Barium in UFDs
Yuta Tarumi

Recent observations

* 1. n-capture elements in Sculptor
* ESO's VLT, FLAMES/GIRAFFE, FLAMES/UVES
* 2.3×10^{6} Msun
* 2. n-capture elements in Milky-Way
* GALAH survey, APOGEE survey
* 3. Eu detection in Grus II (3rd UFD with Eu)
* LCO's Magellan-Clay telescope, MIKE spectrograph
* 3.4×10^{3} Msun

1. n-capture in Sculptor

Skuladottir+19

* 2.3×10^{6} Msun
* s-process elements are delayed compared to α elements
* r-process elements are not delayed compared to α elements

1. n-capture in Sculptor

Skuladottir+19

- SFH is different from MW

2. n-capture in Milky Way

* high-Ia and low-Ia behave differently: all the n-capture elements have delay, including Eu.

3. Eu detection in Grus II

Hansen+20

* Third UFD with Eu
* Consistent with rprocess pattern
- [Ba/Fe] jump from ~ -1.5 to -0.5
* Consistent with one prolific r-process
* $X_{\mathrm{La}}=-1.2>-2.2$
(GW170817 value)

Motivation

* What can we learn from recent UFD observations?
* Ba, Sr abundances of UFDs are lower than MW stars.
* Theoretically, UFDs are different from MW.
* UFDs are small, "0 or 1 r-process".
* UFDs quench within first 1 Gyr, weaker AGB contribution.

Hansen+20

Simulation settings

* Yield table: Karakas+10 (?)
* Auriga galaxy formation model
* 3 galaxies: large UFD, small UFD, MW-like

Results

*We need more Ba to explain [Ba/ Fe] of UFDs.

* Extended SFH galaxies have higher [Ba/Fe].
* It catches up at $\mathrm{z}=0$ or $[\mathrm{Fe} / \mathrm{H}]=0$.

Large UFD

How can we reconcile?

- What should we reproduce?

-	Halo	-	Boo II	-	Gru II	-	Hor I	-	Psc II	-	Segue 1	-	Tri II	-	Tuc III	\star	Gru II
-	Bool	-	Com Ber	-	Her	-	Leo IV	-	Ret II	-	Segue 2	-	Tuc II		UMa II		

[Ba/Fe] scatter

* If star formation duration is long (> ~500Myr), [Ba/Fe] scatter would be too large.
* Possible solutions are...
* Quickly quench.
* Enhance Ba production in (relatively) massive stars.

$[\mathrm{Ba} / \mathrm{Fe}]$ value

- If star formation duration is short ($<\sim 500 \mathrm{Myr}$), $[\mathrm{Ba} / \mathrm{Fe}]$ is too low.
* Possible solutions are...
* Keep forming stars for a long time.
* Modify yield.

Constraints

* In terms of [Ba/Fe] scatter, short star formation is favored.
* In terms of [Ba/Fe] values, long star formation is favored.
* It seems difficult to reconcile the simulation with observation only by modifying star formation history.

Enhance Ba production

Griffith+20

- Other Ba sources?
* Rotating massive stars.
* super-AGB stars.
* Some r-process events.
* Modify IMF?

FIg. 12.-Relative distributions, $m \xi(m)$, of stellar masses for the derived IMF the mass distributions of primary and secondary components, respectively.

Ba production

* Large UFD: [Ba/Fe] at ~130Myr
* Small UFD: [Ba/Fe] at $\sim 50 \mathrm{Myr}$
* \rightarrow Ba should be produced within ~100Myr.

super-AGB stars

Large UFD

* Assuming 5Msun $<\mathrm{M}^{*}<7.5 \mathrm{Msun}$ experience super-AGB phase, yield is from Doherty $+17, Z=-0.7$ model
* $[\mathrm{Ba} / \mathrm{Fe}]$ is enhanced, but not enough
* If sAGB were 10times more efficient, [Ba/Fe] seems consistent

Rotating massive stars

* Assuming 3×10^{-9} Msun of Ba is formed per 1Msun (following Griffith+20, originally Limongi\&Chieffi18)
* Too many Ba.

Griffith+20

Large UFD

Rotating massive stars

* Assuming 10 times less, [Ba/Fe] seems consistent with observation.
* However, with this yield we cannot form $[\mathrm{Ba} / \mathrm{Fe}]<-2 \ldots$ contradiction to Segue I?

Modify IMF

* Choosing IMF with smaller number of massive stars, $[\mathrm{Ba} / \mathrm{Fe}]$ can be adjusted
* [Ba/Fe] decreases as $[\mathrm{Fe} / \mathrm{H}]$ increases, as type-Ia is not negligible

Discussions

* On the contribution of r-process to Ba
* On the diversity of Ba abundance among UFDs

Discussion 1: r-process?

* UFDs: $\mathrm{L}^{*}<10^{5}$ Lsun
* r-process: rare and prolific.
* To explain high abundances in Ret-II
* To explain large scatter among halo stars
* Roughly consistent with $1 / 10^{5}$ Msun of stars formed
* \rightarrow High [Eu/Fe] in Ret II, Tuc III and Gru II can be understood as " 0 or 1 " event of a prolific r-process.

Discussion 1: r-process?

* Cescutti+06
* At $[\mathrm{Fe} / \mathrm{H}]<-2 \mathrm{r}-$ process is important.
* Roughly explains [Ba/Fe] - [Fe/H].
* r-process is from massive stars. Not rare nor prolific.

Mod	s-process Ba	r-process Ba	s-process Eu	r-process Eu
1	$1 .-3 M_{\odot}$ Busso et al.(2001)ext.	$\begin{gathered} \hline \hline 12-30 M_{\odot} \\ \text { yields table } 3 \\ \hline \end{gathered}$	none	$12-30 M_{\odot}$ yields table 3
2	$1 .-3 M_{\odot}$ Busso et al.(2001)ext.	$\begin{gathered} 10-25 M_{\odot} \\ \text { yields table } 4 \\ \hline \end{gathered}$	none	$\begin{gathered} \hline \hline 10-25 M_{\odot} \\ \text { yields table } 4 \\ \hline \end{gathered}$
3	$\begin{gathered} 1.5-3 M_{\odot} \\ \text { Busso et al.(2001) } \end{gathered}$	$\begin{gathered} 8-10 M_{\odot} \\ X_{B a}^{n e w}=5.7 \cdot 10^{-6} / M_{*} \\ \text { (Travaglio et al. 2001) } \end{gathered}$	none	$12-30 M_{\odot}$ yields table 3
4	$\begin{gathered} \hline \hline 1.5-3 M_{\odot} \\ \text { Busso et al.(2001) } \end{gathered}$	$10-30 M_{\odot}$ yields table 3	none	$\begin{gathered} \hline \hline 8-10 M_{\odot} \\ X_{E u}^{\text {new }}=3.1 \cdot 10^{-7} / M_{*} \\ \text { (Ishimaru et al. } 2004 \text { Mod.A) } \end{gathered}$
5	$\begin{gathered} 1.5-3 M_{\odot} \\ \text { Busso et al.(2001) } \end{gathered}$	$10-30 M_{\odot}$ yields table 3	none	$\begin{gathered} 20-25 M_{\odot} \\ X_{E u}^{\text {new }}=1.1 \cdot 10^{-6} / M_{*} \\ \text { (Ishimaru et al.2004 Mod.B) } \end{gathered}$
6	$\begin{gathered} 1.5-3 M_{\odot} \\ \text { Busso et al.(2001) } \end{gathered}$	$10-30 M_{\odot}$ yields table 3	none	$\begin{gathered} >30 M_{\odot} \\ X_{E u}^{n e w}=7.8 \cdot 10^{-7} / M_{*} \\ \text { (Ishimaru et al. } 2004 \text { Mod.C) } \\ \hline \end{gathered}$

Fig. 6. The data are the same as in Fig. 5. In this Fig. we show in solid line the model 1 and in dashed line the model 2 (models are described in table 2) predictions.

Fig.9. In this Fig. we show the ratio of $[\mathrm{Ba} / \mathrm{Eu}]$ versus $[\mathrm{Fe} / \mathrm{H}]$ The squares are the mean values of the data bins described in the table 6 . As error bars we consider the standard deviation (see table 6). The results of model 1 are rappresented in solid line, the results of model 2 in long dashed line (models are described in table 2).

Discussion 1: r-process?

* Rizutti+18: Rotating Massive stars (RMS)
* r-process from NSM or Magneto-Rotationally
 Driven (MRD) SNe
- The origin of Ba at [Fe/ $\mathrm{H}]<-2$ is mostly r process.

Discussion 1: r-process?

* The origin of Ba is "main" r-process and "main" s-process.
* \rightarrow (NSM or some other r-process) and (low-mass) AGB stars.
* The stochasticity of r-process diversifies [Ba/Fe]: MW should be somewhere between Ret II (, Tuc III) and other UFDs.
- If we fix $[\mathrm{Fe} / \mathrm{H}]$:
- MW is at higher density peak.
* MW is larger than UFDs because of larger mixing mass.
* \rightarrow Stochasticity ("0 or 1 "-ness) is more important in UFDs than in MW.

Discussion 2: difference among UFDs

* If we assume that IMF depends only on metallicity, IMF should be similar in any UFDs.
* How can we make UFDs with diverse [Ba/Fe] (-0.5 ~ -2.5), except for Ret II, Tuc III and Gru II?
* SFH: Galaxies with long star formation duration has higher [$\mathrm{Ba} / \mathrm{Fe}$] than lower ones. However, it enhances scatter within each UFD.
* The r-process: All the UFDs with $[\mathrm{Ba} / \mathrm{Fe}] \sim-0.5$ actually have Eu from the stochastic r-process, but below the detection limit.
* Another stochastic event: It can be r- or s- process. Roughly $1 / 10^{4}$ Msun of stars formed
* Or, IMF depends on other conditions?

Conclusion

* Low $[\mathrm{Ba} / \mathrm{Fe}]$ of UFDs (than MW) can be attributed to two facts:
* Short star formation duration.
* No r-process contribution.
* We need to enhance Ba production.
* Only super-AGB seems not enough.
* Top-heavy IMF seems to have an opposite effect. However, we can tune the IMF to reproduce Ba abundance.
* Rotating massive stars seems too much (?)

Results, MW-like

First 1Gyr

* Formation epochs are important for [$\mathrm{Ba} / \mathrm{Fe}$].
* $[\mathrm{Ba} / \mathrm{Fe}]$ increases as it ages, even if $[\mathrm{Fe} / \mathrm{H}]$ are the same.

Results, dwarf

First 1Gyr

dwarf \& UFD list

Simon+19

| Dwarf | M_{V} | | $R_{1 / 2}$
 (pc) | Distance
 (kpc) | v_{hel}
 $\left(\mathrm{km} \mathrm{s}^{-1}\right)$ | σ
 $\left(\mathrm{km} \mathrm{s}^{-1}\right)$ | $[\mathrm{Fe} / \mathrm{H}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$\sigma_{[\mathrm{Fe} / \mathrm{H}]}$

Dwarf	M_{V}	$\begin{aligned} & R_{1 / 2} \\ & (\mathrm{pc}) \end{aligned}$	Distance (kpc)	$\begin{gathered} v_{\text {hel }} \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$	$\begin{gathered} \sigma \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$	[Fe/H]	$\sigma_{[\mathrm{Fe} / \mathrm{H}]}$
Leo I	$-11.78_{-0.28}^{+0.28}$	270_{-16}^{+17}	$254.0_{-15.0}^{+16.0}$	$282.9{ }_{-0.5}^{+0.5}$	$9.2 .{ }_{-0.4}^{+0.4}$	$-1.48_{-0.01}^{+0.02}$	$0.26_{-0.01}^{+0.01}$
Sextans	$-8.944_{-0.06}^{+0.06}$	456_{-15}^{+15}	$95.0_{-3.0}^{+3.0}$	224.3 ${ }_{-0.1}^{+0.1}$	$7.9_{-1.3}^{+1.3}$	$-1.97{ }_{-0.04}^{+0.04}$	$0.38_{-0.03}^{+0.03}$
Ursa Major I	$-5.13_{-0.38}^{+0.38}$	$295{ }_{-28}^{+28}$	$97.3_{-5.7}^{+6.0}$	$-55.3_{-1.4}^{+1.4}$	$7.0_{-1.0}^{+1.0}$	$-2.16_{-0.13}^{+0.11}$	$0.62_{-0.08}^{+0.10}$
Willman 1	$-2.90_{-0.74}^{+0.74}$	33_{-8}^{+8}	$45.0_{-10.0}^{+10.0}$	$-14.1_{-1.0}^{1.0}$	$4.0_{-0.8}^{+0.8}$	$-2.19_{-0.08}^{+0.08}$	
Leo II	$-9.744_{-0.04}^{+0.04}$	171_{-10}^{+10}	$233.0_{-14.0}^{+14.0}$	$78.3_{-0.6}^{+0.6}$	$7.4{ }_{-0.4}^{+0.4}$	$-1.68{ }_{-0.03}^{+0.02}$	$0.34_{-0.02}^{+0.02}$
Leo V	$-4.29_{-0.36}^{+0.36}$	49_{-16}^{+16}	$169.0_{-4.0}^{+4.0}$	$170.9_{-1.9}^{+2.1}$	$2.3{ }_{-1.6}^{+3.2}$	$-2.48_{-0.21}^{+0.21}$	$0.47_{-0.13}^{+0.23}$
Leo IV	$-4.99_{-0.26}^{+0.26}$	114_{-13}^{+13}	$154.0_{-5.0}^{\text {+5.0 }}$	$132.3_{-1.4}^{+1.4}$	$3.3_{-1.7}^{+1.7}$	$-2.29_{-0.22}^{+0.19}$	$0.56_{-0.14}^{+0.19}$
Crater II	$-8.20_{-0.10}^{+0.10}$	1066_{-86}^{+86}	$117.5{ }_{-1.1}^{\text {- } 1.1}$	$87.5_{-0.4}^{+1.4}$	$2.7_{-0.3}^{+0.3}$	$-1.98_{-0.10}^{+0.10}$	$0.22_{-0.03}^{+0.04}$
Virgo I	$-0.800_{-0.90}^{+0.90}$	38_{-11}^{+12}	$87.0{ }_{-8.0}^{+13.0}$				
Hydra II	$-4.866_{-0.37}^{+0.37}$	67_{-13}^{+13}	$151.0_{-7.0}^{+8.0}$	$303.1_{-1.4}^{+1.4}$	$<3.6^{\text {c }}$	$-2.02_{-0.08}^{+0.08}$	$0.400_{-0.26}^{+0.48}$
Coma Berenices	$-4.28_{-0.25}^{+0.25}$	69_{-4}^{+5}	$42.0_{-1.5}^{+1.6}$	98.1 $1_{-0.9}^{+0.9}$	$4.6_{-0.8}^{+0.8}$	$-2.43_{-0.11}^{+0.11}$	$0.46_{-0.08}^{+0.09}$
Canes Venatici II	$-5.17_{-0.32}^{+0.32}$	71_{-11}^{+11}	$160.0_{-4.0}^{+4.0}$	$-128.9_{-1.2}^{+1.2}$	$4.6_{-1.0}^{+1.0}$	$-2.35_{-0.19}^{+0.16}$	$0.57_{-0.12}^{-+0.15}$
Canes Venatici I	$-8.73_{-0.06}^{+0.06}$	437_{-18}^{+18}	211.0 ${ }_{-6.0}^{+6.0}$	$30.9{ }_{-0.6}^{+0.6}$	$7.6_{-0.4}^{+0.4}$	$-1.911_{-0.04}^{+0.04}$	$0.39_{-0.02}^{+0.03}$
Boötes II	$-2.944_{-0.75}^{+0.74}$	39_{-5}^{+5}	$42.0{ }_{-1.0}^{+1.0}$	$-117.0_{-5.2}^{+5.2}$	$10.5{ }_{-7.4}^{+7.4}$	$-2.79_{-0.10}^{+0.06}$	$<0.35^{\text {c }}$
Boötes I	$-6.02_{-0.25}^{+0.25}$	191_{-8}^{+8}	$66.0_{-2.0}^{+2.0}$	101.8 ${ }_{-0.7}^{+0.7}$	$4.6_{-0.6}^{+0.8}$	$-2.35_{-0.08}^{+0.09}$	$0.44_{-0.06}^{+0.07}$
Ursa Minor	$-9.03_{-0.05}^{+0.05}$	405_{-21}^{+21}	$76.0_{-4.0}^{+4.0}$	$-247.2_{-0.8}^{+0.8}$	$9.5{ }_{-1.2}^{+1.2}$	$-2.12_{-0.02}^{+0.03}$	$0.33_{-0.03}^{+0.02}$
Draco II	$-0.80_{-1.00}^{+0.40}$	19_{-3}^{+4}	$21.5{ }_{-0.4}^{+0.4}$	$-342.5_{-1.2}^{+1.1}$	$<5.9{ }^{\text {c }}$	$-2.70_{-0.10}^{+0.10}$	$<0.24{ }^{\text {c }}$
Hercules	$-5.83_{-0.17}^{+0.17}$	216_{-20}^{+20}	$132.0_{-6.0}^{0.6 .0}$	$45.0_{-1.1}^{+1.1}$	$5.1{ }_{-0.9}^{+0.9}$	$-2.47_{-0.12}^{+0.13}$	$0.47_{-0.08}^{+0.11}$
Draco	$-8.88_{-0.05}^{+0.05}$	231_{-17}^{+17}	$82.0_{-6.0}^{+6.0}$	$-290.7_{-0.8}^{+0.7}$	$9.1_{-1.2}^{+1.2}$	$-2.00_{-0.02}^{+0.02}$	$0.34_{-0.02}^{+0.02}$
Sagittarius	$-13.50_{-0.15}^{+0.15}$	2662_{-193}^{+193}	$26.7_{-1.3}^{+1.3}$	$139.4_{-0.6}^{+0.6}$	$9.6{ }_{-0.4}^{+0.4}$	$-0.53_{-0.02}^{+0.03}$	$0.17_{-0.02}^{+0.02}$
Sagittarius II	$-5.20_{-0.10}^{+0.10}$	33_{-2}^{+2}	$70.1_{-2.3}^{1+2.3}$				
Indus II	-4.30 ${ }_{-0.19}^{+0.19}$	181_{-64}^{+70}	$214.0_{-16.0}^{+16.0}$				
Grus II	$-3.90_{-0.22}^{+0.22}$	93_{-12}^{+16}	$53.0{ }_{-5.0}^{+5.0}$				

$$
\begin{aligned}
\text { Sun: } \mathrm{Mv} & =4.8 \\
100 \text { Lsun } & =-0.2 \\
10^{4} \text { Lsun } & =-5.2 \\
10^{5} \text { Lsun } & =-7.7
\end{aligned}
$$

Dwarf	M_{V}	$R_{1 / 2}$ (pc)	Distance (kpc)	v_{hel} $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	σ $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$[\mathrm{Fe} / \mathrm{H}]$	$\sigma_{[\mathrm{Fe} / \mathrm{H}]}$
Pegasus III	$-4.10_{-0.50}^{+0.50}$	78_{-25}^{+31}	$205.0_{-20.0}^{+20.0}$	$-222.9_{-2.6}^{+2.6}$	$5.4_{-2.5}^{+3.0}$	$-2.40_{-0.15}^{+0.15}$	
Aquarius II	$-4.36_{-0.14}^{+0.14}$	160_{-26}^{+26}	$107.9_{-3.3}^{+3.3}$	$-71.1_{-2.5}^{+2.5}$	$5.4_{-0.9}^{+3.4}$	$-2.30_{-0.50}^{+0.50}$	
Tucana II	$-3.90_{-0.20}^{+0.20}$	121_{-35}^{+35}	$58.0_{-8.0}^{+8.0}$	$-129.1_{-3.5}^{+3.5}$	$8.6_{-2.4}^{+4.4}$	$-2.90_{-0.16}^{+0.15}$	$0.29_{-0.12}^{+0.15}$
Grus I	$-3.47_{-0.59}^{+0.59}$	28_{-23}^{+23}	$120.0_{-11.0}^{+12.0}$	$-140.5_{-1.6}^{+2.4}$	$2.9_{-1.0}^{+2.1}$	$-1.42_{-0.42}^{+0.55}$	$0.41_{-0.23}^{+0.49}$
Pisces II	$-4.23_{-0.38}^{+0.38}$	60_{-10}^{+10}	$183.0_{-15.0}^{+15.0}$	$-226.5_{-2.7}^{+2.7}$	$5.4_{-2.4}^{+3.6}$	$-2.45_{-0.07}^{+0.07}$	$0.48_{-0.29}^{+0.70}$
Tucana V	$-1.60_{-0.49}^{+0.49}$	16_{-5}^{+5}	$55.0_{-9.0}^{+9.0}$				
Phoenix II	$-2.70_{-0.40}^{+0.40}$	37_{-8}^{+8}	$84.3_{-4.0}^{+4.0}$				
Tucana III	$-1.49_{-0.20}^{+0.20}$	37_{-9}^{+9}	$25.0_{-2.0}^{+2.0}$	$-102.3_{-0.4}^{+0.4}$	$<1.2^{\mathrm{c}}$	$-2.42_{-0.08}^{+0.07}$	$<0.19^{\mathrm{c}}$

