

Observational Cosmology Journal Club July 8th, 2019 | Shijie Wang

- 1. R.Miranda and R.Rafikov. On the Planetary Interpretation of Multiple Gaps and Rings in Protoplanetary Disks Seen By ALMA. 2019 *ApJL* 878 L9.
- 2. N.Nelson, B.Bitsch and E.Jurua. **Are the observed gaps in protoplanetary discs caused by growing planets?** <u>arXiv:1906.11491</u>

Common Background

ALMA observation on HL Tau, followed by DSHARP survey of protoplanetary disks → Rings/Gaps

Left: HL Tau[ALMA (ESO/NAOJ/NRAO)]. **Right**: Disk continuum images with rings/gaps[DSHARP]

Interpretation and verification

Multiple Interpretations

- Snow Lines(Zhang & Jin 2015), Instability(Takahashi & Inutsuka 2016), Sintering(Okuzumi et al. 2016), MHD effect(e.g. Flock et al. 2015, Hu et al. 2019), and
- The most popular: Planet(s)

Verification: different approaches

- Miranda and Rafikow[P1]: hydrodynamical simulations → compare with ALMA observation and other models
- Ndugu et al.[P2]: Planet population synthesis → compare with observed exoplanetary population

[P1]Motivation

- Previous studies
 - A low-mass (sub- M_{th}) planet can produce multiple rings

$$M_{\rm th} = \left(\frac{H_{\rm p}}{r_{\rm p}}\right)^3 M_* = 1 M_{\rm J} \left(\frac{H_{\rm p}/r_{\rm p}}{0.1}\right)^3 \frac{M_*}{M_{\odot}}$$

- Assume: locally isothermal model → short cooling time → only works well at outer part, not poorly-cooled inner part
- This work
 - Re-examine the case use both isothermal and adiabatic model
 - Compare the simulation results & show the difference.
 - 'Urge caution regarding the isothermal model'

Numerical Setup

Disk Model

- A planet of mass M_p with a radius r_p
- Sound speed given by

$$c_{\rm s}(r) = h_{\rm p} r_{\rm p} \Omega_{\rm p} \left(\frac{r}{r_{\rm p}}\right)^{-q/2}$$

Initial gas surface density

$$\Sigma_{\rm g}(r) = \Sigma_{\rm g,p} (r/r_{\rm p})^{-1}$$

Equation of state

- Isothermal: $P = c_s^2(r)\Sigma_g$
 - No need solving energy equation.
- Adiabatic: $P=(\gamma-1)e\Sigma_g$
 - e: specific internal energy
 - $c_s^2 = \gamma(\gamma 1)e$ determined by energy equation
 - $\gamma = 1.001$ close to unity to show difference

Simulations

- 2D inviscid hydrodynamical simulations using FARGO3D
- Two sets of simulations:
 - high spatial resolution (Nr \times Nf = 3004 \times 4096)
 - lower spatial resolution (Nr \times Nf = 1128 \times 1536)
- Dust evolution
 - 1D simulation(axial-symmetric)
 - Assume low dust-to-gas ratio → no dust feedback
 - Dust radial velocity(Takeuchi & Lin 2002)

$$u_{r,\mathrm{d}} = \frac{1}{1 + \mathrm{St}^2} \left(\overline{u}_{r,\mathrm{g}} + \frac{\mathrm{St}}{\langle \Sigma_{\mathrm{g}} \rangle \Omega_{\mathrm{K}}} \frac{d \langle P \rangle}{dr} \right)$$
 St: Stokes number \overline{u} : Effective gas rad

 \bar{u} : Effective gas radial velocity

Results

- Angular momentum flux(AMF)
 - Conserved if no dissipation
 - Larger AMF→higher wave amplitude
- $F_j \propto r^{-1}$ (iso) v.s. F_j flat
- Larger mass \rightarrow more disspation \rightarrow smaller F_i
- Increase resolution → larger diff. in ISO case → ISO AD diff. not due to resolution

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

Results: Averaged Gas perturbation

- Results is timedependent.
- Main difference between ISO and Adb is rate of change.(not shown: ISO higher)
- Four to six rings and some gaps formed
- Gap/ring position diff. increases when:
 - Mass 1
 - St.#(Dust size) 1

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

Emission Maps

- Same feature as Fig 2.
- Gaps are more pronounced at $r \leq$ $0.5r_p$ when :
 - Small M_P
 - Small Dust size
 - Isothermal case
- $M = 0.3 M_{th}$, $St = 0.1 \rightarrow$ a faint ring is absent!

Ryan Miranda and Roman R. Rafikov 2019 ApJL 878 L9

Discussions

- Anomalous behavior of the locally isothermal EoS in numerical applications: qualitative difference
 - A more realistic treatment requires $\gamma = 7/5$, cooling/radiative transfer, and 3D treatment.
 - Deviations arise mainly when waves travel far from the planet, absorbing a significant amount of AMF from the disk flow
- Consideration of additional physics such as migration requires attention to Isothermal treatment
- AMF is useful in showing nonlinear evolution & subtle effects

[P2]Motivation

Planet Assumptions

DSHARP Observation

Compare with observation &verify

Population synthesis model

Initial Conditions

Model

- Disk Model
 - Based on 2D Hyd-dyn simulations of Bitsch+15
 - Viscosity $\alpha = 5.4 \times 10^{-3}$
- Formation & Migration
 - Pebble accretion rate:

$$\dot{M}_{\rm peb} = 2S_{\rm peb}\pi r_{\rm g}\frac{dr_{\rm g}}{dt} \left(Z_{\rm peb}\Sigma_{\rm g(r_g)}\right)$$

• Gas accretion rate(Bitsch+15a):

$$\dot{M}_{\rm gas} = 0.000175 f^{-2} \left(\frac{\kappa_{\rm env}}{1 {\rm cm}^2/{\rm g}} \right)^{-1} \left(\frac{\rho_{\rm C}}{5.5 {\rm g/cm}^3} \right)^{-\frac{1}{6}}$$
$$\left(\frac{M_{\rm c}}{\rm M_E} \right)^{\frac{11}{3}} \left(\frac{M_{\rm env}}{1 {\rm M_E}} \right)^{-1} \left(\frac{T}{81 {\rm K}} \right)^{-0.5} \frac{{\rm M_E}}{{\rm My}} ,$$

• Migration(Paardekooper+11): Γ_L and Γ_C

Randomised Initial Conds

- Disc metallicity and lifetime
 → disc structure
 - Power-law disk profile: $\Sigma_g \propto R^{-\frac{14}{15}}$, H $\propto R^{2/7}$
- Implantation time and position → growth and migration trajectories of cores
- Full simulations performed until 10 Myr

Match to DSHARP

Comparison of gap occurrence rate (embryos reach M_{iso} per disk)

Position and time when $M_p = M_{iso}$

N.Ndugu, B.Bitsch, E.Jurua 2019 <u>arXiv:1906.11491</u>

Match to Exoplanet data(RV & Microlensing)

1 Gas giants are overestimated and superearths underestimated (with Microlensing)

1 black '+': RV data, open circle: full simulation

N.Ndugu, B.Bitsch, E.Jurua 2019 <u>arXiv:1906.11491</u>

Takeaway

- A large amount of pebbles are required to explain the observed rings.
 - Not all rings are caused by planets, or
 - Planet formation simulation missed important ingredients of gas accretion
- Planetary formation timescale required is close or longer than disk lifetime
- Pebble production line at around 300 au required → larger than observation
- DSHARP can be biased and not representative