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Detections of GWs from Binaries

e 6(+1) events of
BBH/BNS merger Black Holes of Known Mass

 New window of
physics
(test of GR,
EoS of NS,
GW propagation,

early untverse...)




Current & Future GW Detectors
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Binaries as GW Sources

Binary merger Extreme mass ratio binar

Quasi-circular Plunge Ringdown
inspiral and merger
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“ Black hole
Post-Newtonian Numerical perturbation
techniques relativity methods



Methods for the 2-Body Problem
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Black Hole Perturbation Approach

* Suppose the spacetime is perturbed
from the background BH spacetime:

* Such perturbations were considered
first to investigate the stability of the BH

* Regoe & Wheeler 1957, Zerilli 1970
for Schwarzschild BH.

* Teukolsky 1973 tor Kerr BH



Linearization ot Einstein Equations

* The Einstein tensor is also expanded:
Guvlg] = GW[QBG] +0Guwh] + 52GW[hv fil R
where (with h,, = h,, — gE’Sh@O‘/Q,)
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in the Lorenz gauge b, /* = 0.



Extreme Mass Ratio Inspiral (EMRI)

=
w~1—100 Mg : “Satellite” BH/NS,

M ~ 10°-10" M, : SMBH.

=N
10%-10° cycles for LISA observations
- " Y & =
Probe of BH spacetimes
B 7 OIYY d

10°-10° events for 2 years mission [Babak et al. 2017]
S — — —v——T



Gravitational Self-Force (GSF)

* Expand equations in the mass ratio:
e=pu/M <1,
Juv = 95’5 + shE}V) sty 52h£23 s
* Valid even if v/c ~ 1 <mp PN regime.

Al

e HoM for the “satellite”
= 2
=0+ sF(‘fl)(h) + € F(*;)(h) =

e Formal expressions of GSF 1s known up to 0(52)
[Pound, 2012].



What’s Next?

e (Calculate the wavetorm
* Need (generic) orbits of the satellite in Kerr metric.

v Hamiltonian formulation for conservative GSF:
Fujita et al. (2010).

v GSF up to first order: van de Meent (2017).

* Solve for second-order perturbations
to obtain the dissipative GSE



Why the Second Order?

o If neglect the second-order self-force O(e?),
’ error in acceleration is 63" ~ e /M.

e Error in position is 6z ~ e*7% /M .

o After inspiral time 7 ~ M /e,
error 1n position becomes §z* ~ M.

e The second-order perturbation h(?) gives
detectable effects on GW phasel!
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Extreme Mass Ratio Inspiral (EMRI)

Infinity

Near Zone




Second-Order Vacuum Equations

» We expand equations in the mass ratio:
Guv = G+l +h3) + -+
* The field equations to the second-order are
5G* [eh(M) + e2hD] = —52GH [eh™M), e ()],

where 0G*,[h] & §2G* [h, h] ate
linear & quadratic in h .



IR Divergence Around Boundaries

* The field equations to the second-order are

5G* [ehM) + 2h@)] = —52G* [ehV), en(D)].

* The following integral diverges around boundaries:

hfff)m:/ Gl o E i det

T'h

v @infinity » use the PN/PM results (cf. [Pound 2015]).

e We discuss the near-horizon expansion.



Physical Secular Growth

* {rv} & {r¢} components of
[ v=ascn avdo = [ v=g(-5*c") avds,

determine the secular growth.

e The secular growth

= the secular change of
the BH’s mass/spin
oM =E? & da= L.




Counter Term of Secular Growth

* We have found the secular growth 0M & oa

BG BG
h/(})éM,cSL = 09,1 SM - 09,0 5o
= OM da :

which reproduces the spurious divergence.

 Therefore, the etfective source term,

Sffyf = —0°G e A e p() —0c, B e

is “regularized.”



Singular Asymptotic Sols.?

» We obtain inhomogeneous solutions

2 1
h](38)1:8£h1(38>2(1_f)7’*‘|‘"'7

9 1
h](BS)Q = afh](?)s)ﬁ* T

where the slow-time variable t = et, f =1 — 2M/r

. : r —2M
& the tortoise coordinate v, = r + 2M In ( i >

* The logarithmic divergences sourced
by the secular growth appear near the horizon.



2 'Types ot Divergences Near Horizon

* Physical & spurious IR divergence
* Secular changes of mass 0M & spin da of BG BH.
* Unphysical pure gauge degrees of freedom

e Need to identify and remove
for the boundary conditions.

* We focus on the quasi-stationary pert.
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The Eddington-Finkelstein Coordinates

* The Schwarzschild background metric 1s
ds? = — fdv? + 2dvdr + r2d#? + 2 sin® Od¢p?

in the ingoing Eddington-Finkelstein coordinates,
where f =1—-2M/r & v =1+ r,.

v No singularity appears on the BH horizon.

v Ingoing GWs propagate along a null line,

on which the “time coordinate” v is constant.



# of Remaining Degrees of Freedom

» After regularizing the asymptotic sols.,
we still have remaining dof.

e For / = O0mode, 3 dof:
2nd-order mass pert. (1) + gauge dof (2)

 For / = 1mode, 5 dof:
2nd-order spin pert. (1) + gauge dof (4)

e For ¢/ > 2modes 6 dof:
2nd-order GWs (2) + gauge dof (4)
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Summary

* Need the second-order metric perturbations
for EMRI observations by LISA.

* IR & gauge divergences appear near the BH horizon.
* We have found
* singular behavior of asymptotic sols.

 the appropriate gauge choice of near-horizon limit.

e HExtend to the Kerr BH?
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