

Observational Cosmology Journal Club

Nov 16th, 2020 | Shijie Wang

- 1. Shibaike & Alibert. Planetesimal formation at the gas pressure bump following a migrating planet I. Basic characteristics of the new formation model arxiv:2010.10594v1
- 2. Ali-Dib & Petrovich Constraining protoplanetary disks with exoplanetary dynamics: Kepler-419 as an example arXiv:2009.06448v1
- 3. Ronco et al. How Jupiters Save or Destroy Inner Neptunes around Evolved Stars 2020 ApJL 898 L23

Preview

[P1] Planetesimal + planetary migration: a new scenario in which planetesimals can form in broad areas of the discs

[P2] Deducing the properties of the protoplanetary disk from the observed Kepler-419 system

[P3] After the host star turns to become red giant, the final fate of the "inner Neptune" can be very different if there is an "outer Jupiter".

[P1] Context

- Some planet formation models believe that planets are formed via coalescence of planetesimals
- But how planetesimals grows all the way from dust?
 - Difficulty: Drift & fragmentation barriers may stop the growth
 - Previous solution: instabilities, but only occur at certain locations → not compatible with models & observation (arguably)
- This paper: a new scenario
 - Point 1: Planet can create a pressure bump

 → streaming instability → planetesimals
 form
 - Point 2: Planet can migrate → planetesimals can form in broad regions

Planet can create a pressure bump that can trap solid particles (Bitsch+18)

Methods: disk and planet

Gas-disk models

$$\Sigma_{g, \text{unp}} = \Sigma_{g,0} (r/\text{au})^{-p}$$

$$T = T_0 (r/\text{au})^{-q}$$

Disc	$\Sigma_{\mathrm{g,0}}$	T_0	p	q
A	500	280	1	0.5
A'	5000	500	1	0.5
В	1700	280	1.5	0.5

- Planet
 - Single planet, 20 M_{\oplus} @ 30 au (mig only, no mass growth)
 - Undergoes Type I migration, given by Tanaka+02
- Gap structure
 - $\Sigma_{g,local} = \Sigma_{g,unp} \max(s_K, s_{min})$ $s_K = \max(s_{Kepler}, s_{Rayleigh})$ $s_{min} = (1 + 0.04K)^{-1}$
 - Pressure gradient / gravity $\rightarrow \eta = -0.5 \left(H_g/R\right)^2 \partial \ln P_g/\partial \ln R$ $P_g = \rho_g c_s^2 = \Sigma_{g,local}/(\sqrt{2\pi}H_g)c_s^2$

Methods: pebbles → planetesimals

- Introduce pebble particles
 - Pebble drift radially $v_r=v_{drift}+v_{diff}$ $v_{drift}=-2\frac{st}{st^2+1}\eta v_K (\text{due to head wind}),$ St=0.1

 v_{diff} is the radial diffusion velocity

- Pebble particles are introduced at $r_{out} = 50$ au
- At time interval $\Delta t = \Omega_{K,planet}^{-1}$,
 - n particles are introduced to $[r_{out}, r_{out} + v_r \Delta t]$, with total mass $\dot{M}_{peb} \Delta t$. \dot{M}_{peb} surveyed.
 - n is integer and $n \ge 1$
 - Particles pass the planet's orbit or r_{out} will be removed
- Calculation stops when $r_{planet} = 0.5 \ au$

Pebble particles introduced here

Methods: pebbles → planetesimals

- Planetesimal formation
 - Condition: $\rho_{peb,mid} > \rho_{gas,mid}$ $\rho_{peb,mid} = \Sigma_{peb} / (\sqrt{2\pi} H_{peb})$
- Calculation of Σ_{peb} using pebble particles

$$\Sigma_{peb}(r_i) \equiv \frac{1}{2\pi r_i} \sum_{j} m_{peb,j} W(|r_i - r_j|, H_{peb,r_i})$$

$$W(|r_i - r_j|, H_{peb,r_i}) = \frac{1}{\sqrt{\pi}H_{peb,r_i}} \exp\left[-\left(\frac{r_i - r_j}{H_{peb,r_i}}\right)^2\right]$$

- $j \in \text{all particles in grey area}$
- H_{peb,r_i} given by Youdin & Lithwick +07
- The pebble particle mass is then replaced by a planetesimal particle mass if condition is satisfied $m_{pls}=\chi_{SI}m_{peb},\,\chi_{SI}=\epsilon_{SI}\Delta t/\tau_{SI}$
- Planetesimals are merged if they are too close

Results

 A snapshot: Gas, pebble and planetesimal surface density at 0.38 Myr,

$$\dot{M}_{peb} = 10^{-4} M_E yr^{-1}$$

Reference profile

$$\Sigma_{\text{peb,unp}} = \frac{\dot{M}_{\text{peb}}}{2\pi r v_{\text{drift,unp}}}$$

$$\Sigma_{\rm pls,est} \equiv \frac{\dot{M}_{\rm peb}}{2\pi r v_{\rm mig}}$$

Results

- Planetesimal surface density
 - Typical/Low $\dot{M}_{peb} \rightarrow 10^{-4}/10^{-5} M_{\oplus} yr^{-1}$
 - Slow mig→ half speed
- Planetesimals form in wide regions of the discs, except for one case
- Profile well approximated by Σ_{pls,est}
 → All pebbles near the planet become planetesimal → quasi-static

Parameter study

Three parameters varied:

- Strength of turbulence: α viscosity
 - Stronger turbulence → stronger diffusion → harder to achieve high pebble-to-gas ratio → formation condition harder to meet
 - $\alpha = 10^{-2} \rightarrow \text{no planetesimals}$
- Mass of protoplanetary disks
 - 10 times heavier gas disk $A' \rightarrow$ higher \dot{M}_{peb} required to produce planetesimals
- Timescale of streaming instability(not sensitive)

Dependence on turbulence

Parameter study

Three parameters changed:

- Strength of turbulence: α viscosity
 - Stronger turbulence → stronger diffusion → harder to achieve high pebble-to-gas ratio → formation condition harder to meet
 - $\alpha = 10^{-2} \rightarrow \text{no planetesimals}$
- Mass of protoplanetary disks
 - 10 times heavier gas disk $A' \rightarrow$ higher M_{peb} required to produce planetesimals
- Timescale of streaming instability(not sensitive)

10 times heavier disk

Discussions and future work

Compare with population synthesis work

- Outer boundary of planetesimals depends on thermal structure of the disk
 - → planetesimals do not always spread to outermost region of the disk
 - → different from what assumed by population synthesis
- Total mass of the planetesimals are different from population synthesis model
 - → need to address detailed pebble growth scheme & planet accretion → Paper II

Planetary mass can significantly change the results

- Heavier planet can carve a deeper gap → easier to trap planetesimals
- Type II migration → slower migration speed → higher surface density of planetesimals

[P2] Kepler-419 system

"A perculiar system hosting two gas gaints"

Table 1
Parameters of Kepler-419 Planets

	Planet b	Planet c	
Mass m (M _J)	2.77 ± 0.19	7.65 ± 0.27	
Semimajor axis a (au)	0.3745 ± 0.0046	1.697 ± 0.02	
Eccentricity e	0.817 ± 0.016	0.1793 ± 0.0017	Petrovich+19
Inclination i (deg)	87.04 ± 0.72	87 ± 2	Letionicii, 13
Arg. of pericenter ω (deg)	94 ± 2.2	275.7 ± 1.8	
Long. asc. node Ω (deg)	180 (fixed)	185.4 ± 7.6	

- $\overline{\omega}_b \overline{\omega}_c \sim 180^\circ \rightarrow \text{apsidally anti-aligned orbits}$
- Explanation by Petrovich, Wu & Ali-Dib (2019): planets initially inside the inner gap(hole) of a slowly dissipating massive disk → force the apses to anti-align
 - Initial angular momentum deficit(AMD) of planet c
 due to planet-disk interaction → transfer to planet b
- This paper:
 - Verify the results of PWA+19 as an extension work
 - Constrain & study the disk parameters

Configuration of Kepler-419 system
Credit: allplanets.ru

Numerical Setup

- Two dimension N-body simulations
 - REBOUND & REBOUNDX
 - Simulation time: 6 Myr
 - Disk potential → radial acceleration
- Initial conditions
 - Stellar mass: $1.39M_{\odot}$
 - Two planets: SMA 0.374/1.697 au, $2.77M_J/7.65M_J$, ini ecc 0.05/0.4, $\omega_b \omega_c = 60^\circ$
- Disk profile
 - Initial mass $10M_J$
 - $\Sigma(R) = \Sigma_0 \left(\frac{r}{r_{in}}\right)^{-\gamma}$, $r_{in} = 0.05$, $\gamma = -1.5$, outer edge = 50au
 - Photoevaporation rates adopted from Owen+12; (hydro fitting results)
- Fiducial result

Parameter study

- Now switch to simplified disk decay model:
 - $M_{disk} = M_{disk}^{t0} \exp(-t/\tau_d)$
- Varying two parameters: Disk mass and disk's dispersal time scale
 - Mass: 1,20,40,50,75,100,200 *M*_I
 - τ_d : 10⁴, 10⁵, 10⁶ year
- Results
 - $M_{Disk} \leq 20 \, M_J$ (not recover): disk-planet interaction too weak, nearly three body problem
 - $M \sim 40 50 M_J$ (not consistent): oscillates with large amplitude
 - Larger mass(recover): libration around antialignment, AMD transferred from c to b
 - All disk dispersal time lead to similar results

Is the required disk realistic?

- Disk mass $\geq 75 M_i$. Any observational counterparts?
 - GM Aur and DM Tau, possibly TW Hya($50M_I$)
 - Transition disks: $7\% \ge 100 M_I$
- Is the disk gravitationally stable?
 - Toomre Q value(< 1 means unstable)
 - Everywhere in the planet forming region(<30au) is stable
 - Suggest planets are formed via core acc
- Can planets open gaps?
 - Both of the planets can open gaps
 - Gaps will merge to a common gap, even for large α case

Sensitivity to Planet c

- If Kepler-419 formed by accretion + migration, the assumed architecture is fine-tuned?
 - Need to consider alternative positions of planet c
- Vary the orbits of planet c
 - Fiducial: $P_c = 9.6 P_b$
 - Survey range $6 13 P_b$
 - $au_d = 10^5 ext{yr}$, and same range of disk mass
- Results
 - **BLUE:** stable, but trapped in other MMR(6:1, 7:1, 8:1)
 - Pink: Plethora of behaviours; dynamically noisy
 - Green: Kepler-419 like system
 - Conclusion:
 - Higher order MMR does not trap plaents to become K-419-like systems → such system can be more common than expected

[P3] Apocalyptic fate of planets

- The sun will eventually become a red giant with $R \sim$ earth orbit, and then white dwarf.
 - Inner planets < 1au: engulfed and vaporized.
 - But how about outer planets around 1-10 au?
- Observation
 - > 100 gas giants are discovered around red giants
 - Clues show planets(or debris) exist around white dwarfs: metal absorption lines
- Need to model planetary systems beyond main sequence
 - Previous studies: only concern about the surviving condition of a single planet
 - This work: two planets, one inner Neptune and one outer Jupiter, with stellar mass loss, stellar tides, and mutual gravitational interactions

Credit: Cornell University

Model

Change of semi-major axis

$$\left(\frac{\dot{a}}{a}\right) = -\left(\frac{\dot{M}_{\star}}{M_{\star} + M_{\rm p}}\right) - \left(\frac{\dot{a}}{a}\right)_{\rm t}$$

Typo

Stellar tides

$$\left(\frac{\dot{a}}{a}\right)_{t} = -\frac{1}{9\tau_{\text{conv}}} \frac{M_{\star}^{\text{env}}}{M_{\star}} \frac{M_{p}}{M_{\star}} \left(1 + \frac{M_{p}}{M_{\star}}\right) \left(\frac{R_{\star}}{a}\right)^{8} \times \left[2p_{2} + e^{2}\left(\frac{7}{8}p_{1} - 10p_{2} + \frac{441}{8}p_{3}\right)\right]$$

 M_*^{env} : envelope mass

 τ_{conv} : eddy turnover timescale

 P_i : frequency components

Eccentricity damping

$$\left(\frac{\dot{e}}{e}\right)_{t} = -\frac{1}{36\tau_{\text{conv}}} \frac{M_{\star}^{\text{env}}}{M_{\star}} \frac{M_{p}}{M_{\star}} \left(1 + \frac{M_{p}}{M_{\star}}\right) \left(\frac{R_{\star}}{a}\right)^{8}$$
$$\times \left[\frac{5}{4}p_{1} - 2p_{2} + \frac{147}{4}p_{3}\right].$$

$$p_i \approx \frac{9}{2} \min \left[1, \left(\frac{4\pi^2 a^3}{i^2 G(M_{\star} + M_{\rm p}) \tau_{\rm conv}^2} \right) \right], i = 1, 2, 3.$$

- Stellar evolution code SSE
 - Stellar mass = $1M_{\odot}$, Z = 0.02
 - Evolution track will give out $M_*, R_*, M_*^{env}, R_*^{env}, L_*$

Evolution of single planets

- Initial position
 - Jupiter: 1.5 3.5 *au*
 - Neptune: 1.0 2.7 au
- Survival conditions
 - Jupiter $\geq 2.7 \ au$
 - Neptune ≥ 1.9 au
 - → agree with most of the previous studies

Multi-planetary case

- Integration time: 750 Myr, starting from 11.6 Gyr
- Final fate of the planets
 - Large square: Jupiter
 - Small square: Neptune
 - Black dot: close encounter 3H
 - Yellow: collision
 - Dashed lines: 2:1 & 3:2 MMR
 - Filled black: unstable
- Majority of the Neptunes are engulfed
- Two cases: fates are changed!
 - Orange: although $a_{nep} < 1.9$, the Neptune survives
 - Green: although $a_{nep} > 1.9$, the Neptune is engulfed

Two cases in details

- Left: "Destroyer" case
 - Jup: 3.0 au, Nep:1.95 au
 - Divergent migration: P ratio increases→ instability happens when 2:1 resonance is crossed
 - Sudden increase $e_{Nep} \rightarrow$ Perihelion distance shrinks \rightarrow tides more effective
- Right: "Savior" case
 - Jup: 2.2 au, Nep: 1.6 au
 - Convergent: P ratio
 decreases → Jupiter falls in,
 with Neptune scattered out
- Bottom are dynamical maps:
 - 100x100 grid
 - Integrated to 10^4 year

Survivors

- Two groups of the Neptunes can survive:
 - High eccentricity with significant scattering(like the example case)
 - Low eccentricity, relatively large initial SMA

Implications

- A significant fraction of the planetary systems around white dwarfs might be shaped by gravitational interactions, particularly resonance
- Planets in such eccentric orbits can scatter planetesimals/asteroids → metal pollution

*Black dots means the Neptune has undergone significant close encounter with the Jupiter