calculated using
the diffusion approximation:

Lrad = −
16πaradcr2T 3

3κRρ

dT

dr
, (7)

where c is the speed of light, and κR(ρ, T ) the Rosseland
mean opacity. The opacity, κR, is obtained from the ta-
bles provided by the OPAL project (Iglesias & Rogers
1996), and is calculated by using the bilinear interpola-
tion. Convective luminosity Lconv is calculated by us-
ing the mixing-length theory (Eggleton 1971), if the ra-
diative temperature gradient, ∇rad, is larger than the
adiabatic one, ∇ad (the Schwarzschild criterion, e.g.,
Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (8)

where ∇ad ≡ (d logT/d logP )ad = 2(4 − 3βP )/(32 −

24βP − 3β2
P ) with βP ≡ Pgas/P and

∇rad =
d logT

d logP
=

3κRLrP

16πaradcGMrT 4
, (9)

in the core. Otherwise, all of the luminosity can be
transported by radiation, so that Lr = Lrad and Lconv =
0.

2.2. Steady Wind Model

The structure of a steady wind is calculated from the
following equations. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992; Nakauchi et al. 2017).

Ṁw ≡ 4πr2ρv = const., (10)
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(

v2

2
+

5RT

2µ
+

4aradT 4

3ρ
+

∫ r

rs

GMr

r2
dr

)

= const.,

(13)

•Luminosity: 輻射+対流輸送

Helium-Star Models with Optically Thick Winds 3

Kato & Iben (1992) theoretically derived mass-loss rates
for their simple He-star models and compared them with
the observed WR winds, although they assumed an ar-
tificial opacity law in the wind launching region and the
supersonic region.
In this paper, we construct a center-to-surface stellar

model to study the structures around the wind launching
regions and photospheres, and to derive mass-loss rates
theoretically. We have obtained trans-sonic wind solu-
tions by using a method similar to Kato & Iben (1992),
but assuming a β-type velocity law (Eq. 1) in the super-
sonic layers. We compare the Ṁw to luminosity relations
and the positions in the Hertzsprung-Russell (HR) dia-
gram with the observations of Galactic WR stars. We
also compare the Ṁw to luminosity relations and the
ratio of radiation pressure to gas pressure (Prad/Pgas)
at the sonic point with the results of Gräfener & Vink
(2013) and Gräfener et al. (2017).
The rest of the paper is organized as follows. In Sec-

tion 2, we discuss the basic equations for the hydrostatic
core and steady wind, and the boundary conditions. In
Section 3, we first show the stellar structures of our He-
star models. Then we discuss how the structures in the
wind launching regions and photospheres, and mass-loss
rates depend on the model parameters. In Section 4,
we compare our models with the observations of Galac-
tic WR stars. The implications and uncertainties of our
study are discussed in Section 5. In Section 6, we briefly
summarize the results of this paper.

2. MODELS AND METHODS

Our He-star models consist of two regions: a hydro-
static core and steady wind. The latter is further divided
into the inner subsonic and the outer supersonic regions.

2.1. Hydrostatic He-Core
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where G is the gravitational constant, P the total pres-
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3
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where arad is the radiation constant, R the gas constant,
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=
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, (9)

in the core. Otherwise, all of the luminosity can be
transported by radiation, so that Lr = Lrad and Lconv =
0.

2.2. Steady Wind Model

The structure of a steady wind is calculated from the
following equations. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992; Nakauchi et al. 2017).

Ṁw ≡ 4πr2ρv = const., (10)
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as
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where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈

★He core: windの式で
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as
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where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as
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In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈

: パラメタ,

τph = κphρphrph = 32(1− ls − χ/2)/9χ (128)

RTD ∼
(
MBH

M∗

)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)

M∗ = 20 M⊙ 1R⊙ 3R⊙ 10R⊙ (131)

L∗ ≈ LEdd,es ≡ 4πcGM∗/κes, for M∗ ≥ 100 M⊙ (132)

L∗ ≈ LEdd,es > LEdd,local ≡ 4πcGM∗/κ (133)

κes < κH,κH− v∞,β Lph, Ṁw v∞/vesc(rs),β (134)

κFe ≫ κes at ≈ 105.2 K (135)

MWR ∼ 10-40 M⊙ v∞ ∼ 1000-3000 km s−1 Ṁw ∼ 10−5-10−4 M⊙ yr−1

(136)

Γr ≡ Lrad/LEdd,local v → 0 v(r) = v∞
(
1− rs

r

)β
r ≥ rs C∞ = v∞/vesc(rs)

(137)
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=
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c2T −
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ρ

(
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)
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−
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]

/
(
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)

,
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where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1
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dv

dr
=

[

2
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c2T −
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(

∂P

∂T

)

ρ
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dr
−

GMr
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]

/
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,
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where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈

opacity構造を 
仮定して計算

τph = κphρphrph = 32(1− ls − χ/2)/9χ (128)

RTD ∼
(
MBH

M∗

)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)

M∗ = 20 M⊙ 1R⊙ 3R⊙ 10R⊙ 10M⊙ 15M⊙ 20M⊙ 30M⊙ 40M⊙ 50M⊙ 60M⊙ 1Z⊙

(131)

L∗ ≈ LEdd,es ≡ 4πcGM∗/κes, for M∗ ≥ 100 M⊙ Lr ≈ LEdd (132)

L∗ ≈ LEdd,es > LEdd,local ≡ 4πcGM∗/κ τRoss = 2/3 T → 105.2 K (133)

κes < κH,κH− v∞,β Lph, Ṁw v∞/vesc(rs),β (v∞/vesc,β) = (1, 1) (134)

κFe ≫ κes at ≈ 105.2 K log10 L [L⊙] (135)

MWR ∼ 10-40 M⊙ v∞ ∼ 1000-3000 km s−1 Ṁw ∼ 10−5-10−4 M⊙ yr−1

(136)

v∞ ≈ 1400 km s−1 Ṁw ≈ 1.6× 10−5 M⊙ yr−1 rph ≈ 2.7 rs (137)

Γr ≡ Lrad/LEdd,local v → 0 v(r) = v∞
(
1− rs

r

)β
r ≥ rs C∞ = v∞/vesc(rs) LEdd Lr Z

(138)

ρs,−9 = 1.5 ρs,−9 = 2.0 ρs,−9 = 2.4 ρs,−9 = 2.5 ρs,−9 = 3.0 (139)

ρs,−9 = 3.0, 2.5, 2.4 ρs,−9 = 2.4, 2.3, 2.0 (140)

Teff(r) = T (r) Teff(r) ̸= T (r) (141)

v
dv

dr
= −1

ρ

dPgas

dr
− GMr

r2
+ κ

Lr

4πr2c
(142): opacity



3) 定常の条件はよいかどうか？ Mbelow/Ṁw > Mup/Ṁw を満たすか？ ここで，
Mbelow(Mup)は r∗ ≤ r ≤ rc (rc ≤ r ≤ rph)に含まれる質量．定常流ならば，r < rcの
部分は物質流の供給源であって欲しい．

1.2 Boundary Conditions

Eq. (6)の特異点で満たされるべき条件は，

v2c −
R
µ
Tc = 0, (7)

T ′
c =

(
2Tc

rc
− GM

r2c

µ

R

)
/(1 + B), B =

4a

3

µ

R
T 3
c

ρc
(8)

ここで，T ′
c ≡ dT

dr

∣∣
c
.

Tc, rc, ρcを与えると，特異点での条件により vc, T ′
cが評価できる．また，Eqs. (??),

(3)より Ṁw and Λが評価できる．

Λ

Ṁw

=
R
µ
Tc(3 + B)− R

µ

T ′
c

C
− GM

rc
(9)

ここで，C ≡ Ṁw
4π

R
µ

1
r2cDc

. これにより，臨界点から内外方向に数値的に積分が行える．
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as
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=
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c2T −
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]

/
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,
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where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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2.7 (Kato & Iben 1992; Kato & Hachisu 1994). There-
fore, the boundary condition at the photosphere are rep-
resented as

Teff(rph) = T (rph) ≡ Tph and τ(rph) = 2.7. (19)

By using the effective opacity κeff , we perform the out-
ward integration from the sonic radius and find solutions
that satisfy the photospheric condition.
The values of the five parameters, ρc, Tc, rs, ρs, and

Ts, are determined iteratively so that the wind solution
is smoothly connected to the hydrostatic core solution
at some radius rm between the core center and the sonic
point, satisfying T (rm) ≃ 108 K. Therefore, the energy
generation by He-burning is negligible for r ≥ rm. We
first fix the value of ρs, and then iteratively determine
the values of ρc, Tc, rs, and Ts so that the enclosed mass,
density, and temperature should be continuous, and the
total luminosity should be conserved at the matching
radius rm:

Mcore(rm)=Mwind(rm),

ρcore(rm)=ρwind(rm), (20)

Tcore(rm)=Twind(rm),

and

Lcore(rm)=Lwind(rm)

+ Ṁw

(

v2(rm)

2
+
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2µ
Twind(rm) +

4arad
3

T 4
wind(rm)

ρwind(rm)

)

=Λ+ Ṁw

∫ rs

rm

GMr

r2
dr. (21)

Next, ρs is determined so that the wind solution satisfies
the photospheric condition Eq. (19). Then, we obtain a
He-star model with an optically thick wind.

2.4. Chemical Composition

In this paper, we consider two types of He-star models,
He-rich and CO-enriched models. Since we consider H-
free stellar models, the mass fraction of H is set to zero,
X = 0, in both models. The mass fraction of He, Y ,
is calculated from Y = 1 − Z̃, where Z̃ is the mass
fraction of metals heavier than He. In He-rich models,
we suppose that Z̃ is identical with the metallicity Z in
the solar composition (Grevesse & Noels 1993), while in
CO-enriched models, the mass fractions of C and O are
enhanced by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z +
dXC+dXO. In each model, we consider two metallicities
of Z = 1 and 2 Z⊙ with Z⊙ = 0.02 (solar metallicity)2.

2 The exact value of the solar metallicity Z⊙ is still un-
certain. We adopt Z⊙ = 0.02 as the solar metallicity, since
the adopted opacity table is based on the solar composition in
Grevesse & Noels (1993).

Our He-star models may be too simple compared to
actual WR stars. Especially, WC stars may have com-
positional gradients between CO cores and He-rich en-
velopes. We note, however, that our purpose in this pa-
per is to construct whole-star models with optically thick
winds, in which a subsonic wind structure is connected
smoothly to a supersonic part at the sonic point. This
enables us to determine a mass-loss rate uniquely for a
given mass, chemical composition, and opacity parame-
ters. Our simple models are enough to understand the
dependences of the structures around the wind launch-
ing regions and photospheres, and of mass-loss rates on
these parameters.

3. RESULTS

3.1. He-rich Models

3.1.1. Stellar Structure

First, we show the stellar structure of a He-rich model
with M∗ = 30 M⊙ and Z = 1 Z⊙ (Fig. 1). Opacity
parameters are adopted as (v∞/vesc(rs),β) = (1.0, 1.0).
In this model, the matching point to the static core is
located at rm ≃ 0.660 R⊙, the sonic point (filled cir-
cle) at rs ≃ 1.76 R⊙, and the photospheric radius at
rph ≃ 6.29 R⊙. While the wind velocity is sufficiently
subsonic (v ! 1 cm s−1) around rm, it is steeply accel-
erated to a supersonic speed passing through the sonic
radius rs (panel a). It finally reaches a constant speed
of v∞ ∼ 1750 km s−1, which is larger than the escape
velocity at the photosphere rph. The photospheric ra-
dius rph is several times larger than the sonic radius
rs. In this model, the mass-loss rate is evaluated as
Ṁw ≃ 3.98 × 10−5 M⊙ yr−1. These values are within
the range of the observed WNE stars (Hamann et al.
2006).
The density and temperature decline outward steeply

to the sonic radius rs in subsonic layers (see panels b and
c of Fig. 1). In the highly supersonic region, the density
is inversely proportional to the square of radius, ρ ∝ r−2,
since the wind velocity is almost constant there. The
integration is terminated at the photosphere rph with
log Tph ≃ 4.85. We also find that the radiation pressure
dominates the gas pressure over the supersonic region,
while they are almost the same order of magnitude in
the hydrostatic core and deep subsonic part.
The luminosity generated via the nuclear burning

in the core, Lcore ≃ 9.29 × 105 L⊙ (panel d of Fig.
1), is consistent with the mass−luminosity relation ob-
tained from the hydrostatic He-star models (Eq. 3 of
Schaerer & Maeder 1992), which gives Lhs ≃ 1.02 ×

106 L⊙ for M∗ = 30 M⊙. At r = rm, a portion of
the core luminosity is converted into the mechanical lu-
minosity of the wind, which causes a tiny discontinuity
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2.7 (Kato & Iben 1992; Kato & Hachisu 1994). There-
fore, the boundary condition at the photosphere are rep-
resented as

Teff(rph) = T (rph) ≡ Tph and τ(rph) = 2.7. (19)

By using the effective opacity κeff , we perform the out-
ward integration from the sonic radius and find solutions
that satisfy the photospheric condition.
The values of the five parameters, ρc, Tc, rs, ρs, and

Ts, are determined iteratively so that the wind solution
is smoothly connected to the hydrostatic core solution
at some radius rm between the core center and the sonic
point, satisfying T (rm) ≃ 108 K. Therefore, the energy
generation by He-burning is negligible for r ≥ rm. We
first fix the value of ρs, and then iteratively determine
the values of ρc, Tc, rs, and Ts so that the enclosed mass,
density, and temperature should be continuous, and the
total luminosity should be conserved at the matching
radius rm:

Mcore(rm)=Mwind(rm),

ρcore(rm)=ρwind(rm), (20)

Tcore(rm)=Twind(rm),

and

Lcore(rm)=Lwind(rm)

+ Ṁw

(
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2µ
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4arad
3

T 4
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)

=Λ+ Ṁw

∫ rs
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GMr

r2
dr. (21)

Next, ρs is determined so that the wind solution satisfies
the photospheric condition Eq. (19). Then, we obtain a
He-star model with an optically thick wind.

2.4. Chemical Composition

In this paper, we consider two types of He-star models,
He-rich and CO-enriched models. Since we consider H-
free stellar models, the mass fraction of H is set to zero,
X = 0, in both models. The mass fraction of He, Y ,
is calculated from Y = 1 − Z̃, where Z̃ is the mass
fraction of metals heavier than He. In He-rich models,
we suppose that Z̃ is identical with the metallicity Z in
the solar composition (Grevesse & Noels 1993), while in
CO-enriched models, the mass fractions of C and O are
enhanced by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z +
dXC+dXO. In each model, we consider two metallicities
of Z = 1 and 2 Z⊙ with Z⊙ = 0.02 (solar metallicity)2.

2 The exact value of the solar metallicity Z⊙ is still un-
certain. We adopt Z⊙ = 0.02 as the solar metallicity, since
the adopted opacity table is based on the solar composition in
Grevesse & Noels (1993).

Our He-star models may be too simple compared to
actual WR stars. Especially, WC stars may have com-
positional gradients between CO cores and He-rich en-
velopes. We note, however, that our purpose in this pa-
per is to construct whole-star models with optically thick
winds, in which a subsonic wind structure is connected
smoothly to a supersonic part at the sonic point. This
enables us to determine a mass-loss rate uniquely for a
given mass, chemical composition, and opacity parame-
ters. Our simple models are enough to understand the
dependences of the structures around the wind launch-
ing regions and photospheres, and of mass-loss rates on
these parameters.

3. RESULTS

3.1. He-rich Models

3.1.1. Stellar Structure

First, we show the stellar structure of a He-rich model
with M∗ = 30 M⊙ and Z = 1 Z⊙ (Fig. 1). Opacity
parameters are adopted as (v∞/vesc(rs),β) = (1.0, 1.0).
In this model, the matching point to the static core is
located at rm ≃ 0.660 R⊙, the sonic point (filled cir-
cle) at rs ≃ 1.76 R⊙, and the photospheric radius at
rph ≃ 6.29 R⊙. While the wind velocity is sufficiently
subsonic (v ! 1 cm s−1) around rm, it is steeply accel-
erated to a supersonic speed passing through the sonic
radius rs (panel a). It finally reaches a constant speed
of v∞ ∼ 1750 km s−1, which is larger than the escape
velocity at the photosphere rph. The photospheric ra-
dius rph is several times larger than the sonic radius
rs. In this model, the mass-loss rate is evaluated as
Ṁw ≃ 3.98 × 10−5 M⊙ yr−1. These values are within
the range of the observed WNE stars (Hamann et al.
2006).
The density and temperature decline outward steeply

to the sonic radius rs in subsonic layers (see panels b and
c of Fig. 1). In the highly supersonic region, the density
is inversely proportional to the square of radius, ρ ∝ r−2,
since the wind velocity is almost constant there. The
integration is terminated at the photosphere rph with
log Tph ≃ 4.85. We also find that the radiation pressure
dominates the gas pressure over the supersonic region,
while they are almost the same order of magnitude in
the hydrostatic core and deep subsonic part.
The luminosity generated via the nuclear burning

in the core, Lcore ≃ 9.29 × 105 L⊙ (panel d of Fig.
1), is consistent with the mass−luminosity relation ob-
tained from the hydrostatic He-star models (Eq. 3 of
Schaerer & Maeder 1992), which gives Lhs ≃ 1.02 ×

106 L⊙ for M∗ = 30 M⊙. At r = rm, a portion of
the core luminosity is converted into the mechanical lu-
minosity of the wind, which causes a tiny discontinuity
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈

4 D. Nakauchi and H. Saio

where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as
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where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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2.7 (Kato & Iben 1992; Kato & Hachisu 1994). There-
fore, the boundary condition at the photosphere are rep-
resented as

Teff(rph) = T (rph) ≡ Tph and τ(rph) = 2.7. (19)

By using the effective opacity κeff , we perform the out-
ward integration from the sonic radius and find solutions
that satisfy the photospheric condition.
The values of the five parameters, ρc, Tc, rs, ρs, and

Ts, are determined iteratively so that the wind solution
is smoothly connected to the hydrostatic core solution
at some radius rm between the core center and the sonic
point, satisfying T (rm) ≃ 108 K. Therefore, the energy
generation by He-burning is negligible for r ≥ rm. We
first fix the value of ρs, and then iteratively determine
the values of ρc, Tc, rs, and Ts so that the enclosed mass,
density, and temperature should be continuous, and the
total luminosity should be conserved at the matching
radius rm:

Mcore(rm)=Mwind(rm),

ρcore(rm)=ρwind(rm), (20)

Tcore(rm)=Twind(rm),

and

Lcore(rm)=Lwind(rm)

+ Ṁw

(

v2(rm)

2
+

5R

2µ
Twind(rm) +

4arad
3

T 4
wind(rm)

ρwind(rm)

)

=Λ+ Ṁw

∫ rs

rm

GMr

r2
dr. (21)

Next, ρs is determined so that the wind solution satisfies
the photospheric condition Eq. (19). Then, we obtain a
He-star model with an optically thick wind.

2.4. Chemical Composition

In this paper, we consider two types of He-star models,
He-rich and CO-enriched models. Since we consider H-
free stellar models, the mass fraction of H is set to zero,
X = 0, in both models. The mass fraction of He, Y ,
is calculated from Y = 1 − Z̃, where Z̃ is the mass
fraction of metals heavier than He. In He-rich models,
we suppose that Z̃ is identical with the metallicity Z in
the solar composition (Grevesse & Noels 1993), while in
CO-enriched models, the mass fractions of C and O are
enhanced by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z +
dXC+dXO. In each model, we consider two metallicities
of Z = 1 and 2 Z⊙ with Z⊙ = 0.02 (solar metallicity)2.

2 The exact value of the solar metallicity Z⊙ is still un-
certain. We adopt Z⊙ = 0.02 as the solar metallicity, since
the adopted opacity table is based on the solar composition in
Grevesse & Noels (1993).

Our He-star models may be too simple compared to
actual WR stars. Especially, WC stars may have com-
positional gradients between CO cores and He-rich en-
velopes. We note, however, that our purpose in this pa-
per is to construct whole-star models with optically thick
winds, in which a subsonic wind structure is connected
smoothly to a supersonic part at the sonic point. This
enables us to determine a mass-loss rate uniquely for a
given mass, chemical composition, and opacity parame-
ters. Our simple models are enough to understand the
dependences of the structures around the wind launch-
ing regions and photospheres, and of mass-loss rates on
these parameters.

3. RESULTS

3.1. He-rich Models

3.1.1. Stellar Structure

First, we show the stellar structure of a He-rich model
with M∗ = 30 M⊙ and Z = 1 Z⊙ (Fig. 1). Opacity
parameters are adopted as (v∞/vesc(rs),β) = (1.0, 1.0).
In this model, the matching point to the static core is
located at rm ≃ 0.660 R⊙, the sonic point (filled cir-
cle) at rs ≃ 1.76 R⊙, and the photospheric radius at
rph ≃ 6.29 R⊙. While the wind velocity is sufficiently
subsonic (v ! 1 cm s−1) around rm, it is steeply accel-
erated to a supersonic speed passing through the sonic
radius rs (panel a). It finally reaches a constant speed
of v∞ ∼ 1750 km s−1, which is larger than the escape
velocity at the photosphere rph. The photospheric ra-
dius rph is several times larger than the sonic radius
rs. In this model, the mass-loss rate is evaluated as
Ṁw ≃ 3.98 × 10−5 M⊙ yr−1. These values are within
the range of the observed WNE stars (Hamann et al.
2006).
The density and temperature decline outward steeply

to the sonic radius rs in subsonic layers (see panels b and
c of Fig. 1). In the highly supersonic region, the density
is inversely proportional to the square of radius, ρ ∝ r−2,
since the wind velocity is almost constant there. The
integration is terminated at the photosphere rph with
log Tph ≃ 4.85. We also find that the radiation pressure
dominates the gas pressure over the supersonic region,
while they are almost the same order of magnitude in
the hydrostatic core and deep subsonic part.
The luminosity generated via the nuclear burning

in the core, Lcore ≃ 9.29 × 105 L⊙ (panel d of Fig.
1), is consistent with the mass−luminosity relation ob-
tained from the hydrostatic He-star models (Eq. 3 of
Schaerer & Maeder 1992), which gives Lhs ≃ 1.02 ×

106 L⊙ for M∗ = 30 M⊙. At r = rm, a portion of
the core luminosity is converted into the mechanical lu-
minosity of the wind, which causes a tiny discontinuity
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2.7 (Kato & Iben 1992; Kato & Hachisu 1994). There-
fore, the boundary condition at the photosphere are rep-
resented as

Teff(rph) = T (rph) ≡ Tph and τ(rph) = 2.7. (19)

By using the effective opacity κeff , we perform the out-
ward integration from the sonic radius and find solutions
that satisfy the photospheric condition.
The values of the five parameters, ρc, Tc, rs, ρs, and

Ts, are determined iteratively so that the wind solution
is smoothly connected to the hydrostatic core solution
at some radius rm between the core center and the sonic
point, satisfying T (rm) ≃ 108 K. Therefore, the energy
generation by He-burning is negligible for r ≥ rm. We
first fix the value of ρs, and then iteratively determine
the values of ρc, Tc, rs, and Ts so that the enclosed mass,
density, and temperature should be continuous, and the
total luminosity should be conserved at the matching
radius rm:

Mcore(rm)=Mwind(rm),

ρcore(rm)=ρwind(rm), (20)

Tcore(rm)=Twind(rm),

and

Lcore(rm)=Lwind(rm)
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Next, ρs is determined so that the wind solution satisfies
the photospheric condition Eq. (19). Then, we obtain a
He-star model with an optically thick wind.

2.4. Chemical Composition

In this paper, we consider two types of He-star models,
He-rich and CO-enriched models. Since we consider H-
free stellar models, the mass fraction of H is set to zero,
X = 0, in both models. The mass fraction of He, Y ,
is calculated from Y = 1 − Z̃, where Z̃ is the mass
fraction of metals heavier than He. In He-rich models,
we suppose that Z̃ is identical with the metallicity Z in
the solar composition (Grevesse & Noels 1993), while in
CO-enriched models, the mass fractions of C and O are
enhanced by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z +
dXC+dXO. In each model, we consider two metallicities
of Z = 1 and 2 Z⊙ with Z⊙ = 0.02 (solar metallicity)2.

2 The exact value of the solar metallicity Z⊙ is still un-
certain. We adopt Z⊙ = 0.02 as the solar metallicity, since
the adopted opacity table is based on the solar composition in
Grevesse & Noels (1993).

Our He-star models may be too simple compared to
actual WR stars. Especially, WC stars may have com-
positional gradients between CO cores and He-rich en-
velopes. We note, however, that our purpose in this pa-
per is to construct whole-star models with optically thick
winds, in which a subsonic wind structure is connected
smoothly to a supersonic part at the sonic point. This
enables us to determine a mass-loss rate uniquely for a
given mass, chemical composition, and opacity parame-
ters. Our simple models are enough to understand the
dependences of the structures around the wind launch-
ing regions and photospheres, and of mass-loss rates on
these parameters.

3. RESULTS

3.1. He-rich Models

3.1.1. Stellar Structure

First, we show the stellar structure of a He-rich model
with M∗ = 30 M⊙ and Z = 1 Z⊙ (Fig. 1). Opacity
parameters are adopted as (v∞/vesc(rs),β) = (1.0, 1.0).
In this model, the matching point to the static core is
located at rm ≃ 0.660 R⊙, the sonic point (filled cir-
cle) at rs ≃ 1.76 R⊙, and the photospheric radius at
rph ≃ 6.29 R⊙. While the wind velocity is sufficiently
subsonic (v ! 1 cm s−1) around rm, it is steeply accel-
erated to a supersonic speed passing through the sonic
radius rs (panel a). It finally reaches a constant speed
of v∞ ∼ 1750 km s−1, which is larger than the escape
velocity at the photosphere rph. The photospheric ra-
dius rph is several times larger than the sonic radius
rs. In this model, the mass-loss rate is evaluated as
Ṁw ≃ 3.98 × 10−5 M⊙ yr−1. These values are within
the range of the observed WNE stars (Hamann et al.
2006).
The density and temperature decline outward steeply

to the sonic radius rs in subsonic layers (see panels b and
c of Fig. 1). In the highly supersonic region, the density
is inversely proportional to the square of radius, ρ ∝ r−2,
since the wind velocity is almost constant there. The
integration is terminated at the photosphere rph with
log Tph ≃ 4.85. We also find that the radiation pressure
dominates the gas pressure over the supersonic region,
while they are almost the same order of magnitude in
the hydrostatic core and deep subsonic part.
The luminosity generated via the nuclear burning

in the core, Lcore ≃ 9.29 × 105 L⊙ (panel d of Fig.
1), is consistent with the mass−luminosity relation ob-
tained from the hydrostatic He-star models (Eq. 3 of
Schaerer & Maeder 1992), which gives Lhs ≃ 1.02 ×

106 L⊙ for M∗ = 30 M⊙. At r = rm, a portion of
the core luminosity is converted into the mechanical lu-
minosity of the wind, which causes a tiny discontinuity
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as
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=

[
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/
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where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as
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where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈

4 D. Nakauchi and H. Saio

where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
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where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two
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from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
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We can see from Eq. (17) that the sonic point is the
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lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
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ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
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where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈
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the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.
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In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be
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(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈

星風と滑らかに繋がったHe星の構造, 
            が唯一に決まる.
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)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)
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κFe ≫ κes at ≈ 105.2 K (135)

MWR ∼ 10-40 M⊙ v∞ ∼ 1000-3000 km s−1 Ṁw ∼ 10−5-10−4 M⊙ yr−1
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈
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where v is the wind velocity, Ṁw the mass-loss rate, Λ
the energy constant, rs the sonic radius. In Eq. (13),
we neglect the nuclear energy generation in the wind
region, since the wind temperature is too low for He-
burning to be significant. It should be noted that in the
limit of Ṁw → 0 and vdv/dr → 0, Eqs. (10-13) return
to Eqs. (2-4) with ϵnuc = 0.
In the inner subsonic region, the total luminosity Lr,

the radiative luminosity Lrad, and the convective lumi-
nosity Lconv are calculated from Eqs. (5) and (7), and by
using the mixing length theory, respectively. However,
by using Eq. (12), ∇rad is calculated without assuming
the hydrostatic equilibrium as

∇rad =
3κRLrP

16πaradcr2T 4

(

−
1

ρ

dP

dr

)−1

. (14)

In the outer supersonic region, instead of calculat-
ing hydrodynamical equations coupled with the ra-
diative transfer equation (Gräfener & Hamann 2005,
2008; Sander et al. 2017), we assume a β-type velocity
law (Eq. 1). In the supersonic layers (where Prad ≫ Pgas

holds), this assumption is nearly equivalent to replace
κR with the effective opacity represented by

κeff(r) = κR(ρs, Ts)

[

1 + 2β

(

v∞
vesc(rs)

)2
(

1−
rs
r

)2β−1
]

,

(15)
where κR(ρs, Ts) and vesc(rs) are the Rosseland-mean
opacity and the escape velocity at the sonic radius,
respectively (Lucy & Abbott 1993; Gräfener & Vink
2013). If we solve Eqs. (10-13) with Lrad (Eq. 7)
by replacing κR with κeff , we obtain a β-type velocity
law (Eq. 1) with R0 = rs. Note that in the supersonic
region, we neglect the convective energy transport in
Eq. (5), i.e., Lr = Lrad, since the velocity of the convec-
tive element should be less than the sound speed and it
may not exceed the energy transport by advection.
The effective opacity (Eq. 15) is characterized by two

parameters: v∞/vesc(rs) and β. According to the non-
local thermodynamic equilibrium (LTE) wind models of
Gräfener & Hamann (2005), the velocity structure can
be approximately fitted with β = 1 in the inner rapidly
accelerating region. Moreover, β ≈ 0.7− 0.8 is obtained
from the observations of the O star winds (Puls et al.
2008). On the other hand, Gräfener & Vink (2013)’s
models indicate v∞/vesc(rs) ≈ 1.6 for WC and WO
winds. For O star winds, it is known that v∞/vesc ≈

O(1) (e.g., Kudritzki & Puls 2000). Therefore, we study
the cases with v∞/vesc(rs) ≈ 1-2 and β = 0.75 and 1,
respectively.

2.3. Connecting Steady Wind to Hydrostatic Core

In the steady wind model, equations (5, 10-13) have
five unknown functions, v(r), ρ(r), T (r), Lr , and Mr,
while in the core region, equations (2-5) have four un-
knowns (since v(r) = 0). A wind solution that is
smoothly connected to a core solution can be obtained
by providing five boundary conditions: two of them at
the core center, other two at the sonic point, and the
last one at the photosphere (Kato & Iben 1992).
First, at the core center, the luminosity and enclosed

mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (16)

Therefore, we can obtain one core solution, if we give
the density and temperature at the core center, ρc and
Tc.
Second, the following regularity conditions should be

satisfied at the sonic point. By substituting Eqs. (6)
and (10) into Eq. (12), it is rewritten as

1

v

dv

dr
=

[

2

r
c2T −

1

ρ

(

∂P

∂T

)

ρ

dT

dr
−

GMr

r2

]

/
(

v2 − c2T
)

,

(17)
where cT =

√

(∂P/∂ρ)T is the isothermal sound speed.
We can see from Eq. (17) that the sonic point is the
singular point of the equation. A transonic wind so-
lution can be obtained by requiring that the numer-
ator of the equation vanishes at the sonic point and
that the velocity gradient become finite there (e.g.,
Lamers & Cassinelli 1999). From these regularity con-
ditions, we can evaluate dT/dr (and hence the radiative
luminosity) and the wind velocity at the sonic point,
for given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass
there with the total mass of a star, M∗, since the mass
within the supersonic region must be much less than
M∗. To summarize, the following two boundary condi-
tions are imposed at the sonic point:

v(rs)= cT(ρs, Ts), (18)

Lrad(rs)=Lrad(rs, ρs, Ts) at M(rs) = M∗.

It should be noted that once rs, ρs, and Ts are specified,
we can obtain one wind solution. This is because, for
a given set of (rs, ρs, Ts), Ṁw and Λ can be evaluated
from Eqs. (10) and (13), respectively, and the velocity
gradient at the sonic point by using the de l’Hopital rule
to Eq. (17) (Lamers & Cassinelli 1999; Nugis & Lamers
2002).
Finally, at the photospheric radius (rph), where the

effective temperature Teff(rph) becomes equal to the lo-
cal temperature, we require that the optical-depth-like
variable τ(r) ≡ κeff(r)ρ(r)r becomes equal to 8/3 ≈

τph = κphρphrph = 32(1− ls − χ/2)/9χ (128)

RTD ∼
(
MBH

M∗

)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)
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(131)

L∗ ≈ LEdd,es ≡ 4πcGM∗/κes, for M∗ ≥ 100 M⊙ Lr ≈ LEdd (132)

L∗ ≈ LEdd,es > LEdd,local ≡ 4πcGM∗/κ τRoss = 2/3 T → 105.2 K (133)

κes < κH,κH− v∞,β Lph, Ṁw v∞/vesc(rs),β (v∞/vesc,β) = (1, 1) (134)

κFe ≫ κes at ≈ 105.2 K log10 L [L⊙] (135)

MWR ∼ 10-40 M⊙ v∞ ∼ 1000-3000 km s−1 Ṁw ∼ 10−5-10−4 M⊙ yr−1

(136)

v∞ ≈ 1400 km s−1 Ṁw ≈ 1.6× 10−5 M⊙ yr−1 rph ≈ 2.7 rs (137)

Γr ≡ Lrad/LEdd,local v → 0 v(r) = v∞
(
1− rs

r

)β
r ≥ rs C∞ = v∞/vesc(rs) LEdd Lr Z

(138)

ρs,−9 = 1.5 ρs,−9 = 2.0 ρs,−9 = 2.4 ρs,−9 = 2.5 ρs,−9 = 3.0 (139)

ρs,−9 = 3.0, 2.5, 2.4 ρs,−9 = 2.4, 2.3, 2.0 (140)

Teff(r) = T (r) Teff(r) ̸= T (r) (141)

v
dv
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= −1

ρ

dPgas

dr
− GMr

r2
+ κ

Lr
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(142)
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Figure 2: Wind解中における輻射圧勾配力 (red), ガス圧勾配力 (blue), 加速度項
(purple), 重力 (black)の大きさの変化の様子. 破線は値が負である (動径方向と逆向
き)ことを示す. M∗ = 100 M⊙, Tcr = 2.5 × 105 K, Rcr = 30 R⊙の場合. Upper and
lower panelsはそれぞれ ρcr = 5.87, 5.8× 10−9 g cm−3の場合に対応する.

Fig. 1より, ρcr = ρthの解は wind解の系列の中でも rphが最大となる場合に相
当することがわかる. 終端速度が rphにおける脱出速度を上回っているので, 定常恒
星風として適当な解であると考えられる. 質量放出率は Ṁw = 0.03 M⊙ yr−1と求め
られた. 他方 ρcr > ρthの解は今回考えたモデルの範疇では定常恒星風として適当な
解であるかどうかは言えない. それは r > rphにおける opacity sourceの有無に依存
し, opacity sourceがない場合には結局減速されて fallbackしてしまうだろう. 従っ
て, 今回考えたモデルの範囲内では, 以下が定常恒星風の満たすべき条件の一つであ
る: vt ≥ vesc(rph).

Tcrを固定したままM∗や rcrの値を振った時に wind解の構造がどう変化するか
も調べた. その結果 vtの値は, 固定された Tcrに対してM∗や rcrを変えてもほとんど
変わらないことがわかった. このことから各 Tcrに対して, 定常恒星風解が存在する
星の最大質量を導くことができる. まず subsonic regionでは静水圧平衡状態にある
ことから, そこでの輻射光度は Eddington光度以下でなければならない. また wind
解中で輻射光度はほぼ一定である. この二点より photosphereにおける輻射光度も
Eddington光度以下であると言える: Lph ! LEdd,es. 従って photospheric radiusには
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られた. 他方 ρcr > ρthの解は今回考えたモデルの範疇では定常恒星風として適当な
解であるかどうかは言えない. それは r > rphにおける opacity sourceの有無に依存
し, opacity sourceがない場合には結局減速されて fallbackしてしまうだろう. 従っ
て, 今回考えたモデルの範囲内では, 以下が定常恒星風の満たすべき条件の一つであ
る: vt ≥ vesc(rph).

Tcrを固定したままM∗や rcrの値を振った時に wind解の構造がどう変化するか
も調べた. その結果 vtの値は, 固定された Tcrに対してM∗や rcrを変えてもほとんど
変わらないことがわかった. このことから各 Tcrに対して, 定常恒星風解が存在する
星の最大質量を導くことができる. まず subsonic regionでは静水圧平衡状態にある
ことから, そこでの輻射光度は Eddington光度以下でなければならない. また wind
解中で輻射光度はほぼ一定である. この二点より photosphereにおける輻射光度も
Eddington光度以下であると言える: Lph ! LEdd,es. 従って photospheric radiusには

7



観測との比較: 質量放出率と光度の関係
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Figure 7. Mass-loss rates plotted as a function of pho-
tospheric luminosities. The meanings for the symbols, line
types, and colors are summarized in Table 1. Top panel:
for the He-rich models. The filled grey circles and triangles
show the observed values of the Galactic WNE stars and
WN/C transition types, respectively (Hamann et al. 2006;
Sander et al. 2012). The black solid lines show the mass-loss
rates derived theoretically by Gräfener et al. (2017). Bottom
panel: for the CO-enriched models. The filled grey squares
and triangles show the observed values of Galactic WC stars
and WN/C transition types (Sander et al. 2012). The error
bar shows a typical uncertainty of the observed luminosities.

WN/C transition types, respectively (Hamann et al.
2006; Sander et al. 2012).
Both He-rich and CO-enriched models have mass-loss

rates that are comparable to the observed WR stars,
as discussed in Fig. 5. Moreover, CO-enriched models
have slightly larger rates compared to He-rich models for
a given luminosity or mass. This is consistent with the

observations, where WC stars have larger mass-loss rates
than WNE stars for a given luminosity (Yoon 2017).
Recently, Gräfener et al. (2017) derived the mass-loss

rates for WNE stars by matching Prad and Pgas (or T
and ρ) at the sonic point which their hydrostatic stel-
lar models have with those β-type wind models pre-
dict. In the top panel, the black solid lines show the
relations derived theoretically by Gräfener et al. (2017).
For the solar metallicity case, they obtained the rates of
Ṁw ≈ 10−5.1-10−4.2 M⊙ yr−1 and the scaling relation
of Ṁw ∝ L1.3

∗ for 14-30 M⊙. From Fig. 7, we find out
the scaling relations of Ṁw ∝ L1.2−1.3

∗ for M∗ ≥ 20 M⊙

in both He-rich and CO-enriched models. The rates as
well as scaling relations of Gräfener et al. (2017) agree
quite well with those of our He-rich models.
However, theoretical mass-loss rates of both ours and

Gräfener et al. (2017)’s deviate from the observed rates
of some WR stars. For He-rich models, although so-
lar metallicity models are consistent with some of the
WNE stars with lower mass-loss rates, even 2 Z⊙ mod-
els cannot explain the very high mass-loss rates of less
luminous WNE stars. For CO-enriched models, even
2 Z⊙ models show large deviation from the distribution
of WC stars, although the observed values might have
considerable uncertainties (cf. the error bar in the bot-
tom panel). Future Gaia data releases will improve lu-
minosity measurements and our understanding of these
relationships (Gaia Collaboration et al. 2016).

4.2. Scaling Relations for Mass-Loss Rates

For the most massive models (M∗ ≥ 30 M⊙), a scal-
ing relation, Ṁw ∝ M1.2

∗ , can be derived from the fol-
lowing simple analytical arguments. Mass-loss rates are
determined from the sonic point quantities as Ṁw ≡

4πr2s ρsvs with vs ∝ T 1/2
s . Owing to the strong tem-

perature dependence of the Fe opacity bump, Ts is al-
most independent of the stellar mass: Ts ≈ 2 × 105 K.
A sonic point appears at a point where the luminos-
ity becomes equal to the local Eddington luminosity:
L∗ ≈ 4πcGM∗/κs with κs ≡ κR(ρs, Ts). Since the opac-
ity is roughly proportional to the density around the Fe
bump, κs ∝ ρs, ρs depends on the stellar mass and lumi-
nosity as ρs ∝ M∗/L∗. For the most massive models, the
stellar luminosity is roughly proportional to the stellar
mass: L∗ ∝ M∗ (e.g., Kippenhahn et al. 2012). There-
fore, ρs hardly depends on M∗ as well. Finally, the sonic
radius follows the mass-radius relation of a hydrostatic
He-star model: rs ∝ M0.6

∗ (Fig. 4, top panel). Sum-
marizing the above results leads to the simple scaling
relation: Ṁw ∝ M1.2

∗ ∝ L1.2
∗ . In reality, both Ts and ρs

somewhat depend on the stellar mass, so that the ac-
tual dependence would be a little steeper Ṁw ∝ M1.6

∗

log 光度 [    ]
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2.7 (Kato & Iben 1992; Kato & Hachisu 1994). There-
fore, the boundary condition at the photosphere are rep-
resented as

Teff(rph) = T (rph) ≡ Tph and τ(rph) = 2.7. (19)

By using the effective opacity κeff , we perform the out-
ward integration from the sonic radius and find solutions
that satisfy the photospheric condition.
The values of the five parameters, ρc, Tc, rs, ρs, and

Ts, are determined iteratively so that the wind solution
is smoothly connected to the hydrostatic core solution
at some radius rm between the core center and the sonic
point, satisfying T (rm) ≃ 108 K. Therefore, the energy
generation by He-burning is negligible for r ≥ rm. We
first fix the value of ρs, and then iteratively determine
the values of ρc, Tc, rs, and Ts so that the enclosed mass,
density, and temperature should be continuous, and the
total luminosity should be conserved at the matching
radius rm:

Mcore(rm)=Mwind(rm),

ρcore(rm)=ρwind(rm), (20)

Tcore(rm)=Twind(rm),

and

Lcore(rm)=Lwind(rm)

+ Ṁw

(

v2(rm)

2
+

5R

2µ
Twind(rm) +

4arad
3

T 4
wind(rm)

ρwind(rm)

)

=Λ+ Ṁw

∫ rs

rm

GMr

r2
dr. (21)

Next, ρs is determined so that the wind solution satisfies
the photospheric condition Eq. (19). Then, we obtain a
He-star model with an optically thick wind.

2.4. Chemical Composition

In this paper, we consider two types of He-star models,
He-rich and CO-enriched models. Since we consider H-
free stellar models, the mass fraction of H is set to zero,
X = 0, in both models. The mass fraction of He, Y ,
is calculated from Y = 1 − Z̃, where Z̃ is the mass
fraction of metals heavier than He. In He-rich models,
we suppose that Z̃ is identical with the metallicity Z in
the solar composition (Grevesse & Noels 1993), while in
CO-enriched models, the mass fractions of C and O are
enhanced by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z +
dXC+dXO. In each model, we consider two metallicities
of Z = 1 and 2 Z⊙ with Z⊙ = 0.02 (solar metallicity)2.

2 The exact value of the solar metallicity Z⊙ is still un-
certain. We adopt Z⊙ = 0.02 as the solar metallicity, since
the adopted opacity table is based on the solar composition in
Grevesse & Noels (1993).

Our He-star models may be too simple compared to
actual WR stars. Especially, WC stars may have com-
positional gradients between CO cores and He-rich en-
velopes. We note, however, that our purpose in this pa-
per is to construct whole-star models with optically thick
winds, in which a subsonic wind structure is connected
smoothly to a supersonic part at the sonic point. This
enables us to determine a mass-loss rate uniquely for a
given mass, chemical composition, and opacity parame-
ters. Our simple models are enough to understand the
dependences of the structures around the wind launch-
ing regions and photospheres, and of mass-loss rates on
these parameters.

3. RESULTS

3.1. He-rich Models

3.1.1. Stellar Structure

First, we show the stellar structure of a He-rich model
with M∗ = 30 M⊙ and Z = 1 Z⊙ (Fig. 1). Opacity
parameters are adopted as (v∞/vesc(rs),β) = (1.0, 1.0).
In this model, the matching point to the static core is
located at rm ≃ 0.660 R⊙, the sonic point (filled cir-
cle) at rs ≃ 1.76 R⊙, and the photospheric radius at
rph ≃ 6.29 R⊙. While the wind velocity is sufficiently
subsonic (v ! 1 cm s−1) around rm, it is steeply accel-
erated to a supersonic speed passing through the sonic
radius rs (panel a). It finally reaches a constant speed
of v∞ ∼ 1750 km s−1, which is larger than the escape
velocity at the photosphere rph. The photospheric ra-
dius rph is several times larger than the sonic radius
rs. In this model, the mass-loss rate is evaluated as
Ṁw ≃ 3.98 × 10−5 M⊙ yr−1. These values are within
the range of the observed WNE stars (Hamann et al.
2006).
The density and temperature decline outward steeply

to the sonic radius rs in subsonic layers (see panels b and
c of Fig. 1). In the highly supersonic region, the density
is inversely proportional to the square of radius, ρ ∝ r−2,
since the wind velocity is almost constant there. The
integration is terminated at the photosphere rph with
log Tph ≃ 4.85. We also find that the radiation pressure
dominates the gas pressure over the supersonic region,
while they are almost the same order of magnitude in
the hydrostatic core and deep subsonic part.
The luminosity generated via the nuclear burning

in the core, Lcore ≃ 9.29 × 105 L⊙ (panel d of Fig.
1), is consistent with the mass−luminosity relation ob-
tained from the hydrostatic He-star models (Eq. 3 of
Schaerer & Maeder 1992), which gives Lhs ≃ 1.02 ×

106 L⊙ for M∗ = 30 M⊙. At r = rm, a portion of
the core luminosity is converted into the mechanical lu-
minosity of the wind, which causes a tiny discontinuity
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κFe ≫ κes at ≈ 105.2 K (135)

MWR ∼ 10-40 M⊙ v∞ ∼ 1000-3000 km s−1 Ṁw ∼ 10−5-10−4 M⊙ yr−1
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Figure 7. Mass-loss rates plotted as a function of pho-
tospheric luminosities. The meanings for the symbols, line
types, and colors are summarized in Table 1. Top panel:
for the He-rich models. The filled grey circles and triangles
show the observed values of the Galactic WNE stars and
WN/C transition types, respectively (Hamann et al. 2006;
Sander et al. 2012). The black solid lines show the mass-loss
rates derived theoretically by Gräfener et al. (2017). Bottom
panel: for the CO-enriched models. The filled grey squares
and triangles show the observed values of Galactic WC stars
and WN/C transition types (Sander et al. 2012). The error
bar shows a typical uncertainty of the observed luminosities.

WN/C transition types, respectively (Hamann et al.
2006; Sander et al. 2012).
Both He-rich and CO-enriched models have mass-loss

rates that are comparable to the observed WR stars,
as discussed in Fig. 5. Moreover, CO-enriched models
have slightly larger rates compared to He-rich models for
a given luminosity or mass. This is consistent with the

observations, where WC stars have larger mass-loss rates
than WNE stars for a given luminosity (Yoon 2017).
Recently, Gräfener et al. (2017) derived the mass-loss

rates for WNE stars by matching Prad and Pgas (or T
and ρ) at the sonic point which their hydrostatic stel-
lar models have with those β-type wind models pre-
dict. In the top panel, the black solid lines show the
relations derived theoretically by Gräfener et al. (2017).
For the solar metallicity case, they obtained the rates of
Ṁw ≈ 10−5.1-10−4.2 M⊙ yr−1 and the scaling relation
of Ṁw ∝ L1.3

∗ for 14-30 M⊙. From Fig. 7, we find out
the scaling relations of Ṁw ∝ L1.2−1.3

∗ for M∗ ≥ 20 M⊙

in both He-rich and CO-enriched models. The rates as
well as scaling relations of Gräfener et al. (2017) agree
quite well with those of our He-rich models.
However, theoretical mass-loss rates of both ours and

Gräfener et al. (2017)’s deviate from the observed rates
of some WR stars. For He-rich models, although so-
lar metallicity models are consistent with some of the
WNE stars with lower mass-loss rates, even 2 Z⊙ mod-
els cannot explain the very high mass-loss rates of less
luminous WNE stars. For CO-enriched models, even
2 Z⊙ models show large deviation from the distribution
of WC stars, although the observed values might have
considerable uncertainties (cf. the error bar in the bot-
tom panel). Future Gaia data releases will improve lu-
minosity measurements and our understanding of these
relationships (Gaia Collaboration et al. 2016).

4.2. Scaling Relations for Mass-Loss Rates

For the most massive models (M∗ ≥ 30 M⊙), a scal-
ing relation, Ṁw ∝ M1.2

∗ , can be derived from the fol-
lowing simple analytical arguments. Mass-loss rates are
determined from the sonic point quantities as Ṁw ≡

4πr2s ρsvs with vs ∝ T 1/2
s . Owing to the strong tem-

perature dependence of the Fe opacity bump, Ts is al-
most independent of the stellar mass: Ts ≈ 2 × 105 K.
A sonic point appears at a point where the luminos-
ity becomes equal to the local Eddington luminosity:
L∗ ≈ 4πcGM∗/κs with κs ≡ κR(ρs, Ts). Since the opac-
ity is roughly proportional to the density around the Fe
bump, κs ∝ ρs, ρs depends on the stellar mass and lumi-
nosity as ρs ∝ M∗/L∗. For the most massive models, the
stellar luminosity is roughly proportional to the stellar
mass: L∗ ∝ M∗ (e.g., Kippenhahn et al. 2012). There-
fore, ρs hardly depends on M∗ as well. Finally, the sonic
radius follows the mass-radius relation of a hydrostatic
He-star model: rs ∝ M0.6

∗ (Fig. 4, top panel). Sum-
marizing the above results leads to the simple scaling
relation: Ṁw ∝ M1.2

∗ ∝ L1.2
∗ . In reality, both Ts and ρs

somewhat depend on the stellar mass, so that the ac-
tual dependence would be a little steeper Ṁw ∝ M1.6

∗
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for given metallicity and opacity parameters (the bot-
tom panel of Fig. 5).
For WNE stars, the empirical relation of Ṁw ∝ L1.18

∗

is derived from the observations of LMC stars by
Hainich et al. (2014), and that of Ṁw ∝ L1.27

∗ from
Galactic stars by Nugis & Lamers (2000) and Yoon
(2017). On the other hand, the relation of Ṁw ∝

L0.8
∗ -L0.85

∗ is obtained for Galactic WC stars (Nugis & Lamers
2000; Sander et al. 2012; Tramper et al. 2016). While
the deviation of our relation from that of WNE stars
are relatively small, it becomes significant for WC stars.
However, the observed distributions show large scatter
in both stars, so that more sample is needed for more
complete discussion.
By comparing the results between 1 Z⊙ and 2 Z⊙

of Fig. 7, we obtain the metallicity dependence of the
mass-loss rate as Ṁw ∝ Z0.6−0.8 for M∗ ≥ 20 M⊙ both
in He-rich and CO-enriched models. Gräfener et al.
(2017) derived the dependence of Ṁw ∝ Z0.8−1.0 for
their WNE models of M∗ ≥ 25 M⊙ by comparing the
results between the Galactic (Z = 0.02) and LMC metal-
licity (Z = 0.008). Vink & de Koter (2005) also showed
theoretically the metallicity dependence of Ṁw ∝ Z0.86

for their wind models of 10−3-1 Z⊙. Hence, our metal-
licity dependence is slightly shallower compared to other
theoretical studies. On the other hand, Yoon (2017) sug-
gested empirical relations of Ṁw ∝ Z0.6 for WNE stars,
while Tramper et al. (2016) suggested Ṁw ∝ Z0.25 for
WC/WO stars. Our dependence is consistent with the
empirical one for WNE case, but is slightly steeper for
WC/WO case.

4.3. Prad/Pgas at the Sonic Point

Gräfener & Vink (2013) obtained the ratios Prad/Pgas

at the sonic point by deriving the temperature and den-
sity there from the observed values of L∗, Ṁw, v∞, and
R∗, and the assumed beta-type velocity profile with β =
1. They found the typical value to be Prad/Pgas ≈ 80 for
both WC and WO stars, and suggested that this value
can be used as the boundary condition at the sonic point.
To compare their results with our models, we plot,

in Fig. 8, the ratios Prad/Pgas at the sonic point rs
as a function of the stellar mass for the He-rich mod-
els (top panel) and for the CO-enriched models (bot-
tom panel). The ratios lie in the narrow range of
Prad/Pgas ≈ 100 − 160 for both models. For a given
metallicity, they tend to be smaller in the models with
larger mass-loss rates (cf. the bottom panel of Fig. 5).
This is because a larger density at the sonic point leads
to a larger mass-loss rate and a smaller ratio Prad/Pgas.
In accordance with Gräfener & Vink (2013), the ra-

tios are nearly independent of mass, although the val-
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Figure 8. The ratios of radiation to gas pressure at the
sonic point as a function of the stellar mass. The meanings
for the symbols, line types, and colors are summarized in
Table 1. Top panel: for the He-rich models. Bottom panel:
for the CO-enriched models.

ues are slightly larger than theirs. The difference may
be attributed to the fact that our models tend to have
smaller mass-loss rates than the observed WR stars for
a given luminosity (Fig. 7).
More recently, Gräfener et al. (2017) derived for their

WNE star models the ratios Prad/Pgas at the sonic point
to be Prad/Pgas ≈ 100−160, which agree quite well with
our He-rich models.

4.4. HR Diagram

The HR diagrams in Fig. 9 show the He-rich mod-
els (top panel) and the CO-enriched models (bottom
panel). The thick and thin colored lines correspond
to the photospheric temperature Tph and the “effec-
tive temperature” Teff(rs) evaluated at the sonic radius

Hainich et al. 2014,  観測に近い



観測との比較: HR図上の位置

＊本モデルの表面温度 << 星風無し星モデルの表面温度.

WR星風(の超音速領域)の構造は, 単純な星風モデルでは不十分.
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Figure 9. HR diagrams for the He-rich models (top panel) and for the CO-enriched models (bottom panel). The thick and
thin colored lines correspond to the photospheric temperature Tph and the “effective temperature” Teff(rs) evaluated at the
sonic radius rs, respectively. The red and blue lines indicate the metallicities of Z⊙ and 2 Z⊙, respectively. The meanings for
the symbols and line types are summarized in Table 1. Each thin black line shows the locations of the ZAMS (right; from
Schaller et al. (1992)) and He-ZAMS (left, with filled points; from Yoon (2017)). Radius is constant along each oblique dotted
line. The open symbols indicate the “photospheric temperatures” T2/3 evaluated at a radius satisfying τR(R2/3) = 2/3. The
grey circles, squares, and triangles show the locations of the Galactic WNE stars, WC stars, and WN/C transition types,
respectively (Hamann et al. 2006; Sander et al. 2012).
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＊しかし, WR星の表面温度は本モデルよりもさらに小さい.

帯:          
    の違い

τph = κphρphrph = 32(1− ls − χ/2)/9χ (128)

RTD ∼
(
MBH

M∗

)1/3

R∗ (129)

rph ≈ 3.6 rs, v∞ β (130)

M∗ = 20 M⊙ 1R⊙ 3R⊙ 10R⊙ (131)

L∗ ≈ LEdd,es ≡ 4πcGM∗/κes, for M∗ ≥ 100 M⊙ (132)

L∗ ≈ LEdd,es > LEdd,local ≡ 4πcGM∗/κ (133)

κes < κH,κH− v∞,β Lph, Ṁw v∞/vesc(rs),β (134)

κFe ≫ κes at ≈ 105.2 K (135)

MWR ∼ 10-40 M⊙ v∞ ∼ 1000-3000 km s−1 Ṁw ∼ 10−5-10−4 M⊙ yr−1

(136)

Γr ≡ Lrad/LEdd,local v → 0 v(r) = v∞
(
1− rs

r

)β
r ≥ rs C∞ = v∞/vesc(rs)

(137)

表面温度
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2.7 (Kato & Iben 1992; Kato & Hachisu 1994). There-
fore, the boundary condition at the photosphere are rep-
resented as

Teff(rph) = T (rph) ≡ Tph and τ(rph) = 2.7. (19)

By using the effective opacity κeff , we perform the out-
ward integration from the sonic radius and find solutions
that satisfy the photospheric condition.
The values of the five parameters, ρc, Tc, rs, ρs, and

Ts, are determined iteratively so that the wind solution
is smoothly connected to the hydrostatic core solution
at some radius rm between the core center and the sonic
point, satisfying T (rm) ≃ 108 K. Therefore, the energy
generation by He-burning is negligible for r ≥ rm. We
first fix the value of ρs, and then iteratively determine
the values of ρc, Tc, rs, and Ts so that the enclosed mass,
density, and temperature should be continuous, and the
total luminosity should be conserved at the matching
radius rm:

Mcore(rm)=Mwind(rm),

ρcore(rm)=ρwind(rm), (20)

Tcore(rm)=Twind(rm),

and

Lcore(rm)=Lwind(rm)

+ Ṁw

(

v2(rm)

2
+

5R

2µ
Twind(rm) +

4arad
3

T 4
wind(rm)

ρwind(rm)

)

=Λ+ Ṁw

∫ rs

rm

GMr

r2
dr. (21)

Next, ρs is determined so that the wind solution satisfies
the photospheric condition Eq. (19). Then, we obtain a
He-star model with an optically thick wind.

2.4. Chemical Composition

In this paper, we consider two types of He-star models,
He-rich and CO-enriched models. Since we consider H-
free stellar models, the mass fraction of H is set to zero,
X = 0, in both models. The mass fraction of He, Y ,
is calculated from Y = 1 − Z̃, where Z̃ is the mass
fraction of metals heavier than He. In He-rich models,
we suppose that Z̃ is identical with the metallicity Z in
the solar composition (Grevesse & Noels 1993), while in
CO-enriched models, the mass fractions of C and O are
enhanced by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z +
dXC+dXO. In each model, we consider two metallicities
of Z = 1 and 2 Z⊙ with Z⊙ = 0.02 (solar metallicity)2.

2 The exact value of the solar metallicity Z⊙ is still un-
certain. We adopt Z⊙ = 0.02 as the solar metallicity, since
the adopted opacity table is based on the solar composition in
Grevesse & Noels (1993).

Our He-star models may be too simple compared to
actual WR stars. Especially, WC stars may have com-
positional gradients between CO cores and He-rich en-
velopes. We note, however, that our purpose in this pa-
per is to construct whole-star models with optically thick
winds, in which a subsonic wind structure is connected
smoothly to a supersonic part at the sonic point. This
enables us to determine a mass-loss rate uniquely for a
given mass, chemical composition, and opacity parame-
ters. Our simple models are enough to understand the
dependences of the structures around the wind launch-
ing regions and photospheres, and of mass-loss rates on
these parameters.

3. RESULTS

3.1. He-rich Models

3.1.1. Stellar Structure

First, we show the stellar structure of a He-rich model
with M∗ = 30 M⊙ and Z = 1 Z⊙ (Fig. 1). Opacity
parameters are adopted as (v∞/vesc(rs),β) = (1.0, 1.0).
In this model, the matching point to the static core is
located at rm ≃ 0.660 R⊙, the sonic point (filled cir-
cle) at rs ≃ 1.76 R⊙, and the photospheric radius at
rph ≃ 6.29 R⊙. While the wind velocity is sufficiently
subsonic (v ! 1 cm s−1) around rm, it is steeply accel-
erated to a supersonic speed passing through the sonic
radius rs (panel a). It finally reaches a constant speed
of v∞ ∼ 1750 km s−1, which is larger than the escape
velocity at the photosphere rph. The photospheric ra-
dius rph is several times larger than the sonic radius
rs. In this model, the mass-loss rate is evaluated as
Ṁw ≃ 3.98 × 10−5 M⊙ yr−1. These values are within
the range of the observed WNE stars (Hamann et al.
2006).
The density and temperature decline outward steeply

to the sonic radius rs in subsonic layers (see panels b and
c of Fig. 1). In the highly supersonic region, the density
is inversely proportional to the square of radius, ρ ∝ r−2,
since the wind velocity is almost constant there. The
integration is terminated at the photosphere rph with
log Tph ≃ 4.85. We also find that the radiation pressure
dominates the gas pressure over the supersonic region,
while they are almost the same order of magnitude in
the hydrostatic core and deep subsonic part.
The luminosity generated via the nuclear burning

in the core, Lcore ≃ 9.29 × 105 L⊙ (panel d of Fig.
1), is consistent with the mass−luminosity relation ob-
tained from the hydrostatic He-star models (Eq. 3 of
Schaerer & Maeder 1992), which gives Lhs ≃ 1.02 ×

106 L⊙ for M∗ = 30 M⊙. At r = rm, a portion of
the core luminosity is converted into the mechanical lu-
minosity of the wind, which causes a tiny discontinuity

星モデル 
表面温度

Yoon 2017
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Figure 9. HR diagrams for the He-rich models (top panel) and for the CO-enriched models (bottom panel). The thick and
thin colored lines correspond to the photospheric temperature Tph and the “effective temperature” Teff(rs) evaluated at the
sonic radius rs, respectively. The red and blue lines indicate the metallicities of Z⊙ and 2 Z⊙, respectively. The meanings for
the symbols and line types are summarized in Table 1. Each thin black line shows the locations of the ZAMS (right; from
Schaller et al. (1992)) and He-ZAMS (left, with filled points; from Yoon (2017)). Radius is constant along each oblique dotted
line. The open symbols indicate the “photospheric temperatures” T2/3 evaluated at a radius satisfying τR(R2/3) = 2/3. The
grey circles, squares, and triangles show the locations of the Galactic WNE stars, WC stars, and WN/C transition types,
respectively (Hamann et al. 2006; Sander et al. 2012).



Summary & Discussion
•星風と滑らかに繋がったHe星モデルを構成した.

•星風の加速は鉄族元素のopacityにより開始される.

•Wind大気モデルを用いるなどして, line opacityの効果を 
取り入れたモデル化が必要.

•しかし, WR星の表面温度は本モデルよりもさらに小さい.

•本モデルの質量放出率 ~ WR星の観測値.

•スケーリング則:
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Figure 7. Mass-loss rates plotted as a function of pho-
tospheric luminosities. The meanings for the symbols, line
types, and colors are summarized in Table 1. Top panel:
for the He-rich models. The filled grey circles and triangles
show the observed values of the Galactic WNE stars and
WN/C transition types, respectively (Hamann et al. 2006;
Sander et al. 2012). The black solid lines show the mass-loss
rates derived theoretically by Gräfener et al. (2017). Bottom
panel: for the CO-enriched models. The filled grey squares
and triangles show the observed values of Galactic WC stars
and WN/C transition types (Sander et al. 2012). The error
bar shows a typical uncertainty of the observed luminosities.

WN/C transition types, respectively (Hamann et al.
2006; Sander et al. 2012).
Both He-rich and CO-enriched models have mass-loss

rates that are comparable to the observed WR stars,
as discussed in Fig. 5. Moreover, CO-enriched models
have slightly larger rates compared to He-rich models for
a given luminosity or mass. This is consistent with the

observations, where WC stars have larger mass-loss rates
than WNE stars for a given luminosity (Yoon 2017).
Recently, Gräfener et al. (2017) derived the mass-loss

rates for WNE stars by matching Prad and Pgas (or T
and ρ) at the sonic point which their hydrostatic stel-
lar models have with those β-type wind models pre-
dict. In the top panel, the black solid lines show the
relations derived theoretically by Gräfener et al. (2017).
For the solar metallicity case, they obtained the rates of
Ṁw ≈ 10−5.1-10−4.2 M⊙ yr−1 and the scaling relation
of Ṁw ∝ L1.3

∗ for 14-30 M⊙. From Fig. 7, we find out
the scaling relations of Ṁw ∝ L1.2−1.3

∗ for M∗ ≥ 20 M⊙

in both He-rich and CO-enriched models. The rates as
well as scaling relations of Gräfener et al. (2017) agree
quite well with those of our He-rich models.
However, theoretical mass-loss rates of both ours and

Gräfener et al. (2017)’s deviate from the observed rates
of some WR stars. For He-rich models, although so-
lar metallicity models are consistent with some of the
WNE stars with lower mass-loss rates, even 2 Z⊙ mod-
els cannot explain the very high mass-loss rates of less
luminous WNE stars. For CO-enriched models, even
2 Z⊙ models show large deviation from the distribution
of WC stars, although the observed values might have
considerable uncertainties (cf. the error bar in the bot-
tom panel). Future Gaia data releases will improve lu-
minosity measurements and our understanding of these
relationships (Gaia Collaboration et al. 2016).

4.2. Scaling Relations for Mass-Loss Rates

For the most massive models (M∗ ≥ 30 M⊙), a scal-
ing relation, Ṁw ∝ M1.2

∗ , can be derived from the fol-
lowing simple analytical arguments. Mass-loss rates are
determined from the sonic point quantities as Ṁw ≡

4πr2s ρsvs with vs ∝ T 1/2
s . Owing to the strong tem-

perature dependence of the Fe opacity bump, Ts is al-
most independent of the stellar mass: Ts ≈ 2 × 105 K.
A sonic point appears at a point where the luminos-
ity becomes equal to the local Eddington luminosity:
L∗ ≈ 4πcGM∗/κs with κs ≡ κR(ρs, Ts). Since the opac-
ity is roughly proportional to the density around the Fe
bump, κs ∝ ρs, ρs depends on the stellar mass and lumi-
nosity as ρs ∝ M∗/L∗. For the most massive models, the
stellar luminosity is roughly proportional to the stellar
mass: L∗ ∝ M∗ (e.g., Kippenhahn et al. 2012). There-
fore, ρs hardly depends on M∗ as well. Finally, the sonic
radius follows the mass-radius relation of a hydrostatic
He-star model: rs ∝ M0.6

∗ (Fig. 4, top panel). Sum-
marizing the above results leads to the simple scaling
relation: Ṁw ∝ M1.2

∗ ∝ L1.2
∗ . In reality, both Ts and ρs

somewhat depend on the stellar mass, so that the ac-
tual dependence would be a little steeper Ṁw ∝ M1.6

∗

•本モデルの表面温度 << 星風無し星モデルの表面温度.

WR星風(の超音速領域)の構造は, 単純な星風モデルでは不十分.


