Barium in UFDs

Yuta Tarumi

Recent observations

- * 1. n-capture elements in Sculptor
 - * ESO's VLT, FLAMES/GIRAFFE, FLAMES/UVES
 - * 2.3×10⁶ Msun
- * 2. n-capture elements in Milky-Way
 - GALAH survey, APOGEE survey
- * 3. Eu detection in Grus II (3rd UFD with Eu)
 - * LCO's Magellan-Clay telescope, MIKE spectrograph
 - * 3.4×10³ Msun

1. n-capture in Sculptor

Skuladottir+19

- * 2.3×10⁶ Msun
- s-process elements are delayed compared to αelements
- r-process elements are not delayed compared to αelements

1. n-capture in Sculptor

Skuladottir+19

α-element [Mg/Fe] * SFH is different from MW weak-s [Y/Fe] * s-process elements are delayed compared to main-s [Ba/Fe] (main-r) Fe main-s main-r [La/Fe] r-process elements are similar to α -elements [Nd/Fe] main-s main-r weak-s and main-s seems to be different. main-r [Eu/Fe] -2.5 -2 -1.5-0.5[Fe/H]

2. n-capture in Milky Way

Griffith+20

high-Ia and low-Ia
 behave differently: all the
 n-capture elements have
 delay, including Eu.

3. Eu detection in Grus I

Hansen+20

- * Third UFD with Eu
- Consistent with rprocess pattern
- [Ba/Fe] jump from
 ~ -1.5 to -0.5
- Consistent with one prolific r-process
- X_{La} = -1.2 > -2.2
 (GW170817 value)

Motivation

- * What can we learn from recent UFD observations?
 - Ba, Sr abundances of UFDs are lower than MW stars.
- Theoretically, UFDs are different from MW.
 UFDs are small, "0 or 1 r-process".
 - UFDs quench within first 1 Gyr, weaker AGB contribution.

Simulation settings

- * Yield table: Karakas+10 (?)
- * Auriga galaxy formation model
- * 3 galaxies: large UFD, small UFD, MW-like

Results

- We need more Ba to explain [Ba / Fe] of UFDs.
- Extended SFH galaxies have higher [Ba/Fe].
- * It catches up at z=0 or [Fe/H] = 0.

[Ba/Fe] scatter

- If star formation duration is long (> ~500Myr), [Ba/Fe] scatter would be too large.
- * Possible solutions are...
 - Quickly quench.
 - Enhance Ba production in (relatively) massive stars.

[Ba/Fe] value

- If star formation duration is short (< ~500Myr), [Ba/Fe] is too low.
- * Possible solutions are...
 - Keep forming stars for a long time.
 - * Modify yield.

Constraints

- In terms of [Ba/Fe] scatter, short star formation is favored.
- In terms of [Ba/Fe] values, long star formation is favored.

 It seems difficult to reconcile the simulation with observation only by modifying star formation history.

Enhance Ba production

Griffith+20

Other Ba sources? **

- Rotating massive stars. *
- super-AGB stars.
- Some r-process events. *
- * Modify IMF?

Komiya+07

Fig. 12.—Relative distributions, $m\xi(m)$, of stellar masses for the derived IMF of EMP stars with $M_{\rm md} = 10 M_{\odot}$ and $\Delta_M = 0.4$; solid and dashed curves denote the mass distributions of primary and secondary components, respectively.

Ba production

- * Large UFD: [Ba/Fe] at ~130Myr
- * Small UFD: [Ba/Fe] at ~50Myr
- * →Ba should be produced within ~100Myr.

super-AGB stars

- Assuming 5Msun < M* < 7.5Msun experience super-AGB phase, yield is from Doherty+17, Z = -0.7 model
- * [Ba/Fe] is enhanced, but not enough
- If sAGB were 10times more efficient, [Ba/Fe] seems consistent

Rotating massive stars

- Assuming 3×10-9 Msun of Ba is formed per 1Msun (following Griffith+20, originally Limongi&Chieffi18)
- * Too many Ba.

Rotating massive stars

- Assuming 10 times less, [Ba/Fe] seems consistent with observation.
- However, with this yield we cannot form [Ba/Fe] < -2... contradiction to Segue I?

Modify IMF

- Choosing IMF with smaller number of massive stars, [Ba/Fe] can be adjusted
- [Ba/Fe] decreases as [Fe/H] increases, as type-Ia is not negligible

Discussions

- * On the contribution of r-process to Ba
- * On the diversity of Ba abundance among UFDs

- ✤ UFDs: L* < 10⁵ Lsun
- * r-process: rare and prolific.
 - * To explain high abundances in Ret-II
 - * To explain large scatter among halo stars
 - * Roughly consistent with 1/10⁵ Msun of stars formed
- * → High [Eu/Fe] in Ret II, Tuc III and Gru II can be understood as "0 or 1" event of a prolific r-process.

Cescutti+06

- At [Fe/H] < -2 rprocess is important.
- Roughly explains[Ba/Fe] [Fe/H].
- r-process is from massive stars. Not rare nor prolific.

Mod	s-process Ba	r-process Ba	s-process Eu	r-process Eu
1	$1 3M_{\odot}$	$12 - 30 M_{\odot}$	none	$12 - 30 M_{\odot}$
	Busso et al.(2001)ext.	yields table 3		yields table 3
2	1. − 3 <i>M</i> _☉	$10 - 25 M_{\odot}$	none	$10 - 25 M_{\odot}$
	Busso et al.(2001)ext.	yields table 4		yields table 4
3	$1.5 - 3M_{\odot}$	$8-10M_{\odot}$	none	$12 - 30 M_{\odot}$
	Busso et al.(2001)	$X_{Ba}^{new} = 5.7 \cdot 10^{-6} / M_*$		yields table 3
		(Travaglio et al. 2001)		
4	$1.5 - 3M_{\odot}$	$10 - 30 M_{\odot}$	none	$8-10M_{\odot}$
	Busso et al.(2001)	yields table 3		$X_{Eu}^{new} = 3.1 \cdot 10^{-7} / M_*$
				(Ishimaru et al.2004 Mod.A)
5	$1.5 - 3M_{\odot}$	$10 - 30 M_{\odot}$	none	$20 - 25 M_{\odot}$
	Busso et al.(2001)	yields table 3		$X_{Eu}^{new} = 1.1 \cdot 10^{-6} / M_*$
				(Ishimaru et al.2004 Mod.B)
6	$1.5 - 3M_{\odot}$	$10 - 30 M_{\odot}$	none	$> 30 M_{\odot}$
	Busso et al.(2001)	yields table 3		$X_{Eu}^{new} = 7.8 \cdot 10^{-7} / M_*$
				(Ishimaru et al.2004 Mod.C)

Ing of the second secon

Cescutti+06

Fig.9. In this Fig. we show the ratio of [Ba/Eu] versus [Fe/H]. The squares are the mean values of the data bins described in the table 6. As error bars we consider the standard deviation (see table 6). The results of model 1 are rappresented in solid line, the results of model 2 in long dashed line (models are described in table 2).

- Rizutti+18: Rotating Massive stars (RMS)
 - r-process from NSM or Magneto-Rotationally Driven (MRD) SNe
 - The origin of Ba at [Fe/ H] < -2 is mostly rprocess.

Rizutti+18

- * The origin of Ba is "main" r-process and "main" s-process.
 - * \rightarrow (NSM or some other r-process) and (low-mass) AGB stars.
- * The stochasticity of r-process diversifies [Ba/Fe]: MW should be somewhere between Ret II (, Tuc III) and other UFDs.
- * If we fix [Fe/H]:
 - * MW is at higher density peak.
 - MW is larger than UFDs because of larger mixing mass.
 - * \rightarrow Stochasticity ("0 or 1"-ness) is more important in UFDs than in MW.

Discussion 2: difference among UFDs

- * If we assume that IMF depends only on metallicity, IMF should be similar in any UFDs.
- How can we make UFDs with diverse [Ba/Fe] (-0.5 ~ -2.5), except for Ret II, Tuc III and Gru II?
 - SFH: Galaxies with long star formation duration has higher [Ba/Fe] than lower ones. However, it enhances scatter within each UFD.
 - The r-process: All the UFDs with [Ba/Fe] ~ -0.5 actually have Eu from the stochastic r-process, but below the detection limit.
 - Another stochastic event: It can be r- or s- process. Roughly 1/10⁴ Msun of stars formed
- * Or, IMF depends on other conditions?

Conclusion

- Low [Ba/Fe] of UFDs (than MW) can be attributed to two facts:
 - Short star formation duration.
 - * No r-process contribution.
- * We need to enhance Ba production.
 - * Only super-AGB seems not enough.
 - * Top-heavy IMF seems to have an opposite effect. However, we can tune the IMF to reproduce Ba abundance.
 - * Rotating massive stars seems too much (?)

Results, MW-like

- * Formation epochs are important for [Ba/Fe].
- [Ba/Fe] increases as it ages, even if [Fe/H] are the same.

Results, dwarf

dwarf & UFD list

Simon+19

Dwarf	$M_{ m V}$	$\begin{array}{c} R_{1/2} \\ (\mathrm{pc}) \end{array}$	Distance (kpc)	$v_{ m hel} \ ({ m km~s}^{-1})$	σ (km s ⁻¹)	[Fe/H]	$\sigma_{ m [Fe/H]}$	Dwarf	$M_{ m V}$	$\begin{array}{c} R_{1/2} \\ (\mathrm{pc}) \end{array}$	Distance (kpc)	$v_{ m hel} \ ({ m km~s^{-1}})$	σ (km s ⁻¹)	[Fe/H]	$\sigma_{ m [Fe/H]}$
Tucana IV	$-3.50^{+0.28}_{-0.28}$	127^{+26}_{-22}	$48.0^{+4.0}_{-4.0}$					Leo I	$-11.78^{+0.28}_{-0.28}$	270^{+17}_{-16}	$254.0^{+16.0}_{-15.0}$	$282.9^{+0.5}_{-0.5}$	$9.2^{+0.4}_{-0.4}$	$-1.48^{+0.02}_{-0.01}$	$0.26^{+0.01}_{-0.01}$
Sculptor	$-10.82^{+0.14}_{-0.14}$	279^{+16}_{-16}	$86.0^{+5.0}_{-5.0}$	$111.4^{+0.1}_{-0.1}$	$9.2^{+1.1}_{-1.1}$	$-1.73^{+0.03}_{-0.02}$	$0.44^{+0.02}_{-0.02}$	Sextans	$-8.94^{+0.06}_{-0.06}$	456^{+15}_{-15}	$95.0^{+3.0}_{-3.0}$	$224.3^{+0.1}_{-0.1}$	$7.9^{+1.3}_{-1.3}$	$-1.97^{+0.04}_{-0.04}$	$0.38^{+0.03}_{-0.03}$
Cetus II	$0.00^{+0.68}_{-0.68}$	17^{+9}_{-5}	$30.0^{+3.0}_{-3.0}$	0.1		0.02	0.02	Ursa Major I	$-5.13^{+0.38}_{-0.38}$	295^{+28}_{-28}	$97.3^{+6.0}_{-5.7}$	$-55.3^{+1.4}_{-1.4}$	$7.0^{+1.0}_{-1.0}$	$-2.16^{+0.11}_{-0.13}$	$0.62^{+0.10}_{-0.08}$
Cetus III	$-2.45^{+0.57}_{-0.56}$	90^{+32}_{-14}	$251.0^{+24.0}_{-11.0}$					Willman 1	$-2.90^{+0.74}_{-0.74}$	33^{+8}_{-8}	$45.0^{+10.0}_{-10.0}$	$-14.1^{+1.0}_{-1.0}$	$4.0^{+0.8}_{-0.8}$	$-2.19^{+0.08}_{-0.08}$	0.00
Triangulum II	$-1.60^{+0.76}_{-0.76}$	16^{+4}_{-4}	$28.4^{+1.6}_{-1.6}$	$-381.7^{+1.1}_{-1.1}$	$< 3.4^{c}$	$-2.24^{+0.05}_{-0.05}$	$0.53^{+0.12}_{-0.38}$	Leo II	$-9.74_{-0.04}^{+0.04}$	171^{+10}_{-10}	$233.0^{+14.0}_{-14.0}$	$78.3_{-0.6}^{+0.6}$	$7.4^{+0.4}_{-0.4}$	$-1.68^{+0.02}_{-0.03}$	$0.34^{+0.02}_{-0.02}$
Segue 2	$-1.98^{+0.88}_{-0.88}$	40^{+4}_{-4}	$37.0^{+3.0}_{-3.0}$	$-40.2^{+0.9}_{-0.9}$	$< 2.2^{c}$	$-2.14^{+0.16}_{-0.15}$	$0.39^{+0.12}_{-0.13}$	Leo V	$-4.29^{+0.36}_{-0.36}$	49^{+16}_{-16}	$169.0^{+4.0}_{-4.0}$	$170.9^{+2.1}_{-1.9}$	$2.3^{+3.2}_{-1.6}$	$-2.48^{+0.21}_{-0.21}$	$0.47^{+0.23}_{-0.13}$
DESJ0225+0304	$-1.10^{+0.50}_{-0.30}$	19^{+9}_{-5}	$23.8_{-0.5}^{+0.7}$					Leo IV	$-4.99^{+0.26}_{-0.26}$	114^{+13}_{-13}	$154.0^{+5.0}_{-5.0}$	$132.3^{+1.4}_{-1.4}$	$3.3^{+1.7}_{-1.7}$	$-2.29^{+0.19}_{-0.22}$	$0.56^{+0.19}_{-0.14}$
Hydrus I	$-4.71_{-0.08}^{+0.08}$	53^{+4}_{-4}	$27.6^{+0.5}_{-0.5}$	$80.4^{+0.6}_{-0.6}$	$2.7^{+0.5}_{-0.4}$	$-2.52^{+0.09}_{-0.09}$	$0.41^{+0.08}_{-0.08}$	Crater II	$-8.20^{+0.10}_{-0.10}$	1066^{+86}_{-86}	$117.5^{+1.1}_{-1.1}$	$87.5^{+0.4}_{-0.4}$	$2.7^{+0.3}_{-0.3}$	$-1.98^{+0.10}_{-0.10}$	$0.22^{+0.04}_{-0.03}$
Fornax	$-13.34_{-0.14}^{+0.14}$	792^{+18}_{-18}	$139.0^{+3.0}_{-3.0}$	$55.2^{+0.1}_{-0.1}$	$11.7^{+0.9}_{-0.9}$	$-1.07^{+0.02}_{-0.01}$	$0.27^{+0.01}_{-0.01}$	Virgo I	$-0.80^{+0.90}_{-0.90}$	38^{+12}_{-11}	$87.0^{+13.0}_{-8.0}$				
Horologium I	$-3.76^{+0.56}_{-0.56}$	40^{+10}_{-9}	$87.0^{+13.0}_{-11.0}$	$112.8^{+2.5}_{-2.6}$	$4.9^{+2.8}_{-0.9}$	$-2.76^{+0.10}_{-0.10}$	$0.17^{+0.20}_{-0.03}$	Hydra II	$-4.86_{-0.37}^{+0.37}$	67^{+13}_{-13}	$151.0^{+8.0}_{-7.0}$	$303.1^{+1.4}_{-1.4}$	$< 3.6^{c}$	$-2.02^{+0.08}_{-0.08}$	$0.40^{+0.48}_{-0.26}$
Horologium II	$-1.56^{+1.02}_{-1.02}$	44^{+15}_{-14}	$78.0^{+8.0}_{-7.0}$					Coma Berenices	$-4.28^{+0.25}_{-0.25}$	69^{+5}_{-4}	$42.0^{+1.6}_{-1.5}$	$98.1_{-0.9}^{+0.9}$	$4.6^{+0.8}_{-0.8}$	$-2.43^{+0.11}_{-0.11}$	$0.46^{+0.09}_{-0.08}$
Reticulum II	$-3.99^{+0.38}_{-0.38}$	51^{+3}_{-3}	$31.6^{+1.5}_{-1.4}$	$62.8^{+0.5}_{-0.5}$	$3.3^{+0.7}_{-0.7}$	$-2.65^{+0.07}_{-0.07}$	$0.28^{+0.09}_{-0.09}$	Canes Venatici II	$-5.17^{+0.32}_{-0.32}$	71^{+11}_{-11}	$160.0^{+4.0}_{-4.0}$	$-128.9^{+1.2}_{-1.2}$	$4.6^{+1.0}_{-1.0}$	$-2.35^{+0.16}_{-0.19}$	$0.57^{+0.15}_{-0.12}$
Eridanus II	$-7.10\substack{+0.30\\-0.30}$	246^{+17}_{-17}	$366.0^{+17.0}_{-17.0}$	$75.6^{+1.3}_{-1.3}$	$6.9^{+1.2}_{-0.9}$	$-2.38^{+0.13}_{-0.13}$	$0.47^{+0.12}_{-0.09}$	Canes Venatici I	$-8.73^{+0.06}_{-0.06}$	437^{+18}_{-18}	$211.0^{+6.0}_{-6.0}$	$30.9^{+0.6}_{-0.6}$	$7.6^{+0.4}_{-0.4}$	$-1.91^{+0.04}_{-0.04}$	$0.39^{+0.03}_{-0.02}$
Reticulum III	$-3.30^{+0.29}_{-0.29}$	64^{+26}_{-23}	$92.0^{+13.0}_{-13.0}$					Boötes II	$-2.94^{+0.74}_{-0.75}$	39^{+5}_{-5}	$42.0^{+1.0}_{-1.0}$	$-117.0^{+5.2}_{-5.2}$	$10.5^{+7.4}_{-7.4}$	$-2.79^{+0.06}_{-0.10}$	$< 0.35^{c}$
Pictor I	$-3.67^{+0.60}_{-0.60}$	32^{+15}_{-15}	$126.0^{+19.0}_{-16.0}$					Boötes I	$-6.02^{+0.25}_{-0.25}$	191^{+8}_{-8}	$66.0^{+2.0}_{-2.0}$	$101.8^{+0.7}_{-0.7}$	$4.6^{+0.8}_{-0.6}$	$-2.35_{-0.08}^{+0.09}$	$0.44^{+0.07}_{-0.06}$
Columba I	$-4.20^{+0.20}_{-0.20}$	117^{+12}_{-12}	$183.0^{+10.0}_{-10.0}$					Ursa Minor	$-9.03_{-0.05}^{+0.05}$	405^{+21}_{-21}	$76.0^{+4.0}_{-4.0}$	$-247.2_{-0.8}^{+0.8}$	$9.5^{+1.2}_{-1.2}$	$-2.12^{+0.03}_{-0.02}$	$0.33^{+0.02}_{-0.03}$
Carina	$-9.45_{-0.05}^{+0.05}$	311^{+15}_{-15}	$106.0^{+5.0}_{-5.0}$	$222.9^{+0.1}_{-0.1}$	$6.6^{+1.2}_{-1.2}$	$-1.80^{+0.02}_{-0.02}$	$0.24^{\rm d}$	Draco II	$-0.80^{+0.40}_{-1.00}$	19^{+4}_{-3}	$21.5^{+0.4}_{-0.4}$	$-342.5^{+1.1}_{-1.2}$	$< 5.9^{c}$	$-2.70^{+0.10}_{-0.10}$	$< 0.24^{c}$
Pictor II	$-3.20^{+0.40}_{-0.50}$	47^{+20}_{-13}	$45.0^{+5.0}_{-4.0}$					Hercules	$-5.83^{+0.17}_{-0.17}$	216^{+20}_{-20}	$132.0^{+6.0}_{-6.0}$	$45.0^{+1.1}_{-1.1}$	$5.1^{+0.9}_{-0.9}$	$-2.47^{+0.13}_{-0.12}$	$0.47^{+0.11}_{-0.08}$
Carina II	$-4.50^{+0.10}_{-0.10}$	92^{+8}_{-8}	$36.2^{+0.6}_{-0.6}$	$477.2^{+1.2}_{-1.2}$	$3.4^{+1.2}_{-0.8}$	$-2.44^{+0.09}_{-0.09}$	$0.22^{+0.10}_{-0.07}$	Draco	$-8.88^{+0.05}_{-0.05}$	231^{+17}_{-17}	$82.0^{+6.0}_{-6.0}$	$-290.7_{-0.8}^{+0.7}$	$9.1^{+1.2}_{-1.2}$	$-2.00^{+0.02}_{-0.02}$	$0.34^{+0.02}_{-0.02}$
Carina III	$-2.40^{+0.20}_{-0.20}$	30^{+8}_{-8}	$27.8^{+0.6}_{-0.6}$	$284.6^{+3.4}_{-3.1}$	$5.6^{+4.3}_{-2.1}$			Sagittarius	$-13.50^{+0.15}_{-0.15}$	2662^{+193}_{-193}	$26.7^{+1.3}_{-1.3}$	$139.4_{-0.6}^{+0.6}$	$9.6^{+0.4}_{-0.4}$	$-0.53^{+0.03}_{-0.02}$	$0.17^{+0.02}_{-0.02}$
Ursa Major II	$-4.43^{+0.26}_{-0.26}$	139^{+9}_{-9}	$34.7^{+2.0}_{-1.9}$	$-116.5^{+1.9}_{-1.9}$	$5.6^{+1.4}_{-1.4}$	$-2.23^{+0.21}_{-0.24}$	$0.67^{+0.20}_{-0.15}$	Sagittarius II	$-5.20^{+0.10}_{-0.10}$	33^{+2}_{-2}	$70.1^{+2.3}_{-2.3}$				
Leo T	$-8.00^{\rm e}$	118^{+11}_{-11}	$409.0^{+29.0}_{-27.0}$	$38.1^{+2.0}_{-2.0}$	$7.5^{+1.6}_{-1.6}$	$-1.91^{+0.12}_{-0.14}$	$0.43_{-0.09}^{+0.13}$	Indus II	$-4.30^{+0.19}_{-0.19}$	181_{-64}^{+70}	$214.0^{+16.0}_{-16.0}$				
Segue 1	$-1.30^{+0.73}_{-0.73}$	24^{+4}_{-4}	$23.0^{+2.0}_{-2.0}$	$208.5_{-0.9}^{+0.9}$	$3.7^{+1.4}_{-1.1}$	$-2.71_{-0.39}^{+0.45}$	$0.95^{+0.42}_{-0.26}$	Grus II	$-3.90^{+0.22}_{-0.22}$	93^{+16}_{-12}	$53.0^{+5.0}_{-5.0}$				

Sun: Mv = 4.8100 Lsun = -0.2 104 Lsun = -5.2

 10^5 Lsun = -7.7

Dwarf	$M_{ m V}$	$egin{array}{c} R_{1/2} \ (m pc) \end{array}$	Distance (kpc)	$v_{ m hel} \ ({ m km~s^{-1}})$	σ (km s ⁻¹)	[Fe/H]	$\sigma_{\mathrm{[Fe/H]}}$
Pegasus III Aquarius II Tucana II Grus I Pisces II Tucana V Phoenix II Tucana III	$\begin{array}{c} -4.10^{+0.50}_{-0.50}\\ -4.36^{+0.14}_{-0.14}\\ -3.90^{+0.20}_{-0.20}\\ -3.47^{-0.59}_{-0.59}\\ -4.23^{+0.38}_{-0.38}\\ -1.60^{+0.49}_{-0.49}\\ -2.70^{+0.40}_{-0.40}\\ -1.40^{+0.20}\end{array}$	$\begin{array}{c} 78\substack{+31\\-25}\\160\substack{+26\\-26}\\121\substack{+35\\-35}\\28\substack{+23\\-23\\60\substack{+10\\-10}\\16\substack{+5\\-5\\37\substack{+8\\-8\\37\substack{+9}\end{array}}\end{array}$	$\begin{array}{c} 205.0^{+20.0}_{-20.0}\\ 107.9^{+3.3}_{-3.3}\\ 58.0^{+8.0}_{-8.0}\\ 120.0^{+12.0}_{-11.0}\\ 183.0^{+15.0}_{-15.0}\\ 55.0^{+9.0}_{-9.0}\\ 84.3^{+4.0}_{-4.0}\\ 25.0^{+2.0}_{-2.0}\end{array}$	$\begin{array}{r} -222.9^{+2.6}_{-2.6}\\ -71.1^{+2.5}_{-2.5}\\ -129.1^{+3.5}_{-3.5}\\ -140.5^{+2.4}_{-1.6}\\ -226.5^{+2.7}_{-2.7}\\ \end{array}$	$5.4^{+3.0}_{-2.5}$ $5.4^{-3.4}_{-0.9}$ $8.6^{+4.4}_{-2.7}$ $2.9^{+2.1}_{-1.0}$ $5.4^{+3.6}_{-2.4}$ $< 1.2^{c}$	$\begin{array}{r} -2.40\substack{+0.15\\-0.15}\\ -2.30\substack{+0.50\\-0.16}\\ -2.90\substack{+0.15\\-0.16}\\ -1.42\substack{+0.55\\-0.42}\\ -2.45\substack{+0.07\\-0.07}\end{array}$	$\begin{array}{c} 0.29^{+0.15}_{-0.12}\\ 0.41^{+0.49}_{-0.23}\\ 0.48^{+0.70}_{-0.29}\\ < 0.19^{c} \end{array}$