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原始惑星系円盤進化の謎
原始惑星系円盤 
　・分子雲コアの重力崩壊により 
　　星とともに形成 
　・円盤中での角運動量輸送により 
　　原始星にガスが供給 
　・惑星形成の現場

ALMA Observations of HL Tau 5

FIG. 2.— Panels (a), (b), and (c) show 2.9, 1.3, and 0.87 mm ALMA continuum images of HL Tau. Panel (d) shows the 1.3 mm psf for the same FOV as the
other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the psf’s peak (the other bands show similar patterns). Panels (e) and
(f) show the image and spectral index maps resulting from the combination of the 1.3 and 0.87 mm data. The spectral index (α) map has been masked where
α/αerror < 4. The synthesized beams are shown in the lower left of each panel, also see Table 1. The range of the colorbar shown for panel (b), at 1.3 mm,
corresponds to −2×rms to 0.9× the image peak, using the values in Table 1. The colorscales for panels (a), (c) and (e) are the same except using the values of
rms and image peak corresponding to each respective wavelength in Table 1.

reconcile with a simple disk/outflow scenario, suggesting that
the blue-shifted outflow has broken out of the parental core
(Monin et al. 1996), or that there is another – as yet unidenti-
fied – driving source. Unfortunately, the 12CO (1-0) data are
missing significant flux (due to a lack of short spacings), and
have insufficient sensitivity in the outer portions of the field
of view to warrant deeper analysis of its properties. Figs. 1b,
and c show zoomed in views of our serendipitous detections of
XZ Tau (A and B), and LkHα358; no other continuum sources
above the local 4σ level were detected.

3.1. HL Tau

3.1.1. Position and Proper Motion

The fitted position for HL Tau in each of the ALMA
images is given in Table 1. The phase calibrator posi-
tions are accurate to < 1 mas and the positions are consis-
tent between the three observed bands to better than 2 mas
(consistent with dedicated LBC astrometry experiments, see
ALMA partnership et al. 2015); thus, we assume 2 mas as the
absolute ALMA position uncertainty. The position reported
by Kwon et al. (2011) from 1.3 mm CARMA observations is
04h31m38s.418 +18◦13′57.′′37 (J2000, epoch 2009.08). The
phase calibrator for CARMA observations (J0510+1800) had
a position accurate to better than 1 mas, and we assume an

(ALMA partnership 2015)
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Fig. 1. ALMA 1.3 mm dust continuum image (uniform weighting). The main substructures are highlighted in the right panel.

optically thin emission at millimeter wavelenghts beyond a few
10s of au from the star (Pérez et al. 2012; Tazzari et al. 2016).
Huang et al. (2016) found evidence of an extended gas emis-
sion (C18O) speculating that it is due to external CO desorption
in the outer disk. Interestingly, Huang et al. (2017) noticed the
presence of a dark lane in the dust 1.1 mm continuum emission.
The structure of the paper is the following: observations and data
reduction are presented in section 2 and the results are discussed
in section 3. The data analysis is described in Section 4. Sec-
tion 5 provides a comparison to hydrodynamical simulations.
Discussion and conclusion are reported in sec. 6.

2. Observations and Data reduction

The ALMA observations of AS 209 (J2000: R.A. =
16h49m15.296s, DEC = –14�22009.0200) have been performed on
2016 September 22 (with 38 antennas) and 26 (41 antennas) in
band 6 (211–275 GHz) as part of the project ID 2015.1.00486.S
(PI: D. Fedele). The correlator setup includes a broad (2 GHz
bandwidth) spectral window centered at 230 GHz.
Visibilities were taken in two execution blocks with a 6.05s in-
tegration time per visibility totalling 40 minutes, per block, on-
source. System temperatures were between 80� 145 K. Weather
conditions on the dates of observation gave an average precip-
itable water vapour of 2.2 and 2.3 mm, respectively. Calibration
was done with J1517�2422 as bandpass calibrator, J1733�1304
as phase and flux the flux calibrator. The visibilities were subse-
quently time binned to 60s integration times per visibility for
self-calibration, imaging, and analysis. Self-calibration was per-
formed using the 233 GHz continuum TDM spectral window
with DA41 as the reference antenna.
The continuum image was created using casa.clean (casa ver-
sion 4.7); after trying di↵erent weighting schemes, we opted for
a uniform weight which yields a synthesised beam of 000.19 ⇥
000.14 (PA = 75.5�). The peak flux is 13 mJy beam�1 and the r.m.s.
is 0.1 mJy beam�1.

3. Results

The ALMA 1.3 mm dust continuum image is shown in Fig. 1:
the continuum emission is characterized by a bright central emis-
sion and two weaker dust rings peaking at ⇠ 75 au and 130 au,
respectively. The two rings have a similar peak flux (⇠ 2 mJy).
The rings are intervaled by two narrow gaps. The two gaps have
di↵erent widths and depths. The radial intensity profile shows a
kink around 20 � 30 au which may be the signature of another
(spatially unresolved) dust gap. Finally, the continuum flux does
not drop to zero at the edge of the outer ring as there is a tenuous
emission extending out to ⇠ 170�180 au. The di↵erent disk sub-
structures are clearly visible in the radial intensity profile shown
in Fig. 2.

3.1. Characterization of the brightness profile

In this section we present here the fit of the observed visibil-
ities, which provides an initial characterization of the disk sur-
face brightness useful for the detailed physical modelling carried
out in Section 4. We assume an axisymmetric brigthness profile
defined as follows:

I(R) = �(R) I0
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where I0 is a normalization, Rc is a scale length and �(R) is a
scaling factor (by definition �(R) > 0) parametrized as:
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�R1 for R 2 [RG1 + hwG1,RG2 � hwG2]
�G2 for R 2 [RG2 � hwG2,RG2 + hwG2]
�R2 for R 2 [RG2 + hwG2,RR2,out]
�out for R � RR2,out

1 otherwise

(2)
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リング構造等の構造が観測
形成機構は未解明



WL 17のリング構造

どのようにこの構造が形成されるか？

2 Sheehan et al.

Table 1. Log of ALMA Observations

Observation Date Baselines Total Integration Time Calibrators

(UT) (m) (s) (Flux, Bandpass, Gain)

Oct. 31 2015 84 - 16,200 169 1517-2422, 1625-2527

Nov. 26 2015 68 - 14,300 169 1517-2422, 1625-2527

Apr. 17 2016 15 - 600 58 1733-1304, 1427-4206, 1625-2527

the Band 3 receivers, and the four basebands were tuned
for continuum observations centered at 90.5, 92.5, 102.5,
104.5 GHz, each with 128 15.625 MHz channels for 2
GHz of continuum bandwidth per baseband. In all the
observations had 8 GHz of total continuum bandwidth.
We list details of the observations in Table 1.
We reduce the data in the standard way with the

CASA software package and the calibrators listed in Ta-
ble 1. After calibrating, we image the data by Fourier
transforming the visibilities with the CLEAN routine. We
use Briggs weighting with a robust parameter of 0.5,
which provides a good balance between sensitivity and
resolution, to weight the visibilities. The resulting im-
age has a beam of size 0.06” by 0.05” with a P.A. of
81.9�. We show the resulting image in Figure 1, and
the azimuthally averaged visibility amplitudes in Figure
2. The rms of the image is 36 µJy/beam. All analy-
sis is done directly to the un-averaged two dimensional
visibilities.

2.2. SED from the Literature

We compile a broadband spectral energy distribution
(SED) for WL 17 from a thorough literature search. We
show the SED in Figure 2. The data includes Spitzer

IRAC and MIPS photometry as well as fluxes from the
literature at a range of wavelengths (Wilking & Lada
1983; Lada & Wilking 1984; Greene & Young 1992; An-
dre & Montmerle 1994; Strom et al. 1995; Barsony et al.
1997; Johnstone et al. 2000; Allen et al. 2002; Natta et al.
2006; Stanke et al. 2006; Alves de Oliveira & Casali 2008;
Jørgensen et al. 2008; Padgett et al. 2008; Wilking et al.
2008; Evans et al. 2009; Gutermuth et al. 2009; Barsony
et al. 2012). We exclude WISE photometry because the
fluxes are inconsistent with the IRAC and MIPS fluxes.
This is because the WISE beam is larger than the Spitzer
beam, and may cause confusion with nearby sources.
The IRAC and MIPS flux measurements were also in-
dependently reproduced by two di↵erent groups using
separate datasets (Evans et al. 2009; Gutermuth et al.
2009), so we believe these measurements to be reliable.
We also include the the SL, SH, and LH calibrated

Spitzer IRS spectrum from the CASSIS database in our
SED(Lebouteiller et al. 2011, 2015). We find that we

need to scale the IRS spectrum by a factor of 3 to align it
with the IRAC/MIPS photometry for the system. When
scaled up the IRS spectrum also nicely matches ground-
based 10 µm photometry of the silicate absorption fea-
ture. This factor may be needed due to issues in the flux
calibration or the pointing towards the source.
For the purposes of assessing the quality of model fits

to the SED we assume a 10% uncertainty on all flux
measurements when computing �2. We also sample the
IRS spectrum at 25 points evenly spaced across the spec-
trum to minimize the number of individual wavelengths
at which radiative transfer flux calculations, which can
be time intensive, must be done.

3. RESULTS

Our 3 mm map of WL 17, shown in Figure 1, shows
a well detected, compact source with a hole measuring
⇠ 0.200 in diameter in the center. At the distance of
Ophiuchus, which we assume to be 137 pc, the hole is

Figure 1. ALMA 3 mm map of WL 17 showing a clear ring-
like structure. The synthesized beam size is 0.06” by 0.05”
with a P.A. of 81.9�. Contours begin at 4� and subsequent
contours are every additional 2�, with 1� = 36 µJy. The
emission interior to the ring does not drop to zero, but rather
falls to a 4� level at the inner edge of the ring. At the center
of the ring the emission rises to a 6� level. This may indicate
the presence of material remaining in the cleared out region.

(Sheehan and Eisner 2017)
円盤にリング構造  10~20 au

年齢 ~5x105 yr

惑星によるギャップ形成？ 
一方、若い円盤での惑星形成は困難。他のメカニズムは？

遷移円盤のような構造が 
若い円盤に形成

ALMAによるダスト熱放射の観測



円盤風によるリング構造形成

(Suzuki et al. 2010)
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Figure 1. Dynamical evaporation of a protoplanetary gas disk by local three-dimensional ideal MHD simulation without mass supply by radial accretion. We impose
a weak vertical magnetic field, Bz, with the plasma β value, βz,mid = 8πρmidc

2
s /B

2
z = 106, at the midplane. The lower right panel shows the total mass normalized by

the initial mass in the local simulation box as a function of rotation time. The four color panels show snapshots of the local protoplanetary disk simulation at t = 0
(initial condition), 200 rotations, 2200 rotations, and 4130 rotations. The x, y, and z components respectively correspond to radial, azimuthal, and vertical components.
The unit of each component is scaleheight, H ≡

√
2cs/Ω. The box size is (x, y, z) = (±0.5H,±2H,±4H ), which is resolved by (32, 64, 256) grid points. The

colors indicate density normalized by the initial value at the midplane, the white solid lines illustrate magnetic field lines, and the arrows show the velocity field.
A small number of magnetic field lines (vertical lines) in the panel of t = 0 reflect that the initially imposed magnetic field is weak (the number of field lines is scaled
by magnetic field strength). We should emphasize that the actual dispersal is much slower because of the mass supplied by accretion (see the text).

(x, y, z) = (±0.5H,±2H,±4H ), where the x, y, and z compo-
nents respectively correspond to radial, azimuthal, and vertical
components and scaleheight, H, is defined from sound speed,
cs, and disk rotation frequency, Ω, as H ≡

√
2cs/Ω.

In SI09, we have already shown results of an ideal MHD
simulation in the shearing box up to 400 rotation times. In this
paper, we extend this simulation to 5000 rotation times when
significant mass is lost from the simulation box (Section 2.2). In
Section 2.3, we take into account the effects of resistivity (i.e.,
dead zone). Later in this paper, we perform simulations in boxes
with larger vertical extents to study the effects of box size on
the escaping mass (Section 5.4.1).

2.1. Launching of Disk Winds

Before showing the results of the local simulations, we
discuss the basic properties of the disk wind obtained in SI09
because the disk wind is the key that controls the evolution
of protoplanetary disks in this paper. In SI09, we interpreted
the disk winds as being driven by the breakups of channel-
mode flows (e.g., Sano et al. 2004) as a result of MRI (Balbus &

Hawley 1991). Large-scale channel flows (e.g., Sano et al. 2004)
develop most effectively at 1.5–2 times the scaleheight above
the midplane. The breakups of these channel flows by magnetic
reconnections drive disk winds in a time-dependent manner
with quasi-periodic cycles of 5–10 rotation periods. The disk
material itself is lifted up recurrently, which will be observed as
the time variation of effective disk surfaces. Time variabilities
are actually observed in protostar–protoplanetary disk systems
(e.g., Wisniewscki et al. 2009; Muzerolle et al. 2009; Bary et al.
2009), which might be explained by quasi-periodic breakups
of channel flows. The quasi-periodic feature of the disk winds
is universally found not only in ideal MHD simulations but in
simulations with dead zones, as will be shown in Section 2.3.

We should note that upward motions in vertically stratified
accretion disks have been widely discussed with various inter-
pretations. Magnetic buoyancy (Parker instability; Parker 1966)
is one of the mechanisms that play a role in lifting up gas and
the magnetic field in the upper regions with |z| ! 1.5H (Miller
& Stone 2000; Machida et al. 2000; Nishikori et al. 2006). In
fact, we observe ⌢-shape magnetic field structures, which are
characteristic of Parker instabilities, in our simulations as well

局所シミュレーションから 
MRIによる円盤風の存在が示唆
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質量保存

3. 結果：リング形成
3.1. set up

3.1.1. 分子雲コア
中心密度 4.5 × 10−20 [gcm−3], f=1.4, 総質量 Mcl =

1.5M⊙, 半径 0.08 pc. 回転角速度 3.2× 10−15 [s−1] (参考
に典型値 3.2× 10−14 [s−1]も計算).

3.1.2. 円盤
内縁半径 1 au,外側境界 104 au. 角運動量輸送として、

α粘性モデルを用いる。温度分布

T = 150

(
r

1 [au]

)−3/7

(1)

α = exp[−Q−4] + αMRI (2)

円盤風による mass loss

Σ̇wind =

{
0 (Minf < Mcl)

CwΣΩ (Minf > Mcl)
(3)

ここでMcl は分子雲コアから降着した総質量。ダストの
運動は St固定で計算。

3.2. Timescales

重要なタイムスケールは粘性、wind, radial drift の 3
つ。
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は 1%程度となる。
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CW~10-5-10-3

円盤内側ほど効率的⇒穴構造

円盤風で若い円盤にリング形成可能か？

円盤内縁付近で圧力最大 
　　ダストが集まる 
　　⇒ダスト放射のリング構造



1次元モデルによる円盤形成進化計算

若い円盤が対象→構造は形成過程に依存するはず。 
円盤の形成過程（分子雲コアの重力崩壊）から一貫して 
計算を行う。

円盤の形成・進化過程を1次元モデルで計算する

円盤風によるリング構造形成過程を調べる

3次元計算では円盤進化過程の計算に時間がかかりすぎる。

●

●
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質量保存

3. MODEL

3.1. Equations

∂

∂t
2πϖΣ = −∂Ṁ

∂ϖ
+ 2πϖ(Σ̇infall − Σ̇wind) (1)

3.2. set up

3.2.1. 分子雲コア
中心密度 4.5 × 10−20 [gcm−3], f=1.4, 総質量 Mcl =

1.5M⊙, 半径 0.08 pc. 回転角速度 3.2× 10−15 [s−1] (参考
に典型値 3.2× 10−14 [s−1]も計算).

3.2.2. 円盤
内縁半径 1 au,外側境界 104 au. 角運動量輸送として、

α粘性モデルを用いる。温度分布

T = 150

(
r

1 [au]

)−3/7

(2)

α = exp[−Q−4] + αMRI (3)

円盤風による mass loss

Σ̇wind =

{
0 (Minf < Mcl)

CwΣΩ (Minf > Mcl)
(4)

ここでMcl は分子雲コアから降着した総質量。ダストの
運動は St固定で計算。
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3

α = exp[−Q−4] + αMRI (5)

円盤風による mass loss

Σ̇wind =

{
0 (Minf < Mcl)

CwΣΩ (Minf > Mcl)
(6)

ここでMcl は分子雲コアから降着した総質量。ダストの
運動は St固定で計算。

3.3. Timescales

重要なタイムスケールは粘性、wind, radial drift の 3
つ。

3.3.1. Viscous timescale

ケプラー回転円盤の場合
∂Σ

∂t
=

3

r
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)
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−2 (7)

ここで、Σ ∝ rnΣ , ν ∝ rnν . 従って、ここでは
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)15/14 ( α
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)−1
(8)

とする。係数 1/20は式 (7)の無視できない係数 6πより。
3.3.2. Wind timescale

式 (6)より、
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)−1

(9)

3.3.3. Drift timescale
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従って、St≪ 1, ϵ ≪ 1のとき、
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4. 結果：リング形成
4.1. Case 1: tdir ! twind ∼ 106yr ≪ tvis at 10 au

(α = 10−4, Cw = 3× 10−5, St = 0.03)

このとき、円盤の pressure maximumは円盤風のタイム
スケールのみで決まる。半径∼10 au で∼ 106 yr の タイ
ムスケールになるには、Cw ∼ 3 × 10−5 程度。粘性のタ
イムスケールが十分長くなるためには α ≪ 10−3 が必要。
ダストでリング構造を作るにはドリフトタイムスケールが
! 106 yr がよい。このとき、St ∼ 0.03.このパラメータ
でのタイムスケールの比較を図 10に示す。この時の面密
度変化を図 11に示す。時刻 1∼1.6Myrで半径 10auの位
置にダストリングが形成されていることが分かる。原始星
形成の時期が ∼ 0.4 Myr なので、年齢 0.5 ∼ 1 Myr の原
始星に付随するリングに対応する。
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Fig. 10.— case 1: α = 10−4, Cw = 3× 10−5,St = 0.03 での各タ
イムスケールの比較。

10-4
10-3
10-2
10-1
100
101
102
103
104
105

100 101 102 103

Σ
 [g

 c
m

-2
]

r [au]

0.59 Myr gas
dust

0.69 Myr gas
dust

1.09 Myr gas
dust

1.59 Myr gas
dust

Fig. 11.— case 1: α = 10−4, Cw = 3× 10−5,St = 0.03 でのダス
ト・ガス面密度の時間発展.
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Fig. 12.— case 2: α = 10−3, Cw = 10−4,St = 0.03 での各タイム
スケールの比較。

4.2. Case 2: twind ∼ tvis < 106yr, tdir ! 106 yr at 10
au

(α = 10−3, Cw = 10−4, St = 0.03)

このとき、半径∼10 au の内側でのみ円盤風が粘性拡散
より早くなる。円盤の pressure maximumの位置は 10 au
程度となる。円盤風及び粘性のタイムスケールは 106年よ
り短いが、この位置で pressure maximumがあまり動かな
いため、長いタイムスケールでこの半径にリングがとどま
る。ダストでリング構造を作るにはドリフトタイムスケー
ルが ! 106 yr がよいのは case 1 と同様である。このと
き、St ∼ 0.03.このパラメータでのタイムスケールの比較
を図 12に示す。この時の面密度変化を図 13に示す。時刻
∼ 1Myrで半径 10auの位置にダストリングが形成されて
いることが分かる。

infall 終了後に円盤風によるmass loss開始

降着総質量 Minf =1.5M◉で降着終了

降着のdust/gas=ε=0.01
円盤中のダストの運動を計算⇒ダストリングの形成

円盤の形成・進化

分子雲コアの重力崩壊により円盤へのガス降着

(Minf <1.5M◉)
(Minf >1.5M◉)

(Takahashi et al. 2013)



基礎方程式
円盤中の角運動量輸送を粘性として扱う

自己重力

Ω ≤ Ω∗ ≤ ΩK (126)

α = ν/(cs2/Ω) = 0.01 (127)

Q ! 1 (128)

1 ! Q ! 2 (129)

2 ! Q ! 4 (130)

T = 150
( r

1 au

)−3/7

[K] (131)

α " 10−1 (132)

∝ − ∂

∂r

(
Σνr2
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(133)

α = exp[−Q4] + αMRI (134)
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Fig. 18.— Time evolution of the surface density of the gas
and dust with αMRI = 3 × 10−3, Cw = 3 × 10−4, and St =
0.3. The top and bottom panels show the results with Ωcore =
0.2 and 0.5[kms−2pc−1], respectively. The solid lines shows the
gas surface density and the dotted lines shows the dust surface
density

APPENDIX

DERIVATION OF THE VELOCITY OF THE GAS AND DUST IN THE DISK

The equations for the gas and the dust in the disks are given as follows:

∂Σ

∂t
= −1

r

∂Σur

∂r
+ Σ̇inf − Σ̇wind, (A1)

Σ

(
∂ur

∂t
+ ur

∂ur

∂r
−

u2
φ

r

)
= −∂P

∂r
− Σ

GMr

r
+

vr − ur

tstop
Σd (A2)

Σ

(
∂uφ

∂t
+ ur

∂uφ

∂r
+

uruφ

r

)
=

1

r2
∂

∂r

(
Σνr3

∂Ω

∂r

)
+

vφ − uφ

tstop
Σd (A3)

∂Σd

∂t
= −1

r

∂Σdvr
∂r

+ ϵΣ̇inf , (A4)

Σd

(
∂vr
∂t

+ vr
∂vr
∂r

−
v2φ
r

)
= −Σ

GMr

r
+

ur − vr
tstop

Σd (A5)

Σd

(
∂vφ
∂t

+ vr
∂vφ
∂r

+
vrvφ
r

)
=

uφ − vφ
tstop

Σd, (A6)

where Σ, ur, uφ are the surface density, radial velocity, and azimuthal velocity of the gas, Σd , vr, vφ are those of the
dust, Σ̇wind is the mass loss rate due to the disk wind, P is the vertically integrated pressure, Mr is the enclosed mass
of the gas within the radius r, tstop is the stopping time of the dust, ν is the coefficient of the kinematic viscosity, and
ϵ is the dust-to-gas mass ratio in the infalling envelope.
We assume that the effect of the pressure gradient force, the friction force between the gas and the dust, and the

viscosity is small. If we neglect these term, we obtain ur = vr = 0 and uφ = vφ =
√
GMr/r. We calculate the

deviation of the velocities from these values in the first order. Here we treat ∂
∂t as the same order as vr

∂
∂r . We define

δur and δvr as the deviations of the azimuthal velocities: ur =
√
GMr/r+ δur, vr =

√
GMr/r+ δvr. From Equation

gas

dust
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1. INTRODUCTION

2. METHOD

In this work, we calculate formation and evolution of
protoplanetary disks to investigate the ring structure for-
mation in young disks. Since focus on young disks whose
ages are similar to the disk formation timescale (∼ 106

yr), we cannot adopt the already formed protoplanetary
disks, for example minimum mass solar nebular, as initial
conditions. Instead, we have to adopt molecular cloud
cores as initial conditions and calculate processes from
gravitational collapse of the cloud core to disk evolution
consistently.

2.1. Equations

2.1.1. Gravitational collapse of cloud cores and gas infall
onto disks

We calculate gravitational collapse of cloud cores ac-
cording to equations given in Takahashi et al. (2013) (see
also Takahashi et al. 2016, for detailed derivation). We
assume that molecular cloud cores and infalling envelopes
are isothermal, T = 10 K. The initial density profile is
given so that the initial gravitational force is larger then
the initial pressure gradient force by a factor of f . Be-
cause of the pressure gradient force, the time when the
collapsing gas reaches the center tinf is larger than the
free-fall time tff (Equation (6) in Takahashi et al. (2016)):

tinf =
2

π
tff

∫ 1

0

dx√
f−1 lnx+ x−1 − 1

. (1)

Since free-fall time tff depends on the initial radius of the
cloud core, infall time tinf is also depends on the initial
radius of the core. The mass accretion rate onto the
center of the cloud core is given by

Ṁinf(t) = 4πR2
iniρini(Rini)

(
dtinf
dRini

∣∣∣∣
tinf=t

)−1

, (2)

where Rini is the initial radius of the infalling gas and
ρini(Rini) is the radial profile of the initial density of the
cloud core. Since typical scale of the cloud cores (∼ 0.1
pc) is much larger than that of protoplanetary disks (∼
100 au), we adopt Ṁinf as the mass accretion rate from
cloud cores onto disks.
We assume that cloud cores initially rotate rigidly and

the specific angular momentum of the infalling gas con-
serves. To derive the increase of the surface density of
the disk per unit time Σ̇inf , we assume the envelope gas
infalls at the centrifugal radius (see also Equation (10)

in Takahashi et al. 2013):

Σ̇inf =
1

2πr

Ṁinf

2Ω0R2
ini

(
1− j

Ω0Rini

)−1/2 ∂j

∂r
, (3)

where Ω0 is the initial angular velocity of the cloud core,
r is the disk radius, and j is the angular momentum
distribution of the disk. In this work, we assume that the
total molecular cloud core massMcore = 1.5M⊙. We stop
the infall when the all of gas in the cloud core collapsed
onto the central star and the disk.

2.1.2. Disk evolution

Due to the gas infall from the core as explained above,
protoplanetary disk are formed. In order to investigate
the ring structure formation, we calculate the equations
for gas and dust. Derivation of the equations are given
in Appendix.
The time evolution of the gas and dust are given by

the equations as follows,

∂Σ

∂t
= −1

r

∂

∂r
rΣur + Σ̇infall − Σ̇wind, (4)

∂Σd

∂t
= −1

r

∂

∂r
rΣdvr + ϵΣ̇inf , (5)

ur =
2r

j
T − Σd

Σ+ Σd

1

ASt′2 + 1

2r

j
T

+
2Σd

Σ+ Σd

ASt′

ASt′2 + 1
ηrΩ− rṀr,tot

Mr
(6)

vr =
Σ

Σ+ Σd

1

ASt′2 + 1

2r

Aj
T − Σ

Σ+ Σd

2St′

ASt′2 + 1
ηrΩ

+

(
2r

Aj
T − Σd

Σ+ Σd

1

ASt′2 + 1

2r

Aj
T

+
2Σd

Σ+ Σd

St′

St′2 + 1
ηrΩ

)
2πr2Σ

Mr
− rṀr,tot

Mr
(7)

where Σ, ur, uφ are the surface density, radial velocity,
and azimuthal velocity of the gas, Σd , vr, vφ are those
of the dust, Σ̇wind is the mass loss rate per unit area due
to the disk wind, ϵ is the dust-to-gas mass ratio in the
infalling envelope, j is the specific angular momentum,
T is the specific torque given by

T =
1

rΣ

∂

∂r

(
r3νΣ

∂Ω

∂r

)
, (8)

Ω is the angular velocity, ν is the coefficient of the kine-
matic viscosity, the factor A represents the effect of the
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ages are similar to the disk formation timescale (∼ 106

yr), we cannot adopt the already formed protoplanetary
disks, for example minimum mass solar nebular, as initial
conditions. Instead, we have to adopt molecular cloud
cores as initial conditions and calculate processes from
gravitational collapse of the cloud core to disk evolution
consistently.

2.1. Equations

2.1.1. Gravitational collapse of cloud cores and gas infall
onto disks

We calculate gravitational collapse of cloud cores ac-
cording to equations given in Takahashi et al. (2013) (see
also Takahashi et al. 2016, for detailed derivation). We
assume that molecular cloud cores and infalling envelopes
are isothermal, T = 10 K. The initial density profile is
given so that the initial gravitational force is larger then
the initial pressure gradient force by a factor of f . Be-
cause of the pressure gradient force, the time when the
collapsing gas reaches the center tinf is larger than the
free-fall time tff (Equation (6) in Takahashi et al. (2016)):
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∫ 1
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. (1)

Since free-fall time tff depends on the initial radius of the
cloud core, infall time tinf is also depends on the initial
radius of the core. The mass accretion rate onto the
center of the cloud core is given by

Ṁinf(t) = 4πR2
iniρini(Rini)

(
dtinf
dRini
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tinf=t

)−1

, (2)

where Rini is the initial radius of the infalling gas and
ρini(Rini) is the radial profile of the initial density of the
cloud core. Since typical scale of the cloud cores (∼ 0.1
pc) is much larger than that of protoplanetary disks (∼
100 au), we adopt Ṁinf as the mass accretion rate from
cloud cores onto disks.
We assume that cloud cores initially rotate rigidly and

the specific angular momentum of the infalling gas con-
serves. To derive the increase of the surface density of
the disk per unit time Σ̇inf , we assume the envelope gas
infalls at the centrifugal radius (see also Equation (10)

in Takahashi et al. 2013):

Σ̇inf =
1
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2Ω0R2
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(
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)−1/2 ∂j
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, (3)

where Ω0 is the initial angular velocity of the cloud core,
r is the disk radius, and j is the angular momentum
distribution of the disk. In this work, we assume that the
total molecular cloud core massMcore = 1.5M⊙. We stop
the infall when the all of gas in the cloud core collapsed
onto the central star and the disk.

2.1.2. Disk evolution

Due to the gas infall from the core as explained above,
protoplanetary disk are formed. In order to investigate
the ring structure formation, we calculate the equations
for gas and dust. Derivation of the equations are given
in Appendix.
The time evolution of the gas and dust are given by

the equations as follows,
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where Σ, ur, uφ are the surface density, radial velocity,
and azimuthal velocity of the gas, Σd , vr, vφ are those
of the dust, Σ̇wind is the mass loss rate per unit area due
to the disk wind, ϵ is the dust-to-gas mass ratio in the
infalling envelope, j is the specific angular momentum,
T is the specific torque given by

T =
1

rΣ

∂
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(
r3νΣ

∂Ω

∂r

)
, (8)

Ω is the angular velocity, ν is the coefficient of the kine-
matic viscosity, the factor A represents the effect of the

gas

dust ε=0.01
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where Rini is the initial radius of the infalling gas and
ρini(Rini) is the radial profile of the initial density of the
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100 au), we adopt Ṁinf as the mass accretion rate from
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where Ω0 is the initial angular velocity of the cloud core,
r is the disk radius, and j is the angular momentum
distribution of the disk. In this work, we assume that the
total molecular cloud core massMcore = 1.5M⊙. We stop
the infall when the all of gas in the cloud core collapsed
onto the central star and the disk.

2.1.2. Disk evolution

Due to the gas infall from the core as explained above,
protoplanetary disk are formed. In order to investigate
the ring structure formation, we calculate the equations
for gas and dust. Derivation of the equations are given
in Appendix.
The time evolution of the gas and dust are given by
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where Σ, ur, uφ are the surface density, radial velocity,
and azimuthal velocity of the gas, Σd , vr, vφ are those
of the dust, Σ̇wind is the mass loss rate per unit area due
to the disk wind, ϵ is the dust-to-gas mass ratio in the
infalling envelope, j is the specific angular momentum,
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Ω is the angular velocity, ν is the coefficient of the kine-
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pc) is much larger than that of protoplanetary disks (∼
100 au), we adopt Ṁinf as the mass accretion rate from
cloud cores onto disks.
We assume that cloud cores initially rotate rigidly and

the specific angular momentum of the infalling gas con-
serves. To derive the increase of the surface density of
the disk per unit time Σ̇inf , we assume the envelope gas
infalls at the centrifugal radius (see also Equation (10)

in Takahashi et al. 2013):

Σ̇inf =
1

2πr

Ṁinf

2Ω0R2
ini

(
1− j

Ω0Rini

)−1/2 ∂j

∂r
, (3)

where Ω0 is the initial angular velocity of the cloud core,
r is the disk radius, and j is the angular momentum
distribution of the disk. In this work, we assume that the
total molecular cloud core massMcore = 1.5M⊙. We stop
the infall when the all of gas in the cloud core collapsed
onto the central star and the disk.

2.1.2. Disk evolution

Due to the gas infall from the core as explained above,
protoplanetary disk are formed. In order to investigate
the ring structure formation, we calculate the equations
for gas and dust. Derivation of the equations are given
in Appendix.
The time evolution of the gas and dust are given by

the equations as follows,

∂Σ

∂t
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∂

∂r
rΣur + Σ̇infall − Σ̇wind, (4)

∂Σd
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where Σ, ur, uφ are the surface density, radial velocity,
and azimuthal velocity of the gas, Σd , vr, vφ are those
of the dust, Σ̇wind is the mass loss rate per unit area due
to the disk wind, ϵ is the dust-to-gas mass ratio in the
infalling envelope, j is the specific angular momentum,
T is the specific torque given by

T =
1

rΣ

∂

∂r

(
r3νΣ

∂Ω

∂r

)
, (8)

Ω is the angular velocity, ν is the coefficient of the kine-
matic viscosity, the factor A represents the effect of the
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1. INTRODUCTION

2. METHOD

In this work, we calculate formation and evolution of
protoplanetary disks to investigate the ring structure for-
mation in young disks. Since focus on young disks whose
ages are similar to the disk formation timescale (∼ 106

yr), we cannot adopt the already formed protoplanetary
disks, for example minimum mass solar nebular, as initial
conditions. Instead, we have to adopt molecular cloud
cores as initial conditions and calculate processes from
gravitational collapse of the cloud core to disk evolution
consistently.

2.1. Equations

2.1.1. Gravitational collapse of cloud cores and gas infall
onto disks

We calculate gravitational collapse of cloud cores ac-
cording to equations given in Takahashi et al. (2013) (see
also Takahashi et al. 2016, for detailed derivation). We
assume that molecular cloud cores and infalling envelopes
are isothermal, T = 10 K. The initial density profile is
given so that the initial gravitational force is larger then
the initial pressure gradient force by a factor of f . Be-
cause of the pressure gradient force, the time when the
collapsing gas reaches the center tinf is larger than the
free-fall time tff (Equation (6) in Takahashi et al. (2016)):

tinf =
2

π
tff

∫ 1

0

dx√
f−1 lnx+ x−1 − 1

. (1)

Since free-fall time tff depends on the initial radius of the
cloud core, infall time tinf is also depends on the initial
radius of the core. The mass accretion rate onto the
center of the cloud core is given by

Ṁinf(t) = 4πR2
iniρini(Rini)

(
dtinf
dRini

∣∣∣∣
tinf=t

)−1

, (2)

where Rini is the initial radius of the infalling gas and
ρini(Rini) is the radial profile of the initial density of the
cloud core. Since typical scale of the cloud cores (∼ 0.1
pc) is much larger than that of protoplanetary disks (∼
100 au), we adopt Ṁinf as the mass accretion rate from
cloud cores onto disks.
We assume that cloud cores initially rotate rigidly and

the specific angular momentum of the infalling gas con-
serves. To derive the increase of the surface density of
the disk per unit time Σ̇inf , we assume the envelope gas
infalls at the centrifugal radius (see also Equation (10)

in Takahashi et al. 2013):

Σ̇inf =
1

2πr

Ṁinf

2Ω0R2
ini

(
1− j

Ω0Rini

)−1/2 ∂j

∂r
, (3)

where Ω0 is the initial angular velocity of the cloud core,
r is the disk radius, and j is the angular momentum
distribution of the disk. In this work, we assume that the
total molecular cloud core massMcore = 1.5M⊙. We stop
the infall when the all of gas in the cloud core collapsed
onto the central star and the disk.

2.1.2. Disk evolution

Due to the gas infall from the core as explained above,
protoplanetary disk are formed. In order to investigate
the ring structure formation, we calculate the equations
for gas and dust. Derivation of the equations are given
in Appendix.
The time evolution of the gas and dust are given by

the equations as follows,

∂Σ
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= −1

r

∂

∂r
rΣur + Σ̇infall − Σ̇wind, (4)
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= −1
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where Σ, ur, uφ are the surface density, radial velocity,
and azimuthal velocity of the gas, Σd , vr, vφ are those
of the dust, Σ̇wind is the mass loss rate per unit area due
to the disk wind, ϵ is the dust-to-gas mass ratio in the
infalling envelope, j is the specific angular momentum,
T is the specific torque given by

T =
1

rΣ

∂

∂r

(
r3νΣ

∂Ω

∂r

)
, (8)

Ω is the angular velocity, ν is the coefficient of the kine-
matic viscosity, the factor A represents the effect of the
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1. INTRODUCTION

2. METHOD

In this work, we calculate formation and evolution of
protoplanetary disks to investigate the ring structure for-
mation in young disks. Since focus on young disks whose
ages are similar to the disk formation timescale (∼ 106

yr), we cannot adopt the already formed protoplanetary
disks, for example minimum mass solar nebular, as initial
conditions. Instead, we have to adopt molecular cloud
cores as initial conditions and calculate processes from
gravitational collapse of the cloud core to disk evolution
consistently.

2.1. Equations

2.1.1. Gravitational collapse of cloud cores and gas infall
onto disks

We calculate gravitational collapse of cloud cores ac-
cording to equations given in Takahashi et al. (2013) (see
also Takahashi et al. 2016, for detailed derivation). We
assume that molecular cloud cores and infalling envelopes
are isothermal, T = 10 K. The initial density profile is
given so that the initial gravitational force is larger then
the initial pressure gradient force by a factor of f . Be-
cause of the pressure gradient force, the time when the
collapsing gas reaches the center tinf is larger than the
free-fall time tff (Equation (6) in Takahashi et al. (2016)):

tinf =
2

π
tff

∫ 1

0

dx√
f−1 lnx+ x−1 − 1

. (1)

Since free-fall time tff depends on the initial radius of the
cloud core, infall time tinf is also depends on the initial
radius of the core. The mass accretion rate onto the
center of the cloud core is given by

Ṁinf(t) = 4πR2
iniρini(Rini)

(
dtinf
dRini

∣∣∣∣
tinf=t

)−1

, (2)

where Rini is the initial radius of the infalling gas and
ρini(Rini) is the radial profile of the initial density of the
cloud core. Since typical scale of the cloud cores (∼ 0.1
pc) is much larger than that of protoplanetary disks (∼
100 au), we adopt Ṁinf as the mass accretion rate from
cloud cores onto disks.
We assume that cloud cores initially rotate rigidly and

the specific angular momentum of the infalling gas con-
serves. To derive the increase of the surface density of
the disk per unit time Σ̇inf , we assume the envelope gas
infalls at the centrifugal radius (see also Equation (10)

in Takahashi et al. 2013):

Σ̇inf =
1

2πr

Ṁinf

2Ω0R2
ini

(
1− j

Ω0Rini

)−1/2 ∂j

∂r
, (3)

where Ω0 is the initial angular velocity of the cloud core,
r is the disk radius, and j is the angular momentum
distribution of the disk. In this work, we assume that the
total molecular cloud core massMcore = 1.5M⊙. We stop
the infall when the all of gas in the cloud core collapsed
onto the central star and the disk.

2.1.2. Disk evolution

Due to the gas infall from the core as explained above,
protoplanetary disk are formed. In order to investigate
the ring structure formation, we calculate the equations
for gas and dust. Derivation of the equations are given
in Appendix.
The time evolution of the gas and dust are given by

the equations as follows,

∂Σ

∂t
= −1

r

∂

∂r
rΣur + Σ̇infall − Σ̇wind, (4)

∂Σd

∂t
= −1

r

∂

∂r
rΣdvr + ϵΣ̇inf , (5)

ur =
2r

j
T − Σd

Σ+ Σd

1
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+
2Σd
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ASt′2 + 1
ηrΩ− rṀr,tot
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(6)

vr =
Σ

Σ+ Σd

1

ASt′2 + 1

2r

Aj
T − Σ
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2St′

ASt′2 + 1
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+
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)
2πr2Σ

Mr
− rṀr,tot

Mr
(7)

where Σ, ur, uφ are the surface density, radial velocity,
and azimuthal velocity of the gas, Σd , vr, vφ are those
of the dust, Σ̇wind is the mass loss rate per unit area due
to the disk wind, ϵ is the dust-to-gas mass ratio in the
infalling envelope, j is the specific angular momentum,
T is the specific torque given by

T =
1

rΣ

∂

∂r

(
r3νΣ

∂Ω

∂r

)
, (8)

Ω is the angular velocity, ν is the coefficient of the kine-
matic viscosity, the factor A represents the effect of the

Draft version November 14, 2017
Preprint typeset using LATEX style emulateapj v. 11/10/09

若い原始惑星系円盤でのギャップ構造形成
Sanemichi Z. Takahashi1,Takayuki Muto 1

Draft version November 14, 2017

ABSTRACT
Subject headings: instabilities, protoplanetary disks

1. INTRODUCTION

2. METHOD

In this work, we calculate formation and evolution of
protoplanetary disks to investigate the ring structure for-
mation in young disks. Since focus on young disks whose
ages are similar to the disk formation timescale (∼ 106

yr), we cannot adopt the already formed protoplanetary
disks, for example minimum mass solar nebular, as initial
conditions. Instead, we have to adopt molecular cloud
cores as initial conditions and calculate processes from
gravitational collapse of the cloud core to disk evolution
consistently.

2.1. Equations

2.1.1. Gravitational collapse of cloud cores and gas infall
onto disks

We calculate gravitational collapse of cloud cores ac-
cording to equations given in Takahashi et al. (2013) (see
also Takahashi et al. 2016, for detailed derivation). We
assume that molecular cloud cores and infalling envelopes
are isothermal, T = 10 K. The initial density profile is
given so that the initial gravitational force is larger then
the initial pressure gradient force by a factor of f . Be-
cause of the pressure gradient force, the time when the
collapsing gas reaches the center tinf is larger than the
free-fall time tff (Equation (6) in Takahashi et al. (2016)):

tinf =
2

π
tff

∫ 1

0

dx√
f−1 lnx+ x−1 − 1

. (1)

Since free-fall time tff depends on the initial radius of the
cloud core, infall time tinf is also depends on the initial
radius of the core. The mass accretion rate onto the
center of the cloud core is given by

Ṁinf(t) = 4πR2
iniρini(Rini)

(
dtinf
dRini

∣∣∣∣
tinf=t

)−1

, (2)

where Rini is the initial radius of the infalling gas and
ρini(Rini) is the radial profile of the initial density of the
cloud core. Since typical scale of the cloud cores (∼ 0.1
pc) is much larger than that of protoplanetary disks (∼
100 au), we adopt Ṁinf as the mass accretion rate from
cloud cores onto disks.
We assume that cloud cores initially rotate rigidly and

the specific angular momentum of the infalling gas con-
serves. To derive the increase of the surface density of
the disk per unit time Σ̇inf , we assume the envelope gas
infalls at the centrifugal radius (see also Equation (10)

in Takahashi et al. 2013):

Σ̇inf =
1

2πr

Ṁinf

2Ω0R2
ini

(
1− j

Ω0Rini

)−1/2 ∂j

∂r
, (3)

where Ω0 is the initial angular velocity of the cloud core,
r is the disk radius, and j is the angular momentum
distribution of the disk. In this work, we assume that the
total molecular cloud core massMcore = 1.5M⊙. We stop
the infall when the all of gas in the cloud core collapsed
onto the central star and the disk.

2.1.2. Disk evolution

Due to the gas infall from the core as explained above,
protoplanetary disk are formed. In order to investigate
the ring structure formation, we calculate the equations
for gas and dust. Derivation of the equations are given
in Appendix.
The time evolution of the gas and dust are given by

the equations as follows,

∂Σ
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rΣur + Σ̇infall − Σ̇wind, (4)
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where Σ, ur, uφ are the surface density, radial velocity,
and azimuthal velocity of the gas, Σd , vr, vφ are those
of the dust, Σ̇wind is the mass loss rate per unit area due
to the disk wind, ϵ is the dust-to-gas mass ratio in the
infalling envelope, j is the specific angular momentum,
T is the specific torque given by

T =
1

rΣ

∂

∂r

(
r3νΣ

∂Ω

∂r

)
, (8)

Ω is the angular velocity, ν is the coefficient of the kine-
matic viscosity, the factor A represents the effect of the

2

self-gravity of the disk of gas,

A =

(
1 +

2πr2Σ

Mr

)
, (9)

Mr is the enclosed mass within the radius r, St′ is the
modified stokes number,

St′ =
Σ

Σ+ Σd
St, (10)

St is the stokes number, η is given by

η = −1

2

( cs
rΩ

)2 ∂ln p

∂ln r
, (11)

p is the pressure at the disk midplane, Ṁr,tot is the mass
input/loss late due to the infall and disk wind within the
radius r

Ṁr,tot =

∫ r

0
2πr(Σ̇inf − Σ̇wind)dr (12)

We assume the centrifugal balance in the disk, and the
gravitational force is approximately given by GMr/r2.
Thus, the specific angular momentum distribution in the
disk is given by

j =
√
GMrr. (13)

As shown in Equation (8), we evaluate the torque by us-
ing the effective viscosity represented by nu. We evalu-
ate the coefficient of kinematic viscosity as ν = αtotc2s/Ω,
where α is a dimensionless measure of turbulent inten-
sity (Shakura & Sunyaev 1973). In this work, we take
into account the angular momentum transport caused by
gravitational instability and magnet rotational instabil-
ity (MRI, Balbus & Hawley 1991).

α = αGI + αMRI. (14)

The αGI is given by a function of the Toomre’s Q param-
eter

αGI = exp(−Q4), (15)

Q =
csΩ

πGΣ
. (16)

This effective viscosity becomes efficient when the disk
becomes gravitationally unstable (Zhu et al. 2010; Taka-
hashi et al. 2013). We assume that αMRI is constant in
the disk. For the gas velocity, we take into account the
back reaction from the dust (See Kretke et al. (2009) and
Kanagawa et al. (2017)).
The mass loss rate due to the disk wind is unclear so

that we assume the simple model to evaluate Σ̇.wind. We
assume that that the disk wind become efficient after the
infall is finished. We introduce the efficiency parameter
Cw for the wind mass loss as follows

Σ̇wind =

{
0 Minf < Mcore,
CwΣΩ Minf > Mcore,

(17)

where Minf is the mass that already infalls onto the cen-
tral star and the disk. Since the disk wind is difficult to
blow out the dust particle Miyake et al. (2016), the dust
mass loss rate is 0 in this work.
The sound speed cs is given by the isothermal sound

speed with mean molecular weight µ = 2.34. We assume

that the temperature is given by the equilibrium tem-
perature Teq that is obtained from the balance between
the irradiation heating and radiation cooling at the disk
surface (Chiang & Goldreich 1997),

Teq = max

[
150

(
r

1 [au]

)−3/7

, 10

]
[K]. (18)

2.2. Boundary Conditions

In the calculations in this work, we set the outer
boundary at 104 au and the inner boundary at 1 au.
At the outer boundary, we assume ur = vr = 0. For the
inner boundary, we assume ∂Ω/∂r = 0 at the center to
evaluate T in the first term of Equation (6), which cor-
responds to the mass accretion due to the viscosity. For
the second and the third term of Equation (6), which are
corresponds to the back reaction from the dust (Kretke
et al. 2009; Kanagawa et al. 2017), we assume the free
boundary condition at the inner boundary. To evaluate
vr (Equation 7), we also assume the free boundary con-
dition except the first term in the parenthesis, which is
adopted ∂Ω/∂r = 0 at the center to evaluate T as same
as the first term of Equation (6).

2.3. Initial condition

Since the calculates in this work start from gravita-
tional collapse, we adopt the density and rotation pro-
files of the cloud cores as initial conditions. The density
distributions of the cloud cores are given by the Bonner-
Evert sphere with the central density is 10−18 g cm−3

and the temperature is 10 K. In order to make cores
gravitationally unstable, we increase the density of the
BE sphere by a factor of 1.4. The rotation velocity of
the cores are given by the rigid rotation with the angular
velocities Ωcore = 0.2, 0.3, and 0.5 km s−1 pc−1

3. RESULTS

In this work, we introduce 4 parameters to determine
the formation and evolution of the protoplanetary disks,
the angular velocity of the cloud core Ωcore, the strength
of the MRI turbulence αMRI, the efficiency of the disk
wind Cw, and the dust size that gives the stokes number
St or the radius a. In this section, we mainly discus the
results with Ωcore = 0.3 [km s−1 pc−1].

3.1. Constant dust radius

First of all, we show the results of the calculations with
the constant dust radius in disks. The relation between
the dust radius a and the stokes number St is

St =

√
π

8

ρiaΩ

ρcs
=

πρia

2Σ
, (19)

where ρi is the internal density of the dust and ρ is the
gas density at the midplane of the disk. We assume ρi =
3 g cm−3.
Figure 19 shows the mass infall rate from the core to

the disk and the central star. The infalling gas reaches
the center of the cloud core at t ∼ 0.1 Myr, which is the
time of the protostar formation. The gas infall continues
until ∼ 0.27 Myr. The mass accretion rate per unit area
is shown in Figure 2. Since the angular velocity of the
cloud core is small (Ωcore ∼ 0.2), the gas infall is within

2

self-gravity of the disk of gas,

A =

(
1 +

2πr2Σ

Mr

)
, (9)

Mr is the enclosed mass within the radius r, St′ is the
modified stokes number,

St′ =
Σ

Σ+ Σd
St, (10)

St is the stokes number, η is given by

η = −1

2

( cs
rΩ

)2 ∂ln p

∂ln r
, (11)

p is the pressure at the disk midplane, Ṁr,tot is the mass
input/loss late due to the infall and disk wind within the
radius r

Ṁr,tot =

∫ r

0
2πr(Σ̇inf − Σ̇wind)dr (12)

We assume the centrifugal balance in the disk, and the
gravitational force is approximately given by GMr/r2.
Thus, the specific angular momentum distribution in the
disk is given by

j =
√
GMrr. (13)

As shown in Equation (8), we evaluate the torque by us-
ing the effective viscosity represented by nu. We evalu-
ate the coefficient of kinematic viscosity as ν = αtotc2s/Ω,
where α is a dimensionless measure of turbulent inten-
sity (Shakura & Sunyaev 1973). In this work, we take
into account the angular momentum transport caused by
gravitational instability and magnet rotational instabil-
ity (MRI, Balbus & Hawley 1991).

α = αGI + αMRI. (14)

The αGI is given by a function of the Toomre’s Q param-
eter

αGI = exp(−Q4), (15)

Q =
csΩ

πGΣ
. (16)

This effective viscosity becomes efficient when the disk
becomes gravitationally unstable (Zhu et al. 2010; Taka-
hashi et al. 2013). We assume that αMRI is constant in
the disk. For the gas velocity, we take into account the
back reaction from the dust (See Kretke et al. (2009) and
Kanagawa et al. (2017)).
The mass loss rate due to the disk wind is unclear so

that we assume the simple model to evaluate Σ̇.wind. We
assume that that the disk wind become efficient after the
infall is finished. We introduce the efficiency parameter
Cw for the wind mass loss as follows

Σ̇wind =

{
0 Minf < Mcore,
CwΣΩ Minf > Mcore,

(17)

where Minf is the mass that already infalls onto the cen-
tral star and the disk. Since the disk wind is difficult to
blow out the dust particle Miyake et al. (2016), the dust
mass loss rate is 0 in this work.
The sound speed cs is given by the isothermal sound

speed with mean molecular weight µ = 2.34. We assume

that the temperature is given by the equilibrium tem-
perature Teq that is obtained from the balance between
the irradiation heating and radiation cooling at the disk
surface (Chiang & Goldreich 1997),

Teq = max

[
150

(
r

1 [au]

)−3/7

, 10

]
[K]. (18)

2.2. Boundary Conditions

In the calculations in this work, we set the outer
boundary at 104 au and the inner boundary at 1 au.
At the outer boundary, we assume ur = vr = 0. For the
inner boundary, we assume ∂Ω/∂r = 0 at the center to
evaluate T in the first term of Equation (6), which cor-
responds to the mass accretion due to the viscosity. For
the second and the third term of Equation (6), which are
corresponds to the back reaction from the dust (Kretke
et al. 2009; Kanagawa et al. 2017), we assume the free
boundary condition at the inner boundary. To evaluate
vr (Equation 7), we also assume the free boundary con-
dition except the first term in the parenthesis, which is
adopted ∂Ω/∂r = 0 at the center to evaluate T as same
as the first term of Equation (6).

2.3. Initial condition

Since the calculates in this work start from gravita-
tional collapse, we adopt the density and rotation pro-
files of the cloud cores as initial conditions. The density
distributions of the cloud cores are given by the Bonner-
Evert sphere with the central density is 10−18 g cm−3

and the temperature is 10 K. In order to make cores
gravitationally unstable, we increase the density of the
BE sphere by a factor of 1.4. The rotation velocity of
the cores are given by the rigid rotation with the angular
velocities Ωcore = 0.2, 0.3, and 0.5 km s−1 pc−1

3. RESULTS

In this work, we introduce 4 parameters to determine
the formation and evolution of the protoplanetary disks,
the angular velocity of the cloud core Ωcore, the strength
of the MRI turbulence αMRI, the efficiency of the disk
wind Cw, and the dust size that gives the stokes number
St or the radius a. In this section, we mainly discus the
results with Ωcore = 0.3 [km s−1 pc−1].

3.1. Constant dust radius

First of all, we show the results of the calculations with
the constant dust radius in disks. The relation between
the dust radius a and the stokes number St is

St =

√
π
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ρiaΩ

ρcs
=

πρia

2Σ
, (19)

where ρi is the internal density of the dust and ρ is the
gas density at the midplane of the disk. We assume ρi =
3 g cm−3.
Figure 19 shows the mass infall rate from the core to

the disk and the central star. The infalling gas reaches
the center of the cloud core at t ∼ 0.1 Myr, which is the
time of the protostar formation. The gas infall continues
until ∼ 0.27 Myr. The mass accretion rate per unit area
is shown in Figure 2. Since the angular velocity of the
cloud core is small (Ωcore ∼ 0.2), the gas infall is within
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self-gravity of the disk of gas,

A =

(
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2πr2Σ
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)
, (9)

Mr is the enclosed mass within the radius r, St′ is the
modified stokes number,

St′ =
Σ

Σ+ Σd
St, (10)

St is the stokes number, η is given by

η = −1
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p is the pressure at the disk midplane, Ṁr,tot is the mass
input/loss late due to the infall and disk wind within the
radius r

Ṁr,tot =

∫ r

0
2πr(Σ̇inf − Σ̇wind)dr (12)

We assume the centrifugal balance in the disk, and the
gravitational force is approximately given by GMr/r2.
Thus, the specific angular momentum distribution in the
disk is given by

j =
√
GMrr. (13)

As shown in Equation (8), we evaluate the torque by us-
ing the effective viscosity represented by nu. We evalu-
ate the coefficient of kinematic viscosity as ν = αtotc2s/Ω,
where α is a dimensionless measure of turbulent inten-
sity (Shakura & Sunyaev 1973). In this work, we take
into account the angular momentum transport caused by
gravitational instability and magnet rotational instabil-
ity (MRI, Balbus & Hawley 1991).
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The αGI is given by a function of the Toomre’s Q param-
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αGI = exp(−Q4), (15)
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πGΣ
. (16)

This effective viscosity becomes efficient when the disk
becomes gravitationally unstable (Zhu et al. 2010; Taka-
hashi et al. 2013). We assume that αMRI is constant in
the disk. For the gas velocity, we take into account the
back reaction from the dust (See Kretke et al. (2009) and
Kanagawa et al. (2017)).
The mass loss rate due to the disk wind is unclear so

that we assume the simple model to evaluate Σ̇.wind. We
assume that that the disk wind become efficient after the
infall is finished. We introduce the efficiency parameter
Cw for the wind mass loss as follows

Σ̇wind =

{
0 Minf < Mcore,
CwΣΩ Minf > Mcore,

(17)

where Minf is the mass that already infalls onto the cen-
tral star and the disk. Since the disk wind is difficult to
blow out the dust particle Miyake et al. (2016), the dust
mass loss rate is 0 in this work.
The sound speed cs is given by the isothermal sound

speed with mean molecular weight µ = 2.34. We assume

that the temperature is given by the equilibrium tem-
perature Teq that is obtained from the balance between
the irradiation heating and radiation cooling at the disk
surface (Chiang & Goldreich 1997),
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2.2. Boundary Conditions

In the calculations in this work, we set the outer
boundary at 104 au and the inner boundary at 1 au.
At the outer boundary, we assume ur = vr = 0. For the
inner boundary, we assume ∂Ω/∂r = 0 at the center to
evaluate T in the first term of Equation (6), which cor-
responds to the mass accretion due to the viscosity. For
the second and the third term of Equation (6), which are
corresponds to the back reaction from the dust (Kretke
et al. 2009; Kanagawa et al. 2017), we assume the free
boundary condition at the inner boundary. To evaluate
vr (Equation 7), we also assume the free boundary con-
dition except the first term in the parenthesis, which is
adopted ∂Ω/∂r = 0 at the center to evaluate T as same
as the first term of Equation (6).

2.3. Initial condition

Since the calculates in this work start from gravita-
tional collapse, we adopt the density and rotation pro-
files of the cloud cores as initial conditions. The density
distributions of the cloud cores are given by the Bonner-
Evert sphere with the central density is 10−18 g cm−3

and the temperature is 10 K. In order to make cores
gravitationally unstable, we increase the density of the
BE sphere by a factor of 1.4. The rotation velocity of
the cores are given by the rigid rotation with the angular
velocities Ωcore = 0.2, 0.3, and 0.5 km s−1 pc−1

3. RESULTS

In this work, we introduce 4 parameters to determine
the formation and evolution of the protoplanetary disks,
the angular velocity of the cloud core Ωcore, the strength
of the MRI turbulence αMRI, the efficiency of the disk
wind Cw, and the dust size that gives the stokes number
St or the radius a. In this section, we mainly discus the
results with Ωcore = 0.3 [km s−1 pc−1].

3.1. Constant dust radius

First of all, we show the results of the calculations with
the constant dust radius in disks. The relation between
the dust radius a and the stokes number St is
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where ρi is the internal density of the dust and ρ is the
gas density at the midplane of the disk. We assume ρi =
3 g cm−3.
Figure 19 shows the mass infall rate from the core to

the disk and the central star. The infalling gas reaches
the center of the cloud core at t ∼ 0.1 Myr, which is the
time of the protostar formation. The gas infall continues
until ∼ 0.27 Myr. The mass accretion rate per unit area
is shown in Figure 2. Since the angular velocity of the
cloud core is small (Ωcore ∼ 0.2), the gas infall is within
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Mr is the enclosed mass within the radius r, St′ is the
modified stokes number,
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St is the stokes number, η is given by

η = −1
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p is the pressure at the disk midplane, Ṁr,tot is the mass
input/loss late due to the infall and disk wind within the
radius r

Ṁr,tot =

∫ r

0
2πr(Σ̇inf − Σ̇wind)dr (12)

We assume the centrifugal balance in the disk, and the
gravitational force is approximately given by GMr/r2.
Thus, the specific angular momentum distribution in the
disk is given by

j =
√
GMrr. (13)

As shown in Equation (8), we evaluate the torque by us-
ing the effective viscosity represented by nu. We evalu-
ate the coefficient of kinematic viscosity as ν = αtotc2s/Ω,
where α is a dimensionless measure of turbulent inten-
sity (Shakura & Sunyaev 1973). In this work, we take
into account the angular momentum transport caused by
gravitational instability and magnet rotational instabil-
ity (MRI, Balbus & Hawley 1991).

α = αGI + αMRI. (14)

The αGI is given by a function of the Toomre’s Q param-
eter

αGI = exp(−Q4), (15)

Q =
csΩ

πGΣ
. (16)

This effective viscosity becomes efficient when the disk
becomes gravitationally unstable (Zhu et al. 2010; Taka-
hashi et al. 2013). We assume that αMRI is constant in
the disk. For the gas velocity, we take into account the
back reaction from the dust (See Kretke et al. (2009) and
Kanagawa et al. (2017)).
The mass loss rate due to the disk wind is unclear so

that we assume the simple model to evaluate Σ̇.wind. We
assume that that the disk wind become efficient after the
infall is finished. We introduce the efficiency parameter
Cw for the wind mass loss as follows

Σ̇wind =

{
0 Minf < Mcore,
CwΣΩ Minf > Mcore,

(17)

where Minf is the mass that already infalls onto the cen-
tral star and the disk. Since the disk wind is difficult to
blow out the dust particle Miyake et al. (2016), the dust
mass loss rate is 0 in this work.
The sound speed cs is given by the isothermal sound

speed with mean molecular weight µ = 2.34. We assume

that the temperature is given by the equilibrium tem-
perature Teq that is obtained from the balance between
the irradiation heating and radiation cooling at the disk
surface (Chiang & Goldreich 1997),

Teq = max
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2.2. Boundary Conditions

In the calculations in this work, we set the outer
boundary at 104 au and the inner boundary at 1 au.
At the outer boundary, we assume ur = vr = 0. For the
inner boundary, we assume ∂Ω/∂r = 0 at the center to
evaluate T in the first term of Equation (6), which cor-
responds to the mass accretion due to the viscosity. For
the second and the third term of Equation (6), which are
corresponds to the back reaction from the dust (Kretke
et al. 2009; Kanagawa et al. 2017), we assume the free
boundary condition at the inner boundary. To evaluate
vr (Equation 7), we also assume the free boundary con-
dition except the first term in the parenthesis, which is
adopted ∂Ω/∂r = 0 at the center to evaluate T as same
as the first term of Equation (6).

2.3. Initial condition

Since the calculates in this work start from gravita-
tional collapse, we adopt the density and rotation pro-
files of the cloud cores as initial conditions. The density
distributions of the cloud cores are given by the Bonner-
Evert sphere with the central density is 10−18 g cm−3

and the temperature is 10 K. In order to make cores
gravitationally unstable, we increase the density of the
BE sphere by a factor of 1.4. The rotation velocity of
the cores are given by the rigid rotation with the angular
velocities Ωcore = 0.2, 0.3, and 0.5 km s−1 pc−1

3. RESULTS

In this work, we introduce 4 parameters to determine
the formation and evolution of the protoplanetary disks,
the angular velocity of the cloud core Ωcore, the strength
of the MRI turbulence αMRI, the efficiency of the disk
wind Cw, and the dust size that gives the stokes number
St or the radius a. In this section, we mainly discus the
results with Ωcore = 0.3 [km s−1 pc−1].

3.1. Constant dust radius

First of all, we show the results of the calculations with
the constant dust radius in disks. The relation between
the dust radius a and the stokes number St is

St =

√
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where ρi is the internal density of the dust and ρ is the
gas density at the midplane of the disk. We assume ρi =
3 g cm−3.
Figure 19 shows the mass infall rate from the core to

the disk and the central star. The infalling gas reaches
the center of the cloud core at t ∼ 0.1 Myr, which is the
time of the protostar formation. The gas infall continues
until ∼ 0.27 Myr. The mass accretion rate per unit area
is shown in Figure 2. Since the angular velocity of the
cloud core is small (Ωcore ∼ 0.2), the gas infall is within
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self-gravity of the disk of gas,

A =

(
1 +

2πr2Σ

Mr

)
, (9)

Mr is the enclosed mass within the radius r, St′ is the
modified stokes number,
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St is the stokes number, η is given by
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p is the pressure at the disk midplane, Ṁr,tot is the mass
input/loss late due to the infall and disk wind within the
radius r

Ṁr,tot =

∫ r

0
2πr(Σ̇inf − Σ̇wind)dr (12)

We assume the centrifugal balance in the disk, and the
gravitational force is approximately given by GMr/r2.
Thus, the specific angular momentum distribution in the
disk is given by

j =
√
GMrr. (13)

As shown in Equation (8), we evaluate the torque by us-
ing the effective viscosity represented by nu. We evalu-
ate the coefficient of kinematic viscosity as ν = αtotc2s/Ω,
where α is a dimensionless measure of turbulent inten-
sity (Shakura & Sunyaev 1973). In this work, we take
into account the angular momentum transport caused by
gravitational instability and magnet rotational instabil-
ity (MRI, Balbus & Hawley 1991).

α = αGI + αMRI. (14)

The αGI is given by a function of the Toomre’s Q param-
eter

αGI = exp(−Q4), (15)

Q =
csΩ

πGΣ
. (16)

This effective viscosity becomes efficient when the disk
becomes gravitationally unstable (Zhu et al. 2010; Taka-
hashi et al. 2013). We assume that αMRI is constant in
the disk. For the gas velocity, we take into account the
back reaction from the dust (See Kretke et al. (2009) and
Kanagawa et al. (2017)).
The mass loss rate due to the disk wind is unclear so

that we assume the simple model to evaluate Σ̇.wind. We
assume that that the disk wind become efficient after the
infall is finished. We introduce the efficiency parameter
Cw for the wind mass loss as follows

Σ̇wind =

{
0 Minf < Mcore,
CwΣΩ Minf > Mcore,

(17)

where Minf is the mass that already infalls onto the cen-
tral star and the disk. Since the disk wind is difficult to
blow out the dust particle Miyake et al. (2016), the dust
mass loss rate is 0 in this work.
The sound speed cs is given by the isothermal sound

speed with mean molecular weight µ = 2.34. We assume

that the temperature is given by the equilibrium tem-
perature Teq that is obtained from the balance between
the irradiation heating and radiation cooling at the disk
surface (Chiang & Goldreich 1997),

Teq = max
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]
[K]. (18)

2.2. Boundary Conditions

In the calculations in this work, we set the outer
boundary at 104 au and the inner boundary at 1 au.
At the outer boundary, we assume ur = vr = 0. For the
inner boundary, we assume ∂Ω/∂r = 0 at the center to
evaluate T in the first term of Equation (6), which cor-
responds to the mass accretion due to the viscosity. For
the second and the third term of Equation (6), which are
corresponds to the back reaction from the dust (Kretke
et al. 2009; Kanagawa et al. 2017), we assume the free
boundary condition at the inner boundary. To evaluate
vr (Equation 7), we also assume the free boundary con-
dition except the first term in the parenthesis, which is
adopted ∂Ω/∂r = 0 at the center to evaluate T as same
as the first term of Equation (6).

2.3. Initial condition

Since the calculates in this work start from gravita-
tional collapse, we adopt the density and rotation pro-
files of the cloud cores as initial conditions. The density
distributions of the cloud cores are given by the Bonner-
Evert sphere with the central density is 10−18 g cm−3

and the temperature is 10 K. In order to make cores
gravitationally unstable, we increase the density of the
BE sphere by a factor of 1.4. The rotation velocity of
the cores are given by the rigid rotation with the angular
velocities Ωcore = 0.2, 0.3, and 0.5 km s−1 pc−1

3. RESULTS

In this work, we introduce 4 parameters to determine
the formation and evolution of the protoplanetary disks,
the angular velocity of the cloud core Ωcore, the strength
of the MRI turbulence αMRI, the efficiency of the disk
wind Cw, and the dust size that gives the stokes number
St or the radius a. In this section, we mainly discus the
results with Ωcore = 0.3 [km s−1 pc−1].

3.1. Constant dust radius

First of all, we show the results of the calculations with
the constant dust radius in disks. The relation between
the dust radius a and the stokes number St is

St =
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ρcs
=
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, (19)

where ρi is the internal density of the dust and ρ is the
gas density at the midplane of the disk. We assume ρi =
3 g cm−3.
Figure 19 shows the mass infall rate from the core to

the disk and the central star. The infalling gas reaches
the center of the cloud core at t ∼ 0.1 Myr, which is the
time of the protostar formation. The gas infall continues
until ∼ 0.27 Myr. The mass accretion rate per unit area
is shown in Figure 2. Since the angular velocity of the
cloud core is small (Ωcore ∼ 0.2), the gas infall is within

(cf. Nakagawa et al. 1986, Kretke et al. 2009, Kanagawa et al. 2017)



計算の設定
初期条件（分子雲コア） 
密度分布：Bonner-Ebert 球x1.4

中心密度　
総質量

回転速度

パラメータ  αMRI : viscosity,  CW : wind,  St : dust 

Mcl=1.5M◉

10-18 [g cm-3]

(剛体回転)
温度　　　10K （等温）

若い円盤にリング構造形成可能なパラメータを探す

0.3 [km s-1 pc-1]
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Fig. 5.— Time evolution of the surface density of the gas and
dust with αMRI = 3 × 10−4, Cw = 10−4 and St = 0.1. The solid
lines shows the gas surface density and the dotted lines shows the
dust surface density

The formation of this ring structure is described by
the comparison of the time scales of the viscous diffu-
sion, the wind mass loss and the radial drift of the dust.
We estimate the viscous timescale assuming the Kepler
rotation and neglecting the effects of the dust and wind.
The evolution surface density only due to the viscosity is
given by

∂Σ

∂t
=

3

r

∂

∂r

(√
r
∂

∂r

√
rΣν

)

=3(nΣ + nν + 0.5)(nΣ + nν)Σνr
−2, (20)

where nΣ = d lnΣ/d ln r and nν = d ln ν/d ln r. At the
pressure maximum, p ∝ ΣTeq/H ∝ r0, where H = cs/Ω
is the disk scale height. Thus, νΣ ∝ (c2s/Ω)(H/Teq) ∝
T 0.5
eq Ω−2 ∝ r2.8. This gives the viscous timescale

tvis ∼
r2

27ν
= 8× 104 [yr]

( r

10au

)15/14 ( α

10−3

)−1
(21)

The wind timescale is

twind =
Σ

Σ̇wind

= 5× 104[yr]
( r

10au

)3/2( Cw

10−4

)−1

.

(22)
The radial drift timescale is

tdrift=
r

vdrift
=

1

ΩSt

( cs
rΩ

)−2
∣∣∣∣
d ln p

d ln r

∣∣∣∣
−1

=6.6× 103[yr]

(
r

10[au]

)15/14( St

10−1

)−1

, (23)

where we assume St and dust-to-gas mass ratio are much
smaller than unity.
Figure 6 shows the timescales of the viscous diffu-

sion, the wind mass loss and the radial drift of the dust.
The viscous timescale is larger than the wind timescales.
Thus, time evolution of the surface density after the wind
become efficient mainly determined by the disk wind.
The wind timescale around 10-20 au is about 105 yr.
Thus, the wind mass loss make the pressure maximum
at ∼ 10 au at t ∼ 0.6 Myr, which is ∼ 0.3 Myr af-
ter the time when the wind mass loss starts. Since the
wind timescale is large in the outer region, the radius of
the pressure maximum moves outward with time. This
make the ring move outward as shown in Figure 17. The
drift timescale is comparable to or smaller than the wind

101
102
103
104
105
106
107

 1  10  100

tim
e 

[y
r]

radius [au]

vis
wind
drift

Fig. 6.— Time scales with αMRI = 3 × 10−4, Cw = 10−4 and
St = 0.1. The purple, green and blue lines show the timescales of
the viscus diffusion, wind mass loss and the radial drift of the dust,
respectively.
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Fig. 7.— Time evolution of the surface density of the gas and
dust with αMRI = 3 × 10−3, Cw = 3 × 10−4 and St = 0.3. The
solid lines shows the gas surface density and the dotted lines shows
the dust surface density

timescale. Thus, the dust can concentrate on the pres-
sure maximum formed due to the disk wind.
Figure 7 shows the time evolution of the surface density

of the gas and the dust with αMRI = 3 × 10−3, Cw =
3×10−4 and St = 0.3. These three parameters are larger
than the previous calculation. The ring structure is also
formed in the disk at t = 0.6 Myr. The timescales of
the viscus diffusion, wind mass loss, and radial drift are
shown in Figure 8. The viscous and wind timescales are
comparable at ∼ 30 au. Thus, the mass loss by the
wind and the mass inflow due to the viscous diffusion
balances around there. Thus, the position of the pressure
maximum does not move with time, resulting that the
ring structure is also maintain its radius as shown in
Figure 7.

3.2.1. Dependence of the ring structure on parameters with
St = 0.1

Figure 9 shows the ring radius with St = 0.1 at t = 0.6
Myr. For α ! 3× 10−4, ring radius roughly depends on
only Cw because the disk evolution is dominated by the
disk wind. In this figure, the ring radius smaller than 1
au corresponds that no ring structure is formed. Figure
10 shows the width of the ring with St = 0.1 at t = 0.6
Myr. The ring width is order 10 au with Cw = 10−4 and

結果 1

原始星形成 ~0.1Myr

降着終了直後: Q~1

リング構造 10-20 au (~0.5Myr)

α =3x10-4, CW =10-4,  St =0.1  



リング形成で重要なタイムスケール
viscous timescale :

wind timescale : 

drift timescale (　　　　　　): 

3

中心密度 4.5 × 10−20 [gcm−3], f=1.4, 総質量 Mcl =
1.5M⊙, 半径 0.08 pc. 回転角速度 3.2× 10−15 [s−1] (参考
に典型値 3.2× 10−14 [s−1]も計算).

3.2.2. 円盤
内縁半径 1 au,外側境界 104 au. 角運動量輸送として、

α粘性モデルを用いる。温度分布

T = 150

(
r

1 [au]

)−3/7

(7)

α = exp[−Q−4] + αMRI (8)

円盤風による mass loss

Σ̇wind =

{
0 (Minf < Mcl)

CwΣΩ (Minf > Mcl)
(9)

ここでMcl は分子雲コアから降着した総質量。ダストの
運動は St固定で計算。

3.3. Timescales

重要なタイムスケールは粘性、wind, radial drift の 3
つ。

3.3.1. Viscous timescale

ケプラー回転円盤の場合
∂Σ

∂t
=

3

r

∂

∂r

(√
r
∂

∂r
2π

√
rΣν

)

=6π(nΣ + nν + 0.5)(nΣ + nν)Σνr
−2 (10)

ここで、Σ ∝ rnΣ , ν ∝ rnν . 従って、ここでは

tvis =
r2

20ν
= 1.1× 105[yr]

(
r

10[au]

)15/14 ( α

10−3

)−1

(11)
とする。係数 1/20は式 (10)の無視できない係数 6πより。

3.3.2. Wind timescale

式 (9)より、

twind =
Σ

Σ̇wind

= 5× 104[yr]

(
r

10[au]

)3/2 ( Cw

10−4

)−1

(12)

3.3.3. Drift timescale

円盤中のダストの落下速度は

vdrift = −2ηϖΩ
1

1 + ϵ

St

1 + St2
(13)

η = −1

2
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ϖΩ

)2 ∂ lnP

∂ lnϖ
(14)

従って、St ≪ 1, ϵ ≪ 1のとき、
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=
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Fig. 10.— case 1: α = 10−4, Cw = 3× 10−5,St = 0.03 での各タ
イムスケールの比較。
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Fig. 11.— case 1: α = 10−4, Cw = 3× 10−5, St = 0.03 でのダス
ト・ガス面密度の時間発展.

4. 結果：リング形成
4.1. Case 1: tdir ! twind ∼ 106yr ≪ tvis at 10 au

(α = 10−4, Cw = 3× 10−5, St = 0.03)

このとき、円盤の pressure maximumは円盤風のタイム
スケールのみで決まる。半径∼10 au で∼ 106 yr の タイ
ムスケールになるには、Cw ∼ 3 × 10−5 程度。粘性のタ
イムスケールが十分長くなるためには α ≪ 10−3 が必要。
ダストでリング構造を作るにはドリフトタイムスケールが
! 106 yr がよい。このとき、St ∼ 0.03.このパラメータ
でのタイムスケールの比較を図 10に示す。この時の面密
度変化を図 11に示す。時刻 1∼1.6Myrで半径 10auの位
置にダストリングが形成されていることが分かる。原始星
形成の時期が ∼ 0.4 Myr なので、年齢 0.5 ∼ 1 Myr の原
始星に付随するリングに対応する。

4.2. Case 2: twind ∼ tvis < 106yr, tdir ! 106 yr at 10
au

(α = 10−3, Cw = 10−4, St = 0.03)

このとき、半径∼10 au の内側でのみ円盤風が粘性拡散
より早くなる。円盤の pressure maximumの位置は 10 au
程度となる。円盤風及び粘性のタイムスケールは 106年よ
り短いが、この位置で pressure maximumがあまり動かな
いため、長いタイムスケールでこの半径にリングがとどま
る。ダストでリング構造を作るにはドリフトタイムスケー
ルが ! 106 yr がよいのは case 1 と同様である。このと
き、St ∼ 0.03.このパラメータでのタイムスケールの比較
を図 12に示す。この時の面密度変化を図 13に示す。時刻
∼ 1Myrで半径 10auの位置にダストリングが形成されて
いることが分かる。

4.3. Case 3:α = 10−4, Cw = 10−4, St = 0.03
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中心密度 4.5 × 10−20 [gcm−3], f=1.4, 総質量 Mcl =
1.5M⊙, 半径 0.08 pc. 回転角速度 3.2× 10−15 [s−1] (参考
に典型値 3.2× 10−14 [s−1]も計算).

3.2.2. 円盤
内縁半径 1 au,外側境界 104 au. 角運動量輸送として、

α粘性モデルを用いる。温度分布

T = 150

(
r

1 [au]

)−3/7

(7)

α = exp[−Q−4] + αMRI (8)

円盤風による mass loss

Σ̇wind =

{
0 (Minf < Mcl)

CwΣΩ (Minf > Mcl)
(9)

ここでMcl は分子雲コアから降着した総質量。ダストの
運動は St固定で計算。

3.3. Timescales

重要なタイムスケールは粘性、wind, radial drift の 3
つ。
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ケプラー回転円盤の場合
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=
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∂r
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√
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ここで、Σ ∝ rnΣ , ν ∝ rnν . 従って、ここでは
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3.3.2. Wind timescale

式 (9)より、

twind =
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Σ̇wind
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r
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)3/2 ( Cw

10−4

)−1
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3.3.3. Drift timescale

円盤中のダストの落下速度は

vdrift = −2ηϖΩ
1

1 + ϵ

St

1 + St2
(13)

η = −1

2
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ϖΩ

)2 ∂ lnP

∂ lnϖ
(14)
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度変化を図 11に示す。時刻 1∼1.6Myrで半径 10auの位
置にダストリングが形成されていることが分かる。原始星
形成の時期が ∼ 0.4 Myr なので、年齢 0.5 ∼ 1 Myr の原
始星に付随するリングに対応する。

4.2. Case 2: twind ∼ tvis < 106yr, tdir ! 106 yr at 10
au

(α = 10−3, Cw = 10−4, St = 0.03)

このとき、半径∼10 au の内側でのみ円盤風が粘性拡散
より早くなる。円盤の pressure maximumの位置は 10 au
程度となる。円盤風及び粘性のタイムスケールは 106年よ
り短いが、この位置で pressure maximumがあまり動かな
いため、長いタイムスケールでこの半径にリングがとどま
る。ダストでリング構造を作るにはドリフトタイムスケー
ルが ! 106 yr がよいのは case 1 と同様である。このと
き、St ∼ 0.03.このパラメータでのタイムスケールの比較
を図 12に示す。この時の面密度変化を図 13に示す。時刻
∼ 1Myrで半径 10auの位置にダストリングが形成されて
いることが分かる。
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The formation of this ring structure is described by
the comparison of the time scales of the viscous diffu-
sion, the wind mass loss and the radial drift of the dust.
We estimate the viscous timescale assuming the Kepler
rotation and neglecting the effects of the dust and wind.
The evolution surface density only due to the viscosity is
given by

∂Σ

∂t
=

3

r

∂

∂r

(√
r
∂

∂r

√
rΣν

)

=3(nΣ + nν + 0.5)(nΣ + nν)Σνr
−2, (20)

where nΣ = d lnΣ/d ln r and nν = d ln ν/d ln r. At the
pressure maximum, p ∝ ΣTeq/H ∝ r0, where H = cs/Ω
is the disk scale height. Thus, νΣ ∝ (c2s/Ω)(H/Teq) ∝
T 0.5
eq Ω−2 ∝ r2.8. This gives the viscous timescale

tvis ∼
r2

27ν
= 8× 104 [yr]

( r

10au

)15/14 ( α

10−3

)−1
(21)

The wind timescale is

twind =
Σ

Σ̇wind

= 5× 104[yr]
( r

10au

)3/2( Cw

10−4

)−1

.

(22)
The radial drift timescale is

tdrift=
r

vdrift
=

1

ΩSt

( cs
rΩ

)−2
∣∣∣∣
d ln p

d ln r

∣∣∣∣
−1

=6.6× 103[yr]

(
r

10[au]

)15/14( St

10−1

)−1

, (23)

where we assume St and dust-to-gas mass ratio are much
smaller than unity.
Figure 6 shows the timescales of the viscous diffu-

sion, the wind mass loss and the radial drift of the dust.
The viscous timescale is larger than the wind timescales.
Thus, time evolution of the surface density after the wind
become efficient mainly determined by the disk wind.
The wind timescale around 10-20 au is about 105 yr.
Thus, the wind mass loss make the pressure maximum
at ∼ 10 au at t ∼ 0.6 Myr, which is ∼ 0.3 Myr af-
ter the time when the wind mass loss starts. Since the
wind timescale is large in the outer region, the radius of
the pressure maximum moves outward with time. This
make the ring move outward as shown in Figure 17. The
drift timescale is comparable to or smaller than the wind
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Fig. 6.— Time scales with αMRI = 3 × 10−4, Cw = 10−4 and
St = 0.1. The purple, green and blue lines show the timescales of
the viscus diffusion, wind mass loss and the radial drift of the dust,
respectively.
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Fig. 7.— Time evolution of the surface density of the gas and
dust with αMRI = 3 × 10−3, Cw = 3 × 10−4 and St = 0.3. The
solid lines shows the gas surface density and the dotted lines shows
the dust surface density

timescale. Thus, the dust can concentrate on the pres-
sure maximum formed due to the disk wind.
Figure 7 shows the time evolution of the surface density

of the gas and the dust with αMRI = 3 × 10−3, Cw =
3×10−4 and St = 0.3. These three parameters are larger
than the previous calculation. The ring structure is also
formed in the disk at t = 0.6 Myr. The timescales of
the viscus diffusion, wind mass loss, and radial drift are
shown in Figure 8. The viscous and wind timescales are
comparable at ∼ 30 au. Thus, the mass loss by the
wind and the mass inflow due to the viscous diffusion
balances around there. Thus, the position of the pressure
maximum does not move with time, resulting that the
ring structure is also maintain its radius as shown in
Figure 7.

3.2.1. Dependence of the ring structure on parameters with
St = 0.1

Figure 9 shows the ring radius with St = 0.1 at t = 0.6
Myr. For α ! 3× 10−4, ring radius roughly depends on
only Cw because the disk evolution is dominated by the
disk wind. In this figure, the ring radius smaller than 1
au corresponds that no ring structure is formed. Figure
10 shows the width of the ring with St = 0.1 at t = 0.6
Myr. The ring width is order 10 au with Cw = 10−4 and
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The formation of this ring structure is described by
the comparison of the time scales of the viscous diffu-
sion, the wind mass loss and the radial drift of the dust.
We estimate the viscous timescale assuming the Kepler
rotation and neglecting the effects of the dust and wind.
The evolution surface density only due to the viscosity is
given by

∂Σ

∂t
=

3

r

∂

∂r

(√
r
∂

∂r

√
rΣν

)

=3(nΣ + nν + 0.5)(nΣ + nν)Σνr
−2, (20)

where nΣ = d lnΣ/d ln r and nν = d ln ν/d ln r. At the
pressure maximum, p ∝ ΣTeq/H ∝ r0, where H = cs/Ω
is the disk scale height. Thus, νΣ ∝ (c2s/Ω)(H/Teq) ∝
T 0.5
eq Ω−2 ∝ r2.8. This gives the viscous timescale

tvis ∼
r2

27ν
= 8× 104 [yr]

( r

10au

)15/14 ( α

10−3

)−1
(21)

The wind timescale is

twind =
Σ

Σ̇wind

= 5× 104[yr]
( r

10au

)3/2( Cw

10−4

)−1

.

(22)
The radial drift timescale is

tdrift=
r

vdrift
=

1

ΩSt

( cs
rΩ

)−2
∣∣∣∣
d ln p

d ln r

∣∣∣∣
−1

=6.6× 103[yr]

(
r

10[au]

)15/14( St

10−1

)−1

, (23)

where we assume St and dust-to-gas mass ratio are much
smaller than unity.
Figure 6 shows the timescales of the viscous diffu-

sion, the wind mass loss and the radial drift of the dust.
The viscous timescale is larger than the wind timescales.
Thus, time evolution of the surface density after the wind
become efficient mainly determined by the disk wind.
The wind timescale around 10-20 au is about 105 yr.
Thus, the wind mass loss make the pressure maximum
at ∼ 10 au at t ∼ 0.6 Myr, which is ∼ 0.3 Myr af-
ter the time when the wind mass loss starts. Since the
wind timescale is large in the outer region, the radius of
the pressure maximum moves outward with time. This
make the ring move outward as shown in Figure 17. The
drift timescale is comparable to or smaller than the wind
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Fig. 6.— Time scales with αMRI = 3 × 10−4, Cw = 10−4 and
St = 0.1. The purple, green and blue lines show the timescales of
the viscus diffusion, wind mass loss and the radial drift of the dust,
respectively.
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timescale. Thus, the dust can concentrate on the pres-
sure maximum formed due to the disk wind.
Figure 7 shows the time evolution of the surface density

of the gas and the dust with αMRI = 3 × 10−3, Cw =
3×10−4 and St = 0.3. These three parameters are larger
than the previous calculation. The ring structure is also
formed in the disk at t = 0.6 Myr. The timescales of
the viscus diffusion, wind mass loss, and radial drift are
shown in Figure 8. The viscous and wind timescales are
comparable at ∼ 30 au. Thus, the mass loss by the
wind and the mass inflow due to the viscous diffusion
balances around there. Thus, the position of the pressure
maximum does not move with time, resulting that the
ring structure is also maintain its radius as shown in
Figure 7.

3.2.1. Dependence of the ring structure on parameters with
St = 0.1

Figure 9 shows the ring radius with St = 0.1 at t = 0.6
Myr. For α ! 3× 10−4, ring radius roughly depends on
only Cw because the disk evolution is dominated by the
disk wind. In this figure, the ring radius smaller than 1
au corresponds that no ring structure is formed. Figure
10 shows the width of the ring with St = 0.1 at t = 0.6
Myr. The ring width is order 10 au with Cw = 10−4 and
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The formation of this ring structure is described by
the comparison of the time scales of the viscous diffu-
sion, the wind mass loss and the radial drift of the dust.
We estimate the viscous timescale assuming the Kepler
rotation and neglecting the effects of the dust and wind.
The evolution surface density only due to the viscosity is
given by

∂Σ

∂t
=
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∂r

(√
r
∂
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√
rΣν

)

=3(nΣ + nν + 0.5)(nΣ + nν)Σνr
−2, (20)

where nΣ = d lnΣ/d ln r and nν = d ln ν/d ln r. At the
pressure maximum, p ∝ ΣTeq/H ∝ r0, where H = cs/Ω
is the disk scale height. Thus, νΣ ∝ (c2s/Ω)(H/Teq) ∝
T 0.5
eq Ω−2 ∝ r2.8. This gives the viscous timescale

tvis ∼
r2

27ν
= 8× 104 [yr]

( r

10au

)15/14 ( α

10−3

)−1
(21)

The wind timescale is

twind =
Σ

Σ̇wind

= 5× 104[yr]
( r

10au

)3/2( Cw

10−4

)−1

.

(22)
The radial drift timescale is

tdrift=
r

vdrift
=

1

ΩSt

( cs
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)−2
∣∣∣∣
d ln p

d ln r
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−1

=6.6× 103[yr]

(
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, (23)

where we assume St and dust-to-gas mass ratio are much
smaller than unity.
Figure 6 shows the timescales of the viscous diffu-

sion, the wind mass loss and the radial drift of the dust.
The viscous timescale is larger than the wind timescales.
Thus, time evolution of the surface density after the wind
become efficient mainly determined by the disk wind.
The wind timescale around 10-20 au is about 105 yr.
Thus, the wind mass loss make the pressure maximum
at ∼ 10 au at t ∼ 0.6 Myr, which is ∼ 0.3 Myr af-
ter the time when the wind mass loss starts. Since the
wind timescale is large in the outer region, the radius of
the pressure maximum moves outward with time. This
make the ring move outward as shown in Figure 17. The
drift timescale is comparable to or smaller than the wind
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Fig. 6.— Time scales with αMRI = 3 × 10−4, Cw = 10−4 and
St = 0.1. The purple, green and blue lines show the timescales of
the viscus diffusion, wind mass loss and the radial drift of the dust,
respectively.
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Fig. 7.— Time evolution of the surface density of the gas and
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timescale. Thus, the dust can concentrate on the pres-
sure maximum formed due to the disk wind.
Figure 7 shows the time evolution of the surface density

of the gas and the dust with αMRI = 3 × 10−3, Cw =
3×10−4 and St = 0.3. These three parameters are larger
than the previous calculation. The ring structure is also
formed in the disk at t = 0.6 Myr. The timescales of
the viscus diffusion, wind mass loss, and radial drift are
shown in Figure 8. The viscous and wind timescales are
comparable at ∼ 30 au. Thus, the mass loss by the
wind and the mass inflow due to the viscous diffusion
balances around there. Thus, the position of the pressure
maximum does not move with time, resulting that the
ring structure is also maintain its radius as shown in
Figure 7.

3.2.1. Dependence of the ring structure on parameters with
St = 0.1

Figure 9 shows the ring radius with St = 0.1 at t = 0.6
Myr. For α ! 3× 10−4, ring radius roughly depends on
only Cw because the disk evolution is dominated by the
disk wind. In this figure, the ring radius smaller than 1
au corresponds that no ring structure is formed. Figure
10 shows the width of the ring with St = 0.1 at t = 0.6
Myr. The ring width is order 10 au with Cw = 10−4 and

円盤中でのタイムスケールの比較

tvis > twind 粘性は効かない

twind ~ 105 yr
~105yrでガス円盤に
10au の穴

円盤内縁の圧力最大半径に 
ダストが集中

tdrift < twind

~105yrでのリング構造形成
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The formation of this ring structure is described by
the comparison of the time scales of the viscous diffu-
sion, the wind mass loss and the radial drift of the dust.
We estimate the viscous timescale assuming the Kepler
rotation and neglecting the effects of the dust and wind.
The evolution surface density only due to the viscosity is
given by
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=
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=3(nΣ + nν + 0.5)(nΣ + nν)Σνr
−2, (20)

where nΣ = d lnΣ/d ln r and nν = d ln ν/d ln r. At the
pressure maximum, p ∝ ΣTeq/H ∝ r0, where H = cs/Ω
is the disk scale height. Thus, νΣ ∝ (c2s/Ω)(H/Teq) ∝
T 0.5
eq Ω−2 ∝ r2.8. This gives the viscous timescale
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The wind timescale is

twind =
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Σ̇wind

= 5× 104[yr]
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(22)
The radial drift timescale is
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=
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where we assume St and dust-to-gas mass ratio are much
smaller than unity.
Figure 6 shows the timescales of the viscous diffu-

sion, the wind mass loss and the radial drift of the dust.
The viscous timescale is larger than the wind timescales.
Thus, time evolution of the surface density after the wind
become efficient mainly determined by the disk wind.
The wind timescale around 10-20 au is about 105 yr.
Thus, the wind mass loss make the pressure maximum
at ∼ 10 au at t ∼ 0.6 Myr, which is ∼ 0.3 Myr af-
ter the time when the wind mass loss starts. Since the
wind timescale is large in the outer region, the radius of
the pressure maximum moves outward with time. This
make the ring move outward as shown in Figure 17. The
drift timescale is comparable to or smaller than the wind
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Fig. 6.— Time scales with αMRI = 3 × 10−4, Cw = 10−4 and
St = 0.1. The purple, green and blue lines show the timescales of
the viscus diffusion, wind mass loss and the radial drift of the dust,
respectively.
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Fig. 7.— Time evolution of the surface density of the gas and
dust with αMRI = 3 × 10−3, Cw = 3 × 10−4 and St = 0.3. The
solid lines shows the gas surface density and the dotted lines shows
the dust surface density

timescale. Thus, the dust can concentrate on the pres-
sure maximum formed due to the disk wind.
Figure 7 shows the time evolution of the surface density

of the gas and the dust with αMRI = 3 × 10−3, Cw =
3×10−4 and St = 0.3. These three parameters are larger
than the previous calculation. The ring structure is also
formed in the disk at t = 0.6 Myr. The timescales of
the viscus diffusion, wind mass loss, and radial drift are
shown in Figure 8. The viscous and wind timescales are
comparable at ∼ 30 au. Thus, the mass loss by the
wind and the mass inflow due to the viscous diffusion
balances around there. Thus, the position of the pressure
maximum does not move with time, resulting that the
ring structure is also maintain its radius as shown in
Figure 7.

3.2.1. Dependence of the ring structure on parameters with
St = 0.1

Figure 9 shows the ring radius with St = 0.1 at t = 0.6
Myr. For α ! 3× 10−4, ring radius roughly depends on
only Cw because the disk evolution is dominated by the
disk wind. In this figure, the ring radius smaller than 1
au corresponds that no ring structure is formed. Figure
10 shows the width of the ring with St = 0.1 at t = 0.6
Myr. The ring width is order 10 au with Cw = 10−4 and

結果 2

リング構造10-20 au (~0.5Myr)

α, CW, St が結果1より大きい.
α =3x10-4, CW =10-4,  St =0.3  
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Fig. 8.— Time scales with αMRI = 3 × 10−3, Cw = 3 × 10−4

and St = 0.3. The purple, green and blue lines show the timescales
of the viscus diffusion, wind mass loss and the radial drift of the
dust, respectively.

Fig. 9.— Ring radius with St = 0.1 at t = 0.6 Myr. The hori-
zontal axis shows the α and teh vertical axis shows the ring radius.
The lines correspond to Cw = 3× 10−4, 10−4, 3× 10−5, and 10−5

from top to bottom.

Fig. 10.— Ring width (FWHM) with St = 0.1 at t = 0.6 Myr.
The horizontal axis shows the α and teh vertical axis shows the ring
radius. The lines correspond to Cw = 3 × 10−4, 10−4, 3 × 10−5,
and 10−5 from top to bottom.

3× 10−4. For Cw ! 3× 10−5, the ring width is of order
of 1 au because the large wind timescale allows he dust
to concentrate strongly on the pressure maximum.
Figure 11 shows the maximum surface density of

the dust in the ring. The dust surface density sug-

Fig. 11.— Maximum surface density of the dust in the ring with
St = 0.1 at t = 0.6 Myr. The horizontal axis shows the α and
teh vertical axis shows the ring radius. The lines correspond to
Cw = 3× 10−4, 10−4, 3× 10−5, and 10−5 from top to bottom.

Fig. 12.— Surface density of the dust at 5 au with St = 0.1 at
t = 0.6 Myr. The horizontal axis shows the α and teh vertical axis
shows the ring radius. The lines correspond to Cw = 3 × 10−4,
10−4, and 3× 10−5 from top to bottom.

gested by the observation of WL 17 is order unity.
Its disk mass is about 0.05 M⊙ and the disk area is
∼ 300π [au2] thus the mean surface density of dust is
10−2 × 0.05M⊙/(300π[au2]) ∼ 5 [g cm−2]. Compering
this surface density, the maximum dust surface densities
in the ring with Cw = 10−5 are too small to explain the
observation. For Cw = 10−5, the wind timescale is much
larger than the drift timescale so that the dust surface
density decreases before the dust concentrate in the pres-
sure maximum.
To check the existence of the inner disk, we show the

dust surface density at r = 5 au with Cw = 3 × 10−4,
10−4, and 3× 10−5 in Figure 12. This figure shows that
the inner disk exist only with Cw = 3 × 10−4 and α >
3× 10−3.

3.2.2. Dependence of the ring structure on parameters with
α = 3× 10−4

Figure 13 shows the ring radius with α = 3 × 10−4

at t = 0.6 Myr. For St ! 3 × 10−2, the dust strongly
couples with the gas and cannot concentrate into the
pressure maximum. For St " 10−1, the radius of the
ring does not strongly depend on St because the radius
of the pressure maximum depends mainly on the wind
efficiency and viscous diffusion timescale.
Figure 14 shows the ring width with α = 3×10−4. For

St > 10−1, the ring width decreases with St increases.

タイムスケールの比較
tvis ~ twind 圧力最大半径 ~10au で留まる

リング構造形成には tdrift ≲ twind ≲ tvis が必要



リング半径のパラメータ依存性
 St=0.1, 0.5Myr でのリング半径

全領域で 
tvis < twind 

内側境界で 
tvis = twind 

tdrift =tvis > twind 



まとめ
• 若い天体の周囲の円盤に半径10au程度のリング構造が形成されて
いることが発見された。若い円盤のリング構造形成メカニズムは？ 

• 本研究では、1Dモデルを用いて円盤風による若い円盤でのリング構
造形成について調べた。 

• 0.5Myr 程度でリング構造を形成するには、α ≲10-3, CW~10-4, St 
~0.1 程度が必要。粘性拡散が効かない場合、リングの位置は外側に
広がる。粘性拡散と円盤風のタイムスケールが同程度になる半径で
リングは定在。 

• 円盤風、MRI、ダストサイズのパラメータは円盤形成期の磁場の進
化とダスト成長で決まる。一貫した円盤進化モデル構築の研究は今
後の課題。


