核燃焼型超新星にまつわる 最近の話題

山口 弘悦 (NASA/GSFC, Univ of MD) 第30回 理論懇シンポジウム 星の物理の新地平」

The progenitor of a Type la supernova

Outline

Ia型超新星 ここ10年の進展と混迷 SD vs DD 仁義なき戦い

・DD派の攻勢:強気の理由

・SD派の逆襲?:発展の予感

「星の物理」の観点から,研究紹介を兼ねて

- ・平和的解決案と将来への展望
- ・Type lax, He-shell detonation, etc... (次の機会に)

Single degenerate (SD) モデル

四面楚歌

SDの痕跡が見つからない

SN 2011fe (M101: 6.4 Mpc)

主星爆発前の伴星探査

SN 2011fe: 赤色巨星および > 3.5*M*。の主系列星を 棄却 (Li+2011)

SN 2014J (M82: 3.5 Mpc)

赤色巨星の大半を棄却 (Kelly+2014)

伴星との衝突に伴う熱放射

X-ray ~ UV/optical: 爆発数日後に超過が予想 (Kasen 2010) See also Kutsuna & Shigeyama 2015

Kasen 2010

伴星との衝突に伴う熱放射

X-ray ~ UV/optical: 爆発数日後に超過が予想 (Kasen 2010) See also Kutsuna & Shigeyama 2015

伴星との衝突に伴う熱放射

iiPTF14atg (Cao+2015)

SN 2012cg (Marion+2016)

衝突時に剥ぎ取られる伴星外層

- 水素 <u>~ 0.1*M*。程度</u>を剥ぎ取り → ⁵⁶Co崩壊γ線により励起 → nebular phaseに Hα線
 - (e.g, Mattila+2005)

SN 2011fe:

 $< 0.001 M_{\odot}$ (Shappee+2013) $< 10^{-4} M_{\odot}$ (Botyanszki+2017)

SN 2014J:

< 0.005*M*_☉ (Lundqvist+2015)

主星爆発後の伴星探査

LMC SNR 0509-67.5 HSTにより残存伴星に上限 M_V < +8.4, L_V < 0.04L_{☉V} → 全SDシナリオを棄却 (Schaefer+2012, Litke+2017)

Table 1 | Candidate progenitor classes

Candidate class	P _{orb} (d)	$v_{ex-comp}$ (km s ⁻¹)	Surviving companion	M _V (mag)	V range in LMC (mag)
Double-degenerate	NA	NA	None	NA	NA
Recurrent nova	0.6–520	50-350	Red giant or subgiant	-2.5 to +3.5	16-22
Symbiotic star	245–5,700	50-250	Red giant	-2.5 to +0.5	16–19
Supersoft source	0.14-4.0	170–390	Subgiant or $>1.16 M_{o} MS$	+0.5 to +4.2	19-22.7
Helium star donor	0.04–160	50-350	Red giant or subgiant core	-0.5 to +2.0	18-20.5
Spin-up/spin-down	245–5,700	50-250	Red giant or subgiant core	-0.5 to +2.0	18-20.5

同様の観測 → 赤色巨星ドナーのみ棄却 SN1006 (Gonzalez Hernandez+2012) SNR 0519-67.5 (Edwards+2012)

ああ四面楚歌 SDの痕跡が見つからない

安定燃焼: ~10⁻⁷*M*₀ yr⁻¹ (e.g., Nomoto+2007) 超過した降着物質は星風で放出 (Hachisu+1996)

星周物質

イジェクタとCSMの衝突 → 衝撃波 → 電波(非熱的電子) + X線(可視光光子とのIC)

星周物質

イジェクタとCSMの衝突 → 衝撃波 → 電波(非熱的電子)+ X線(可視光光子とのIC) SN 2011fe, SN 2014J: 検出なし; d*M*/d*t* ≤ 10⁻⁹ *M*_☉ yr⁻¹ (Chomiuk+2012, Maugutti+2012,2014, Perez-Torres+2014)

Kepler

RCW86

CSM ~2 pc away 衝突は ~200年後ぐらい? (Katsuda+2015) "Hachisu wind" による 大規模な cavity (Williams+2011)

Super-soft source (SSS)

降着物質の定常核燃焼 → 軟X線放射 (e.g., Kato 2010)

T_{BB}~10⁵⁻⁶ K L_{bol}~10³⁷⁻³⁸ erg s⁻¹ Chandraによる探査

→ 緩い上限のみ

SSSによるISMの電離

そこで Double Degenerate (DD)

伴星不要・定常降着不要

「反SD」の多くが upper limit の議論 Absence of evidence is not evidence for absence

Delay Time Distribution (DTD)

昔のDD・今のDD

当初は「いかに*M*_{Ch}に近づくか」が問題の本質だった → 主星への "速い" (~10⁻⁵ *M*_☉/yr) 降着 → ONeMg WDを経てNSに崩壊 (e.g., Saio+1985)

最近の理論は "violent merger" $M_1 \approx 1 M_{\odot} \gtrsim M_2$, t ~ 100 s の "sub-M_{Ch} model".

(e.g., Pakmor+2010, 2012)

主星の質量が物事を決める.

← 1.1*M*_☉ + 0.9*M*_☉ の merger (Pakmor+2012)

ひとみ衛星の数少ない成果 銀河団の鉄族元素精密測定 →太陽組成に完全一致 (Hitomi Collaboration 2017)

電子捕獲: **p + e⁻ → n + v**e (~M_{Ch} のときだけ起こる)

鉄族元素の合成

Ni, Mn の多い超新星を見つければいい!

理論計算の一例

⁵⁸Niの直接探査 (nebula phase)

SN 2004eo (Mazzali+2008)

SN 2003du (Tanaka+2011)

See also Maeda+2010 for systematic observations 正確な質量決定は難しい

MnはSNの観測で検出できない

3C 397: 異常に強い Mn, Ni 輝線

SN Ia 元素合成モデルとの比較

SN Ia 元素合成モデルとの比較

Mcn爆発モデルは自由度大

- ・爆轟波に切り替わる条件 → 56Ni 生成量
- ・親星の金属量 → 爆発前の²²Ne 混入率
- ・C/O比
- ・爆発時の質量 & <u>中心密度</u> 実際は厳密に *M*_{Ch}まで達するわけではない
- ・燃焼開始点の数や位置 (e.g., off-center ignition)

Seitenzahl+2013

Mcn爆発モデルは自由度大

- ・爆轟波に切り替わる条件 → 56Ni 生成量
- ・親星の金属量 → 爆発前の²²Ne 混入率
- ・C/O比
- ・爆発時の質量 & <u>中心密度</u> 実際は厳密に *M*_{Ch}まで達するわけではない

伝統的にp_c = 2 × 10⁹ g cm⁻³ が 採用されるケースが多く (理由は後述) 先述の研究でもそれに倣った.

高密度ほど電子捕獲が起こりやすいのだから その効果ぐらい調べるべきだった...

親星中心密度の効果

Leung & Nomoto 2017

親星中心密度の効果

親星中心密度の効果

 $\rho_c = 2 \times 10^9 \,\mathrm{g}\,\mathrm{cm}^{-3}$ 5 × 10⁹ g cm⁻³

M_{Ch} SN Ia は従来の理解より高密度で爆発?

SDシナリオの進化経路

Two normal stars are in a binary pair.

The more massive star becomes a giant...

...which spills gas onto the secondary star, causing it to expand and become engulfed

The secondary, lighter star and the core of the giant star spiral toward within a common envelope.

The common envelope is ejected, while the separation between the core and the secondary star decreases.

The remaining core of the giant collapses and becomes a white dwarf.

The aging companion star starts swelling, spilling gas onto the white dwarf.

The white dwarf simass increases until it reaches a critical mass and explodes..

...causing the companion star to be ejected away.

親星の内部構造に与える影響

Lesaffre+2006

3C 397 の親星 = (i) 重い主星 + (ii) 軽い伴星 超新星残骸の観測で連星進化にも制限!

考察と提言

ρ_c = 2 × 10⁹ g cm⁻³ が定着した経緯:

<u>M_{Ch} SNe Ia だけで</u> 鉄族元素の太陽組成を 説明するため (Nomoto+1997, Woosley+1997)

→ SNe Ia はもっとバラエティーに富んでいる. DD (Mn, Niを作らない)の寄与があるなら, 「high-p な SD」と DD の組み合わせでもOK.

- これまでの"前提"を改めて疑ってみる.

- 「星の進化」から出発した爆発モデルの追求.

まとめ

SD vs DD 仁義なき戦いの行方

- ・SDに不利な観測事実が多いのは確か
- ・一方でSDを支持する観測も存在
- ・両方正解でいいんじゃないでしょうか
 - ・仲良くしましょう
 - ・多様性を受け入れる

ー様性に立脚した前提の見直し (e.g., 爆発密度)

・観測されるsubclassと両シナリオのリンクが大切 宇宙論への貢献 (非標準光源の除外)

SD family

3C 397

RCW 86

N103B

Tycho

SN 1006

とは言え、決着をつけたい

将来の観測への期待

・⁵⁵Fe (⁵⁵Co) 崩壊後の Mn Ka

・重力波: LISA ... また次の機会に!