

理論懇シンポジウム@東京大学本郷キャンパス 2017年12月27日

太陽内部熱対流・ダイナモの最新理論

謝辞:研究に協力しくれている人々 Matthias Rempel[NCAR], 飯島陽久[名古屋大学], 横山央明[東京大学]

堀田英之

太陽活動11年周期

HATHAWAY NASA/ARC 2016/10

黒点相対数(〜黒点の面積)は、11年の周期を 持って変動している。黒点周期は磁場の周期

400年以上にわたる観測から明らかになってい るが、その物理機構は未だ謎。 太陽物理学最古の謎

NASA/NAOJ/岡本丈典

熱対流による太陽の磁場生成

放射層からのエネルギー注入に より、<mark>対流層は乱流的な熱対流</mark>に 満たされている。

この乱流と磁場が相互作用することで11年周期を維持。

磁場の誘導方程式

大規模な流れ場が大規模な磁場に作用する効果 小規模な乱流の非線形効果によって、大規模な磁場に作用する効果

磁場生成の方法:差動回転による引き伸ばし

$$abla imes (\langle \mathbf{v} \rangle \times \langle \mathbf{B} \rangle) = -\nabla \cdot (\langle \mathbf{v} \rangle \langle \mathbf{B} \rangle) + (\langle \mathbf{B} \rangle \cdot \nabla) \langle \mathbf{v} \rangle$$

移流・圧縮 引き伸ばし

経度方向の磁場を作る(Ω効果)

磁場生成の方法: α効果と乱流拡散

$$\langle \mathbf{v}' \times \mathbf{B}' \rangle = \alpha \langle \mathbf{B} \rangle - \eta_{t} \nabla \times \langle \mathbf{B} \rangle$$

 $\alpha 効果$ 乱流拡散
e.g. Krause & Rädler, 1988

ポロイダル方向

 $\alpha = -\frac{\tau}{3}\mathbf{v}' \times \nabla \times \mathbf{v}'$

太陽自転により、熱対流が ヘリシティを持つことにより、 統計的に大規模なポロイダル磁場 を生成する効果。

いつ、どこで、どんなスケールで 起こっているかは謎 (本講演の主テーマ)

トロイダル方向

11年周期とは: $\alpha \Omega$ ダイナモ

熱対流数値計算

太陽の状況で磁気流体力学の方程式を解く 太陽成層(密度, 圧力, 温度..)に太陽のエネルギーを注入放出 →乱流により差動回転生成

→差動回転と乱流の非等方性により大規模磁場生成

磁場生成の経路

これらのことが自己無撞着に3次元計算の中で起きる

堀田英之

最近のモデルから

熱対流計算をすると乱流 $\alpha \Omega$ で「説明可能」

対流層の中のα効果で全て説明できる(Brown+2010, Racine+2011, Käpylä+2012, Masada+2013, Warnecke+2015, Karak+2015, Käpylä+2017)

ここから話が変わるのでまとめ

 $\frac{\partial \langle \mathbf{B} \rangle}{\partial t} = \nabla \times (\langle \mathbf{v} \rangle \times \langle \mathbf{B} \rangle + \alpha \langle \mathbf{B} \rangle - \eta_{\mathrm{t}} \nabla \times \mathbf{B})$

- ▶ 太陽には、11年周期がある。
- ▶ 差動回転によって、経度(トロイダル)方向の磁場を作っているのは、 ほぼ疑いがない
- α効果はよくわからないが、熱対流の数値計算をすると、対流層の 奥底でコリオリカによる非等方乱流でぐちゃぐちゃすることにより、 起きている。
- α効果と差動回転が同じような場所で働いている状況では、乱流拡 散の時間スケールくらいの磁場周期が発生する。

α効果の場所について、観測からもう少しなにか言えないか

α効果はどこで働いているのか Babcock-Leighton α効果

Joy's law

(Hathaway slide)

黒点を作るような磁場が浮上してくるときに、周りの圧力がさがり 膨張する運動にコリオリ力がかかることで、東西に向いた磁場がやや 南北に向く(Joy's law:観測的結果) トロイダル磁場からポロイダル磁場を作る確かな機構 **どのくらい重要かはよくわからない。**

長期間の黒点の統計:移流拡散し極へ

-10G -5G 0G +5G+10G

太陽の極磁場は、11年周期で反転 Joy's lawにしたがって、出現した黒点が移流拡散することにより、 極磁場が反転する。

極地方の磁場はどのようにつくられるか

赤道をまたいで、反対称なのでそれらが拡散して極磁場を構成

極小期の極磁場と黒点数

黒点は副産物かメインプレイヤーか

三次元磁気流体計算:

太陽内部でのぐちゃぐちゃする α 効果で説明可能 黒点は副産物

表面観測:

黒点は統計的に傾いて出てくる(Joy's law) →その効果を精密・統計的に観測することで 極磁場をよく説明できる →極磁場と次の周期の黒点数はよく相関する →極磁場が次の周期の種磁場 黒点はメインプレイヤー

どちらかをはっきりさせることは重要。 11年周期を決める物理も変わってくると考えられる。 乱流拡散の時間スケールか大規模な流れの時間スケールか

3次元熱対流には太陽表面は入ってない

全ての3次元全球計算では、 太陽表面(光球)が計算領域の 中に入っておらず、当然黒点が 現実的に形成することはない。

多くの計算はr_{top}=0.96R_{sun} 一番高くてもr_{top}=0.99R_{sun} (Hotta+2014, 2015)

よって、このような計算の中では Babcock-Leighton α効果が実現 するはずもなく、結果として太陽 内部のα効果のみが効いてしまっ ているのではないか 太陽ダイナモを正しく理解するた めには光球を入れることが必須

なにが難しいのか (1/2)

なにが難しいのか (2/2)

	光球(表面)	対流層の底
熱対流速度	4 km/s	50 m/s
空間スケール	1 Mm	200 Mm
時間スケール	数分	一ヶ月
音速	10 km/s	200 km/s
温度	6000 K	1 MK
密度	10 ⁻⁷ g cm ⁻³	10 ⁻¹ g/cm ⁻³
光学的厚さ	~1	大きい
δ	0.1~1	10 -6

 $\delta \sim \frac{p_1}{p_0} \sim \frac{\rho_1}{\rho_0} \sim \frac{T_1}{T_0}$ $p_0 \qquad \rho_0$

太陽内部と表面で極端に違う 空間・時間スケール

 輻射輸送を解く

 ✓ 内部→拡散近似
 ✓ 光球→輻射輸送

 5程式を内部・光球包括して解けるように
 状態方程式を内部・光球 を包括して扱えるように

これまでに全対流層を一貫して扱った数値計算は存在しない ここからは、全対流層を扱うための挑戦を紹介する

堀田英之

観測的には何をやればいいのか

対流層内部の熱対流の分布を確かめる

大規模磁場の生成場所を確かめる 日震学で磁場測定そのものを行うのは難しいので、大規模な特徴的な 流れ。ローレンツ力による熱対流の抑制を日震学で観測する。

まとめ

太陽には11年の磁場周期がある。

トロイダル(経度方向)磁場は、差動回転の引き伸ばし、 ポロイダル磁場はα効果で作るという基本方針は多分あってる。

3次元の熱対流計算をやると、対流層内部のα効果で計算結果を 説明できる。 表面の観測に統計的な処理を行なうと、黒点の傾きによるα効果 (Babcock-Leighton α効果)が重要な役割を果たしていることが

(Dabcock Leighton u 加木)が重要な反動で木/ 示唆される。

現在のところ、Babcock-Leighton α効果は再現できないような 計算設定になっているので、今後10年程度で、ここを実現できる ように頑張っていく。

堀田英之

