超矮小銀河のs過程 元素生成について

<u>Yuta Tarumi</u> with Takuma Suda, Robert Grand, Freeke van de Voort, Shigeki Inoue, Naoki Yoshida and Anna Frebel

Introduction

UFDとは?

https://en.wikipedia.org/wiki/Local_Group

- * Ultra-Faint Dwarf: 衛星銀河のうち小 さいもの(10⁵Lsun 以上)
- * 星年齢が古いことが知られている: 高 赤方偏移銀河のprobeとして使える
- * 星質量が小さい: レアなイベントの確 率性が見える。例えばr過程が(おそ らく)0 or 1回。
- * 元素合成の謎を解く鍵となる銀河
 1/12

Introduction

s過程とは?

- * s-process = "Slow neutron-capture process"
- * 漸近巨星分枝(AGB)星: 中小質量星の末期段階でできる。

* sとrを区別できるか?

Simulation

- * 銀河形成コードAREPOを使用
- * 星粒子質量 20Msun、星の質量分布を離散化
- * z=6まで、2銀河サンプル作成
- * AGB以外の寄与:
 - * 回転大質量星(RMS, Ba and Sr)
 - * 電子捕獲型超新星爆発 (ECSN, Sr)

* IMFの変更 4/12

結果: AGBのみ

- * [Ba/Fe], [Sr/Fe] は > 1dex 程度足りない。
- * Ba, Srの起源は何か?
 - * RMS?
 - * ECSN?
 - * IMFの変更?

Results: RMS model

- * 元素合成量:
 Limongi&Chieffi (2018)
 * 回転速度分布: Prantzos (2018)
- * Ba量はRMSで説明できる。
- * [Ba/Fe] は一定もしくは右肩 下がり

Results: RMS model

- * RMSモデルのテスト:
 - * 窒素の測定,
 - * [Sr/Ba] 比
- * RMSの予言: [Sr/Ba] は金属 量とともに増加する。

Results: ECSN model

- * 元素合成量: Wanajo (2018),
 7.9 × 10⁻⁵ M_☉ of Sr
 produced
- * レート: 不定、1/50 of 重力崩 壊型超新星を仮定
- * ECSNが一回でも起こると、
 系を[Sr/H] > -4.0 までenrich
 する。

Results: ECSN model

* 小さいUFDは[Sr/H] < -4.0なのでECSNなし?

* → ECSN レートは < 1/5000 Msun 以下</p>

Results: IMF modification

- ・中小質量星の割合を増やすと量は合わせられる。upper limitのみの観測もあることを考えると一応consistent。
- ∗ 10⁻⁴ M_☉/yrのように低いSFRだと大質量
 星形成が抑えられるかも?(IGIMF:
 Kroupa et al. 2012)

Discussion: UFDs with internal Ba spread

- * UFDのいくつかはBa量に分散がある。
 - * 可能性 1. 時間的非一様性: AGBが起源とすると、星形 成史が長ければ(>1Gyr)、差を作れる。
 - * 可能性 2. 空間的非一様性: RMSが起源とすると、星形 成史が短ければ(<~100 Myr)、差を作れる。
- * RMSモデルの検証でUFDの形成がわかる!

Conclusion

- * 通常のIMFとAGBのみではBa, Sr量が足りない。
- * RMSは興味深い起源である。Ba量は適切。検証のために
 N-Ba, N-Srの相関、及び [Sr/Ba] の増加が見られるかを
 確認したい。これら両方があれば強い証拠。
- * ECSN レートは CCSN レートの2%以下。質量範囲にする
 と ΔM は 0.1 M_☉以下。
- * SFR が低いと、大質量星形成を抑えて相対的にAGBの寄
 12/12 与が増えるかもしれない。