P205a

原始惑星系円盤光蒸発の輻射流体計算: ダストーガス質量比依存性

駒木彩乃(東京大学)

共同研究者:仲谷崚平(理研)、吉田直紀(東京大学)

Introduction

惑星系形成において円盤寿命、円盤進化は重要!!

光蒸発…円盤消失過程の1つ

- 中心星放射が円盤表面のガスを加熱
- 加熱されたガスが中心星からのポテンシャル
 エネルギーを振り切って流出

- FUVが主な加熱源となって円盤表面を 加熱
- FUV光度の違いが光蒸発の中心星質量
 依存性に寄与

ダスト進化による円盤加熱への影響

中心星放射による加熱過程

ダスト依存性

円盤進化とともに円盤内のダスト量が変化

→ 円盤内のダスト量が変わることで円盤加熱過程、さらには光蒸発による質 量損失も影響を受ける可能性 円盤の物理・化学構造を明らかにするために以下を同時に解いた

- 流体力学(PLUTO; Mignone+07)
- 輻射輸送(Kuiper+10; Kuiper & Klessen+13; Nakatani+18a,b)
- 非平衡熱化学(Nakatani+18a,b, Nakatani+21)

FUV X-ray EUV

$ (-1Myr system) \begin{bmatrix} M_* & R_* & T_{eff} & L_{bol} & \dot{M}_{acc} & Log L_{FUV} & Log L_X & Log \phi_{FUV} \\ (M_{\odot}) & (R_{\odot}) & (K) & (L_{\odot}) & (M_{\odot} yr^{-1}) & (erg s^{-1}) & (erg s^{-1}) & (s^{-1}) \end{bmatrix} $											
• 中心星質量: $M_* = 1M_{\odot}$ (~1Myr system) 0.3 2.3 3360 0.55 2.7(-9) 30.3 29.6 39.9 0.5 2.12 3771 0.93 7.5(-9) 30.9 29.8 40.1 0.7 2.54 4024 1.72 1.5(-8) 31.3 30.2 40.5 1.0 2.61 4278 2.34 3.0(-8) 31.7 30.4 40.7 1.7 3.30 4615 5.00 8.7(-8) 32.3 30.7 41.0 3.0 4.83 5004 14.85 2.7(-7) 32.9 28.7 39.0 7.0 3.22 20527 1687 1.5(-6) 36.5 30.8 44.1	フメータ設定		M_* (M_{\odot})	R_* (R_{\odot})	T _{eff} (K)	$L_{ m bol} \ (L_{\odot})$	$\dot{M}_{ m acc}$ $(M_{\odot} \ { m yr}^{-1})$	$\begin{array}{c} \text{Log } L_{\text{FUV}} \\ (\text{erg s}^{-1}) \end{array}$	$\frac{\text{Log } L_X}{(\text{erg}^{-1})}$	$\frac{\log \phi_{\rm EUV}}{({\rm s}^{-1})}$	
• 中心星質量: $M_* = 1 M_{\odot}$ (~1Myr system) $\begin{pmatrix} 0.5 & 2.12 & 3771 & 0.93 & 7.5(-9) & 30.9 & 29.8 & 40.1 \\ 0.7 & 2.54 & 4024 & 1.72 & 1.5(-8) & 31.3 & 30.2 & 40.5 \\ 1.0 & 2.61 & 4278 & 2.34 & 3.0(-8) & 31.7 & 30.4 & 40.7 \\ 1.7 & 3.30 & 4615 & 5.00 & 8.7(-8) & 32.3 & 30.7 & 41.0 \\ 3.0 & 4.83 & 5004 & 14.85 & 2.7(-7) & 32.9 & 28.7 & 39.0 \\ 7.0 & 3.22 & 20527 & 1687 & 1.5(-6) & 36.5 & 30.8 & 44.1 \\ \end{pmatrix}$			0.3	2.3	3360	0.55	2.7 (-9)	30.3	29.6	39.9	
中心星質量: $M_* = 1 M_{\odot}$ (~1Myr system) $0.7 2.54 4024 1.72 1.5(-8) 31.3 30.2 40.5$ $1.0 2.61 4278 2.34 3.0(-8) 31.7 30.4 40.7$ $1.7 3.30 4615 5.00 8.7(-8) 32.3 30.7 41.0$ $3.0 4.83 5004 14.85 2.7(-7) 32.9 28.7 39.0$ $7.0 3.22 20527 1687 1.5(-6) 36.5 30.8 44.1$			0.5	2.12	3771	0.93	7.5 (-9)	30.9	29.8	40.1	
$ \square \oplus \square $			0.7	2.54	4024	1.72	1.5 (-8)	31.3	30.2	40.5	
$(~1Myr system) \begin{array}{c} 1.7 & 3.30 & 4615 & 5.00 & 8.7(-8) & 32.3 & 30.7 & 41.0 \\ 3.0 & 4.83 & 5004 & 14.85 & 2.7(-7) & 32.9 & 28.7 & 39.0 \\ 7.0 & 3.22 & 20527 & 1687 & 1.5(-6) & 36.5 & 30.8 & 44.1 \end{array}$			1.0	2.61	4278	2.34	3.0 (-8)	31.7	30.4	40.7	
(~1Myr system) 3.0 4.83 5004 14.85 2.7 (-7) 32.9 28.7 39.0 7.0 3.22 20527 1687 1.5 (-6) 36.5 30.8 44.1	ě		1.7	3.30	4615	5.00	8.7 (-8)	32.3	30.7	41.0	
$ \square $		(~IMvr svstem)	3.0	4.83	5004	14.85	2.7 (-7)	32.9	28.7	39.0	
		(7.0	3.22	20527	1687	1.5 (-6)	36.5	30.8	44.1	
● 口盜貝里 · $M_{disk} = 0.03 M_*$ 中心星光度	◎ □笽貝里 · M _{disk} = 0.03M _*		中心星光度								

• 円盤半径 $: 0.1r_g < r < 20r_g$

■ 重力半径 :ガスの持つ運動エネルギーとポテンシャルエネルギーが釣り合う点 $r_{g} = \left(\frac{GM_{*}}{c_{s}^{2}}\right) = 8.9 \left(\frac{M_{*}}{M_{\odot}}\right) \left(\frac{c_{s}}{10 \text{kms}^{-1}}\right)^{-2} au$

- 中心星光度、降着率: Gorti & Hollenbach(2009)
- ダストーガス質量比: 𝒴 = 10⁻¹ 10⁻⁸

シミュレーション結果

円盤表面での加熱率・冷却率

ダスト量による円盤面密度損失率への影響

X線光度依存性

明盤部分が加熱されにくい低ダスト量 開盤でほど線光度依存性がない

H+H+H

- ダスト量やダストーガス質量比は円盤進化とともに変わる
- ダスト進化の光蒸発への影響を明らかにするためにダストーガス質量比少をパ
 ラメータとして光蒸発シミュレーションを遂行
- $𝔅 ≤ 10^{-3}$ の円盤表面では H_2 pumpingが主な加熱過程となって質量損失に寄与
- 円盤進化に伴うダスト進化によって質量損失プロファイルも変化

future work

- 1D円盤面密度進化シミュレーションを行ってどのように円盤進化が進むのか 明らかにする
- より多くの化学反応を考慮
- primordial diskについても光蒸発シミュレーション