

Project for Solar-Terrestrial Environment Prediction

太陽における大気加熱と爆発現象 磁気リコネクション実験場としての太陽

今田晋亮 (名古屋大学、宇宙地球環境研究所)

- 太陽大気加熱問題(どうして太陽の外側の大気は熱いのか?含むコロナ加熱、太陽風加速など)
- 太陽フレアに関する問題(含むフレアトリガー、粒子加速、質量放出など)
- 太陽活動長期変動に関する問題(含むダイナモ、 総放射変動、マウンダー極小期など)
 堀田さんのお話

物理実験場としての太陽大気 共通の物理:磁気リコネクション

Plasmas conditions in solar corona & Earth's magnetosphere

Magnetic Reconnection

磁気レイノルズ数は10¹⁴程度 古典的な太陽での抵抗値を使うとフレアを起こすのに300万年かかる

Sweet Parker vs Petschek

名古屋大学D2の柴山さん提供

Plasmoid-Unstable Reconnection

Shibayama et al. 2015 動画柴山さん提供

Collisionless Reconnection

Generalized Ohm's Law

$$\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} = \eta \boldsymbol{j} + \frac{m_e}{ne^2} \left[\frac{\partial \boldsymbol{j}}{\partial t} + \nabla \cdot (\boldsymbol{j} \boldsymbol{v} + \boldsymbol{v} \boldsymbol{j}) \right] - \frac{1}{ne} \nabla \cdot \boldsymbol{P}_e + \frac{1}{ne} \boldsymbol{j} \times \boldsymbol{B}$$

磁場の拡散スケール
$$\frac{|\eta \mathbf{j}|}{|\mathbf{E}|} = \frac{|\frac{\eta}{\mu_0} \nabla \times \mathbf{B}|}{|\mathbf{E}|} \approx \frac{\eta}{\mu_0} \frac{B/L}{VB} = \frac{V_A}{V} \frac{\lambda_\eta}{L}$$

電子のジャイロ半径
$$\frac{|\frac{1}{ne} \nabla \cdot \mathbf{P}_e|}{|\mathbf{E}|} \approx \frac{(1/ne)(nm_e v_e^2/L)}{VB} = \frac{v_e}{V} \frac{\lambda_{Le}}{L}$$

イオン慣性長
$$\frac{|\frac{1}{ne}\boldsymbol{j}\times\boldsymbol{B}|}{|\boldsymbol{E}|} = \frac{|\frac{1}{\mu_0 ne}(\nabla\times\boldsymbol{B})\times\boldsymbol{B}|}{|\boldsymbol{E}|} \approx \frac{1}{\mu_0 ne}\frac{B^2/L}{VB} = \frac{V_A}{V}\frac{\lambda_i}{L}$$

太陽フレアと磁気圏サブストーム

巨視的 > 衝突 >> 微視的 衝突ーマクロカップリング

衝突 >> 巨視的 > 微視的

ミクロ-マクロカップリング

国立天文台 岡本丈典氏提供

·×.

°.≈

C *

飘

Giug.D. 26

現代の太陽観測衛星

ひのとり 🗄 1981~1991

ようこう 日 1991~2004

ひので 日 2006~

スカイラブ 米 1973~1979

SMM(Solar Maximum Mission) 米 1980~1989 SOHO 米欧 1995~

SDO 米 2010~

<u>衛星観測のメリット</u>

- 可視光以外(X線、紫外線 など)による観測
- 地球に制約されない観測
- 大気の揺らぎの無い観測

TRACE 米 1998~

RHESSI 米 2002~

STEREO 米 2006~

X線 (0.2~20nm)

極端紫外線(10~20nm)

電波(1mm)

100万度の 高温プラズマ 太陽のX線観測 ようこう衛星

> 太陽フレア:黒点のエネルギーの爆発現象 水爆の10万個~1000万個分のエネルギー

太陽コロナの謎

100万度のプラズマ

コロナ加熱問題

なぜコロナは熱いか?

太陽表面は 6,000度であるのに対して上空のコロ ナは 100万度もある

どうやって加熱しているのか?

コロナ加熱問題の解明

- 磁場の役割
 - ナノフレア加熱
 - 見えないくらい小さな爆発がたくさん ある
 - エネルギー源として十分にあるか?

- 波動加熱
 - 磁場を揺すって、熱に換える
 - どうやって波を熱に換えるのか
 - 観測されている波は十分にあるのか?

波によるコロナ加熱

グラニュールにより揺らされる?

波動発生→コロナ加熱?

アルフベン波が重要?

エネルギーの定量的評価

光球からのエネルギーフラックス(erg/cm²/s)

	熱エネルギー	運動エネルギー	
. [~ 10 [^] 10	~ 10 [^] 9	
	0.01~1%		
ロナ	·加熱に必要なエネ	・ルギーフラックス(e	rg/cm ² /s)

活動領域	静穏領域	コロナホール
^7	10^5	10^5

Withbroe & Noyes, 1977

波のエネルギーを見積もると活動領域を 加熱するには不十分。 時間分解能の問題でイメージング観測のみ 地上観測は空間分解能が足りないせいか?

ナノフレア

Hi-Cロケット実験の解像度 ~200km

ひのでEISの解像度~2000km

ナノフレア定量的な解析

Long period intensity oscillation

Froment+ 2015

1D Hydrodynamic Calculation

Half loop length 26 Mm

1次元静電Vlasov計算

Arber+ 2009

ペッチェック構造での熱伝導:オーダー評価

- ペチェックでのリコネクションレート ~ 0.01
- ショックの上下流での磁場比B1/B0~0.01
- 衝撃波の厚みはメートルオーダー(?)無視
- 電子衝突時間4秒@T=40MK、N=10^9/cc
- 4秒程度で第一断熱不変量は保存している
- 上流に逃げれるロスコーン角は約5度、割合にして全体の0.5%
- ざっくりと、4秒で0.5%なので、800秒程度のタイムス ケール?>> Alfven time

イオンのみ加熱されている?

• 熱伝導は電子によるもの

イオンのみ加熱されているとすると熱伝導の効率
は下がる

イオンと電子の温度緩和時間 > イオンの移流
の時間スケール

イオン温度の測定できるが、時間分解能が足りない

フレア観測:リコネクションの大局的構造

Sweet-Parker .vs. Petschek RX

Warren et al., 2018

(A) Sheet structure without islands

Takasao et al., 2012 (B) Sheet structure with islands

(C) Petschek Reconnection

(D) Plasmoid-Unstable Reconnection

Shibayama et al., 2015

AIA Observation

193 A (1.5 and 15MK)

Spectroscopic obs: EIS Line Profiles

Why we cannot observe reconnection region: Alfvenic flow

• Unlucky... Need time resolution.

Less emissions from reconnection region

- plasma condition differ from what we think 非平衡プラズマ
- Standard Flare model cannot apply in general
 - e.g., Loop Flare model..

フレアモデルが間違っている

不運

Ionization Process

Fe13+ Fe14+ Fe15+ Fe16+ Fe17+ FeXIV \rightleftharpoons FeXV \rightleftharpoons FeXVI \rightleftarrows FeXVII \rightleftarrows FeXVIII \longrightarrow ionization \leftarrow recombination $\frac{\partial n_i^Z}{\partial t} + \nabla \cdot n_i^Z v = R_i^Z$ $(Z = 1, \dots, N_{\text{elem}}) \quad (i = 1, \dots, N_{\text{ion}}^Z),$

where

$$R_{i}^{Z} = n_{e} \Big[n_{i+1}^{Z} \alpha_{i+1}^{Z} + n_{i-1}^{Z} S_{i-1}^{Z} - n_{i}^{Z} \Big(\alpha_{i}^{Z} + S_{i}^{Z} \Big) \Big],$$

- α collisional and dielectronic recombination
- S collisional ionization

We can discuss the history of heating!

Example of Ionization Calculation

How to diagnose MRX region?

Sweet-Parker .vs. Petschek RX

20

Warren et al., 2018

(A) Sheet structure without islands

Laminar な流れ (C) Petschek Reconnection

Takasao et al., 2012 (B) Sheet structure with islands

乱流的? (D) Plasmoid-Unstable Reconnection

Shibayama et al., 2015

次世代太陽観測衛星 Solar-C EUVST

Figure 3.10: The instrument opto-mechanical layout

紫外線分光観測 Solar-C(EUVST) →小型衛星

Telescope	Off-axis single mirror telescope				
Primary mirror	diameter 30 cm				
Mirror micro-roughness	<5 Å rms				
Focal Plane Instruments	Spectrographs, Slit imaging camera for co-alignment				
	Spectrographs:	First order:	17.0 - 21.5nm, 69.0 - 85.0nm,		
Wavelength courses			92.5 - 108.5nm, 111.5 - 127.5nm		
wavelength coverage		Second order:	46.3 - 54.2nm, 55.7 - 63.7nm		
	Slit imaging camera:	baseline T _{min} (160 nm)			
Temperature coverage	0.01 – 20 MK				
Imaging performance	≤0.28" in 67% encircled energy over nominal field-of-viewa				
Spatial sampling	0.14" per detector pixel				
Slit	0.14" - 2.8"				
Spectral resolution	16,000 - 30,000				
Exposure time	0.1 – 20s nominal				
Field-of-view	280° (along slit) × 300° (scanning direction) w/o repointing; coarse pointing to 1.5 solar radii				

広い温度範囲 (0.01-20MK)

高い空間分解能 (0.4")

高い時間分解能 (露出0.1-20sec)

高い空間分解能で運動を理解する

Hi-Cロケット実験の解像度 ~200km

Tomczyk+, Science 2007

0.50

ひのでEISでは10秒露出で1000秒かかる

- 音波伝搬時間~100秒
- 電離の時間スケール~100秒
- イオンー電子間での緩和時間~100秒

広い温度範囲

1万度の彩層から100万度のコロナ(フレアは数千万度)まで 連続的にエネルギーの輸送・散逸を捉える!

Ni, Fe, Ca, S, Si Mg, Oなど温度範囲だけでなくイオン種のカバーも豊富 電離非平衡・イオン温度などにも議論も有効

SolarC EUVST小型で目指すサイエンス

- 彩層・コロナと太陽風口形成に必要なエネルギー・ 質量輸送機構口究明
- •太陽面爆発現象口物理過程口解明

別の言い方をすると

- 天体プラズマにおけるエネルギー輸送過程の解明
- 天体プラズマにおけるエネルギー散逸過程の解明

ポイント:1)エネルギー散逸領域を捉える 2)エネルギー輸送を適切な時間スケールで観測