原始惑星系円盤における紫外線/X線光蒸発の 輻射流体シミュレーション:金属量依存性

仲谷崚平¹(東大D2), 細川隆史², 吉田直紀¹, 野村英子³, Rolf Kuiper⁴ 1: Univ. of Tokyo, 2: Kyoto Univ., 3: Tokyo Inst. of Technology, 4: Univ. of Tübingen

(Nakatani et al. submitted to ApJ; arXiv: 1706.04570)

第30回理論懇シンポジウム @ 小柴ホール, 12/26/2017

Protoplanetary Disk

• Geometrically thin Keplerian disk around a pre-main-sequence star

Main components; Gas/Dust

http://www.almaobservatory.org/press-room/press-releases/

Birthplace of planets

HL Tauri disk

Planetary system

Lifetimes of Protoplanetary Disks

*** Disk Fraction =

(disk-bearing members in a cluster) / (total number of members)

Metallicity Dependence of Lifetimes

What mechanism makes a disk disperse? -Photoevaporation -Photoevaporative flow

e.g., Bally & Scoville (1982); Shu et al. (1993), Hollenbach et al. (1994)

 FUV : (6 $\mathrm{eV} \lesssim h
u \lesssim 13.6 \ \mathrm{eV}$) EUV: (13.6 eV $\lesssim h\nu \lesssim 0.1$ keV) X-rays: $(0.1 \text{ keV} \lesssim h\nu \lesssim 10 \text{ keV})$

bound region

	FUV	EUV	X-rays
Reaction	Dust + FUV \rightarrow Dust + e	$H + EUV \rightarrow H^+ + e$	$M + X \rightarrow M^+ + e$
Main absorber	Dust grains	Atomic hydrogen	Metal elements
Penetrability	High	Low	High

Our Work:

 What roles UV/X-ray play in photoevaporation examine Z dependence of photoevaporation

Methods:

UV Photoevaporation in Solar Metallicity Disk

1. FUV drives dense winds 2. Flows launch at $\tau \sim 1$: base 3. Dust-gas collisional cooling is dominant at base

 $p_{\rm p} \sim 0.5 - 5 \ {\rm km/s}$

Various metallicities

See the vellow dashed line ($\tau_{\rm H} = 1$) and the red solid line ($n_{\rm H} = 10^6 \, {\rm cm}^{-3}$) \rightarrow FUV can reach denser regions. \rightarrow DENSER winds in LOWER metallicity ($n_{\rm H,base} \propto Z^{-1}$)

2. No neutral flow in very low metallicity

X-ray Effects ($Z = 0.1 Z_{\odot}$ disk)

X-rays strengthen the FUV heating

UV/X-ray Photoevaporation Rates

> Summary

- 1. Motivation: Observational metallicity dependence of lifetimes.
- 2. Methods: Hydrodynamical simulations with radiative transfer and non-equilibrium chemistry to examine the metallicity dependence of photoevaporation.
- 3. Results: Photoevaporation rates has a peak at $Z \sim 10^{-0.5}$ Z_{\odot} . If X-rays are taken into account, the peak moves to $Z \sim 10^{-1} Z_{\odot}$. X-rays strengthen the FUV heating.
- 4. Conclusion: Our model would be consistent with the observed metallicity dependence of the lifetimes, and it predicts that the disks would have even longer lifetimes in the much lower metallicity environments $Z \leq 10^{-3} Z_{\odot}$.
- Future (current) work
 - Modeling dust dynamics in photoevaporating disks.