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Common Background

ALMA observation on HL Tau, followed by DSHARP survey of 
protoplanetary disks → Rings/Gaps

Left: HL Tau[ALMA (ESO/NAOJ/NRAO)]. Right: Disk continuum images with 
rings/gaps[DSHARP]



Interpretation and verification

Multiple Interpretations
• Snow Lines(Zhang & Jin 2015), Instability(Takahashi & Inutsuka

2016), Sintering(Okuzumi et al. 2016), MHD effect(e.g. Flock et al. 
2015, Hu et al. 2019), and

• The most popular: Planet(s)

Verification: different approaches
• Miranda and Rafikow[P1]: hydrodynamical simulations →

compare with ALMA observation and other models
• Ndugu et al.[P2]: Planet population synthesis → compare with 

observed exoplanetary population



[P1]Motivation

• Previous studies 
• A low-mass (sub-𝑀𝑡ℎ) planet can produce multiple rings

• Assume: locally isothermal model→ short cooling time → only 
works well at outer part, not poorly-cooled inner part

• This work
• Re-examine the case use both isothermal and adiabatic model
• Compare the simulation results & show the difference. 
• ‘Urge caution regarding the isothermal model’

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

https://doi.org/10.3847/2041-8213/ab22a7


Numerical Setup

Disk Model

• A planet of mass 𝑀𝑝 with a 
radius 𝑟𝑝

• Sound speed given by 

• Initial gas surface density

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

Equation of state

• Isothermal: 𝑃 = 𝑐𝑠
2 𝑟 Σg

• No need solving energy equation.

• Adiabatic: 𝑃 = 𝛾 − 1 𝑒Σ𝑔
• e: specific internal energy
• 𝑐𝑠

2 = 𝛾 𝛾 − 1 𝑒 determined by energy 
equation

• 𝛾 = 1.001 close to unity to show 
difference

https://doi.org/10.3847/2041-8213/ab22a7


Simulations

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

• 2D inviscid hydrodynamical simulations using FARGO3D

• Two sets of simulations:
• high spatial resolution (Nr × Nf = 3004 × 4096)
• lower spatial resolution (Nr × Nf = 1128 × 1536)

• Dust evolution
• 1D simulation(axial-symmetric)
• Assume low dust-to-gas ratio → no dust feedback
• Dust radial velocity(Takeuchi & Lin 2002)

St: Stokes number
ത𝑢: Effective gas radial velocity

https://doi.org/10.3847/2041-8213/ab22a7


Results

• Angular momentum 
flux(AMF)
• Conserved if no 

dissipation
• Larger AMF→higher 

wave amplitude

• 𝐹𝑗 ∝ 𝑟−1 𝑖𝑠𝑜 v.s. 𝐹𝑗
flat

• Larger mass → more 
disspation → smaller 
𝐹𝑗

• Increase resolution →
larger diff. in ISO 
case→ ISO AD diff. 
not due to resolution

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

https://doi.org/10.3847/2041-8213/ab22a7


Results: Averaged Gas perturbation 

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

• Results is time-
dependent.

• Main difference
between ISO and Adb
is rate of change.(not 
shown: ISO higher)

• Four to six rings and 
some gaps formed

• Gap/ring position diff. 
increases when:
• Mass ↑
• St.#(Dust size) ↑

https://doi.org/10.3847/2041-8213/ab22a7


Emission Maps

• Same feature as Fig 2.

• Gaps are more pronounced at 𝑟 ≤
0.5𝑟𝑝 when : 
• Small 𝑀𝑃

• Small Dust size
• Isothermal case

• 𝑀 = 0.3𝑀𝑡ℎ, 𝑆𝑡 = 0.1 → a faint 
ring is absent!

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

https://doi.org/10.3847/2041-8213/ab22a7


Discussions

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

• Anomalous behavior of the locally isothermal EoS in 
numerical applications: qualitative difference
• A more realistic treatment requires 𝛾 = 7/5, cooling/radiative 

transfer, and 3D treatment.
• Deviations arise mainly when waves travel far from the planet, 

absorbing a significant amount of AMF from the disk flow

• Consideration of additional physics such as migration 
requires attention to Isothermal treatment

• AMF is useful in showing nonlinear evolution & subtle 
effects

https://doi.org/10.3847/2041-8213/ab22a7


[P2]Motivation

N.Ndugu, B.Bitsch, E.Jurua 2019 arXiv:1906.11491
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synthesis model

https://arxiv.org/abs/1906.11491


Model

• Disk Model
• Based on 2D Hyd-dyn simulations of 

Bitsch+15
• Viscosity 𝛼 = 5.4 × 10−3

• Formation & Migration
• Pebble accretion rate:

• Gas accretion rate(Bitsch+15a):

• Migration(Paardekooper+11): Γ𝐿 and Γ𝐶

N.Ndugu, B.Bitsch, E.Jurua 2019 arXiv:1906.11491

• Disc metallicity and lifetime 
→ disc structure
• Power-law disk profile: Σ𝑔 ∝

𝑅−
14

15, H ∝ 𝑅2/7

• Implantation time and 
position → growth and 
migration trajectories of 
cores

• Full simulations performed 
until 10 Myr

Randomised Initial Conds

https://arxiv.org/abs/1906.11491


Match to DSHARP

N.Ndugu, B.Bitsch, E.Jurua 2019 arXiv:1906.11491

Comparison of gap occurrence rate
(embryos reach 𝑀𝑖𝑠𝑜 per disk)

Position and time when 𝑀𝑝 = 𝑀𝑖𝑠𝑜

𝑀𝑖𝑠𝑜: pebble isolation mass; S: pebble scaling factor

https://arxiv.org/abs/1906.11491


Match to Exoplanet data(RV & Microlensing)

N.Ndugu, B.Bitsch, E.Jurua 2019 arXiv:1906.11491

↑ Gas giants are overestimated and super-
earths underestimated(with Microlensing) 

↑ black ‘+’ : RV data, open circle: full simulation

https://arxiv.org/abs/1906.11491


Takeaway

• A large amount of pebbles are required to explain the observed 
rings. 
• Not all rings are caused by planets, or
• Planet formation simulation missed important ingredients of gas 

accretion

• Planetary formation timescale required is close or longer than 
disk lifetime

• Pebble production line at around 300 au required → larger than 
observation

• DSHARP can be biased and not representative

N.Ndugu, B.Bitsch, E.Jurua 2019 arXiv:1906.11491

https://arxiv.org/abs/1906.11491

