マグネターの熱的放射の偏光の 系統的な予想

早稲田大学 D3 矢田部 彰宏 共同研究者:山田 章一(早稲田大学)

A. Yatabe & S. Yamada, ApJ 850 (2017) 185, arXiv:1712.03960

観測による中性子星自体の理解

中性子星は強い双極子磁場を持ち、表面からの放射と考えられている熱的放射が観測されている。

表面からの放射は表面の物理的な性質を反映して いるはずなので、観測によって中性子星の表面の 性質の手がかりを得られるだろう。

RX J1856.5-3754の偏光予想

XDINSと呼ばれる種類の中性子星の一つであるこの天体では、大気を 持つ可能性と持たない可能性がある。その偏光を予想する理論研究が行 われた。

RX J1856.5-3754の偏光観測(可視光)

R. P. Mignani et al. MNRAS 465 (2017) 492

可視光での位相平均をとった偏光度は16.43±5.26% 大気の存在の決着はつかず、軟X線での偏光観測に持ち越し

しかし、16%の偏光度は強い磁場によるQED効果の一つで ある真空複屈折の効果を示唆する。

真空複屈折を考慮しないと、 大気がある場合でも偏光度 は低い。

R. P. Mignani et al. MNRAS 465 (2017) 492

左:磁気圏のQED効果がないときは偏光の 向きはバラバラ

右:磁気圏のQED効果があるときは偏光の 向きはそろっている

J. S. Heyl, N. J. Shaviv, PRD 66, (2002) 023002

強い電磁場のもとでの電子と光子の振る舞いを扱う物理学

W. Heisenberg, H. Euler Z. Phys. 98 (1936) 714 J. Schwinger, Phys. Rev. 82 (1951) 664

量子論での真空

粒子(電子陽電子対)が 生成と消滅を繰り返す

強い磁場のもとでは

J. S. Toll, PhD Thesis (1952) S. L. Adler, Ann. Phys. 67 (1971) 599 K. Hattori, K. Itakura, Ann. Phys. 330 (2013) 23

近い将来の軟X線の偏光観測

軟X線偏光観測衛星IXPE (打ち上げ決定)

Weisskopf et al. (2013)

観測エネルギーは2-8keV 他にも複数の計画(XIPE,eXTP)がある マグネターの定常放射はX線

S. Mereghetti Astron. Astrophys. Rev., 15 (2008) 225

強い磁場により偏光に影響が見られる

本研究では非線形QEDを反映したマグネ ターの偏光を系統的に予想する

先行研究 (Taverna et al. 2015)では

2017/12/25

 $\gamma = 15^{\circ}, \eta = 5^{\circ}, B = 10^{13}G$ 0 0 偏光角は自転とともに変化する エネルギー 偏光度はエネルギーが高い光子ほど 高くなりやすい

Observer

・表面放射はすべてX-modeであるが モード変換をエネルギーと磁場の依存 性を考慮して取り入れる。 ・偏光はpolarization-limiting radiusで 決まる。 ・偏光度 Π_{L} と偏光角 χ_{0} を求める

$$\Pi_L = \frac{\sqrt{Q^2 + U^2}}{I}, \ \chi_p = \frac{1}{2} \arctan\left(\frac{U}{Q}\right).$$

I,Q,U: Stokes parameter

・観測者はZ軸方向の無限遠にいる
・ダイポール磁場
・放射はZ軸方向に伝播する
・一般相対性理論の効果は考えない

磁場強度の依存性

y=15°,n=5°,T=0.4keV

2017/12/25

マグネタ

Magnetar В Т R_{Th} $5.9 \times 10^{13} \text{ G}$ 1E 2259+586 0.37 keV 5.0 km 4U 0142+61 $1.3 \times 10^{14} \, \mathrm{G}$ 0.36 keV 9.4 km $1.9 \times 10^{14} \text{ G}$ SGR 0501+45 0.70 keV 1.4 km 1RXS J17089.0- $4.7 \times 10^{14} \, \mathrm{G}$ 0.48 keV 4.5 km 400910

Y. E. Nakagawa et al., PASJ 61(2009) 109

1,2,…10 keVではモード 変換の効果なし

1E 2259+586だけは1keV未満 でモード変換の効果が見える

1E 2259+586 (E=5keV)

2017/12/25

・近い将来にマグネターの偏光が観測できるようになり、偏光は 磁場構造とQEDの効果を反映している。

•回転位相ごとの偏光度は、高エネルギー・強磁場のとき高くなり、偏光角は中性子星の姿勢によって大きく変化する。

•モード変換は偏光の向きを90度変えることがあり、磁場が極端に強くない場合に2keVを超えるエネルギーでは重要になる。

•マグネターの磁場が強いため、強い偏光が期待されるが、今回の例では1E 2259+681の1keV未満でしかモード変換は観測できない。

^{次世代の軟X線偏光観測衛星では} B≥10¹⁴Gのマグネター⇒高い偏光度 B≤10¹³Gの中性子星⇒モード変換