
BH perturbations & gauge dof   
in the near-horizon limit

Kei Yamada (山田 慧生) Kyoto U.  
With T. Tanaka

2017/12/26 第 30 回 理論懇シンポジウム



Contents of  the Talk

• Introduction 

• Problems in 2nd-order perturbations 

• Singular behavior of  gauge dof  

• Summary



Contents of  the Talk

• Introduction 

• Problems in 2nd-order perturbations 

• Singular behavior of  gauge dof  

• Summary



Detections of  GWs from Binaries

• 6(+1) events of   
BBH/BNS merger 

• New window of  
physics  
(test of  GR,  
EoS of  NS,  
GW propagation,  
early universe…)



Chris Messenger, for useful comments and suggestions. This paper has been assigned LIGO

document LIGO-P1400129.

Appendix A. Sensitivity curves

The plots in this section show all of the detectors and sources described in the main text.

Clearer, interactive versions of these plots, allowing for removal of any of the curves, may be

created and downloaded on-line, http://rhcole.com/apps/GWplotter. The detector noise

curves all have their resonance spikes removed for clarity.

Figure A1: A plot of characteristic strain against frequency for a variety of

detectors and sources.
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Noise curves of  GW detectors Conception of  LISA
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After decades of effort, numerical relativists can now
simulate the inspiral and merger of two black holes orbiting
each other. That computational triumph has come none too
soon—physicists are on the verge of detecting gravitational
waves for the first time, and at long last they know what to
look for.

Black holes are strong-field objects whose properties are
governed by Einstein’s theory of gravitation—general relativ-
ity. A black hole is a region of spacetime that cannot commu-
nicate with the external universe. The boundary of that re-
gion defines the surface of the black hole, called the event
horizon. Isolated black holes are remarkably simple. They are
described by analytic solutions to Einstein’s equations and
are uniquely parameterized by just three quantities: their
mass M, spin J, and charge Q. Since charged objects in space
are rapidly neutralized by the surrounding plasma, one usu-
ally assumes Q = 0 for real astrophysical black holes.

Stellar-mass black holes, which have masses from sev-
eral to several tens of solar masses (M⊙), can form when mas-
sive stars exhaust their nuclear fuel and undergo collapse.
They were first identified in binary x-ray sources in our
galaxy, accreting gas from normal stellar companions. Spin-
ning stellar-mass black holes accreting from disks of magnet-
ized plasma may also trigger gamma-ray bursts (GRBs). Dur-
ing the early history of the universe, highly massive and
supermassive black holes likely formed from smaller seed
black holes and grew by a combination of mergers and gas
accretion. The cores of nearly all nearby bulge galaxies, in-
cluding our own Milky Way, harbor a supermassive black
hole with a mass between 106 and 109 M⊙. Supermassive black
holes are believed to be the central engines powering quasars
and active galactic nuclei (AGNs), the most energetic sources
of electromagnetic radiation currently known. Black holes, it
seems, are making their presence felt all over the universe.

Spacetime ripples
Binary black holes are among the most promising sources of
gravitational radiation. General relativity describes gravita-
tional waves as ripples on the background curvature of
spacetime that propagate at the speed of light. In some ways
they are like water waves traveling on an otherwise smooth
sea. Unlike water waves, however, gravitational waves are
not motions of material particles but ripples in the fabric of
spacetime itself. According to general relativity, the orbit of
a binary system decays in three phases, as shown in figure 1,
due to the loss of energy and angular momentum carried
away by gravitational waves. Radio observations of the
Hulse–Taylor binary pulsar confirmed that such losses occur
at the rates predicted by general relativity—a discovery for

which Russell Hulse and Joseph Taylor Jr were awarded the
Nobel Prize in Physics in 1993. But gravitational waves have
yet to be detected directly.

That should change with the Laser Interferometer Grav-
itational-Wave Observatory (LIGO) in the US, VIRGO in Italy,
and similar ground-based detectors elsewhere, which can ob-
serve waves with frequencies of 10–1000 Hz. The target date
for the Advanced LIGO–VIRGO network to become opera-
tional is 2015, at the completion of the latest upgrades (see
PHYSICS TODAY, December 2010, page 31). Prime candidates
for generating detectable radiation are binary black holes
whose constituents each have masses of 10–50 M⊙. Since grav-
itational-radiation emission causes orbital eccentricity to
decay, those binaries will be in tight, circular orbits when the
dominant gravitational wave frequencies—twice the bina-
ries’ orbital frequencies—pass through the LIGO–VIRGO
window. Thus the detectors will be able to measure gravita-
tional waves generated in the last minutes of the binary in-
spiral; they will also observe radiation emitted during the
merger and during the ringdown phase, in which the merged

Binary black hole
mergers
Thomas W. Baumgarte and Stuart L. Shapiro

Solving the equations of general relativity presents unique challenges. Nowadays many of those have
been met, and new numerical simulations are revealing surprising astrophysical phenomena. 

Thomas Baumgarte is a professor of physics at Bowdoin College in Brunswick, Maine. Stuart Shapiro is a professor of physics and
astronomy at the University of Illinois at  Urbana- Champaign.
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Figure 1. Coalescence of a compact binary. The loss of en-
ergy and angular momentum via the emission of gravitational
radiation drives compact-binary coalescence, which proceeds
in three different phases. The strongest gravitational-wave sig-
nal, illustrated here as the gravitational-wave amplitude h, ac-
companies the late inspiral phase and the plunge and merger
phase; for that part of the coalescence, post-Newtonian and
perturbation methods break down, and numerical simulations
must be employed. (Adapted from ref. 3.)
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• Suppose the spacetime is perturbed  
from the background BH spacetime: 

• Such perturbations were considered  
first to investigate the stability of  the BH 

• Regge & Wheeler 1957, Zerilli 1970  
for Schwarzschild BH. 

• Teukolsky 1973 for Kerr BH

Black Hole Perturbation Approach

gµ⌫ = gBG
µ⌫ + hµ⌫ .



• The Einstein tensor is also expanded: 
 
 
where (with                                     ,) 
 
 
 
 
 
in the Lorenz gauge

Linearization of  Einstein Equations
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Extreme Mass Ratio Inspiral (EMRI)

µ ⇠ 1� 100M� : “Satellite” BH/NS,

M ⇠ 10
5
-10

7 M� : SMBH.

100-103 events for 2 years mission [Babak et al. 2017]

Probe of BH spacetimes

104-105 cycles for LISA observations



• Expand equations in the mass ratio: 
 
 

• Valid even if                            PN regime. 

• EoM for the “satellite”  

• Formal expressions of  GSF is known up to  
[Pound, 2012].

Gravitational Self-Force (GSF)

v/c ⇠ 1

" ⌘ µ/M ⌧ 1,

gµ⌫ = gBG
µ⌫ + "h(1)

µ⌫ + "2h(2)
µ⌫ + · · · .
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z̈µ = 0 + "Fµ
(1)(h) + "2Fµ

(2)(h) + · · · .



What’s Next?

• Calculate the waveform

• Need (generic) orbits of  the satellite in Kerr metric.

✓Hamiltonian formulation for conservative GSF:  
Fujita et al. (2016). 

✓GSF up to first order: van de Meent (2017).

• Solve for second-order perturbations  
to obtain the dissipative GSF.



Why the Second Order?

• If  neglect the second-order self-force          , 
          error in acceleration is                    . 

• Error in position is                        . 

• After inspiral time               , 
error in position becomes               . 

• The second-order perturbation        gives 
detectable effects on GW phase!
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Extreme Mass Ratio Inspiral (EMRI)

Infinity

Near Zone

Near Horizon



• We expand equations in the mass ratio: 

• The field equations to the second-order are 
 
 
where               &                    are  
linear & quadratic in    .

Second-Order Vacuum Equations
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•  

• The following integral diverges around boundaries: 
 

✓@infinity           use the PN/PM results (cf. [Pound 2015]).

• We discuss the near-horizon expansion.

IR Divergence Around Boundaries
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Physical Secular Growth

•          &          components of 
 
 
determine the secular growth. 

• The secular growth  

➡the secular change of   
the BH’s mass/spin  
                   &                .
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Counter Term of  Secular Growth

• We have found the secular growth        &  
 
 
 
which reproduces the spurious divergence. 

• Therefore, the effective source term, 
 
 
is “regularized.”
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Singular Asymptotic Sols.?

• We obtain inhomogeneous solutions 
 
 
 
where the slow-time variable           ,  
 
& the tortoise coordinate                                           . 

• The logarithmic divergences sourced  
by the secular growth appear near the horizon.
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2 Types of  Divergences Near Horizon

• Physical & spurious IR divergence 

• Secular changes of  mass        & spin      of  BG BH. 

• Unphysical pure gauge degrees of  freedom 

• Need to identify and remove  
for the boundary conditions. 

• We focus on the quasi-stationary pert.

�M �a
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The Eddington-Finkelstein Coordinates

• The Schwarzschild background metric is 
 
 
in the ingoing Eddington-Finkelstein coordinates,  
where                        &                 . 

✓No singularity appears on the BH horizon. 

✓Ingoing GWs propagate along a null line,  
on which the “time coordinate”    is constant.

ds2 = �fdv2 + 2dvdr + r2d✓2 + r2 sin2 ✓d�2

v = t+ r⇤

v

f = 1� 2M/r



# of  Remaining Degrees of  Freedom

• After regularizing the asymptotic sols.,  
we still have remaining dof. 

• For          mode, 3 dof: 
2nd-order mass pert. (1) + gauge dof  (2) 

• For          mode, 5 dof: 
2nd-order spin pert. (1) + gauge dof  (4) 

• For          modes 6 dof: 
2nd-order GWs (2) + gauge dof  (4)

` = 0

` = 1

` � 2
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Summary

• Need the second-order metric perturbations  
for EMRI observations by LISA. 

• IR & gauge divergences appear near the BH horizon. 

• We have found  

• singular behavior of  asymptotic sols. 

• the appropriate gauge choice of  near-horizon limit. 

• Extend to the Kerr BH?
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