星形成初期段階の

原始惑星系円盤でのリング構造形成

高橋 実道（工学院大学／NAOJ）武藤 恭之（工学院大学）

原始惑星系円盤進化の謎

原始惑星系円盤

－分子雲コアの重力崩壊により
星とともに形成
－円盤中での角運動量輸送により原始星にガスが供給
－惑星形成の現場
（ALMA partnership 2015）

リング構造等の構造が観測形成機構は未解明

WL 17のリング䧽造

ALMAによるダスト熱放射の観測円盤にリング構造 10～20 au
（Sheehan and Eisner 2017）
年齢 $\sim 5 \times 10^{5} \mathrm{yr}$
遷移円盤のような構造が
若い円盤に形成

どのようにこの構造が形成されるか？

惑星によるギャップ形成？
一方，若い円盤での惑星形成は困難。他のメカニズムは？

円盤風によるリング講造形成
$t=200$ rot．

（Suzuki et al．2010）

局所シミュレーションから MRIによる円盤風の存在が示唆 Mass loss rate $\dot{\Sigma}_{\text {wind }}=C_{\text {w }} \Sigma \Omega \quad C_{\mathrm{W}} \sim 10^{-5}-10^{-3}$円盤内側ほど効率的 \Rightarrow 穴構造円盤内縁付近で圧力最大 ダストが集まる \Rightarrow ダスト放射のリング構造

円盤風によるリング構造形成過程を調べる－若い円盤が対象 \rightarrow 構造は形成過程に依存するはず。円盤の形成過程（分子雲コアの重力崩壊）から一貫して計算を行う。
－3次元計算では円盤進化過程の計算に時間がかかりすぎる。

円盤の形成•進化過程を1次元モデルで計算する

円盤の形成•進化

wind mass loss

分子雲コアの重力崩壊により円盤へのガス降着降着総質量 $M_{\mathrm{inf}}=1.5 M_{\bullet}$ っで降着終了
infall 終了後に円盤風によるmass loss開始
$\dot{\Sigma}_{\mathrm{wind}}=\left\{\begin{array}{r}0\left(M_{\mathrm{inf}}<1.5 M_{\bullet}\right) \\ C_{\mathrm{w}} \Sigma \Omega\left(\begin{array}{l}\mathrm{inf}\end{array}>1.5 M_{\bullet}\right)\end{array}\right.$
降着のdust／gas＝$\varepsilon=0.01$
円盤中のダストの運動を計算 \Rightarrow ダストリングの形成

基礎方程式

円盤中の角運動量輸送を粘性として扱う

$$
\begin{gathered}
\nu=\alpha c_{s}^{2} / \Omega \quad \alpha=\exp \left[-Q^{4}\right]+\alpha_{\mathrm{MRI}} \quad Q=\frac{\kappa c_{s}}{\pi G \Sigma} \\
\text { 自己重力 }
\end{gathered}
$$

$\frac{\partial \Sigma}{\partial t}=-\frac{1}{r} \frac{\partial \Sigma u_{r}}{\partial r}+\dot{\Sigma}_{\text {inf }}-\dot{\Sigma}_{\text {wind }}$,
$\Sigma\left(\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}-\frac{u_{\phi}^{2}}{r}\right)=-\frac{\partial P}{\partial r}-\Sigma \frac{G M_{r}}{r}+\frac{v_{r}-u_{r}}{t_{\text {stop }}} \Sigma_{\mathrm{d}}$
$\Sigma\left(\frac{\partial u_{\phi}}{\partial t}+u_{r} \frac{\partial u_{\phi}}{\partial r}+\frac{u_{r} u_{\phi}}{r}\right)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\Sigma \nu r^{3} \frac{\partial \Omega}{\partial r}\right)+\frac{v_{\phi}-u_{\phi}}{t_{\text {stop }}} \Sigma_{\mathrm{d}}$

dust

$$
\begin{gathered}
\frac{\partial \Sigma_{\mathrm{d}}}{\partial t}=-\frac{1}{r} \frac{\partial \Sigma_{\mathrm{d}} v_{r}}{\partial r}+\epsilon \dot{\Sigma}_{\text {int }}, \\
\Sigma_{\mathrm{d}}\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}-\frac{v_{\phi}^{2}}{r}\right)=-\Sigma \frac{G M_{r}}{r}+\frac{u_{r}-v_{r}}{t_{\text {stop }}} \Sigma_{\mathrm{d}} \\
\Sigma_{\mathrm{d}}\left(\frac{\partial v_{\phi}}{\partial t}+v_{r} \frac{\partial v_{\phi}}{\partial r}+\frac{v_{r} v_{\phi}}{r}\right)=\frac{u_{\phi}-v_{\phi}}{t_{\text {stop }}} \Sigma_{\mathrm{d}},
\end{gathered}
$$

円盤進化の取り扱い

0次ではガス・ダストはケプラー回転すると仮定
ケプラーからの微小なずれを1次まで評価
（cf．Nakagawa et al．1986，Kretke et al．2009，Kanagawa et al．2017）
gas $\frac{\partial \Sigma}{\partial t}=-\frac{1}{r} \frac{\partial}{\partial r} r \Sigma u_{r}+\dot{\Sigma}_{\text {infall }}-\dot{\Sigma}_{\text {wind }}$ ，

$$
u_{r}=\frac{2 r}{j} T-\frac{\Sigma_{\mathrm{d}}}{\Sigma+\Sigma_{\mathrm{d}}} \frac{1}{A S t^{\prime 2}+1} \frac{2 r}{j} T+\frac{2 \Sigma_{\mathrm{d}}}{\Sigma+\Sigma_{\mathrm{d}}} \frac{A S t^{\prime}}{A S t^{\prime 2}+1} \eta r \Omega-\frac{r \dot{M}_{r, \text { tot }}}{M_{r}}
$$

dust $\frac{\partial \Sigma_{\mathrm{d}}}{\partial t}=-\frac{1}{r} \frac{\partial}{\partial r} r \Sigma_{\mathrm{d}} v_{r}+\epsilon \dot{\Sigma}_{\text {inf }}, \quad \varepsilon=0.01$

$$
v_{r}=\frac{\Sigma}{\Sigma+\Sigma_{\mathrm{d}}} \frac{1}{A S t^{\prime 2}+1} \frac{2 r}{A j} T-\frac{\Sigma}{\Sigma+\Sigma_{\mathrm{d}}} \frac{2 S t^{\prime}}{A S t^{\prime 2}+1} \eta r \Omega
$$

$$
+\left(\frac{2 r}{A j} T-\frac{\Sigma_{\mathrm{d}}}{\Sigma+\Sigma_{\mathrm{d}}} \frac{1}{A S t^{\prime 2}+1} \frac{2 r}{A j} T+\frac{2 \Sigma_{\mathrm{d}}}{\Sigma+\Sigma_{\mathrm{d}}} \frac{S t^{\prime}}{S t^{\prime 2}+1} \eta r \Omega\right) \frac{2 \pi r^{2} \Sigma}{M_{r}}-\frac{r \dot{M}_{r, \text { tot }}}{M_{r}}
$$

$$
T=\frac{1}{r \Sigma} \frac{\partial}{\partial r}\left(r^{3} \nu \Sigma \frac{\partial \Omega}{\partial r}\right) \quad A=\left(1+\frac{2 \pi r^{2} \Sigma}{M_{r}}\right) \quad S t^{\prime}=\frac{\Sigma}{\Sigma+\Sigma_{\mathrm{d}}} S t,
$$

$$
\eta=-\frac{1}{2}\left(\frac{c_{\mathrm{s}}}{r \Omega}\right)^{2} \frac{\partial \ln p}{\partial \ln r}, \quad \dot{M}_{r, \text { tot }}=\int_{0}^{r} 2 \pi r\left(\dot{\Sigma}_{\mathrm{inf}}-\dot{\Sigma}_{\mathrm{wind}}\right) d r
$$

temperature $\quad T_{\text {eq }}=\max \left[150\left(\frac{r}{1[\mathrm{au}]}\right)^{-3 / 7}, 10\right][\mathrm{K}]$ ．

計算の設定

初期条件（分子雲コア）
密度分布：Bonner－Ebert 球x 1.4
中心密度 $10^{-18}\left[\mathrm{~g} \mathrm{~cm}^{-3}\right]$
総質量 $\quad M_{\mathrm{cl}}=1.5 M^{\circ}$
$\begin{array}{ll}\text { 温度 } & 10 \mathrm{~K} \text {（等温）} \\ \text { 回転速度 } & 0.3\left[\mathrm{~km} \mathrm{~s}^{-1} \mathrm{pc}^{-1}\right]\end{array}$（剛体回転）

パラメータ $\alpha_{\mathrm{MRI}}:$ viscosity，$\quad C_{\mathrm{W}}:$ wind，$S t:$ dust

若い円盤にリング構造形成可能なパラメータを探す

結果 1

$$
\alpha=3 \times 10^{-4}, C_{\mathrm{W}}=10^{-4}, S t=0.1
$$

原始星形成～0．1 Myr

リング形成で重要なタイムスケール viscous timescale ：

$$
t_{\text {vis }} \sim \frac{r^{2}}{27 \nu}=8 \times 10^{4}[\mathrm{yr}]\left(\frac{r}{10 \mathrm{au}}\right)^{15 / 14}\left(\frac{\alpha}{10^{-3}}\right)^{-1}
$$

wind timescale ：

$$
t_{\mathrm{wind}}=\frac{\Sigma}{\dot{\Sigma}_{\mathrm{wind}}}=5 \times 10^{4}[\mathrm{yr}]\left(\frac{r}{10[\mathrm{au}]}\right)^{3 / 2}\left(\frac{C_{\mathrm{w}}}{10^{-4}}\right)^{-1}
$$

drift timescale（ $S t \ll 1, \epsilon \ll 1$ ）：

$$
\begin{aligned}
t_{\text {drift }} & =\frac{r}{v_{\text {drift }}}=\frac{1}{\Omega S t}\left(\frac{c_{\mathrm{s}}}{r \Omega}\right)^{-2}\left|\frac{d \ln p}{d \ln r}\right|^{-1} \\
& =6.6 \times 10^{3}[\mathrm{yr}]\left(\frac{r}{10[\mathrm{au}]}\right)^{15 / 14}\left(\frac{S t}{10^{-1}}\right)^{-1}
\end{aligned}
$$

円盤中でのタイムスケールの比較

～105yrでのリング構造形成

$t_{\mathrm{vis}}>t_{\mathrm{wind}}$ 粘性は効かない

結果 2

$$
\alpha=3 \times 10^{-4}, C_{\mathrm{W}}=10^{-4}, S t=0.3
$$

$\alpha, C_{\mathrm{w}, \mathrm{St}}$ が結果1より大きい．

$10^{2} \quad 10^{3}$
リング構造10－20 au（～0．5Myr）

タイムスケールの比較

リング構造形成には $\mathrm{t}_{\mathrm{d}} \mathrm{rift} \leqslant \mathrm{t}_{\mathrm{wind}} \leqslant \mathrm{t}_{\mathrm{vis}}$ が必要
リング半径のパラメー夕依存性 $\mathrm{St=0.1}, 0.5 \mathrm{Myr}$ でのリング半径
$\mathrm{t}_{\mathrm{drift}}=\mathrm{t}_{\text {vis }}>\mathrm{t}_{\text {wind }}$
ring radius
－3－10 au
－10－30 au
30－100 au
>100 au
内側境界で
$\mathrm{t}_{\mathrm{vis}}=\mathrm{t}_{\text {wind }}$
全領域で
$\mathrm{t}_{\mathrm{vis}}<\mathrm{t}_{\text {wind }}$

まとめ

－若い天体の周囲の円盤に半径10au程度のリング構造が形成されて いることが発見された。若い円盤のリング構造形成メカニズムは？
－本研究では，1Dモデルを用いて円盤風による若い円盤でのリング構造形成について調べた。
－ 0.5 Myr 程度でリング構造を形成するには，$\alpha \leqslant 10^{-3}, C_{\mathrm{W} \sim 10^{-4}, ~ S t ~}^{\text {－}}$ $~ 0.1$ 程度が必要。粘性拡散が効かない場合，リングの位置は外側に広がる。粘性拡散と円盤風のタイムスケールが同程度になる半径で リングは定在。
－円盤風，MRI，ダストサイズのパラメータは円盤形成期の磁場の進化とダスト成長で決まる。一貫した円盤進化モデル構築の研究は今後の課題。

