

<u>Yuta Tarumi</u> with Takuma Suda, Robert J.J. Grand, Freeke van de Voort, Shigeki Inoue, and Naoki Yoshida

# UFDとは?

https://en.wikipedia.org/wiki/Local\_Group

- \* UFDは小さな (< 10<sup>5</sup> Lsun) 衛星 銀河
- \* 星年齢が古い
  - \* 高赤方偏移(z>6)の良いプロー ブ
- \* "0 or 1 r-process"
- Small but important !





r過程

 $[X/Y] = \log_{10} \left| \frac{N_X}{N_Y} \right| + C$ 

Normalized to solar





\* ハロー星の[Eu/Fe]分散は他の元素 よりはるかに大きい。

\* 3個/10国のUFDでのみEuか見つ

 $\rightarrow$  rule **rare and prolific.** 

3





#### 方法: simulation

$$[X/Y] = \log_{10} \left[ \frac{N_X}{N_Y} \right] + C$$
  
Normalized to solar

- \* コード: AREPO
- \* Auriga銀河形成モデル
- \* BaはAGBからのみ。
- \* "Large UFD" (2×10<sup>4</sup> Msun) と "Small
   UFD" (3×10<sup>3</sup> Msun)で
   シミュレート。



結果: [Ba/Fe]

 $[X/Y] = \log_{10} \left[ \frac{N_X}{N_Y} \right] + C$ Normalized to solar

- \* [Ba/Fe]が低い。
- \*より長く星を作る?
- \* しかし"Large UFD"はUFDと しては星形成が長く続いたサ ンプル。

![](_page_5_Figure_5.jpeg)

## 結果: [Ba/Fe]の分散

 $[X/Y] = \log_{10} \left| \frac{N_X}{N_V} \right| + C$ Normalized to solar

- \* 星形成が長く続くと(>~500Myr)、
  [Ba/Fe]の分散が大きすぎる。
- \* AGBだけではUFDのBaが説明できない。
- \* 解決策
  - \* IMFを変える(skipped)。
  - \* 短いdelay-timeでBaを入れ、低 金属量での[Ba/Fe]を上げる。

![](_page_6_Figure_7.jpeg)

## 結果:他のBa源

 $[X/Y] = \log_{10} \left| \frac{N_X}{N_V} \right| + C$ Normalized to solar

- \* delay-time無しで、1 Msunの
  の星あたり3×10<sup>-10</sup> Msunの
  Baを注入した。
- \* [Ba/Fe]の値はおおよそ合っ
  ており、一つの系内の[Ba/
  Fe]分散も大きすぎない。

![](_page_7_Figure_4.jpeg)

#### 議論1: UFDのBaの起源は? $[X/Y] = \log_{10} \left[ \frac{N_X}{N_Y} \right] + C$ Normalized to solar

- \* super-AGB はどうか?
  - \* 質量範囲が狭く、十分には寄与しなかった。
- \* 回転星はどうか?
  - \* モデルの不定性が大きく、観測は再現しうる。星の回 転の観測等でより強くモデルを制限したい。
- \* ハローの低金属量星はr過程>s過程。しかし回転星はs過程。
- \* r過程かs過程か?:観測による制限が重要

![](_page_9_Figure_0.jpeg)

\* IMF averagingがちゃんと効いているとすると、違いを生む候補は 1. yield, 2. IMF,

![](_page_9_Figure_2.jpeg)

### 結論: We need something.

 $[X/Y] = \log_{10} \left[ \frac{N_X}{N_Y} \right] + C$ Normalized to solar

- \* AGBだけではBa量を説明できない。
- \* 解決策
  - \* IMFを(大幅に)変更する。
  - \* 他のBa源を考慮する。
    1Msunの星あたり3×10<sup>-10</sup>
    MsunのBaを作るくらい。

![](_page_10_Figure_6.jpeg)