原始ブラックホールの形成

原田知広

立教大理

2017年12月26日理論懇シンポ2017@東大本郷キャンパス

This talk focuses on our recent work.

- Harada, Yoo (Nagoya U) & Kohri (KEK), arXiv: 1309.4201
- Harada, Yoo, Nakama (JHU) & Koga (Rikkyo U), 1503.03934
- Harada, Yoo, Kohri, Nakao (OCU) & Jhingan (YGU), 1609.01588
- Harada, Yoo, Kohri & Nakao, 1707.03595

Introduction

- PBH formation in the radiation-dominated era
 - Numerical relativity simulations (Harada, Yoo, Nakama & Koga 1503.03934)
 - Analytic estimate of the threshold (Harada, Yoo, Kohri, 1309.4201)
- PBH formation in the matter-dominated era
 - Anisotropic effect (Harada, Yoo, Kohri, Nakao & Jhingan, 1609.01588)
 - Spins of PBHs (Harada, Yoo, Kohri & Nakao, 1707.03595)

Primordial black hole (PBH)

• PBHs = BHs formed in the early Universe (Zeldovich & Novikov 1967, Hawking 1971)

- Probe into the early Universe, high-energy physics, quantum gravity, Hawking radiation, dark matter, and GWs (Carr et al. (2010), Carr et al. (2016))
- LIGO BBH events may be sourced by PBHs (Sasaki et al. (2016), Bird et al. (2016), Clesse & Garcia-Bellido (2017)). Some information about BH spins of GW170104 obtained (Abbott et al. (2017)).

Figure: (a) Observational constrains on the fraction of PBHs as dark matter, (b) posterior probability densities for the effective inspiral spin χ_{eff}

原田知広 (立教大) PBH 形成 理論懇シンホ	2017 3 / 29
--------------------------	-------------

PBH formation and evaporation

• Hawking radiation: nearly black-body radiation

$$T_H = \frac{\hbar c^3}{8\pi G M k_B} \simeq 100 \text{ MeV} \left(\frac{M}{10^{15} \text{g}}\right)^{-1},$$

$$t_{ev} \simeq \frac{G^2 M^3}{g_{\text{eff}} \hbar c^4} \simeq 10 \text{ Gyr} \left(\frac{M}{10^{15} \text{g}}\right)^3.$$

• The mass can be very small.

$$M \simeq M_H(t) \simeq \frac{c^3}{G} t \simeq 10^{15} \text{ g} \left(\frac{t}{10^{-23} \text{ s}}\right), \ R_g \simeq 1 \text{ fm } \left(\frac{M}{10^{15} \text{ g}}\right).$$

• $f(M) (M > 10^{15} \text{g})$ in terms of the production probability $\beta_0(M)$

$$f(M) := \frac{\Omega_{PBH}(M)}{\Omega_{CDM}} \simeq 4.8 \Omega_{PBH}(M) \simeq 6 \times 10^{17} \beta_0(M) \left(\frac{M}{10^{15} \text{ g}}\right)^{-1/2}$$

(Carr et al. (2010), Carr et al. (2016)). PBHs are "condensed" in the RD era.

Observational constraints on β

• Different observational data can constrain $\beta_0(M)$ of different masses. This is complementary to CMB observation. (Carr (1975), Carr et al. (2010))

• β_0 can be predicted in principle for a given cosmological scenario. Thus, the observational constraint on β_0 constrains cosmological scenarios.

PBH formation by primordial fluctuations

• Primordial fluctuations generated in accelerated-expansion phase re-enter the horizon in the decelerated-expasion phase.

 Quantum fluctuations generated by the simplest slow-roll inflation by a single scalar field φ with potential V(φ) give density fluctuation at horizon entry

$$\sigma(M) \simeq \left(\frac{V^{3/2}}{M_{Pl}^3 V'}\right)_{M=M_H}$$

But a vast variety of inflation models...

Long wavelength solutions

- Long wavelength solutions (Shibata & Sasaki (1999)) or asymptotically quasi-homogeneous solutions (Polnarev & Musco (2007))
- $H_b = \dot{a}/a$: The background Hubble parameter

- We can expand the exact solution in a power series of ϵ by putting $\partial_i \to \epsilon \partial_i$, where $\epsilon \sim H_b^{-1}/L = k/(aH_b) \ll 1$.
- 3+1 decomposition

$$ds^{2} = -\alpha^{2}dt^{2} + e^{-2\zeta}a^{2}(t)\tilde{\gamma}_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt),$$

where $det(\tilde{\gamma}_{ii})$ is the determinant of the flat 3-metric.

• Curvature pertubation: $\zeta = O(1)$, Density perturbation: $\delta = O(\epsilon^2)$

PBH formation in the radiation-dominated era

- Numerical relativity simulations (Harada, Yoo, Nakama & Koga 1503.03934)
- Analytic estimate of the threshold (Harada, Yoo, Kohri, 1309.4201)
- PBH formation in the matter-dominated era
 - Anisotropic effect (Harada, Yoo, Kohri, Nakao & Jhingan, 1609.01588)
 - Spins of PBHs (Harada, Yoo, Kohri & Nakao, 1707.03595)

PBH formation in the radiation-dominated (RD) era

- Pioneered by Carr & Hawking (1974), Carr (1975)
- If δ_H obeys a Gaussian distribution with standard deviation σ_H, β_0 is given by

$$\beta_0 \simeq \sqrt{\frac{2}{\pi}} \frac{\sigma_H}{\delta_{\rm th}} e^{-\delta_{\rm th}^2/(2\sigma_H^2)},$$

where δ_{th} is the threshold of δ_H for black hole formation.

- β_0 is very sensitive to the threshold δ_{th} as $\delta_{th} = O(1)$ and $\sigma_H \ll 1$.
- The threshold δ_{th} is basically determined by the Jeans criterion. Carr's formula: $\delta_{th} \simeq w$ for $p = w\rho$.
- Caution: δ_H depends on the slicing condition. The comoving slice is usually used.

- PBH formation in the radiation-dominated era
 - Numerical relativity simulations (Harada, Yoo, Nakama & Koga 1503.03934)
 - Analytic estimate of the threshold (Harada, Yoo, Kohri, 1309.4201)
- PBH formation in the matter-dominated era
 - Anisotropic effect (Harada, Yoo, Kohri, Nakao & Jhingan, 1609.01588)
 - Spins of PBHs (Harada, Yoo, Kohri & Nakao, 1707.03595)

Numerical relativity simulations in spherical symmetry

- Pioneered by Nadezhin, Novikov, & Polnarev (1978)
- All recent results for radiation converge to the range $\delta_{th} \simeq 0.42 0.66$ (Musco et al. (2005), Musco & Miller (2013), Harada, Yoo, Nakama & Koga, 1503.03934, ...).
- Profile and EOS ($p = w\rho$) dependence (w = 1/3 for radiation)

Figure: The results of numerical relativity simulations (Musco & Miller (2013))

Profile dependence (Harada, Yoo, Nakama & Koga 1503.03934)

• 0.42 $\leq \delta_{\text{th}} \leq$ 0.66, where δ_{th} is smaller for the gentler transition. $|\zeta|_{\text{peak,th}}$ shows the opposite behaviour.

Figure: $\psi = e^{-2\zeta}$ and ψ_0 is its peak value. The larger σ corresponds to the gentler transition to the surrounding homogeneous region.

• In fact, ζ_{peak} (or ψ_0) is strongly affected by a density perturbation of super-horizon scale, while δ_H is not. (Cf. Young et al. (2015))

PBH formation in the radiation-dominated era

• Numerical relativity simulations (Harada, Yoo, Nakama & Koga 1503.03934)

• Analytic estimate of the threshold (Harada, Yoo, Kohri, 1309.4201)

PBH formation in the matter-dominated era

- Anisotropic effect (Harada, Yoo, Kohri, Nakao & Jhingan, 1609.01588)
- Spins of PBHs (Harada, Yoo, Kohri & Nakao, 1707.03595)

Conventional analytic formula of the threshold

• 3-zone model: I: *K* = 1 FLRW, II: compensating layer, III: K=0 FLRW

• Jeans' criterion: If and only if the radius of region I at maximum expansion is larger then the Jeans length $R_J = c_s \sqrt{3/(8\pi G\rho)}$ with $c_s = \sqrt{w}$ for $p = w\rho$, the pertubation grows to a black hole.

$$\delta_{\text{CMC,th}} = w$$
, and $\delta_{\text{th}} = \frac{3(1+w)}{5+3w}w$,

in the CMC and comoving slices, respectively. (Cf. Carr (1975))

• The choice of **R**_J in GR is not so straightforward...

PBH formation in the radiation-dominated era 1309.4201)

New analytic formula (Harada, Yoo & Kohri, 1309.4201)

• Reformulated Jeans' criterion: If and only if the free-fall time is shorter than the sound-crossing time, the perturbation grows to a black hole.

$$\delta_{\rm th} = \frac{3(1+w)}{5+3w} \sin^2 \left(\frac{\pi \sqrt{w}}{1+3w} \right), \ \delta_{\rm max} = \frac{3(1+w)}{5+3w}.$$

• The new formula agrees well with the result of numerical relativity by Musco & Miller (2013) for $0.01 \le w \le 0.6$. It gives $\delta_{\text{th}} \simeq 0.4135$ for w = 1/3.

Introduction

- PBH formation in the radiation-dominated era
 - Numerical relativity simulations (Harada, Yoo, Nakama & Koga 1503.03934)
 - Analytic estimate of the threshold (Harada, Yoo, Kohri, 1309.4201)

PBH formation in the matter-dominated era

- Anisotropic effect (Harada, Yoo, Kohri, Nakao & Jhingan, 1609.01588)
- Spins of PBHs (Harada, Yoo, Kohri & Nakao, 1707.03595)

PBH formation in the matter-dominated (MD) era

- Pioneered by Khlopov & Polnarev (1980). Recently motivated by early MD phase scenarios such as inflaton oscillations, phase transitions, and superheavy metastable particles.
- Primordial perturbations may collapse to PBHs. If pressure is negligible, nonspherical effects play crucial roles.
 - The triaxial collapse of dust leads to a "pancake" singularity. (Lin, Mestel & Shu 1965, Zeldovich 1969)

• The effect of angular momentum may halt gravitational collapse or spin the formed PBHs.

• We here rely on the Newtonian approximation to deal with complicated nonspherical dynamics analytically.

- - Numerical relativity simulations (Harada, Yoo, Nakama & Koga 1503.03934)
 - Analytic estimate of the threshold (Harada, Yoo, Kohri, 1309.4201)

PBH formation in the matter-dominated era

- Anisotropic effect (Harada, Yoo, Kohri, Nakao & Jhingan, 1609.01588)
- Spins of PBHs (Harada, Yoo, Kohri & Nakao, 1707.03595)

Anisotropic effect

Zeldovich approximation

 Zeldovich approximation (ZA) (1969) Extrapolate the Lagrangian perturbation theory in the linear order in Newtonian gravity to the nonlinear regime.

$$r_i = a(t)q_i + b(t)p_i(q_j),$$

where $b(t) \propto a^2(t)$ denotes a linear growing mode.

We can take the coordinates in which

$$\frac{\partial p_i}{\partial q_j} = \text{diag}(-\alpha, -\beta, -\gamma),$$

where we can assume $\infty > \alpha \ge \beta \ge \gamma > -\infty$.

- We assume that α , β and γ are constant over the smoothing scale.
- We normalise b so that $(b/a)(t_i) = 1$ at horizon entry $t = t_i$.

Application of the hoop conjecture to the pancake collapse

Violent relaxation Virialised

- Hoop conjecture (Thorne 1972): The collapse results in a BH if and only if $C \leq 4\pi Gm/c^2$, where C is the circumference of the pancake singularity.
- Then, we obtain a BH criterion:

$$h(\alpha,\beta,\gamma):=\frac{C}{4\pi Gm/c^2}=\frac{2}{\pi}\frac{\alpha-\gamma}{\alpha^2}E\left(\sqrt{1-\left(\frac{\alpha-\beta}{\alpha-\gamma}\right)^2}\right)\lesssim 1,$$

where E(e) is the complete elliptic integral of the second kind.

If h ≥ 1? : It does not immediately collapse to a BH.

Spins of PBHs

Outline

- - Numerical relativity simulations (Harada, Yoo, Nakama & Koga 1503.03934)
 - Analytic estimate of the threshold (Harada, Yoo, Kohri, 1309.4201)

PBH formation in the matter-dominated era

- Anisotropic effect (Harada, Yoo, Kohri, Nakao & Jhingan, 1609.01588)
- Spins of PBHs (Harada, Yoo, Kohri & Nakao, 1707.03595)

Spin angular momentum within the region to collapse

• Region V: to collapse in the future

Angular momentum within V with respect to the COM in the Eulerian ٠ coordinates

$$\mathbf{L} = \rho_0 a^4 \left(\int_V \mathbf{x} \times \mathbf{u} d^3 \mathbf{x} + \int_V \mathbf{x} \delta \times \mathbf{u} d^3 \mathbf{x} - \frac{1}{V} \int_V \mathbf{x} \delta d^3 \mathbf{x} \times \int_V \mathbf{u} d^3 \mathbf{x} \right),$$

where $\mathbf{x} := \mathbf{r}/a$, $\mathbf{u} := aD\mathbf{x}/Dt$, $\delta := (\rho - \rho_0)/\rho_0$, and $\psi := \Psi - \Psi_0$.

Linearly growing mode of perturbation

$$\delta_{1} = \sum_{k} \hat{\delta}_{1,k}(t) e^{ik \cdot x}, \ \psi_{1} = \sum_{k} \hat{\psi}_{1,k}(t) e^{ik \cdot x}, \ \mathbf{u}_{1} = \sum_{k} \hat{\mathbf{u}}_{1,k}(t) e^{ik \cdot x},$$

here
$$\hat{\delta}_{1,k} = A_{k} t^{2/3}, \ \hat{\psi}_{1,k} = -\frac{2}{3} \frac{a_{0}^{2}}{k^{2}} A_{k}, \ \hat{\mathbf{u}}_{1,k} = ia_{0} \frac{k}{k^{2}} \frac{2}{3} A_{k} t^{1/3}.$$

wł

1st-order effect

$$\mathbf{L} = \rho_0 a^4 \left(\int_V \mathbf{x} \times \mathbf{u} d^3 \mathbf{x} + \int_V \mathbf{x} \delta \times \mathbf{u} d^3 \mathbf{x} - \frac{1}{V} \int_V \mathbf{x} \delta d^3 \mathbf{x} \times \int_V \mathbf{u} d^3 \mathbf{x} \right)$$

- If ∂V is not a sphere, the 1st term contribution grows as $\propto a \cdot \mathbf{u} \propto t$.
- If we assume V is a triaxial ellipsoid with axes (A₁, A₂, A₃), we find

$$\langle {\rm L}^2_{(1)} \rangle^{1/2} \simeq \frac{2}{5 \sqrt{15}} q \frac{M R^2}{t} \langle \delta^2 \rangle^{1/2}, \label{eq:L21}$$

where $r_0 := (A_1 A_2 A_3)^{1/3}$, $R := a(t)r_0$ and $q := \sqrt{\frac{Q_{ij}Q_{ij}}{3(\frac{1}{5}Mr_0^2)^2}}$ is a nondimensional reduced quadrupole moment of *V*. (Cf. Catelan & Theuns 1996)

Figure: The 1st-order effect can grow if ∂V is not a sphere.

2nd-order effect

$$\mathbf{L} = \rho_0 a^4 \left(\int_V \mathbf{x} \times \mathbf{u} d^3 \mathbf{x} + \int_V \mathbf{x} \delta \times \mathbf{u} d^3 \mathbf{x} - \frac{1}{V} \int_V \mathbf{x} \delta d^3 \mathbf{x} \times \int_V \mathbf{u} d^3 \mathbf{x} \right)$$

Even if ∂V is a sphere, the remaining contribution grows as 1st order × 1st order ∝ a ⋅ δ ⋅ u ∝ t^{5/3}.

$$\langle \mathbf{L}_{(2)}^2 \rangle^{1/2} = \frac{2}{15} I \frac{MR^2}{t} \langle \delta^2 \rangle,$$

where δ hereafter is the density perturbation averaged over *V*. $R := a(t)r_0$. We assume I = O(1). (Cf. Peebles 1969)

Figure: The 2nd-order effect can grow due to the mode coupling.

The application of the Kerr bound to the PBH formation

• Time evolution of V and angular momentum

- Horizon entry $(t = t_H)$: $ar_0 = cH^{-1}$, $\delta_H := \delta(t_H)$, $\sigma_H := \langle \delta_H^2 \rangle^{1/2}$
- Maximum expansion $(t = t_m)$: $\delta(t_m) = 1$, typically $t_m = t_H \sigma_H^{-3/2}$
- $a_* := L/(GM^2/c)$ at $t = t_m$

$$\langle a_{*(1)}^2 \rangle^{1/2} = \frac{2}{5} \sqrt{\frac{3}{5}} q \sigma_H^{-1/2}, \langle a_{*(2)}^2 \rangle^{1/2} = \frac{2}{5} I \sigma_H^{-1/2}, a_* \simeq \max\left(\langle a_{*(1)}^2 \rangle, \langle a_{*(2)}^2 \rangle\right)$$

- For *t* > *t_m*, the evolution of *V* decouples from the cosmological expansion and hence *a*_{*} is kept almost constant.
- Consequences
 - Supercritical angular momentum: typically $\langle a_*^2 \rangle^{1/2} \gtrsim 1$ if $\sigma_H \lesssim 0.1$
 - Suppression: The Kerr bound implies that *a*_{*} is typically too large for direct collapse to a BH.

Spin distribution

Spin distribution of PBHs formed in the MD era

Figure: Normalised by the peak value. A Gaussian distribution is assumed for the density perturbation. Each curve is labelled with the value of σ_{H} .

• Most of the PBHs have $a_* \simeq 1$. This contrasts with small spins $(a_* \leq 0.4)$ of PBHs formed in the RD era. (Chiba & Yokoyama (2017))

Numerical calculation of PBH production rate

• Triple integral for β_0 ($\theta(x)$ is a step function.)

$$\beta_0 \simeq \int_0^\infty d\alpha \int_{-\infty}^\alpha d\beta \int_{-\infty}^\beta d\gamma \theta [\delta_H(\alpha,\beta,\gamma)-\delta_{\rm th}] \theta [1-h(\alpha,\beta,\gamma)] w(\alpha,\beta,\gamma),$$

where we use $w(\alpha, \beta, \gamma)$ given by Doroshkevich (1970).

Figure: The red lines are due to both angular momentum and anisotropy. The 1st-order effect depends on q. The black solid line is solely due to anisotropy.

We have also derived semianalytic formulae for β₀.

Introduction

- 2) PBH formation in the radiation-dominated era
 - Numerical relativity simulations (Harada, Yoo, Nakama & Koga 1503.03934)
 - Analytic estimate of the threshold (Harada, Yoo, Kohri, 1309.4201)
- PBH formation in the matter-dominated era
 - Anisotropic effect (Harada, Yoo, Kohri, Nakao & Jhingan, 1609.01588)
 - Spins of PBHs (Harada, Yoo, Kohri & Nakao, 1707.03595)

Summary

● PBH は必ずある!

- In the RD era, δ_{th} has been obtained by numerical relativity and is well interpreted by reformulated Jeans's criterion. $\delta_{th} \simeq 0.42$ is recommended rather than the old value 1/3.
- In the MD era, anisotropic collapse effect gives β₀ ≃ 0.056σ⁵_H, while angular momentum effect gives suppression for smaller σ_H. Formed PBHs have large spins (a_{*} ≃ 1) in contrast to small spins of PBHs formed in the RD era.

Anisotropic collapse in the ZA

• The triaxial ellipsoid of a Lagrangian ball (assumption)

$$\begin{cases} r_1 = (a - \alpha b)q \\ r_2 = (a - \beta b)q \\ r_3 = (a - \gamma b)q \end{cases}$$

- Evolution of the collapsing region:
 - Horizon entry $(t = t_i)$: $a(t_i)q = cH^{-1}(t_i) = r_g := 2Gm/c^2$.
 - Maximum expansion $(t = t_f)$: $\dot{r_1}(t_f) = 0$ giving $r_f := r_1(t_f) = r_g/(4\alpha)$.
 - Pancake singularity $(t = t_c)$: $r_1(t_c) = 0$ giving $a(t_c)q = 4r_f = r_g/\alpha$.

Application of the Kerr bound to the rotating collapse

Technical assumption

$$|\mathcal{L}_{(1)}| \simeq \frac{2}{5\sqrt{15}}q\frac{MR^2}{t}\delta, \ |\mathcal{L}_{(2)}| \simeq \frac{2}{15}I\frac{MR^2}{t}\langle\delta^2\rangle^{1/2}\delta.$$

The above assumption implies

$$a_{*(1)} = \frac{2}{5} \sqrt{\frac{3}{5}} q \delta_{H}^{-1/2}, \ a_{*(2)} = \frac{2}{5} I \sigma_{H} \delta_{H}^{-3/2}, \ a_{*} = \max(a_{*(1)}, a_{*(2)}).$$

• The Kerr bound $a_* \leq 1$ gives a threshold δ_{th} for δ_H , where

$$\delta_{\rm th} = \max(\delta_{\rm th(1)}, \delta_{\rm th(2)}), \ \delta_{\rm th(1)} := \frac{3 \cdot 2^2}{5^3} q^2, \ \delta_{\rm th(2)} := \left(\frac{2}{5} I \sigma_H\right)^{2/3}.$$

Discussion of PBH production

Semianalytic estimate (black dashed line and blue dashed line)

$$\beta_{0} \simeq \begin{cases} 2 \times 10^{-6} f_{q}(q_{c}) I^{6} \sigma_{H}^{2} \exp \left[-0.15 \frac{I^{4/3}}{\sigma_{H}^{2/3}}\right] & (2nd\text{-order effect}) \\ 3 \times 10^{-14} \frac{q^{18}}{\sigma_{H}^{4}} \exp \left[-0.0046 \frac{q^{4}}{\sigma_{H}^{2}}\right] & (1st\text{-order effect}) \\ 0.05556 \sigma_{H}^{5} & (anisotropic effect) \end{cases},$$

where $f_q(q_c)$: the ratio of regions with $q < q_c = O(\sigma_H^{1/3})$. • σ_H in terms of P_{ζ} :

$$\sigma_H^2 \simeq \left(\frac{2}{5}\right)^2 P_{\zeta}(k_{BH}).$$