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Properties of Neutron Stars 
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R ~12km 
M/M⨀ ~ 1.4 – 2.0  
ρc ~1015 g/cm3 

ρs = 2.68 ×10
14 g / cm3

<nuclear density> 

˝google 



motivations for considering NSs  
•  understanding physics for a high density region 

–  equation of state (EOS) 

–  associated with nuclear/particle physics 

•  existence of high magnetic fields (such as magnetars) 
–  1014 - 1015 G at stellar surface 

–  stronger than a critical field strength of QED (~4×1013G) 

•  probing the theory of gravity 
–  no observations and experiments exist for showing defects of GR 

–  even in strong field-regime? 

–  alternative theory of gravity?? 

•  suitable "laboratory" for physics in extreme states 
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How to construct NSs 

•  Tolman-Oppenheimer-Volkoff (TOV) equation gives density profile 
of the spherically symmetric equilibrium of cold NSs in GR.  
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too many EOSs suggested… 
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common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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17. Özel, F. Soft equations of state for neutron-star matter ruled out by EXO 0748 -
676. Nature 441, 1115–1117 (2006).

18. Ransom, S. M. et al. Twenty-one millisecond pulsars in Terzan 5 using the Green
Bank Telescope. Science 307, 892–896 (2005).

19. Freire, P. C. C. et al. Eight new millisecond pulsars in NGC 6440 and NGC 6441.
Astrophys. J. 675, 670–682 (2008).

20. Freire, P. C. C., Wolszczan, A., van den Berg, M. & Hessels, J. W. T. A massive neutron
star in the globular cluster M5. Astrophys. J. 679, 1433–1442 (2008).

21. Alford,M.etal.Astrophysics:quarkmatterincompactstars?Nature445,E7–E8(2007).
22. Lattimer, J. M. & Prakash, M. Ultimate energy density of observable cold baryonic

matter. Phys. Rev. Lett. 94, 111101 (2005).
23. Podsiadlowski, P., Rappaport, S. & Pfahl, E. D. Evolutionary sequences for low- and

intermediate-mass X-ray binaries. Astrophys. J. 565, 1107–1133 (2002).
24. Podsiadlowski, P. & Rappaport, S. Cygnus X-2: the descendant of an intermediate-

mass X-Ray binary. Astrophys. J. 529, 946–951 (2000).
25. Hotan, A. W., van Straten, W. & Manchester, R. N. PSRCHIVE and PSRFITS: an open

approach to radio pulsar data storage and analysis. Publ. Astron. Soc. Aust. 21,
302–309 (2004).

26. Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the Galactic distribution of
free electrons and its fluctuations. Preprint at Æhttp://arxiv.org/abs/astro-ph/
0207156æ (2002).

27. Lattimer, J. M. & Prakash, M. Neutron star structure and the equation of state.
Astrophys. J. 550, 426–442 (2001).

28. Champion, D. J. et al. An eccentric binary millisecond pulsar in the Galactic plane.
Science 320, 1309–1312 (2008).

29. Berti, E., White, F., Maniopoulou, A. & Bruni, M. Rotating neutron stars: an invariant
comparison of approximate and numerical space-time models. Mon. Not. R.
Astron. Soc. 358, 923–938 (2005).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements P.B.D. is a Jansky Fellow of the National Radio Astronomy
Observatory. J.W.T.H. is a Veni Fellow of The Netherlands Organisation for Scientific
Research. We thankJ. Lattimer for providing the EOSdataplotted inFig. 3, and P. Freire,
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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NS observations can make a constraint on EOS!! 
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Fig. 1. Neutron star properties. The stellar models are constructed from various unified EOSs with different
sets of (L , K0). We plot the relations between the mass and radius (a) and between the gravitational redshift
and radiation radius (b). The mark and end on each line denote the stellar models with ρc = 1.5ρ0 and 2.0ρ0,
respectively. In (a), the labels on the lines denote the values of the nuclear matter parameter η. To distinguish
between the OI-EOSs, we add the values of K0 to the OI-EOS labels; for example, we use “OI 180” for the two
OI-EOSs with K0 = 180 MeV (left, smaller L; right, larger L). The shaded region corresponds to the allowed
region from the observed radiation radius of the neutron star in ω Cen (see text for details).

interactions are different in the sense that BSk19, BSk20, and BSk21 are fitted to the EOSs of neu-
tron matter derived by [18], [31], and [32], respectively. This difference is expected to play a role
in estimating the effect of uncertainties in three-neutron interactions on the stellar properties, as we
shall see. In describing neutron star matter, a compressible liquid-drop approach was used for FPS
and SLy4, while an extended Thomas–Fermi model was used for BSk19, BSk20, and BSk21. To
calculate the neutron star models in the present study, we adopt the analytical expressions for FPS
and SLy4 given by [33], and for BSk19, BSk20, and BSk21 given by [34].

3. Neutron star models Now, we construct nonrotating neutron stars by integrating the Tolman–
Oppenheimer–Volkoff equations from the stellar center of density ρc outward up to the position
where the pressure vanishes. It is not clear up to what density the adopted unified EOSs are applica-
ble. Nonetheless, one can expect that non-nucleonic components such as hyperons and quarks do not
occur below ∼ 2ρ0 [1] and that the uncertainty from three-neutron interactions in the EOS of pure
neutron matter becomes relevant above ∼ 2ρ0, as suggested by quantum Monte Carlo (QMC) calcu-
lations [35]. We thus examine the stellar models for ρc ≤ 2ρ0, where ρ0 is set to 2.68 × 1014 g cm−3,
and the resultant M–R relations are plotted in Fig. 1(a).

To systematically describe various stellar models, we introduce a new auxiliary parameter η defined
as η = (K0L2)1/3. The values of η are shown in Table 1. Remarkably, the M–R relation changes
almost smoothly with η. Note that the OI-EOSs [20] with L ! 10 MeV are too soft to keep the pres-
sure positive and thus not used here. This implies the lower limit of η of order 30 MeV. Meanwhile,
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BW, RB: massive NS? 



saturation 

•  radius of an atomic nucleus with mass number A 

•  binding energy 
 
 
which are independent of atomic nuclei. 

•  density of atomic nuclei 
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 R / A
1/3 ! r0 ≈1.2 ×10

−13cm

 E(A) / A ! 8 MeV

saturation density = 2.68×1014 g/cm3 

(baryon number density = 0.16fm-3) 

ρ ≈ M
R3

≈ mA
r0
3A

= m
r0
3 ≡ ρs



EOS near the saturation point 
•  Bulk energy per nucleon near the saturation point of 

symmetric nuclear matter at zero temperature; 
symmetry parameter 

experiments for 
stable nuclei 

incompressibility 

w (energy) 

w0 

0 

S0+w0 

n0 

S0 

pure neutron 
matter (α=1 ) 

symmetric 
nuclear matter 

(α= 0 ) 

L (gradient) 

K0 (curvature) 

n (density) 
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P(n) = −n2 dw
dn
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nn − np
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neutron stars 

•  Structure of NS 

– solid layer (crust) 

– nonuniform structure (pasta) 

– fluid core (uniform matter) 

•  Crust thickness ≲ 1km 

•  Determination of EOS for  
high density (core) region could be 
quite difficult on Earth 

•  Constraint on EOS via observations 
of neutron stars 

– stellar mass and radius 

– stellar oscillations (& emitted GWs) 

　“(GW) asteroseismology”   
∆R[km] 

pasta 

crust core 
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lo
g
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ρ ≈ ρs

ρs

4 ×1011g / cm3

Neutron 
drip 
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Figure 1. The ratio of the thickness of the phase composed of spherical nuclei to the star’s radius, which was obtained from various OI-EOSs, as a function
of the inverse of the compactness M/R. The upper-left, upper-right, lower-left and lower-right panels correspond to the cases of K0 = 180, 230, 280 and 360
MeV, while the solid-circles, solid-diamonds, solid-squares and open-circles in each panel are the results obtained for −y = 220, 350, 600 and 1800 MeV fm3.
The dotted lines denote the fitting formula given by equation (6).

The thickness of the spherical phase needs to be examined sepa-
rately. In this case, the constant part w0 + S0 + L/3 contributes to
the L dependence of µB − µA (here, µA = mn − b) in such a way
that the L dependence that comes from the density-dependent part
as shown above is weakened. Since the SP–C transition density is
about n0/3 and almost independent of L and K0, furthermore, the
thickness of the spherical phase is expected to depend only weakly
on L and K0. This expectation looks consistent with the behaviour
of µn that can be seen from Table 2. We remark that the thickness of
the whole crust, which is dominated by the thickness of the spherical
phase, has a similarly weak EOS dependence.

As a typical thickness of the whole crust, we will thus use

!R

R
≃ 2.1 × 10−2 R

M

(
1 − 2M

R

)
, (5)

which is based on equation (2) and is independent of L and K0.
Here, the factor 2.1 × 10−2 is slightly different from the factor
2.57 × 10−2 that were obtained by calculating the factor
µB/(mn − b) − 1 in equation (3) from the EOS of FPS (Raven-
hall & Pethick 1994). Note that the factor 2.1 × 10−2 effectively
allows for non-zero C in contrast to the factor 2.57 × 10−2. We
remark that Zdunik & Haensel (2011) and Zdunik et al. (2017)
have also indicated the strong compactness dependence of the rel-
ative crust thickness, while studying the effects of accretion and
rotation. In the present work, we try to derive a fitting formula for
the thickness of the whole crust by including the detailed L and
K0 dependence. Before doing so, in the following subsections, we
consider the thickness of the SP phase and of each pasta phase.

3.1 Phase of spherical (SP) nuclei

By using the neutron star crusts constructed in Section 2 for nine
stellar models with the combinations of three different masses

(M/M⊙ = 1.4, 1.6 and 1.8) and three different radii (R = 10,
12 and 14 km), let us now examine the compactness and EOS de-
pendence of the thickness, !Rsp, of the phase composed of the
spherical nuclei. In Fig. 1, we show the ratio of !Rsp to R as a
function of R/M, which is the reciprocal of the stellar compactness,
for various sets of L and K0. From this figure, we find that !Rsp/R
can be well expressed as a function of R/M for each set of the EOS
parameters:

!Rsp

R
= −α

sp
1

(
R

M

)2

+ α
sp
2

(
R

M

)
− α

sp
3 , (6)

where α
sp
1 , α

sp
2 and α

sp
3 are positive dimensionless adjustable co-

efficients that depend on (L, K0). Note that this form arises from
equation (2) in which the parameter C is taken to be of the order of
unity. We can then expect α

sp
1 to be small compared with α

sp
2 and

α
sp
3 . In Fig. 1, we can confirm that expression (6) does accurately

reproduce !Rsp/R for each set of the EOS parameters. In addition,
one can observe that !Rsp/R strongly depends on the stellar com-
pactness, while the dependence on the EOS parameters is relatively
weak, as expected from the above-mentioned arguments. That is,
one can deduce the value of !Rsp/R once the stellar compactness
is observationally determined.

We then move on to express the coefficients in equation (6) as a
function of the EOS parameters (L, K0). In Fig. 2 we plot the values
of α

sp
i with i = 1, 2 and 3, which were obtained by fitting for several

sets of K0 and L. From this figure, we find that α
sp
i with i = 1, 2 and

3 can be expressed as a function of L for K0 = 180, 230 and 280
MeV by

α
sp
1 = β

sp
11

(
L

60 MeV

)−1

+ β
sp
12 − β

sp
13

(
L

60 MeV

)
, (7)

MNRAS 470, 4397–4407 (2017)



NSs - EOS 

•  physics in NS crust 

•  low-mass NSs 
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(1) TOV equation 
(2) equation of state 
    - model 
    - nuclear interaction 
    - composition 

constraints from the terrestrial 
nuclear experiments 

≀≀ 
properties around  

the saturation density 
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physics in NS (core)     
 

high density region 



Low-mass NSs 
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Fig. 1. Neutron star properties. The stellar models are constructed from various unified EOSs with different
sets of (L , K0). We plot the relations between the mass and radius (a) and between the gravitational redshift
and radiation radius (b). The mark and end on each line denote the stellar models with ρc = 1.5ρ0 and 2.0ρ0,
respectively. In (a), the labels on the lines denote the values of the nuclear matter parameter η. To distinguish
between the OI-EOSs, we add the values of K0 to the OI-EOS labels; for example, we use “OI 180” for the two
OI-EOSs with K0 = 180 MeV (left, smaller L; right, larger L). The shaded region corresponds to the allowed
region from the observed radiation radius of the neutron star in ω Cen (see text for details).

interactions are different in the sense that BSk19, BSk20, and BSk21 are fitted to the EOSs of neu-
tron matter derived by [18], [31], and [32], respectively. This difference is expected to play a role
in estimating the effect of uncertainties in three-neutron interactions on the stellar properties, as we
shall see. In describing neutron star matter, a compressible liquid-drop approach was used for FPS
and SLy4, while an extended Thomas–Fermi model was used for BSk19, BSk20, and BSk21. To
calculate the neutron star models in the present study, we adopt the analytical expressions for FPS
and SLy4 given by [33], and for BSk19, BSk20, and BSk21 given by [34].

3. Neutron star models Now, we construct nonrotating neutron stars by integrating the Tolman–
Oppenheimer–Volkoff equations from the stellar center of density ρc outward up to the position
where the pressure vanishes. It is not clear up to what density the adopted unified EOSs are applica-
ble. Nonetheless, one can expect that non-nucleonic components such as hyperons and quarks do not
occur below ∼ 2ρ0 [1] and that the uncertainty from three-neutron interactions in the EOS of pure
neutron matter becomes relevant above ∼ 2ρ0, as suggested by quantum Monte Carlo (QMC) calcu-
lations [35]. We thus examine the stellar models for ρc ≤ 2ρ0, where ρ0 is set to 2.68 × 1014 g cm−3,
and the resultant M–R relations are plotted in Fig. 1(a).

To systematically describe various stellar models, we introduce a new auxiliary parameter η defined
as η = (K0L2)1/3. The values of η are shown in Table 1. Remarkably, the M–R relation changes
almost smoothly with η. Note that the OI-EOSs [20] with L ! 10 MeV are too soft to keep the pres-
sure positive and thus not used here. This implies the lower limit of η of order 30 MeV. Meanwhile,
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(a)

(b)

Fig. 2. Neutron star masses (a) and gravitational redshifts (b) as a function of η. The stellar models constructed
from various unified EOSs are given for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0. The solid, broken, and dotted lines are
the linear fitting to the cases of ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0, respectively (see text for details).

Fig. 3. Values (marks) of the adjustable parameters c0 and c1 in the mass formula. The corresponding quadratic
fitting curves (solid and broken lines) are also shown as a function of ρc/ρ0. Here we consider the stellar models
only for ρc ! 0.9ρ0 to avoid unstable neutron star models.

It is straightforward to obtain the formula for R from Eqs. (2) and (3). The obtained formula can be
compared with the calculations of R for ρc = 1.0ρ0, 1.5ρ0, and 2.0ρ0 (Fig. 4). We confirm a good
agreement between those two except for η " 70 MeV. The mass and radius formulas could help
to constrain not only the nuclear matter parameter η but also a star’s ρc via possible simultaneous
measurements of the star’s M and R. If such measurements are precise, η could be deduced to within
an accuracy of ±20 MeV, which would provide a basis for analyzing more massive neutron stars.
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the EOS models used here cover the values of η up to ∼ 200 MeV, which is significantly larger than
expected from existing nuclear experiments. We remark that the powers of L and K0 in η are chosen
to be simple rational numbers in such a way that η has the same unit as L and K0, i.e., MeV. If one
considers arbitrary real numbers as the exponents, therefore, one could choose different kinds of η

with which the M–R relation changes as smoothly as the present choice.
From the observational viewpoint, the radiation radius R∞ = R/

√
1 − 2G M/Rc2 and the gravi-

tational redshift z = 1/
√

1 − 2G M/Rc2 − 1 with the gravitational constant G and the speed of light
c could be more relevant in describing the stellar properties than M and R. The calculated z–R∞
relation again shows a smooth change with η [Fig. 1(b)]. The photon flux, if detected, would be pro-
portional to (R∞/D)2, where D is the distance from the Earth, while the gravitational redshift could
be determined from the possible shift of atomic absorption lines in spectra of the stars.

The smooth change of the stellar properties with η suggests that not only future nuclear experiments
but also simultaneous measurements of M and R or, equivalently, z and R∞ could constrain η, which
could in turn lead to restriction of the stellar models. In particular, observations of low-mass neutron
stars would be essential. For example, the radiation radius of the X-ray source CXOU 132619.7–
472910.8 in the globular cluster NGC 5139 (ω Cen) has been determined as R∞ = 14.3 ± 2.1 km
from the Chandra data [36]. The allowed region from this R∞ is shown in Figs. 1(a) and (b) with
the shaded region. This is still consistent with various values of η, but future precise determination
of R∞ could constrain η, if M is low enough. Additionally, thermal spectra detected from quiescent
low-mass X-ray binaries are expected to give M and R simultaneously [3,4].

4. Mass and radius formulas To examine the dependence of the stellar properties on η more
clearly, we plot the stellar masses calculated for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 [Fig. 2(a)]. From this
figure, we find that the stellar masses for fixed ρc can be approximately expressed as a linear function
of η, M/M⊙ = c0 + c1(η/100 MeV), where c0 and c1 are adjustable parameters that depend on ρc.
The validity of η is now evident. The deviation of the calculations from the linear fit at ρc = 2.0ρ0 is
larger than that at ρc = 1.0ρ0, particularly for BSk20 and BSk21. Such deviation is of the order of
uncertainties in M due to three-neutron interactions obtained from the QMC evaluations [35]. The
parameters c0 and c1 can then be expressed as a quadratic function of uc ≡ ρc/ρ0 within the accuracy
of errors less than a few percent (Fig. 3). Finally, we obtain the mass formula:

M
M⊙

= 0.371 − 0.820uc + 0.279u2
c − (0.593 − 1.25uc + 0.235u2

c)
( η

100 MeV

)
, (2)

where we confine ourselves to ρc ! 0.9ρ0; otherwise, the stellar models can become unstable with
respect to decompression, depending on the EOS of neutron star matter.

We also find that the gravitational redshift calculated for fixed ρc can be approximately expressed
as a linear function of η [Fig. 2(b)]. Then, just like the mass formula (2), we can obtain the theoretical
formula for z as

z = 0.00859 − 0.0619uc + 0.0255u2
c − (0.0429 − 0.108uc + 0.0120u2

c)
( η

100 MeV

)
. (3)

Using Eqs. (2) and (3), one could estimate the values of η and uc from possible simultaneous mea-
surements of M and z. In general, Eqs. (2) and (3) can have as many as four sets of solutions (uc, η)

for given observational values of M/M⊙ and z. As mentioned above, however, Eqs. (2) and (3) are
valid in the range of 0.9 " uc ≤ 2.0. In this range, as shown in Fig. 2, the solution (uc, η) has to be
unique.
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FIG. 1. Mass and radius relation for various EOSs for lower-density regions with η = 50.6 (dashed line), 74.7 (dotted line), and 107.4
(solid line). The left, middle, and right panels correspond to different sound velocities for higher-density regions, i.e., α = 1/3, 0.6, and 1,
respectively. The open marks correspond to the stellar models with maximum mass for various EOS models, while the solid marks correspond
to the stellar models with local maximum radii. For reference, the stellar models constructed with the central density ρc = 2ρ0 are denoted by
the double circles.

for various EOS models. From this figure, I find that the
maximum mass strongly depends on the possible maximum
sound velocity inside the star, while the dependence on η is
relatively weak. Additionally, the solid marks in the figure
denote the local maximum of the stellar radius for various
EOS models, which tells us that the local maximum radius
becomes larger with α.

To see the dependence of the maximum mass on η, in Fig. 2
I plot the maximum mass predicted from the various values of
η for the cases of α = 1/3, 0.6, and 1. From this figure, one
can observe that the maximum mass with a fixed value of α is
well fitted as a linear function of η, such as

Mmax

M⊙
= a1 + a2

(
η

1 MeV

)
, (4)

where a1 and a2 are coefficients in the linear fitting, depending
on the value of α. In Fig. 2, the linear fittings given as Eq. (4)
for α = 1/3, 0.6, and 1 are shown with the solid, dashed, and
dotted lines, respectively.

FIG. 2. The expected maximum masses for various EOS models
are shown with different marks, while the solid, dashed, and dotted
lines, respectively, denote the fitting formulas given by Eq. (4) for
α = 1/3, 0.6, and 1. In the legend, I show the values of the saturation
parameters for the adopted EOS, such as (−y,K0). The region
between the horizontal dot-dashed lines denotes the mass observation
of PSR J1614–2230 [3], while the horizontal shaded region denotes
the mass observation of PSR J0348+0432 [4]. The stippled region
denotes a plausible range for η determined from the current terrestrial
nuclear experiments.

With respect to the value of η, by adopting fiducial values
of 30 ! L ! 80 MeV [11] and K0 = 230 ± 40 MeV [12],
one can get a plausible range for η as 55.5 ! η ! 120 MeV.
This plausible range of η is shown in Fig. 2 as the stippled
region, while the observations of neutron star masses, i.e.,
M = (1.97 ± 0.04)M⊙ [3] and M = (2.01 ± 0.04)M⊙ [4], are
also shown in the same figure. To explain the observations
of neutron star masses, the case with α = 1/3, which comes
from the conjecture of Ref. [7], seems to be marginal with the
plausible range of η. In practice, to explain the lower limit of a
neutron star mass of PSR J0348+0432, i.e., M = 1.97M⊙, η
should be larger than ∼100 MeV, which leads to the constraint
of L " 66 MeV with adopting the canonical value of K0 =
230 MeV.

In a way similar to the discussion about the maximum
mass, I additionally find that the radius for a neutron star with
maximum mass with a fixed α can be well described as a linear
function of η as shown in Fig. 3. Thus, I can get a linear fit,
such as

R

1 km
= b1 + b2

(
η

1 MeV

)
, (5)

FIG. 3. The expected radii for the stellar models with maximum
mass constructed with various EOS models are shown with different
marks, while the solid, dashed, and dotted lines, respectively, denote
the fitting formula given by Eq. (5) for α = 1/3, 0.6, and 1. In the
legend, I show the values of the saturation parameters for the adopted
EOS, such as (−y,K0). The stippled region denotes a plausible range
for η determined from the current terrestrial nuclear experiments.
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FIG. 4. The coefficients a1 and a2 in Eq. (4) as a function of α.
The dashed lines are fittings given by Eqs. (6) and (7).

where b1 and b2 are coefficients in the linear fit, which depend
on the value of α.

Furthermore, I plot the coefficients in the linear fit [Eqs. (4)
and (5)], i.e., a1, a2, b1, and b2, as a function of α in Figs. 4
and 5. Then, I find that such coefficients can be well fitted as
a function of α with the functional forms given by

a1(α) = −0.356/α + 2.445 + 0.767α, (6)

a2(α) = (0.806/α + 1.098 − 0.393α) × 10−3, (7)

b1(α) = −0.883/α + 11.548 + 1.388α, (8)

b2(α) = (6.008/α + 4.834 − 0.824α) × 10−3. (9)

In Figs. 4 and 5, the marks denote the numerical values in
linear fitting [Eqs. (4) and (5)], while the dashed lines are
plotted using Eqs. (6)–(9). Now, I can get the fitting formulas
expressing the maximum mass and radius of a neutron star
with maximum mass as a function of η and α.

Finally, adopting the linear fitting expressed by Eq. (4)
together with Eqs. (6) and (7), one can obtain the possible max-
imum mass of a neutron star predicted with the plausible value
of η for various values of α, which corresponds to the region
between the solid lines in Fig. 6. In the same figure, I denote
the observations of neutron star mass for J1748 − 2021B [17]
and for PSR J0348+0432 [4] with the shaded regions. As
mentioned before, the observation of PSR J0348+0432 is

FIG. 5. The coefficients b1 and b2 in Eq. (5) as a function of α.
The dashed lines are fittings given by Eqs. (8) and (9).

FIG. 6. The maximum mass of neutron stars predicted with the
plausible value of η, i.e., 55.5 ! η ! 120 MeV, is shown as a
function of α in the region between the solid lines. The shaded
regions correspond to the observations of neutron star mass for
J1748 − 2021B [17] and for PSR J0348+0432 [4].

possible to explain even for α = 1/3 (or vmax
s = 1/

√
3), but to

explain the observation of J1748 − 2021B (even though this
may be rather uncertain), the value of α should be at least larger
than ∼0.57, i.e., vmax

s " 0.75c. If this result is to be believed,
one may need to introduce some mechanism with which the
EOS for higher-density regions becomes stiff, for example,
introducing a vector interaction. Moreover, with future obser-
vations of massive neutron stars, one could put a constraint on
the possible maximum sound velocity inside a star.

IV. CONCLUSION

To describe the EOS of neutron star matter, the nuclear
saturation parameters are important for low-density regions,
while the possible maximum sound velocity could be a key
parameter for high-density regions. In fact, the neutron star
structures in the density region lower than ∼2ρ0 can be
well described by a combination of the nuclear saturation
parameters such as η = (K0L

2)1/3 [8,9]. To discuss the
possible maximum mass of neutron stars, I simply consider the
EOS constructed in such a way that the phenomenological EOS
with various values of η for lower-density regions is connected
at ρ = 2ρ0 to the EOS for higher-density regions characterized
by the possible maximum sound velocity. As a result, I find that
the possible maximum mass can be expressed as a function of
η and the possible maximum sound velocity for high-density
regions. With future observations of massive neutron stars, one
could get a constraint on the possible maximum sound velocity,
which may give us a hint for understanding the physics in the
higher-density regions. In this paper I simply connect the EOS
for lower-density regions to that for higher-density regions, but
the smooth connection at the transition density might reduce
the maximum mass. In such a case, the constraint on the
possible maximum sound velocity inside a star may become
more severe.
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how to obtain the properties of NSs 

•  direct observations of NSs 
–  mass 

–  radius 

–  compactness 

•  (GW) asteroseismology 
–  using oscillation frequencies 

–  similar to seismology and  
helioseismology 
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フロンティア地球観測 予測外の発見を求めて

図3　中国東北部の地下の構造

NECESSArrayで観測したP波のデータを解析し
た結果。深さ600kmに見える地震波の高速度領
域（青）は、スラブに対応する。高速度領域が途切
れて低速度領域（赤）があることから、スラブに穴
が開いているのではないかと考えられている。スラ
ブの穴の上には、長白山という火山がある。アメリ
カチームがS波のデータを解析した結果でも、同じ
ような構造が見えている。

川勝 均　海半球観測研究センター 教授

P波速度

遅い 速い

長白山

（取材・執筆：鈴木志乃）

みにはまって動けなくなったり、収録計を入れ
た容器が爆発したりといったトラブルはありま
したが、大きな事故はなく2年間の観測を終
了し、撤収することができました」

スラブに穴が開いている？
　NECESSArrayの観測データは、観測終
了から2年間、プロジェクトメンバーが独占し
て使うことができる。観測データの解析からど
のようなことが見えてきたのだろうか。
　1回目の保守点検で回収した観測データ
には、2009年9月30日に南アメリカのボリ
ビアで起きた地震が記録されていた。「とて
も良質なデータが取れていました」と川勝教
授。中国東北部は、人口密度が低いため人
工的なノイズが少ないこと、内陸なので海の
波のノイズが弱いことなどによる。「この良質
なデータが2年分集まれば、新しいことが見え
てくるに違いないと期待が膨らみました」。そ
の期待は裏切られなかった。「中国大陸の下
のスラブは、これまで考えられていたのとは違
う、驚くべき姿をしていることが分かりました」
　NECESSArrayの観測データを解析する
と、深さ600kmあたりでは東側に地震波の
高速度領域（青）が見える（図3）。これは、ス
ラブである。スラブは周囲より冷たいため、地
震波の速度が速くなる。スラブの存在はこれ
まで分かっていた通りだった。問題はその西
側だ。「高速度領域が途切れ、その西側に低
速度領域（赤）があったのです。それは、滞留
しているスラブが途切れ、暖かいあるいは軟
らかい物質があることを意味します。このデー
タをどのように解釈すべきか議論の途中で、
決着はついていませんが、スラブに穴が開い
ている可能性があります」（表紙、想像図）
　川勝教授は続ける。「さらに興味深いの
は、そのスラブの穴の上に長白山があること
です。スラブの穴と長白山の形成には何らか
の関係があると考えるのが自然でしょう」。ス
ラブの下には高温のマントルがあり、それが
海洋プレートの穴を通って上昇し火山をつく
ったのではないか、とも考えられている。
　「本当にスラブに穴が開いているのか。長
白山の下にある低速度領域の正体は何か。
それらについて明らかにしていく必要がありま
す。私は、スラブに穴が開いているのではな
く、長白山の下から西側にはスラブがないか

もしれないと考えています」と川勝教授。

マントルの底や内核を描き出す
　三つ目の目的である地球深部についても
新たな知見が得られた。「南太平洋の下にあ
るプルームのしっぽを捉えることができました」
と川勝教授。これまでの地震波トモグラフィ
ー観測によって、アフリカと南太平洋の下に
マントルの上昇流、プルームがあることが分
かっている。プルームのしっぽ、つまりマントル
の底にあるプルームの発生領域を探る研究
は、アフリカについては進んでいるが、南太平
洋については遅れていた。NECESSArray
の観測によって、南太平洋の下のマントルの
底が詳しく見えたのだ。
　南太平洋の下のマントルの底には、地震
波の低速度領域が薄く広がっていた。しか
も、地震波速度の変化は急激で、周囲との
境界がくっきりしている。「暖かい物質がある
とも考えられます。しかし、熱は周囲にも伝わ
っていくので、地震波速度も緩やかに変化す
るはずです。速度が急激に変化しているとい
うことは、組成などが異なる物質があることを
意味するのではないかと考えています」
　地球の中心にある核は、固体の内核と、
その外側にある液体の外核に分かれてい
る。これまでの観測から、内核の構造は均
一ではなく、東半球と西半球でそれぞれ特
徴的な構造を持つことが示唆されている。
NECESSArrayでは、西半球の広い領域で
の特徴を抽出し東半球との違いをはっきり捉
えることに成功。内核の成長を理解する手
掛かりになる大きな成果である。
　NECESSArrayのデータは2014年2月
に公開された。「世界中の研究者が独自の
視点で解析することで、中国大陸の下の構
造や、私たちが思い付かなかったようなマント
ル・核の研究が進むことを期待しています」

伊豆大島や瀬戸内海に
大規模観測網を
　川勝教授は、「回収してきた40台の地震
計を有効に使わないともったいない」と言う。
「例えば、伊豆大島で集中観測をすれば、火
山活動のメカニズム解明につながるでしょう。
瀬戸内海にも観測網をつくりたいですね」
　南海トラフではフィリピン海プレートがユー

ラシアプレートの下に沈み込み、巨大地震の
震源域となっている。そこでどのような地震が
発生するかを理解するには、フィリピン海プレ
ートがどのように沈み込んでいるかを知ること
は重要だ。しかし、四国と中国地方の間の下
の様子がよく分かっていない。「瀬戸内海が
あるため、観測が手薄なのです。瀬戸内海の
島々に観測点をつくれば、沈み込むフィリピン
海プレートの姿が詳しく見えるはずです」
　「周到に準備して観測を行っても、得られ
たデータを解析すると、思いがけないものが
いつも見えてきます。これだから観測は面白
い。地球はまだ分からないことばかり」と川勝
教授は言う。「良い観測研究には、予測をす
るための“理”と、予測を外すための“勘”が必
要。これからも新しい場所で新しい観測をし
て、新しい地球の姿を描き出したいですね」

˝東大地震研究所 

˝NAOJ 

common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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mass of NSs 
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Although simple

average mass of

w.d. companions

is 0.23 M� larger,

weighted average is

0.04 M� smaller

Champion et al. 2008

Demorest et al. 2010

Antoniadis et al. 2013

Romani et al. 2012

vanKerkwijk 2010

J. M. Lattimer Symmetry Energy and Neutron Star Structure

Lattimer 2013 



NICER (Neutron star Interior Composition ExploreR) 

•  pulse profile from a pulsar à M/R (compactness) 
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https://heasarc.gsfc.nasa.gov/docs/nicer/nicer_about.html 



oscillations in NSs 
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Oscillations & Instabilities

13.05.2016 NAOJ 16

The	most	promising	strategy	for	constraining	the	physics	of	neutron	stars	involves	
observing	their	“ringing”	(oscillation	modes)

Ø f-mode	:	scales	with	average	density
Ø p-modes:	probes	the	sound	 speed	through	out	the	star
Ø g-modes	:	sensitive	to	thermal/composition gradients

Ø w-modes:	oscillations	of	spacetime itself.

Ø s-modes:	Shear	waves	in	the	crust
Ø Alfvènmodes:	due	 to	magnetic	field

Ø i-modes:	inertial	modes	associated	with	rotation	(r-mode)

3 = 2,6 = 2 3 = 3,6 = 3 3 = 4,6 = 4

Typically	SMALL	AMPLITUDE	oscillations	–>	weak	emission	of	GWs

UNLESS	
they	become	unstable	due	to	rotation	(r-mode &	f-mode)

slide by Kokkotas 

(t-modes)	



QPOs in SGRs 
•  Quasi-periodic oscillations (QPOs) in afterglow of giant flares from soft-

gamma repeaters (SGRs) 

–  SGR 0526-66 (5th/3/1979) : 43 Hz 

–  SGR 1900+14 (27th/8/1998) : 28, 54, 84, 155 Hz 

–  SGR 1806-20 (27th/12/2004) : 18, 26, 30, 92.5, 150, 626.5, 1837 Hz 

–  additional QPO in SGR 1806-20 is found : 57Hz (Huppenkothen + 2014) 

Strohmayer & Watts (2006) 

•  Crustal torsional oscillation ? 

•  Magnetic oscillations ? 

(Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06) 
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advantage for crustal oscillations 
•  magnetic configuration inside NSs are still uncertain 

•  EOSs for core region are unfixed yet 

•  to avoid such uncertainties, we focus on the crustal torsional 
oscillations without effects of magnetic field 

–  fluid core: zero shear modulus ---> no shear oscillations 

–  torsional oscillations localize only in crust region 

•  magnetic effect  
on torsional oscillations 

–  frequencies can become larger 
(HS+07, Gabler+12,13) 
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Magnetic strength 

Alfven 
Crustal  

(+ Alfven) 

B ≈ 1015 G 

SGR1900+14 
SGR1806-20 



torsional oscillations 

•  axial parity oscillations 

–  incompressible 

–  no density perturbations (less associated with GWs) 

•  in Newtonian case 

 

–  μ: shear modulus 

–  frequencies ∝ shear velocity  

–  overtones depend on crust thickness 

•  one can consider torsional oscillations  
independently of core EOS 

(Hansen & Cioff  1980) 

vs = µ / ρ
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EOS near the saturation point 
•  Bulk energy per nucleon near the saturation point of 

symmetric nuclear matter at zero temperature; 
symmetry parameter 

experiments for 
stable nuclei 

incompressibility 

w (energy) 

w0 

0 

S0+w0 

n0 

S0 

pure neutron 
matter (α=1 ) 

symmetric 
nuclear matter 

(α= 0 ) 

L (gradient) 

K0 (curvature) 

n (density) 
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P(n) = −n2 dw
dn

α =
nn − np
n

current constraints on K0 & L 
 - K0 = 230 ± 40 MeV (Khan+13) 
 - 40 ≲ L ≲ 80 MeV (Li+ 13)  

for bcc lattice 

ni : ion number density 
Z : charge of nuclei 
a : Wigner-Seitz radius 

19 (Strohmayer+ 91)  



0t2 without superfluidity 

•  0t2 is almost independent of the value of K0 

•  For R=10~14 km and M/M⊙=1.4~1.8，similar dependence on K0 

•  Focus on L dependence of 0t2 

(HS+12a) 
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1.4M⊙, 12km 

w  

n  



Effect of superfluidity 
•  For ρ ≳ 4 × 1011 g cm-3, neutron could drip from nuclei 

•  Effective enthalpy affecting on the shear oscillations could be 
reduced 
-  shear speed (vs

2 ~ μ/H ) increases due to the effect of superfluidity 

•  0tl could also increase due to the effect of superfluidity  

•  While, the fraction of superfluid  
neutron in dripped neutron is  
still unknown… 

-  Chamel (2012): superfluid neutron  
are not so much (~10-30%?) 

(HS+12b) 
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Identifications of SGR 1806-20 

•  for R = 12 km and M = 1.4M⊙ 

•  discovery of new QPO from SGR1806-20, which is 57Hz 
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constraint on L via QPO frequencies 
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SGR 1900+14

➡ 101.1 ⩽ L ⩽ 131.0 MeV 
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1)  all QPOs come from crustal 
torsional oscillations (HS+13a) 

cf) L = 40 ~ 80 MeV  ?? 
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0t2

0t3
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0t5
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0t9

for M=1.4M⊙ & R=12km 

?	

l = 2, 3, 6, & 10 



constraint on L via QPO frequencies 
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1.4 1.6 1.850

60

70
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M/M⊙
L 

[M
eV

]

➡  58.0 ⩽ L ⩽ 85.3 MeV  

1)  all QPOs come from crustal 
torsional oscillations (HS+13a) 

2)  QPOs except for 26Hz come 
from crustal torsional oscillations 

     (HS+13b) 

cf) L = 40 ~ 80 MeV  ?? need to prepare another oscillation 
mechanism to explain 26 Hz QPO ! 



as a possibility of 26Hz… 
•  we consider the oscillations in the pasta structure 

•  shear modulus in pasta phase 

–  slab phase: shear is the 3rd order of displacement (Landau) 
à in the linear perturbation, oscillations in slab are negligible 

–  two independent oscillations can be excited in different regions: 

①  oscillations in spherical and cylindrical nuclei 

②  oscillations in bubble and cylindrical-hole nuclei 

–  as a first step, we consider only oscillations in bubble phase 

•  for L ≳ 75MeV, bubble structure disappears 
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comparison with QPOs 

 

•  Oscillation in bubble might be possible to correspond to 26Hz QPO, 
depending on the entrainment rate. 

•  Observational evidence for showing the existence of bubble phase!?  
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effect of pasta structure 
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HS+ in prep. 
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Figure 2. Effective shear modulus in the phase of spherical nuclei (µsp) and in the phase of cylindrical nuclei (µcy) is plotted by the
solid and dashed lines, respectively, for the stellar model with 1.4M⊙ and 12 km. The each line corresponds to the case of L = 7.6, 42.6,
and 73.4 MeV from top down, where the value of K0 is fixed to be 230 MeV.

µcy =
2
3
C. (7)

In this paper, we adopt this type of shear modulus in the phase of cylindrical nuclei for the calculation of torsional oscillations.

To estimate the shear modulus µcy at each density, we adopt the value of ECoul at each density obtained when the OI-EOS

is constructed with the Thomas-Fermi model. We remark that ECoul with the liquid drop model is given by

ECoul =
π
2

(ρpRp)2w2

[
ln

(
1

w2

)
− 1 + w2

]
, (8)

where ρp is the charge density inside the nuclei, i.e., ρp ≡ enp with the proton number density inside the nuclei, np, while w2 is

the volume fraction defined as w2 ≡ (Rp/Rc)
2 with the radius of cylindrical nuclei Rp and the unit cell radius Rc (Ravenhall,

Pethick & Wilson 1995).

Additionally, the phase of slab-like nuclei may exist inside the phase of cylindrical phase, depending on the EOS param-

eters. The elastic properties in the phase of slab-like nuclei have been also discussed in de Gennes & Prost (1993); Pethick

& Potekhin (1998), where they showed that the energy-change due to the deformation becomes the higher order effect of the

displacement. That is, the phase of slab-like nuclei behaves as a fluid at least in the linear analysis for the torsional motion.

So, even if the additional pasta phases might exist inside the phase of slab-like nuclei, the torsional oscillations are confined

in the region of spherical and cylindrical nuclei, which can be considered independently of the torsional oscillations in the

region of cylindrical-hole and spherical-hole nuclei (Sotani, Iida & Oyamatsu 2017a).

In such a reason, we can focus on the oscillations only in the region of spherical and cylindrical nuclei, where the

corresponding effective shear modulus is given by Eqs. (4) and (7), respectively. In Fig. 2, we show the effective shear modulus

in the region of spherical and cylindrical nuclei for the stellar model with 1.4M⊙ and 12 km, where the solid and dotted

lines correspond to µsp and µcy. In the figure, the lines from top down correspond to the results for L = 7.6, 42.6, and 73.4

MeV, where the value of K0 is fixed to be 230 MeV. We remark that the shear modulus in the lower density region, which

corresponds to the region from the right edge of horizontal axis up to the stellar surface, agrees with each other. From this

figure, one can observe that the effective shear modulus discontinuously reduces at the phase transition from spherical nuclei

to cylindrical nuclei. Due to the sudden change of the nuclear structure, the shear modulus also discontinuously changes at

the phase transition from the spherical nuclei into the cylindrical nuclei (Araki 2014).

4 TORSIONAL OSCILLATIONS AND COMPARISON WITH QPOS

In order to determine the frequencies of torsional oscillations, we consider a linear analysis on the equilibrium configuration

of neutron star crust. Since the torsional oscillations are an axial type of oscillations, we can safely adopt the relativistic

Cowing approximation, where the metric perturbations are neglected. Owing to the spherically symmetric background, the

oscillations are described with one perturbation variable, i.e., the Lagrangian displacement (Y) of matter element in the φ

direction. With this variable, the perturbation equation is derived by linearizing the relativistic equation of motion, such as

Y ′′ +

[(
4
r

+ Φ′ − Λ′
)

+
µ′

µ

]
Y ′ +

[
H̃
µ

ω2e−2Φ − (ℓ + 2)(ℓ − 1)

r2

]
e2ΛY = 0, (9)

where H̃ is the effective enthalpy given in section 2, the prime denotes the differentiation relative to r, and ω denotes the

eigenfrequencies of torsional oscillations (Schumaker & Thorne 1983). We notice that ω is associated with the frequencies of

torsional oscillations, f , via ω = 2πf . Since we consider the excitation of torsional oscillations inside the phases of spherical

c⃝ 0000 RAS, MNRAS 000, 000–000

spherical 
Strohmayer+91 

cylindrical 
Potekhin+98 

ς = (K0
4L5 )1/9
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Figure 14. The suitable values of ς for explaining the observed QPO 626.5 Hz with the 1st overtone are shown for various neutron star
models with Ns/Nd = 1.0.

Hz QPO observed in SGR 1806−20 (dot-dash-line). From this figure, one can find that the suitable values of ς for identifying

the 626.5 Hz QPO with the 1st overtone of crustal torsional oscillations are ς = 178.5, 149.7, and 107.1 MeV for R = 10, 12,

and 14 km, respectively. In the similar way, the suitable values of ς for identifying the 626.5 Hz QPO with the 1st overtone

of crustal torsional oscillations are shown in Fig. 14 for various neutron star models with Ns/Nd = 1.0.

Moreover, for each neutron star model, the suitable value of L for explaining the QPOs observed in SGR 1806−20 except

for 26 Hz are already fixed as shown in Fig. 6. With this constraint on L together with the constraint on ς as shown in Fig. 14,

we can get the constraint on K0 for each neutron star model via K0 = (ς9/L5)1/4, which is plotted in Fig. 15. On the other

hand, the value of K0 is constrained via the terrestrial nuclear experiments, i.e., K0 = 230 ± 40 MeV (Khan & Margueron

2013). This constraint on K0 is also shown with the painted region in the same figure. Therefore, the neutron star model, with

which the QPOs observed in SGR 1806−20 can be identified by the fundamental frequencies and the 1st overtone of crustal

torsional oscillations, would be better to be low-mass neutron star with relatively larger radius, such as M ≃ 1.4 − 1.5M⊙

for the neutron star model with R = 14 km, or maybe M ≃ 1.3 − 1.4M⊙ for the neutron star model with R = 13 km. The

similar result can also be obtained even for the case with Ns/Nd = 0 as shown in Fig. 16. If this constraint on the neutron

star model would be accepted, from Figs. 9 and 10, we may obtain the further constraint on L. That is, L should be around

61 − 70 MeV for Ns/Nd = 1.0, while L is around 58 − 68 MeV for Ns/Nd = 0. Thus, considering an uncertainty of the value

of Ns/Nd inside the phase of cylindrical nuclei, we derive the constraint on L as L ≃ 58 − 70 MeV for explaining the QPOs

observed in SGRs with the crustal torsional oscillations. We remark that, in any way, the 26 Hz QPO should be explained by

the oscillations in the phases of cylindrical-hole and spherical-hole nuclei.

5 CONCLUSION

We systematically calculate the torsional oscillations excited in the region composed of the spherical and cylindrical nuclei,

as varying the neutron star mass, radius, and the entrainment ratio of neutron superfluidity in the phase of cylindrical nuclei.

Owing to the nature that the elastic properties in the slab-like nuclei behave like fluid against the linear perturbation, we

can solely consider the torsional oscillations inside the phases of spherical and cylindrical nuclei. As a result, now we can

discuss the properties of overtones as well as the fundamental torsional oscillations. First, we can find that the fundamental
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Figure 15. The resultant constraint on K0 obtained by combining the constraints on L and ς are shown for various neutron star
models with Ns/Nd = 1.0. The painted region denotes the constraint on K0 obtained from the terrestrial nuclear experiments (Khan &
Margueron 2013).
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Figure 16. Same as Fig. 15, but with Ns/Nd = 0.

frequencies are more or less similar to the results as in the previous our studies, where we considered the torsional oscillations

inside the phase of spherical nuclei. In practice, the fundamental frequencies can be expressed as a quadratic function of the

slope parameter of the nuclear symmetry energy L independently of the incompressibility of symmetric nuclear matter K0

for each neutron star model. By identifying the low-lying QPOs observed in SGR 1806−20 except for the 26 Hz QPO and

in SGR 1900+14, we can obtain the constraint on L as L = 54.3 − 85.0 MeV even taking into account an uncertainty of the

entrainment ratio of neutron superfluidity in the phase of cylindrical nuclei.

Meanwhile, we confirm that the 1st overtones are almost independent of the angular index ℓ for each neutron star model.

Additionally, we succeed to find the suitable combination of L and K0 for expressing the 1st overtones, which is a new

parameter defined as ς ≡ (K4
0L5)1/9 in units of MeV. In fact, the 1st overtones can be expressed as a quadratic function of ς.

Then, assuming that the 626.5 Hz QPO observed in SGR 1806−20 is identified by the 1st overtone, we consider to constrain the

value of ς. Furthermore, adopting the constraint on L obtained from the identification of the low-laying observed QPOs with

the fundamental torsional oscillations, the constraint on ς can be converted into the constraint on K0. Since the constrained

region of K0 is larger than that obtained from the terrestrial nuclear experiments, we can constrain the neutron star model for

explaining the observed QPOs by the crustal torsional oscillations. Actually, the low-mass neutron star with relatively larger

radius may be favored in this scenario. With these constraints on the neutron star models, finally we can derive the further

constraints on L, i.e., L ≃ 58− 70 MeV, even considering an uncertainty of the value of Ns/Nd inside the phase of cylindrical

nuclei. In any way, in our scenario, the 26 Hz QPO should be explained by additional oscillation mechanism. Maybe, this

additional mechanism is the torsional oscillations excited inside the phases composed of cylindrical-hole and spherical-hole

nuclei.
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constraints on L 

•  26Hz : bubble (0t2), 626.5Hz : spherical + cylindrical (1t2) 
à SGR1806-20 should be relatively low mass NS (M~1.3M⊙, R~13km??) 
à L ~ 58-70MeV 
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2 W. G. Newton et al.: Constraints on the symmetry energy from observational probes of the neutron star crust

Fig. 1. (Color online) Recent constraints on the slope of the symmetry energy L from analysis of terrestrial experiments and astrophysical
observations, some of which can be found summarized in this issue. Taken from [10]. The community average L ⇡ 60 MeV should be taken
only as guide to the favored values of L that emerge from the wide variety of experimental evidence.

trons, protons and nucleons in the system. For uniform nuclear
matter, both parameters � and I are identical. Nuclear matter
with equal numbers of neutrons and protons (� = 0) is referred
to as symmetric nuclear matter (SNM); nuclear matter with
� = 1 is naturally referred to as pure neutron matter (PNM).
Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇢

0

⇡ 2.6 ⇥ 10

14

g cm�3 ⌘ 0.16 fm�3

= n

0

. Nuclear experiments tend to con-
strain the behavior of the binding energy of symmetric nuclear
matter, E(n ⇠ n

0

, � ⇠ 0) to within relatively tight ranges,
but direct ab initio calculations there are extremely difficult. In
contrast, experimental data directly probing E(n ⇠ n

0

, � ⇠ 1)

is impossible, but state-of-the-art ab initio calculations of PNM
have led to significant constraints on E(n < n

0

, � ⇠ 1). By ex-
panding E(n, �) about � = 0,

E(n, �) = E

0

(n) + S(n)�

2

+ ..., (1)

we can define a useful quantity called the symmetry energy

S(n) =

1

2

@

2

E(n, �)

@�

2

����
�=0

, (2)

which encodes the change in the energy per particle of nuclear
matter as one moves away from isospin symmetry. This allows
extrapolation to the highly isospin asymmetric conditions in
neutron stars. The simplest such extrapolation, referred to as
the parabolic approximation (PA) gives the relation

E

PNM

(n) ⇡ E

0

(n) + S(n). (3)

Since our experimental constraints are dominated by results
from densities close to n

0

, it is customary to expand the sym-
metry energy about � = 0 where � =

n�n0
3n0

, thus obtaining

S(n) = J + L�+

1

2

K

sym

�

2

+ ..., (4)

where J , L and K

sym

are the symmetry energy, its slope and
its curvature at saturation density. The true values of the higher
order symmetry energy parameters L, K

sym

, ... are still some-
what uncertain, and the measurement of L in particular has
been the subject of an intense experimental campaign by the
nuclear physics community in recent years using nuclear probes
such as masses, neutron skins, nuclear electric dipole polariz-
ability, collective motion and the dynamics of heavy ion colli-
sions (see, e.g.[1,2,3] for recent summaries). Ab initio calcu-
lations of PNM with well defined theoretical errors offer ad-
ditional constraints on J and L [4,5,6,7,8]. Both theory and
experiment are generally in broad agreement that L falls in the
rather loose range 30 . L . 80 MeV, although higher values
in particular are not completely ruled out [9]. Fig. 1 shows a
selection of experimental constraints on L, together with con-
straints inferred from astrophysical observation, some of which
will be discussed in this review [10].

Since neutron star matter contains a low fraction of pro-
tons, many inner crust and global stellar properties are sensi-
tive to the symmetry energy parameters. To give a classic ex-
ample, the pressure of PNM at saturation density is given in
the parabolic approximation by P

PNM

(n

0

)=n
0

L/3. The pres-
sure at the crust-core boundary and in the outer core is domi-
nated by neutron pressure so a strong correlation should exist
between the pressure in neutron stars near saturation density
and L. Neutron star EOSs which have higher pressures at a
particular density are often referred to as ‘stiff’; lower pressure
EOSs are referred to as ‘soft’. Thus ‘stiff’ EOSs at saturation
density are associated with high values of L and ‘soft’ EOSs
with low values of L. This fact leads to a strong correlation be-
tween the radii of neutron stars and the slope of the symmetry
energy near saturation density [11].

The crust of a neutron star is divided into two layers; the
outer crust and inner crust. The microscopic structure of the
crust is a crustal lattice of nuclei. The nuclei become increas-
ingly more massive and neutron-rich with depth, immersed in

Li et al. (2013) 
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Oscillations & Instabilities

13.05.2016 NAOJ 16

The	most	promising	strategy	for	constraining	the	physics	of	neutron	stars	involves	
observing	their	“ringing”	(oscillation	modes)

Ø f-mode	:	scales	with	average	density
Ø p-modes:	probes	the	sound	 speed	through	out	the	star
Ø g-modes	:	sensitive	to	thermal/composition gradients

Ø w-modes:	oscillations	of	spacetime itself.

Ø s-modes:	Shear	waves	in	the	crust
Ø Alfvènmodes:	due	 to	magnetic	field

Ø i-modes:	inertial	modes	associated	with	rotation	(r-mode)

3 = 2,6 = 2 3 = 3,6 = 3 3 = 4,6 = 4

Typically	SMALL	AMPLITUDE	oscillations	–>	weak	emission	of	GWs

UNLESS	
they	become	unstable	due	to	rotation	(r-mode &	f-mode)

slide by Kokkotas 

(t-modes)	



Dawn of GW astronomy era 

•  tidal deformability : λ = -Qij/Eij  
–  Qij : response of quadrupole moment 

–  Eij : external tidal field 

–  stiffer EOS : less compactness NS 
 (or large radius with fixed mass) 
à larger λ 

•  Λ: dimensionless quantity ofλ 
–                   &  

–  Λ < 800 (GW170817) 
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Gravitational-wave constraints on the neutron-star-matter Equation of State

Eemeli Annala,1 Tyler Gorda,1 Aleksi Kurkela,2 and Aleksi Vuorinen1

1Department of Physics and Helsinki Institute of Physics,
P.O. Box 64, FI-00014 University of Helsinki, Finland

2Theoretical Physics Department, CERN, Geneva, Switzerland and
Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway

The LIGO/Virgo detection of gravitational waves originating from a neutron-star merger,
GW170817, has recently provided new stringent limits on the tidal deformabilities of the stars
involved in the collision. Combining this measurement with the existence of two-solar-mass stars,
we generate the most generic family of neutron-star-matter Equations of State (EoSs) that inter-
polate between state-of-the-art theoretical results at low and high baryon density. Comparing to
results from similar calculations prior to the tidal deformability constraint, we witness a dramatic
reduction in the family of allowed EoSs. Based on our analysis, we conclude that the maximal radius
of a 1.4-solar-mass is 13.4 km, and that smallest allowed tidal deformability of a similar mass star
is ⇤(1.4M�) = 224.

I. INTRODUCTION

The collective properties of the strongly-interacting
dense matter found inside neutron stars (NS) are noto-
riously di�cult to predict [1, 2]. While the Sign Prob-
lem prevents lattice Monte-Carlo simulations at nonzero
chemical potentials [3], nuclear-theory tools such as Chi-
ral E↵ective Theory (CET) are limited to sub-saturation
densities [4] and perturbative QCD (pQCD) becomes re-
liable only at much higher densities [5]. No controlled,
first-principles calculations are applicable at densities en-
countered inside the stellar cores.

Despite the above di�culties, it is possible to obtain
robust information on the properties of neutron-star mat-
ter at core densities. In particular, the requirement that
the Equation of State (EoS) must reach its known low-
and high-density limits while behaving in a thermody-
namically consistent fashion in between poses a strong
constraint on its form. This was demonstrated, e.g., in
[6, 7], where a family of EoSs was constructed that in-
terpolate between a CET EoS below saturation density
and a pQCD result at high densities. This family quan-
tifies the purely theoretical uncertainty on the EoS at
intermediate densities, but the quantity can be further
constrained using observational information about the
macroscopic properties of NSs.

The first significant constraint for the EoS comes from
the observation of two-solar-mass (2M�) stars [8, 9], im-
plying that the corresponding mass-radius curve has to
be able to support massive enough stars, M

max

> 2M�.
This requires that the EoS be sti↵ enough, which in com-
bination with the fact that the high-density EoS is rather
soft (with c2s . 1/3, where cs is the speed of sound) lim-
its the possible behavior of the quantity at intermediate
densities. In particular, it was shown in [6, 7] that —
upon imposing the 2M� constraint — the current un-
certainty in the EoS when expressed in the form p(µB),
where p is the pressure and µB is the baryon chemical
potential, is ±40% at worst.

On 16 October 2017, the LIGO and Virgo collabo-
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FIG. 1: The mass-radius clouds corresponding to our EoSs.
The cyan area corresponds to EoSs that cannot support a
2M� star, while the rest denote EoSs that fulfill this re-
quirement and in addition have ⇤(1.4M�) < 400 (green),
400 < ⇤(1.4M�) < 800 (violet), or ⇤(1.4M�) > 800 (red), so
that the red region is excluded by the LIGO/Virgo measure-
ment at 90% credence. This color coding is used in all of our
figures. The dotted black lines denote the result that would
have been obtained with bitropic interpolation only.

rations reported the first event, GW170817, where a
gravitational-wave (GW) signal was observed from a
merger of two compact stars [10]. Remarkably, this very
first set of GW data has already o↵ered a second con-
straint for the behavior of NS matter. The inspiral phase
of a NS-NS merger creates extremely strong tidal grav-
itational fields that deform the multipolar structure of
the stars, which in turn leaves a detectable imprint on
the observed gravitational waveform of the merger. This
e↵ect can be quantified in terms of the so-called tidal de-
formabilities ⇤ of the stars [11, 12], which measure the
degree to which their shape and structure is modified
during the inspiral. Assuming a low-spin prior for both
stars involved in the merger (for details, see [10]), LIGO
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second candidate of GW source 

•  supernovae 
–  event rate : ~1/100 yr in our galaxy 

–  compered to binary merger, system is relatively spherically symmetric 

•  less energy of gravitational waves  

•  numerical simulation shows specific GW frequencies 
–  still difficult to extract GW signal, 

especially from protoneutron stars (PNSs) 
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2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).

2
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(Tpb ¼ 48 ms), the early (Tpb ¼ 148 ms) and late
(Tpb ¼ 248 ms) nonlinear phase covered in the simulation,
respectively (see also Fig. 2 in [12]). The maximum density
for SFHx (left panel, ρ≳ 2 × 1014 g cm−3) is a few 10%
higher compared to TM1 (right panel). This is because
SFHx is softer than TM1 as mentioned above. In fact, Fig. 2
shows that the PNS radius (left panel) is more compact for
SFHx. Here the surface of the PNS is defined at a fiducial
rest-mass density of ρs ¼ 1010 g cm−3, which is relatively
lower in the literature (e.g., [56]), but necessary in order to
include the nascent PNS from the three-dimensional GR
models with limited simulation time after bounce. In right
panel, we plot gravitational mass of the PNS MPNS (evalu-
ated by Eq. (A1) in Appendix A) for given spherically
averaged hydro and metric datas. We shortly mention the
accuracy of MPNS which is used later in our analysis.
Although the baryon mass conservation is strictly satisfied
because of our conservative formula, the gravitational mass
is not conserved with the same accuracy in general (the
energy loss by gravitational waves is negligible for CCSNe)
in the BSSN formalism. The violation can be ∼1% in our
code [47]. It is also not straightforward to estimate the
gravitational mass of the PNS with taking into account
the non-negligible energy loss by neutrinos. Furthermorewe
first take spherically average with a simple zeroth order

spacial interpolation from three-dimensional Cartesian to
one-dimensional spherical coordinates, and afterward we
evaluate MPNS. Therefore, the gravitational mass of the
PNS can differ from its true value of the order of
∼1%ð∼0.01M⊙Þ. In Appendix A, we discuss impact of
numerical accuracy in MPNS for our results.
The left panel of Fig. 3 shows the evolution of the

“compactness” of the PNS that is defined by MPNS=RPNS
for SFHx (red line) and TM1 (blue line). As one would
imagine, the compactness of the PNS is higher for SFHx
compared to TM1 even after we consider the inaccuracy of
∼1% in MPNS. The right panel of Fig. 3 depicts the time
evolution ofMPNS as a function of RPNS. The PNS with the
softer EOS (SFHx) evolves from larger to smaller PNS
radius with bigger to smaller enclosed mass compared to
the stiffer EOS (TM1). Depending on the stiffness of
the EOSs, one can see that the evolution track in the
MPNS − RPNS plane differs significantly.
To extract the metric from the background models in a

suitable form, we perform the following coordinate trans-
formation. In the background models obtained by numeri-
cal relativity simulation (e.g., [12]), the line element is
given as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

FIG. 1. (Spherically-averaged) radial profiles of the rest-mass density at 48, 148, and 248 ms after core bounce. The left and right panel
corresponds to SFHx and TM1, respectively.

FIG. 2. Time evolution of the PNS radius (left panel) and its gravitational mass (right panel) as a function of the postbounce time. The
circles and diamonds corresponds to SFHx and TM1, respectively. The surface of the PNS is defined at a fiducial rest-mass density of
ρs ¼ 1010 g cm−3.

PROBING MASS-RADIUS RELATION OF PROTONEUTRON … PHYSICAL REVIEW D 96, 063005 (2017)
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MPNS & RPNS evolution 
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"
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1=2

"
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10 km

#−3=2
:
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02
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10 km
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×
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10 km
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: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈
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27.99 − 12.02
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
4 kHz
fw1

"
1=2

!
10 kpc
D

"
;

ð13Þ

where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈ Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23
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where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈ Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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By imposing appropriate boundary conditions, the problem
to solve becomes the eigenvalue problem. The boundary
conditions are the regularity condition at the stellar center
and the outgoing wave condition at spatial infinity.
The eigenvalue ω becomes a complex number, because

GWs carry out the oscillation energy, where the real and
imaginary parts of ω correspond to the oscillation fre-
quency (f ¼ ReðωÞ=2π) and damping rate (1=τ ¼ ImðωÞ),
respectively, where τ corresponds to the damping time of
each mode. To determine such a complex frequency, we
adopt the continuous fractional method proposed by
Leaver [59].

IV. ASTEROSEISMOLOGY WITH w MODES

The spacetime modes (w modes) have two families, i.e.,
wII and “ordinary” w modes [44,45]. As shown in
Appendix B, for cold NSs, a few wII modes are excited,
whose damping rate [ImðωÞ] is larger than its oscillation
frequency (ReðωÞ). On the other hand, infinite number of w
modes can exist, which are referred to as w1; w2; % % % ; wn

modes in order from the lowest oscillation frequency. So, in
the similar way to cold NSs, we identify the spacetime
modes with ReðωÞ larger than ImðωÞ as the “ordinary” w
modes for PNSs. Hereafter, the “ordinary” w modes are
called just as the w modes.
In Fig. 4, we show the frequency and damping rate of the

axial spacetime modes for the PNS models at the two
postbounce times of Tpb ¼ 108 ms (circles) and 248 ms
(diamonds), where the left and right panels correspond to
the results with SFHx and TM1 (EOS). In this figure, the
open marks denote the wII modes, while the solid marks
denote the w modes. Thus, the leftmost solid marks
correspond to the w1 mode (fundamental w mode) for
each PNS model. From this figure, one can observe that the
damping rate of wn mode is almost constant independently
of the index n, which is different behavior from the case of
cold NSs as shown in Fig. 10. In fact, the damping rate of
wn modes increase with the index n for cold NSs. With
respect to the w1 mode (Fig. 5), we show the time evolution
of the frequency (fw1

) and damping time (τw1
) as a function

of postbounce time for SFHx and TM1, respectively. We
remark that the damping time is the time with which the
GW amplitude reduces by 1=e. In the early phase of
w1-mode oscillations of PNSs, the frequency is only a
few kHz, which is significantly smaller than that for cold
NSs, while the damping time is around 0.1 ms, which is
much larger than that for cold NSs. This is good news from

FIG. 4. Frequency and damping rate of the axial spacetime modes for PNSs. The left and right panels correspond to the results for
SFHx and TM1 EOSs, respectively, where the circles and diamonds are shown for the PNS models at 108 and 248 ms after core bounce.
The open and solid marks correspond to the wII and “ordinary” w modes.

FIG. 5. Evolutions of frequency ðfw1
Þ and damping time ðτw1

Þ for the w1 mode. The circles and diamonds correspond to SFHx and
TM1, respectively.
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02
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10 km
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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determination of EOS 

•  with f- & w1-modes GW observations, one can get two 
independent properties, MPNS/RPNS

3 & MPNS/RPNS at each time 
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•  one can determine (MPNS, RPNS) at each time after core bounce 
  à determination of the EOS 

•  unlike cold NS cases, in principle one can determine the EOS even 
with ONE GW event ! 
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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Figure 2.1. This diagram illustrates how Lovelock’s theorem serves as a guide to classify modified
theories of gravity. Each of the yellow boxes connected to the circle represents a class of modified
theories of gravity that arises from violating one of the assumptions underlying the theorem. A theory
can, in general, belong to multiple classes. See Table 1 for a more precise classification.

2. Extensions of general relativity: motivation and overview

2.1. A compass to navigate the modified-gravity atlas

There are countless inequivalent ways to modify GR, many of them leading to theories
that can be designed to agree with current observations. Cosmological observations
and fundamental physics considerations suggest that GR must be modified at very
low and/or very high energies. Experimental searches for beyond-GR physics are a
particularly active and well motivated area of research, so it is natural to look for a
guiding principle: if we were to find experimental hints of modifications of GR, which
of the assumptions underlying Einstein’s theory should be abandoned?

Such a guiding principle can be found by examining the building blocks of
Einstein’s theory. Lovelock’s theorem [191, 192] (the generalization of a theorem
due to Cartan [193]) is particularly useful in this context. In simple terms, the theorem
states that GR emerges as the unique theory of gravity under specific assumptions.
More precisely, it can be articulated as follows:

In four spacetime dimensions the only divergence-free symmetric rank-2
tensor constructed solely from the metric gµ⌫ and its derivatives up to second
differential order, and preserving diffeomorphism invariance, is the Einstein
tensor plus a cosmological term.

alternative theories of gravity 
•  most of tests of GR : weak field gravity (except for binary pulsar) 

–  gravity in the range of 10-6 m-1011m (~1 AU) is probed 

–  GR may be modified at both low and high energies  

•  Lovelock’s theorem (Lovelock 71): 
–  In four spacetime dimensions the only divergence-free symmetric rank-2 tensor 

constructed solely from the metric      and its derivatives up to second differential 
order, and preserving diffeomorphism invariance, is the Einstein tensor plus a 
cosmological term (Berti+15).  

–  possibility for modification of GR 

•  additional field(s) 

•  higher dimensions 

•  diff-invar. violations 

•  WEP violations 
Eotvos parameter  
(Earth;Be-Ti) ~10-13 
(Schlamminger+08) 
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gµν

(Berti+15) 

- Lorentz-invariance 
- gravity should be mediated  
  by a massless spin-2 field  



EOS vs. theory of gravity 
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As can be seen immediately, all three theories allow
neutron stars with masses in the currently observed range
of !1:35–1:8"M# to exist [12]. As a result, measurement of
neutron-star masses alone cannot distinguish between
them. This degeneracy is broken, however, by considering
the predicted radii. In the astrophysically relevant range
MADM $ 1:3M#, the three theories occupy mutually ex-
clusive regions in the !MADM; R" space. Observations that
can put limits on both the mass and radius of a neutron
star can thus constrain, without ambiguity, the permis-
sible set of gravity theories.

One such observation is of the surface redshift
factor, z, relative to infinity. This is defined by E1 %
&1=!1' z"(Esurf , where Esurf is the energy of a photon
emitted from the stellar surface and measured at infinity
with energy E1. In the GR Schwartzschild metric, this
provides a direct measurement of only the ratio MADM=R.
In the case of the scalar-tensor and bimetric theories the
relationship betweenMADM, R, and z is more complicated.
In all cases, however, the formula,

E1 %
!
g00;s
g00;1

"
1=2
Esurf ; (17)

holds, where g00;s is evaluated at the surface of the star
and g00;1 is evaluated at infinity.

Figures 2 and 3 show the redshift factor z for the
scalar-tensor and GR theories as contours on a plot of
the mass MADM versus the parameter !, for EOS A and
EOS UU, respectively. As discussed above, the phenom-
enon of spontaneous scalarization occurs only for ! &
)4:35, and so above this value the contours are parallel to
the ! axis and equal to the GR value. The heavy lines on
the plot show the upper mass limits for neutron stars as
well as the bounding region, in the !MADM;!" space,
where spontaneously scalarized stars are produced. The

dashed line shows the value of MADM as a function of !
for which the baryonic mass is equal to 1:4M#. Note the
z % 0:35 contour, the value recently measured by Cottam
et al. [1] in the neutron-star source EXO 0748–676.

The redshifts found for stars in the scalar-tensor the-
ories differ greatly from their general relativistic values
for both equations of state. The trend is for the redshift
values to increase (nearly always) monotonically as !
becomes more negative. If we can place constraints on the
neutron-star mass, a redshift measurement will put an
upper bound on the value of )!.

Figure 4 shows the redshift factor z as a function of
MADM for neutron stars produced in the GR and bimetric
theories. We plot two shaded regions, one for GR and
one for the bimetric theory, that cover the range between
EOS A and EOS UU. The dashed line shows the recent

FIG. 2. Contours of constant redshift in the scalar-tensor
theory, as a function of MADM and !, for EOS A. The dashed
line shows the value of MADM, as a function of !, for which the
baryonic mass is equal to 1:4M#. The heavy lines on the plot
show the mass limits for neutron stars and the bounding region
where spontaneously scalarized stars are produced. No stable
neutron stars in the crosshatched region exist.

FIG. 3. Contours of constant redshift in the scalar-tensor
theory, as a function of MADM and !, for EOS UU. See Fig. 2
for details.

FIG. 1. Mass-radius relations for neutron stars in the GR,
bimetric, and scalar-tensor theories. For the scalar-tensor
theory, we plot the relation for only one value of the parameter
!.TheshadedregionsshowtheallowedvaluesofM and R for
equations of state with stiffness between EOS A and EOS UU.

P H Y S I C A L R E V I E W L E T T E R S week ending
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be generated also, which might become the source of the
radiations of electromagnetic waves [32,33]. If so, it might
be possible for one to detect the imprint of radial oscil-
lations with the electromagnetic waves, which could enable
us to distinguish the gravitational theory.

B. Scalar gravitational waves

Now, we examine the scalar gravitational waves radiated
from the neutron stars by calculating the time evolution of
Eq. (3.12) directly. To systematically examine the scalar
gravitational waves induced by the matter oscillations,
we consider the zero scalar gravitational wave initially
and put the initial distribution of matter displacement
W0ðrÞ given by

W0ðrÞ ¼ w
!
r
R

"!
r − R
R

"
2

; (4.2)

where w is a constant. Then, we determine the value of w in
such a way that the initial energy due to the matter
oscillations E0 is fixed especially to E0 ¼ 10−4M⊙, where
E0 is defined as

E0 ¼
1

2

Z
δ ~p
~ϵ
δ~ϵ$d3x: (4.3)

The waveforms of scalar gravitational waves driven by
the matter oscillations can be calculated as shown in Fig. 5

FIG. 5 (color online). Waveforms of scalar gravitational waves for β ¼ −5.0 emitted from the neutron stars constructed with
ϵc ¼ 9.0 × 1014 g=cm3 (upper left panel), 1.2 × 1015 g=cm3 (upper right panel), 1.5 × 1015 g=cm3 (lower left panel), and 2.3 ×
1015 g=cm3 (lower right panel).

FIG. 6 (color online). Time evolutions of radiated energy of scalar gravitational waves for the different stellar models with β ¼ −4.6
(left panel) and −5.0 (right panel), where the adopted central densities are shown on each line in units of 1015 g=cm3.

HAJIME SOTANI PHYSICAL REVIEW D 89, 064031 (2014)
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for β ¼ −5.0, where the upper left, upper right, lower left,
and lower right panels correspond to the waveforms
radiated from the neutron stars constructed with ϵc¼
9.0×1014, 1.2×1015, 1.5×1015, and 2.3×1015g=cm3,
respectively. From these panels, one can see that the
scalar gravitational waves are excited if the background
scalar field is nonzero, where the amplitudes of the scalar
gravitational waves could depend on the strength of the
background scalar field.
From an observational point of view, the total radiated

energy of scalar gravitational waves is an important
property, which can be estimated as

EφðtÞ ≈
Z

t

0
j∂tδφj2dt: (4.4)

Using the numerical data in the evolution of Eq. (3.12),
the total energies radiated from the different stellar
models in scalar-tensor gravity are calculated as shown
in Fig. 6, where the left and right panels correspond to
the time evolutions of the total radiated energies for β ¼
−4.6 and −5.0. In each panel, the central densities of the
adopted stellar models are denoted on each line in units

of 1015 g=cm3. From this figure, we find that the total
energy radiated by the scalar gravitational waves depends
strongly on the stellar models. To clearly see the
dependence on stellar models, in Fig. 7, we show the
total energies accumulated until t ¼ 12 msec as a
function of the stellar central density for β ¼ −4.6 (left
panel) and −5.0 (right panel). Comparing this figure to
Fig. 2, we find that the central density for the peak of the
total radiated energy is shifted to a density region higher
than that for the peak of the background scalar field. This
means that the massive neutron stars might have a
potential to radiate more scalar gravitational waves.
Additionally, one observes that the total energy also
strongly depends on the coupling parameter β. In
practice, the ratio of the total radiated energy for β ¼
−5.0 to that for β ¼ −4.6 reaches 4.1, while the ratio of
the central value of the background scalar field for
β ¼ −5.0 to that for β ¼ −4.6 is only 1.5.
Furthermore, in order to see the specific oscillation

frequencies of scalar gravitational waves, we calculate the
fast Fourier transform (FFT) for the stellar models with
ϵc ¼ 1.5 × 1015 g=cm3 and show it in Fig. 8, where the
left and right panels correspond to the results for
β ¼ −4.6 and −5.0, respectively. In both panels, we also
denote the eigenfrequencies of the matter radial oscil-
lations calculated with the mode analysis shown in
Sec. IVA with the broken vertical lines. From this figure,
one can find that the scalar gravitational waves driven by
the matter radial oscillations could oscillate with the same
frequencies as those of the matter oscillations. That is, in
scalar-tensor gravity, one has a chance to extract the
frequencies of the radial oscillations of neutron stars via
the observations of scalar gravitational waves, which can
be written as functions of the stellar mass and/or stellar
compactness as in Figs. 3 and 4. This is an advantage in
scalar-tensor gravity, because it is impossible to observe
the radial oscillations of neutron stars via the radiated
gravitational waves in general relativity, where the
gravitational waves cannot be excited due to the radial
oscillations of neutron stars.

FIG. 7 (color online). The total energy radiated by scalar
gravitational waves until t ¼ 12 msec as a function of the stellar
central density, where the dotted and broken lines correspond to
the results for β ¼ −4.6 and −5.0, respectively.

FIG. 8 (color online). FFT calculated from the waveforms of scalar gravitational waves radiated from the neutron stars with
ϵc ¼ 1.5 × 1015 g=cm3 in scalar-tensor gravity with β ¼ −4.6 (left panel) and −5.0 (right panel). In both panels, the vertical broken
lines denote the frequencies of the matter oscillations calculated with the eigenvalue problem as in Sec. IVA.

SCALAR GRAVITATIONAL WAVES FROM RELATIVISTIC … PHYSICAL REVIEW D 89, 064031 (2014)
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I-Lave-Q 

•  universal relations between moment of inertia, the Lave 
number, and the quadrupole moment (Yagi & Yunes 13). 
–  moment of inertia :  

–  (spin-induced) quadrupole moment : 

–  tidal Lave number :    
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I = J /Ω → I = I /M 3

Q → Q = −Q / (M 3χ 2 ), χ ≡ J /M 2

λ = −Qij / Eij → λ = λ /M 5
5

FIG. 3. (Left) Possible error box (shaded region) in the I-Love plane, given two independent observations of the moment of
inertia and the tidal Love number, shown with a black star. The black solid line shows the NS and QS I-Love relation in GR,
while all the other lines show the same relation in dynamical Chern-Simons (CS) gravity. These measurements would force the
CS coupling parameter to be small enough that its I-Love relation falls inside of the error box, leading to a constraint that is
6 orders of magnitude stronger than current Solar System ones. The top axis show the NS mass for the Shen EoS. (Right)
Possible error box (shaded region) in the Love-C plane, given two independent observations of the Love number and the NS
compactness, shown with a black star. The di↵erent curves show the Love-C relation in GR for several EoSs. Observe that
the di↵erence between these curves for NSs is smaller than the error box, thus allowing for a generic test of GR. Such a test,
however, requires the assumption that the observed object is a NS and not a QS, since the latter has a di↵erent Love-C relation.

EoS-independent. The requirement that any Love-C re-
lation goes through this error box could constitute an ef-
fectively EoS independent GR test, although not as EoS
independent as an I-Love-Q test. Such a test, however,
requires the assumption that the object observed is a NS
and not a QS, since the Love-C curves are quite di↵er-
ent for these two objects, as shown on the right panel of
Fig. 3.

Discussions. The I-Love-Q relations open the door to
exciting applications in astrophysics, GW theory and
fundamental physics. We have here performed a cur-
sory study of possible applications, but these could be
followed up by much more detailed analysis. For exam-
ple, the measurement accuracy of GW phase parameters
was here estimated via a Fisher analysis, but this could
be improved through Bayesian methods [33]. One could
also extend these tests to GW and binary pulsar sys-
tems that do not have exactly the same masses. We have
indeed verified that all the applications discussed above
are robust, even when all the NS masses (those measured
with binary pulsars and those measured with GWs) di↵er
by about 10% [14].

The analysis of the I-Love-Q relations presented here
opens up the road for multiple follow-up studies. For ex-
ample, one could determine whether these relations hold
for NSs and QSs with anisotropic pressure [34], large in-
ternal magnetic fields and rapid rotation [35]. The latter
may be particularly important, as di↵erential rotation
can produce stars with J/M

2

⇤ > 1 [36], while the fastest
known millisecond pulsars can have spin parameters as

large as 0.5, for which a quadratic slow-rotation expan-
sion might not su�ce. In fact, relativistic calculations
of stellar structure for uniform, very fast rotation show
that the quadrupole moment can di↵er by ⇠ 20% from
the predictions of the slow-rotation approximation [35].
Fortunately, however, those binary pulsars where the mo-
ment of inertia may be detected first will probably consist
of slowly-rotating double NSs. These NSs rotate much
more slowly than “true” millisecond pulsars, and thus,
the slow-rotation approximation would be appropriate.
Nevertheless, one could study the rapidly-rotating case
by carrying out a fourth-order expansion in slow-rotation
(or a numerical study [35]) and investigating whether
higher-order spin terms spoil the universal relations. One
could also investigate whether there are universal rela-
tions between other quantities, such as the f- and w-
modes of NS oscillations [37, 38]; even if the latter are
di�cult to observe, such universality may be interesting
on theoretical grounds.
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FIG. 3. (Left) Possible error box (shaded region) in the I-Love plane, given two independent observations of the moment of
inertia and the tidal Love number, shown with a black star. The black solid line shows the NS and QS I-Love relation in GR,
while all the other lines show the same relation in dynamical Chern-Simons (CS) gravity. These measurements would force the
CS coupling parameter to be small enough that its I-Love relation falls inside of the error box, leading to a constraint that is
6 orders of magnitude stronger than current Solar System ones. The top axis show the NS mass for the Shen EoS. (Right)
Possible error box (shaded region) in the Love-C plane, given two independent observations of the Love number and the NS
compactness, shown with a black star. The di↵erent curves show the Love-C relation in GR for several EoSs. Observe that
the di↵erence between these curves for NSs is smaller than the error box, thus allowing for a generic test of GR. Such a test,
however, requires the assumption that the observed object is a NS and not a QS, since the latter has a di↵erent Love-C relation.

EoS-independent. The requirement that any Love-C re-
lation goes through this error box could constitute an ef-
fectively EoS independent GR test, although not as EoS
independent as an I-Love-Q test. Such a test, however,
requires the assumption that the object observed is a NS
and not a QS, since the Love-C curves are quite di↵er-
ent for these two objects, as shown on the right panel of
Fig. 3.

Discussions. The I-Love-Q relations open the door to
exciting applications in astrophysics, GW theory and
fundamental physics. We have here performed a cur-
sory study of possible applications, but these could be
followed up by much more detailed analysis. For exam-
ple, the measurement accuracy of GW phase parameters
was here estimated via a Fisher analysis, but this could
be improved through Bayesian methods [33]. One could
also extend these tests to GW and binary pulsar sys-
tems that do not have exactly the same masses. We have
indeed verified that all the applications discussed above
are robust, even when all the NS masses (those measured
with binary pulsars and those measured with GWs) di↵er
by about 10% [14].

The analysis of the I-Love-Q relations presented here
opens up the road for multiple follow-up studies. For ex-
ample, one could determine whether these relations hold
for NSs and QSs with anisotropic pressure [34], large in-
ternal magnetic fields and rapid rotation [35]. The latter
may be particularly important, as di↵erential rotation
can produce stars with J/M
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⇤ > 1 [36], while the fastest
known millisecond pulsars can have spin parameters as

large as 0.5, for which a quadratic slow-rotation expan-
sion might not su�ce. In fact, relativistic calculations
of stellar structure for uniform, very fast rotation show
that the quadrupole moment can di↵er by ⇠ 20% from
the predictions of the slow-rotation approximation [35].
Fortunately, however, those binary pulsars where the mo-
ment of inertia may be detected first will probably consist
of slowly-rotating double NSs. These NSs rotate much
more slowly than “true” millisecond pulsars, and thus,
the slow-rotation approximation would be appropriate.
Nevertheless, one could study the rapidly-rotating case
by carrying out a fourth-order expansion in slow-rotation
(or a numerical study [35]) and investigating whether
higher-order spin terms spoil the universal relations. One
could also investigate whether there are universal rela-
tions between other quantities, such as the f- and w-
modes of NS oscillations [37, 38]; even if the latter are
di�cult to observe, such universality may be interesting
on theoretical grounds.
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equivalent to general relativity in vacuum and ϵ ¼ p ¼ 0 at
the stellar surface (r ¼ R), one can find that e−α ¼ e−λ ¼
1 − 2M=R at r ¼ R. As a result, the stellar mass is defined
as M ¼ mðRÞ. Additionally, in order to allow for self-
gravitating objects, the condition of κ is obtained [11] as

8πpcκ < 1 for κ > 0 (14)

8πϵcjκj < 1 for κ < 0; (15)

where pc denotes the central pressure. Hereafter, we adopt
8πϵ0κ as a normalized constant, where ϵ0 is the nuclear
saturation density given by 2.68 × 1014 g cm−3. We remark
that ϵ0 ¼ 1.99 × 10−4 km−2 in geometric units with
c ¼ G ¼ 1.

III. RELATIVISTIC STELLAR MODELS IN EIBI

In order to construct relativistic stellar models, we need
to prepare the EOS. In this paper, we adopt the realistic
EOS proposed by the different theoretical approaches, i.e.,
the phenomenological models, the relativistic mean field
models, and the ones based on the Skyrme-type effective
interactions (see [21] for more information about EOS
adopted here). As the phenomenological models, we adopt
the EOS constructed by Oyamatsu and Iida [22,23], where
they made EOS for various values of incompressibility K0

and the density dependence of the nuclear symmetry
energy at the saturation point L. K0 and L are parameters
characterizing the stiffness of neutron-rich nuclear matter.
Hereafter, we refer to this phenomenological EOS as OI
(a; b), where a and b denote the adopted values of K0 and
L. As the relativistic mean field models, we adopt two EOS,
i.e., the Shen EOS [24] and the Miyatsu EOS [25]. We also
adopt five EOS based on the Skyrme-type effective
interactions, i.e., FPS [26], SLy4 [27], BSk19, BSk20,
and BSk21 [28–30]. We remark that every EOS adopted in
this paper is consistent with the terrestrial experimental data
for masses and radii of stable nuclei. It is important to
consider the neutron stars with 0.5M⊙, because the density
inside such objects is less than a few times the saturation
density, which should be strongly constrained from the
terrestrial experiments [21].
As an example of neutron star models in EiBI, we show

the mass and radial relations constructed from the FPS EOS
in Fig. 1, where the solid line denotes the results in general
relativity (κ ¼ 0), while the broken and dotted lines
correspond to those in EiBI with 8πϵjκj ¼ 0.01 and
0.02, respectively. From this figure, one can observe the
obvious deviation from the predictions in general relativity.
However, as mentioned the above, this difference, depend-
ing on the coupling constant κ, must be buried in the
uncertainties due to the EOS of neutron star matter. That is,
it could be quite difficult to distinguish EiBI from general
relativity only if one would measure the mass and radius of
neutron stars.

With respect to such a difficulty, we are successful in
finding an observational possibility to discriminate EiBI
from general relativity, i.e., via the terrestrial experiments
for the neutron skin thickness of neutron-rich atomic
nuclei. Using the various realistic EOS mentioned above,
we determine the radii of neutron stars with 0.5M⊙ by
varying the value of 8πϵ0κ and then show it in Fig. 2 as a
function of the neutron skin thickness of 208Pb, where R05

and ΔR denote the stellar radii with 0.5M⊙ and the neutron
skin thickness of 208Pb. In particular, in order to estimate
the value of ΔR for each EOS, we adopt the formula
proposed by Oyamatsu and Iida [22], where the neutron
skin thickness can be expressed as functions of neutron
excess, the atomic mass number, and the value of L. Since
the estimation of ΔR could depend a little on theoretical
models, the plots in Fig. 2 may be slightly modified.
Anyway, the value of ΔR dose not depend on κ at all. From
this figure, one clearly observes that R05 can be written as a
linear function of ΔR almost independently of the adopted

FIG. 1 (color online). Neutron star mass-radius relations in
EiBI constructed from FPS EOS. The labels on lines denote the
values of 8πϵ0κ. The solid line corresponds to that in general
relativity.

FIG. 2 (color online). Radii of neutron stars with 0.5M⊙, R05,
as a function of neutron skin thickness of 208Pb for 8πϵ0κ ¼
−0.02, 0, and 0.02, using the various EOS. The solid line denotes
the fitting line in general relativity, while the broken and
dotted lines denote that in EiBI for 8πϵ0κ ¼ 0.02 and −0.02,
respectively.
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equivalent to general relativity in vacuum and ϵ ¼ p ¼ 0 at
the stellar surface (r ¼ R), one can find that e−α ¼ e−λ ¼
1 − 2M=R at r ¼ R. As a result, the stellar mass is defined
as M ¼ mðRÞ. Additionally, in order to allow for self-
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8πpcκ < 1 for κ > 0 (14)

8πϵcjκj < 1 for κ < 0; (15)

where pc denotes the central pressure. Hereafter, we adopt
8πϵ0κ as a normalized constant, where ϵ0 is the nuclear
saturation density given by 2.68 × 1014 g cm−3. We remark
that ϵ0 ¼ 1.99 × 10−4 km−2 in geometric units with
c ¼ G ¼ 1.
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energy at the saturation point L. K0 and L are parameters
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With respect to such a difficulty, we are successful in
finding an observational possibility to discriminate EiBI
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skin thickness of 208Pb. In particular, in order to estimate
the value of ΔR for each EOS, we adopt the formula
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consider the spherically symmetric stellar models. EiBI is
proposed by Bañados and Ferreira [19], which can be
obtained with the action as

S ¼ 1

16π
2

κ

Z
d4x

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κRμνj

q
− λ

ffiffiffiffiffiffi−gp #
þ SM½g;ΨM$;

ð1Þ

where jgμν þ κRμνj and g denote the determinants of ðgμν þ
κRμνÞ and gμν, while Rμν is the Ricci tensor constructed
with the connection Γμ

αβ. We remark again that the
connection Γμ

αβ should be considered as the independent
field from the metric tensor gμν in EiBI. The matter action
SM depends on the metric and matter field ΨM. This theory
has two parameters, λ and κ. The dimensionless constant λ
is associated with the cosmological constant Λ, such as
λ ¼ 1þ κΛ. In this paper, we consider only asymptotically
flat solutions, i.e., we adopt that λ ¼ 1. The remaining
parameter κ is the Eddington parameter, which is con-
strained in the context of the observations in the solar
system, big bang nucleosynthesis, and the existence of
neutron stars [19,22,28,29]. Additionally, terrestrial mea-
surements of the neutron skin thickness of 208Pb and
astronomical observations of the radius of 0.5M⊙ neutron
star could enable us to constrain κ [27].
The field equations are obtained by varying the

action [19]

Γμ
αβ ¼

1

2
qμσðqσα;β þ qσβ;α − qαβ;σÞ; ð2Þ

qμν ¼ gμν þ κRμν; ð3Þ
ffiffiffiffiffiffi−qp

qμν ¼ ffiffiffiffiffiffi−gp
gμν − 8πκ

ffiffiffiffiffiffi−gp
Tμν; ð4Þ

where qμν and q denote an auxiliary metric associated with
the physical metric gμν via Eq. (3) and its determinant,
while Tμν is the energy-momentum tensor defined with the
matter action SM as

Tμν ¼ 1
ffiffiffiffiffiffi−gp

δSM
δgμν

: ð5Þ

With the covariant derivative ∇μ, which is defined with gμν,
the energy-momentum conservation law is expressed as
∇μTμν ¼ 0. From Eq. (4), one can show that the physical
metric gμν is completely equivalent to the auxiliary metric
qμν, when Tμν ¼ 0.
The structures of neutron stars in EiBI have been

discussed in some literatures [22–27]. The metric for the
spherically symmetric objects is expressed as

gμνdxμdxν ¼ −eνdt2 þ eλdr2 þ fðdθ2 þ sin2θdϕ2Þ; ð6Þ

qμνdxμdxν ¼ −eβdt2 þ eαdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;
ð7Þ

where ν, λ, β, α, and f are functions of r. Assuming that the
neutron stars are composed of perfect fluid, the energy-
momentum tensor is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð8Þ

where ϵ and p are the energy density and pressure, while uμ

corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Then, from Eqs. (3), (4), and the
energy-momentum conservation law, one can obtain the
Tolman-Oppenheimer-Volkoff equations in EiBI [22–27].
To close the equation system, one needs to prepare the
relationship between the pressure and density, i.e., EOS.
In particular, in this paper, we adopt two realistic EOSs to
construct the neutron star models, i.e, Shen EOS [30] and
FPS EOS [31]. Shen EOS is based on the relativistic mean-
field approach, while FPS EOS is based on the Skyrme-
type effective interaction (see [32] for more details about the
adopted EOSs). Note that the appearance of the curvature
instabilities at the stellar surface constructed with a poly-
tropic EOS is pointed out in [33], which could be a problem
to solve. Furthermore, the coupling constant κ is constrained
from the evidence that compact objects exist [22], i.e.,

8πpcκ < 1 for κ > 0; ð9Þ

8πϵcjκj < 1 for κ < 0; ð10Þ

where pc and ϵc denote the central pressure and density.
Hereafter, we adopt 8πϵ0κ as a normalized coupling
constant, where ϵ0 is the nuclear saturation density given
by 2.68 × 1014 g cm−3. We remark that the coupling
constant κ has been constrained from the observations in
the solar system, i.e., jκj≲ 3 × 105 m5 s−2 kg−1 [28], which
leads to j8πϵ0κj≲ 2.25 × 107.
In Fig. 1, we show the mass-radius relations in general

relativity and in EiBI with 8πϵ0κ ¼ '0.03, where the

FIG. 1 (Color online) (color online). Comparison between
the neutron star mass-radius relations in general relativity and
in EiBI with 8πϵ0κ ¼ '0.03. The shaded region surrounded by
the broken line shows the allowed values of mass and radius for
EOS with stiffness between FPS and Shen EOSs in general
relativity, while the regions surrounded by the solid and dotted
lines show those in EiBI with 8πϵ0κ ¼ 0.03 and −0.03.

HAJIME SOTANI PHYSICAL REVIEW D 89, 124037 (2014)

124037-2



conclusion 

•  Neutron stars are a suitable candidate for probing physics 
in extreme states. 
–  EOS for a high density region 

–  strong magnetic field 

–  theory of gravity 

•  Observations of M, R, & f can help us to understand NS 
physics 
–  asteroseismology 

–  Now, it is becoming to adopt GWs as a tool of astronomy 

•  Many alternative theories of gravity have been proposed 
–  observation of GW polarization 

–  a kind of universal relation 
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