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Abstract

The Hubble constant is a fundamental parameter for describing the evolution and

geometry of the universe. Using gravitationally lensed images of a source, we can deter-

mine the Hubble constant based on the time delay between individual images. In the

framework of general relativity we derive the theory of gravitational lensing including

light propagation on a curved manifold. We introduce the lensing potential, magni�ca-

tion and time delay and present various lens models. The mass-sheet degeneracy and

several ways of breaking it are analysed. We review di�erent approaches to determine

the Hubble constant including a semianalytic CDM model proposed by Kochanek and

a statistical assessment by Oguri. In order to obtain constraints for Hubble's parameter

we study the error propagation and dependence on the mass model of a generalised lens

system. Finally, we analyse the lens system B1608+656 regarding the model param-

eters' uncertainties. We present a list of quantities which should be determined more

precisely in future and we obtain H0 = (48.3 ± 26.7) km s−1Mpc−1 assuming a lens

model proposed by Myers et al.

Die Hubblekonstante ist ein grundlegender Parameter um die Form und Entwicklung

des Universums zu beschreiben. Durch den Gravitationslinsene�ekt sieht man mehrere

Bilder einer Quelle und kann aus der Messung des Laufzeitunterschieds zwischen den

Lichtwegen die Hubblekonstante bestimmen. Im Rahmen der Allgemeinen Relativität-

stheorie leiten wir die Lichtausbreitung in einer gekrümmten Raumzeit ab und erhalten

so die theoretischen Grundlagen des Gravitationslinsene�ekts. Wir führen die Konzepte

des Linsenpotentials, des Verstärkungse�ekts und der Zeitverzögerung ein und stellen

verschiedene Linsenmodelle vor. Die mass-sheet degeneracy wird untersucht und ver-

schiedene Wege sie zu umgehen. Wir präsentieren mehrere Herangehensweisen zur

Bestimmung der Hubblekonstanten mit dem Gravitationslinsene�ekt wie z.B. ein semi-

analytisches CDM-Model von Kochanek oder einen statistischen Ansatz von Oguri.

Die Fehlerfortp�anzung und die Abhängigkeit vom gewählten Massenmodell werden

diskutiert, um so die Fehlergrenzen der Hubblekonstante abschätzen zu können. Wir

untersuchen das Gravitationslinsensystem B1608+656 im Hinblick auf die Unsicher-

heiten der zu Grunde liegenden Messwerte und erhalten eine Auswahl an Parame-

tern, die bei zukünftigen Messungen noch genauer bestimmt werden sollten, um den

Fehler der Hubblekonstante klein zu halten. Wir erhalten schlieÿlich einen Wert von

H0 = (48.3± 26.7) km s−1Mpc−1.
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1

1 Introduction

The aim of this Bachelor Thesis is to explain the concepts of gravitational lensing and to present

di�erent methods of determining the Hubble constant based on time delays between multiple lensed

images. Moreover we want to discuss the in�uence of errors and the mass model's dependency on

Hubble's parameter.

The Hubble constant plays an important role in cosmology, it de�nes the universe's expansion, the

critical densities and it is indispensable for general de�nitions of age and distance. We start with

the history of Hubble's parameter and introduce Friedmann's expansion equations which describe

fundamentally the evolution of the universe. The Hubble constant can be measured in many ways

and we want to present the most common methods (Cepheids, Type Ia Supernovae, Sunyaev-

Zeldovich E�ect, CMB, Gravitational Lensing) and compare their advantages, disadvantages and

precision.

In the next chapter we give a short outline of gravitational lensing's history and describe light

propagation on a curved manifold. The Jacobi equation enables us to formulate the theory in a

very general way and we obtain expressions for the lens equation, the lensing potential and the

convergence. Thereafter we discuss the lens geometry, magni�cation, mass-sheet degeneracy and

derive an expression for the time delay. A selection of lens models is presented at the end of this

chapter.

There are various approaches to determine Hubble's parameter by gravitational lensing. We present

the method of Kochanek who applies a semianalytic CDM model and points out that the Hubble

constant solely depends on a few parameters. Additionally we discuss Oguri's statistical assessment

of lens model dependences obtaining the relative strength of several perturbing components and a

characterisation of stable image con�gurations.

In the last chapter we analyse the error propagation and dependence on the mass model. Therefore

we derive an expression for the Hubble constant based on 13 parameters and study their individual

in�uences. A singular isothermal ellipsoid with external shear represents the reference model and

we adopt several simpli�cations and analyse the errors by assuming an inappropriate mass model.

We apply this investigation to the lens system B1608+656 and obtain a list of parameters which

should be measured more precisely in order to obtain proper values and reliable errors for Hubble's

parameter. Finally we calculate a value for the Hubble constant based on a mass model proposed

by Myers et al.
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to the success of this work.



2

2 Hubble's Parameter

2.1 History

All time in history, people were thinking about the origin, the age and the size of the universe.

Plato (428-348 B.C.) thought that the universe �is always in the same state� and �its maker [...]

fashioned it complete and free from age and sickness� [1]. During the next 2000 years the idea of

a static universe was established and even Einstein initially believed it to be static. Therefore he

introduced the cosmological constant in his �eld equation in order to allow static solutions [2]. In

the early 20th century Slipher discovered that most galaxies are moving away from us with very

high velocities. In the 1920th Edwin Hubble analysed the escape velocities of distant galaxies and

made a fundamental discovery: The further galaxies are away, the higher their escape velocities

are. Hubble plotted the radial velocities against their distance and �tted a straight line in this

observed data (�gure 1). Actually he was convinced that there should be a linear relation due to

Friedmann's equations and hence he had chosen the linear �t which turned out to be right. The

Figure 1: Radial velocities, corrected for solar motion, are plotted against distances estimated from
involved stars and mean luminosities of nebulae in a cluster [3].

escape velocity v causes a Doppler shift of the galaxy's spectrum which can be observed as the

redshift z. The linear relation then reads

v(r) = c
∆λ

λ
= cz = H0r (2.1)

where H0 is the proportionality constant which was subsequently named after Hubble. In 1929

Hubble published [3] a value of

H0 = 530
km

s Mpc
(2.2)

which is far too high compared to current measurements. But nevertheless Hubble provided the

�rst hint that the universe is expanding and his linear relation turned out to be right at least for

small redshifts. The determination of H0 was very di�cult because distant galaxies were hardly

observable and nearby galaxies are gravitationally bound and can therefore not be considered in

the global Hubble �ow. The best measurement during the following years was by Sandage in 1958

[4] who proposed a value of

H0 = 75
km

s Mpc
(2.3)
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which is very close to the current value published by Komatsu et al. in 2008 [5]

H0 = (70.5± 1.3)
km

s Mpc
. (2.4)

Frequently Hubble's parameter is expressed in a dimensionless way by de�ning

H0 = 100h
km

s Mpc
. (2.5)

The unit of the Hubble Constant is chosen according to the relation between escape velocity and

distance but actually it has the unit of an inverse time. Hence we can de�ne the Hubble time

τ0 =
1

H0
≈ 13.9 · 109a (2.6)

which represents the age of the universe in a uniformly expanding model. In the same way one

can de�ne the Hubble radius or Hubble length

RH =
c

H0
≈ 4255Mpc. (2.7)

It is a typical length scale for all distances in an expanding universe. Without knowing much about

cosmology we can already see that the Hubble constant is a fundamental parameter for describing

the evolution and geometry of the universe. To obtain more precise equations and results we have

to derive Friedmann's Expansion Equations.

2.2 Friedmann's Expansion Equations

2.2.1 Expansion Rate

The cosmological principle states that the universe is homogeneous and isotropic on su�ciently

large scales. Obviously the cosmological principle has to be wrong on small scales because otherwise

humanity might not be able to formulate it. We introduce a spherical coordinate system which is

allowed to expand with time and consider a sphere with homogeneous density and a particle at

the location ~x. Due to the cosmological principle the expansion and the time dependent position

~r(t) can be expressed by

~r(t) = a(t)~x (2.8)

with the cosmic scale factor a(t) which does only depend on time. Per convention the scale factor

is set to a(t0) = 1 for t0 = today. Because of isotropy we can use scalar quantities r and x instead

of ~r and ~x. For the velocity of our test particle caused by the cosmic expansion we derive

v(r, t) =
d
dt
r(t) =

da(t)
dt

x = ȧ(t)x =
ȧ(t)

a(t)
r = H(t)r (2.9)

where we used equation 2.1 in the last step. As we will see later on ä 6= 0 which leads to a time

dependent Hubble constant and H0 = H(t0) only represents the current local expansion. Equation

2.9 is a generalisation of the time independent Hubble law and we can de�ne an expansion rate

H(t) =
ȧ

a
. (2.10)

2.2.2 Dynamics of the Expansion

We are interested in the evolution of the scale factor a(t) because it describes the development of

our universe. To derive the Friedmann Equations in the most general form, we have to start from
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Einstein's �eld equation

Gµν =
8πG

c4
Tµν + Λgµν . (2.11)

The energy-momentum tensor Tµν includes all kinds of energy and acts as the source of gravity.

Generally it has the components Tµν = (ρc2 + p)uµuν + pgµν for a perfect �uid but in our case it

has to be diagonal and the components must not depend on spatial coordinates in order to preserve

homogeneity and isotropy. Therefore we can set

T00 = ρc2, Tij = pδij . (2.12)

Gµν is the Einstein tensor which depends on the structure of space time and Λ is the cosmological

constant. The �eld equation is a system of 10 non-linear 2nd order partial di�erential equations

and describes how energy and geometry in�uence each other. The Robertson-Walker metric

g = −c2dt2 +

(
a(t)

1 + kr2

4

)2 (
dx2 + dy2 + dz2

)
(2.13)

is a general form of a spatially homogeneous and isotropic metric. We can introduce an appropriate

dual basis

θ0 = cdt, θi =
a(t)dxi

1 + kr2

4

(2.14)

and use Cartan's structure equations to derive expressions for the Ricci tensor and the Ricci scalar.

Hence the Einstein tensor has the components

G00 = 3
k +

(
ȧ
c

)2
a2

, G11 = G22 = G33 = − 2ä

c2a
−
k +

(
ȧ
c

)2
a2

. (2.15)

Assuming an ideal �uid, the �eld equation transforms into

H(t)2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− kc2

a2
(2.16)

and
ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
(2.17)

which is known as Friedmann's equations. We split up the density ρ into non relativistic matter

ρm(t) = ρm0a(t)
−3 and relativistic matter ρr(t) = ρr0a(t)

−4 which scales as a−4 because it is

additionally redshifted by the cosmic expansion. Furthermore we can de�ne the constant vacuum

energy density ρv = Λ/8πG and the critical density ρcr = 3H2
0/8πG. It is convenient to introduce

dimensionless density parameters for matter, radiation and vacuum energy

Ωm =
ρm
ρcr

, Ωr =
ρr
ρcr

, ΩΛ =
ρv
ρcr

=
Λ

3H2
0

(2.18)

and we notice that Ωm and Ωr depend on time whereas ΩΛ is time independent. Introducing the

curvature parameter

Ωk = −kc
2

H2
0

= 1− Ωm − Ωr − ΩΛ (2.19)

and subtracting the �rst from the second Friedmann equation yields(
ȧ(t)

a(t)

)2

= H0
2
[
a(t)−4Ωr + a(t)−3Ωm + a(t)−2Ωk +ΩΛ

]
. (2.20)

This fundamental equation contains all information about geometry, matter and energy in the

universe and completely describes its expansion.
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2.2.3 Measurement of Time and Distance

Due to a curved space time and an expanding universe we have to clarify quantities like age and

distance in our metric. Using the relation

dt =
da
ȧ

=
da

aH(a)
(2.21)

one can calculate the age of the universe depending on the scale factor

t(a) =
1

H0

∫ a

0

da
[
a−2Ωr + a−1Ωm +Ωk + a2ΩΛ

]−1/2
. (2.22)

Together with

1 + z =
1

a
(2.23)

we have direct relations between the physical age t, the redshift z and the scale factor a. In the

same way we can use the relation −cdt = adw for photons to express the distance of a source based

on its redshift. The comoving radial distance can be integrated to obtain∫
dw = −

∫ asrc

a=1

cdt
a

(2.24)

where asrc denotes the scale factor depending on the redshift of the source. Using again the relation

dt = da/aH and the Friedmann equation we can write

w = −
∫ asrc

a=1

da
a

c

H0

[
a(t)−4Ωr + a(t)−3Ωm + a(t)−2Ωk +ΩΛ

]−1/2
. (2.25)

Unfortunately analytical solutions for equation 2.22 and 2.25 are only available for special cases

and we have to use numerical methods or simplify matters by assuming di�erent cosmological

cases. The qualitative behaviour of a(t) can be seen in Figure 2. Regarding the analytical solution

of equation 2.20 we notice that every density parameter contributes with a di�erent power of a

and therefore we can conclude that in the early universe Ωr was dominating (radiation dominated

epoch), followed by a matter dominated epoch and nowadays ΩΛ is the most dominant term. As

we want to deal with gravitational lensing, we can neglect Ωr and focus on the matter dominated

epoch. In the Einstein-de-Sitter-universe we set Ωm = 1 which describes the expansion su�ciently

well. For the Einstein-de-Sitter-universe equation 2.22 has the simple solution

a(t) =

(
3H0t

2

)2/3

(2.26)

and the comoving radial distance in an Einstein-de-Sitter-universe can be expressed by

w(z) =
2c

3H0

(
1− 1

(1 + z)3/2

)
. (2.27)

We see that the Hubble constant plays an important role in cosmology. It de�nes the universe's

expansion, the critical densities and it is fundamental for the translation between time, scale factor,

redshift and comoving distances. Therefore it is important to measure H0 with high accuracy and

in the next section we want to discuss di�erent methods.

2.3 Measuring the Hubble Constant

There are various methods for measuring Hubble's parameter, based on di�erent astrophysical

e�ects. In this section we want to discuss the most common ones and we are particularly interested

in the precision of each method. Therefore we analyse and compare the errors and plot the
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Figure 2: Numerical solutions for equation 2.20 (Ωr ≈ 0) integrated with a one step Euler scheme.
H0 = 1 is the measurable boundary value and represents the gradient for all solutions at t = 1.
The red curve describes a closed universe which will collapse in future. The green solution is an
Einstein-de-Sitter-universe and the blue one describes an accelerated expansion. All curves have
in common, that they reach a = 0 for small t which can be seen as a proof for the big bang.

development of the measurement's accuracy. The data for this analysis is provided by John Huchra

[6] who attempts to collect all measurements of the Hubble constant. The relative error for each

method is the median of the relative errors listed by Huchra.

2.3.1 Local Hubble Law

The linear relation v = H0r is only valid for objects in the local Hubble �ow. That means that

they should be far enough away to be considered gravitationally unbound but still close enough

so that nonlinear cosmological e�ects are negligible. If we observe sources in this regime, we can

measure their escape velocity and their distance in order to calculate H0. The escape velocity v can

easily be calculated by the redshift z which can be measured with high precision by spectroscopy

(�gure 3). The relation v = cz is only valid for non relativistic velocities and yields the escape

Figure 3: Absorption lines in the optical spectrum of the supercluster BAS11 (top) compared to
those in the optical spectrum of the Sun (bottom) [7].

velocity. The distance r of an object is more di�cult to measure and there are several methods.

Therefore we just want to discuss the most popular ones for measuring r and determining the



2.3 Measuring the Hubble Constant 7

Hubble constant.

Cepheids Cepheids are variable stars with a well-de�ned relation between their period and lu-

minosity. First one has to calibrate the period-luminosity-relation using Cepheids in our own

galaxy or nearby galaxies. We can determine their apparent magnitude by observation, measure

the distance by parallax and calculate their absolute magnitude in order to relate it to the period.

Unfortunately, most suitable cepheids are more than 250pc away and the distance measurement

has a systematic error of about 10% [8]. Nevertheless, after calibrating the Cepheids, they are suit-

able as standard candles: By knowing the period of a variable star we can determine its absolute

magnitude and therefore the distance with the help of the distance-modulus. This method was one

of the �rst extragalactic distance measurements but the period luminosity relation depends on the

metallicity which is a further uncertainty. Additionally we have to keep in mind, that it is based

on the so called distance ladder which describes the fact that astronomical distance measurements

depend on each other: The fundamental length scale in the solar system is the astronomic unit (au)

which can nowadays be measured with high precision. Based on the au we can de�ne one parsec

which is a suitable length scale for the Milky Way and nearby galaxies. Based on the de�nition of

one parsec we can introduce standard candles or even more sophisticated distance measurements.

Summing up, the distance ladder is e�ected by error propagation from step to step which leads

to uncertainties especially on large scales. Nowadays, Cepheids are no longer applicable for direct

distance measurements but they are helpful to de�ne further standard candles.

Type Ia Supernovae (SNe Ia) SNe Ia are very luminous explosions of white dwarfs with a

characteristic light curve and a typical peak brightness. Due to the luminosity and their well-

de�ned absolute magnitudes and light curve shape, SNe Ia are very common as standard candles

on cosmological scales. Therefore we have to �nd su�cient SNe Ia at known distances to gauge

the distance latter but at the moment this number is limited to six objects [9] which leads to

signi�cant statistical uncertainties. Based on this calibration, the apparent peak brightness can be

measured and related to their distance with an intrinsic scatter of < 10% [8]. The relative error of

the Hubble constant with this method is ∆H0/H0 ≈ 8% and the development of the measurements

is shown in �gure 4.

Sunyaev�Zeldovich E�ect In principle, the cosmic microwave background (CMB) has a well-

de�ned black body distribution but a lot of e�ects cause systematic deviations from this slope.

Passing through hot gas of rich clusters of galaxies or any other plasma, the CMB-photons ex-

perience an inverse-Compton scattering. The Sunyaev�Zeldovich e�ect was investigated in 1970

and describes this redistribution of CMB-photons which are more energetic after scattering. We

can now use the fact, that the measured X-ray �ux from the plasma depends on the distance, but

the caused energy shift of some CMB-photons is distance independent and valid for all redshifts.

This relation leads to a distance measurement and can therefore be used to calculate the Hubble

constant. The main uncertainties of this method result from potential substructure in the gas of

the cluster, projection e�ects, the assumption of hydrostatic equilibrium and details of the models

for the gas and electron densities [8]. Due to these systematics, the Hubble constant can only be

estimated up to an accuracy of about ∆H0/H0 ≈ 19% with the Sunyaev�Zeldovich e�ect. The

development of the measurements is shown in �gure 5.

2.3.2 CMB

CMB observations do not directly measure the local expansion rate of the universe rather they

measure the conformal distance to the decoupling surface and the matter-radiation ratio through

the amplitude of the early integrated Sachs-Wolfe contribution relative to the height of the �rst

peak [10]. The power spectrum describes the angular correlation of the CMB �uctuations and it
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Figure 5: Measurement of H0 using the Sun-
yaev�Zeldovich e�ect.

can be �tted via H0 and other cosmological parameters. This correlation between parameters is

a source of systematic errors: As long as we can not �x the other cosmological parameters (ΩΛ,

Ωm, w, σ8) properly, we are left with a uncertainty regarding the Hubble constant. Komatsu et

al. were able to determine H0 with an accuracy of 4% with this method [11] where he included

further cosmological data. Generally, the relative error of this method is ∆H0/H0 ≈ 9% and the

development of the measurements is shown in �gure 6.

2.3.3 Gravitational Lensing

Another approach to measure the Hubble constant is based on the time delay between di�erent

images of a gravitationally lensed source. The total time delay is proportional to the inverse Hubble

constant. By understanding the e�ect, systematics can be turned into statistical errors and H0

can be measured very precisely. The Hubble constant's relative error is ∆H0/H0 ≈ 13% with this

method and the development of the measurements is shown in �gure 7. Although the relative error

is higher compared to other methods, we have to emphasise that gravitational lensing does not

depend on distance ladders and is very insensitive to changes of the cosmological model. Therefore

this methods provides an independent way of measuring Hubble's parameter. Suyu et al. obtain

a value of H0 = (70.6± 3.1)km s−1Mpc−1 [12].
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3 Gravitational Lensing

Gravitational Lensing is based on light de�ection in a curved space-time and can be used to

study the mass distribution of galaxies or clusters and to derive cosmological parameters. We

want to understand the historical background regarding lensing theory and experimental proofs.

Then we derive a general formalism for light propagation on a curved manifold based on the

Jacobi equation. This formalism enables us to analyse various gravitational lensing e�ects like

magni�cation, convergence, shear and time delay. Furthermore we want to study the dependence

of the time-delay on cosmological parameters which leads to the determination of the Hubble

constant by gravitational lensing. To apply this theory we have to �nd suitable lens models which

will also be presented in this chapter.

The following theoretical deviation of light propagation and gravitational lensing is mainly based

on a review article by M. Bartelmann [13], the book �Extragalactic Astronomy and Cosmology�

by P. Schneider [14], lecture notes �Lectures on Gravitational Lensing� by R. Narayan and M.

Bartelmann [15], the book �Gravitational Lensing: Strong, Weak and Micro� by P. Schneider, C.

Kochanek and J. Wambsganss [16] and the script �General Relativity� by M. Bartelmann [17].

3.1 History

The theory of gravitational lensing is based on the general theory of relativity published by Einstein

in 1915. He replaced Newton's theory of gravity by a more general formalism which states, that

space time can be seen as a manifold and its curvature is de�ned by its matter and energy content.

A �rst experimental proof of this theory was the perihelion precession of mercury which was

previously believed to be measurement errors or external perturbations. But a second proof was

given by Sir A. S. Eddington in 1919: Light moves along geodesics in this space time and is therefore

de�ected by mass distributions. A light ray passing from a star behind the sun close to its surface

should be de�ected and we should be able to observe it although it is located behind the sun

(Figure 8). Obviously this e�ect is only observable during solar eclipses. In May 1919 Eddington

Figure 8: Light de�ection of a ray passing close to the sun's surface. The actual position A is
behind the sun and not observable but due to bending of the light ray we observe the star at the
apparent position B [18].

observed a solar eclipse in West Africa and was able to measure the light de�ection. Figure 9

shows one of Eddington's photos which illustrates the de�ected positions. He published his results

in 1920 and states that �the course of a ray of light is in accordance with Einstein's generalised

relativity theory. This leads to an apparent displacement of a star at the limb amounting to 1′′75
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outwards� [19]. This discovery was not only a remarkable evidence of Einstein's theory but also

Figure 9: Eddington's photo of a total eclipse taken on May 29, 1919 in West Africa. De�ected
stars are shown between white marks in the top right of the sun [19].

the basis for gravitational lensing. In 1924 Chwolson wrote an article about the possibility to see

two images from one star whose light rays are de�ected by another massive star [20]. This was

the �rst hint for gravitational lensing although Chwolson himself was not sure whether this e�ect

really exists.

It was again Einstein who contributed to the theoretical background in 1936 [21]. He was the �rst

who spoke about a �lens like action� referring to the increase of the apparent brightness by this e�ect

and he introduced the concept of Einstein rings which were subsequently named after him. Einstein

thought that �there is no great chance of observing this phenomenon� but nevertheless scientists

have tried to �nd experimental evidence for gravitational lenses. Up to the 1930s it was assumed,

Figure 10: First observation of a gravitational lens. The two bright blue sources are the quasar
Q0957+561 lensed by the giant elliptical galaxy Q0957+561 G1 [22].

that only stars in our own galaxy could act as gravitational lenses. But in 1937 F. Zwicky expanded

this belief and considered lensing by �extragalactic nebulae� which we nowadays know as galaxies.

Using his mass estimation for the galaxy, he calculated the typical image separation of a background

source to be of the order 10′′, which was already observable with telescopes. Additionally, Zwicky

pointed out that distant galaxies would be magni�ed and therefore might be detectable even if

their unlensed luminosity is below the observational threshold. The theory of gravitational lensing

outside our own galaxy improved during the following years and the historically most important

article for this thesis was published in 1964 by Sjur Refsdal [23]. He pointed out that the time delay

between di�erent lensed images of one source can be used to determine the Hubble constant. The

value of H0 might only depend on the time delay∆t, the redshifts of source and lens, the luminosity



3.2 Light Propagation on a Curved Manifold 11

of the images and the angle between them. Based on assumptions regarding the absolute magnitude

of supernovae, galaxy masses, mean angular separations and redshifts he concluded that �a double

image of a supernova within a distance 6 · 108pc should be possible to observe every third year�.

Actually, the �rst gravitational lens was discovered in 1979 by Dennis Walsh, Bob Carswell, and Ray

Weymann. They discovered it accidentally and named it �Twin QSO� because it initially looked

like two similar quasistellar objects (�gure 10). In the following years, the number of observed

gravitational lenses increased as observation methods became more precise and computers enable

simultaneous measurements of million of sources. A very popular and impressive gravitational lens

is the Einstein Cross Q2237+030 �gure 11). It is a gravitationally lensed quasar that is located

Figure 11: Einstein Cross. The apparent dimension of this galaxy is 0.87× 0.34 arcminutes, while
the apparent dimension of the cross in its centre accounts for only 1.6× 1.6 arcseconds [24].

directly behind ZW2237+030. This constellation produces four images of the same quasar with

almost equal brightness.

3.2 Light Propagation on a Curved Manifold

To understand the theory of gravitational lensing, we have to study the e�ects of light de�ection

on a curved manifold. Generally we assume that the universe can be described by a Friedmann-

Lemaître-Robertson-Walker-metric and that the cosmological principle is valid on su�ciently large

scales. Nevertheless, we need matter inhomogeneities on small scales to produce lensing e�ects but

we require these inhomogeneities to have small Newtonian gravitational potentials, namely Φ � c2.

Furthermore we assume that the peculiar velocities of the gravitational lenses are small (v � c)

and their motion is dominated by the mean cosmic �ow. These assumptions are su�ciently valid

for all e�ects discussed within this thesis.

3.2.1 Jacobi Equation

Light propagation in arbitrary space times can be described by the Jacobi equation and therefore

we want to motivate this important equation.

We assume a congruence of null geodesics which should represent a bundle of light rays (�gure

12). The geodesic curve is parametrised by the so far arbitrary parameter λ and its tangent vector

can be written as k̃ = ∂λ with the normalisation 〈k̃, k̃〉 = 0. By de�nition, this tangent vector is

parallel transported along the geodesic

∇k̃k̃ = 0. (3.1)

We introduce a second curve γ which is transversal to the congruence and is parametrized by the

parameter σ. The curve γ connects the �ducial light ray with a neighbouring ray and its tangent
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Figure 12: A congruence of null geodesics with the �ducial light ray and its tangent vector k. The
curve γ connects rays in the bundle and has the tangent vector v [13].

vector can be expressed as

v = γ̇ = ∂σ. (3.2)

Since the partial derivatives with respect to the curve parameters λ and σ commute, so do the

vectors k̃ and v and we can conclude that v is Lie-invariant along k̃

0 = [k̃, v] = Lk̃v. (3.3)

Next, we introduce a vector

n = v + 〈v, k̃〉k̃ (3.4)

which is perpendicular to k̃

〈n, k̃〉 = 0. (3.5)

The Lie-derivative of n along k̃ yields

Lk̃n = [k̃, n] = [k̃, v] + [k̃, 〈v, k̃〉k̃] = k̃〈v, k̃〉k̃ = (∂λ〈v, k̃〉)k̃ (3.6)

where we used equation 3.3. Since 〈k̃, k̃〉 = 0 we can write

0 = ∂λ〈k̃, k̃〉 = v〈k̃, k̃〉 = 2〈∇vk̃, k̃〉 (3.7)

using the Jacobi identity [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0. The connection is symmetrical and

the commutator between k̃ and v vanishes which implies ∇vk̃ = ∇k̃v from where we can derive

∂λ〈k̃, v〉 = k̃〈k̃, v〉 = 〈∇k̃k̃, v〉+ 〈k̃,∇k̃v〉 = 〈k̃,∇vk̃〉. (3.8)

Together with equation 3.6 we can conclude that n is Lie-transported along the light ray

Lk̃n = 0. (3.9)
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As n denotes the perpendicular separation vector between neighbouring geodesics it is Lie-invariant

along the congruence. Using the fact that k̃ and v commute and that k̃ is a geodesic, we can rewrite

the second derivative of v along k̃

∇2
k̃
v = ∇k̃∇k̃v = ∇k̃∇vk̃ = (∇k̃∇v −∇v∇k̃)k̃ (3.10)

and see that it is equivalent to the curvature applied to k̃ and v

R(k̃, v)k̃ = (∇k̃∇v −∇v∇k̃)k̃. (3.11)

This is expressed by the Jacobi equation

∇2
k̃
v = R(k̃, v)k̃ (3.12)

which describes how the vector v changes along the ray in response to the curvature. In a next

step we want to �nd a similar equation for the separation vector n. First we can calculate that

∇k̃n = ∇k̃v +∇k̃(〈v, k̃〉k̃) = ∇k̃v + (∂λ〈v, k̃〉)k̃ = ∇k̃v (3.13)

and use this result to derive

∇2
k̃
n = ∇2

k̃
v. (3.14)

Furthermore we use the linearity of the curvature

R(k̃, n) = R(k̃, v + 〈k̃, v〉k̃) = R(k̃, v) + 〈k̃, v〉R(k̃, k̃) = R(k̃, v) (3.15)

to derive another form of the Jacobi equation which is often called the equation of geodesic deviation

∇2
k̃
n = R(k̃, n)k̃. (3.16)

It describes directly how the separation between neighbouring geodesics evolves along the ray

according to curvature.

3.2.2 Propagation of a Light Bundle

We want to use the Jacobi equation to study the behaviour of an arbitrary light ray on a curved

manifold. Therefore we introduce a screen which is perpendicular to the tangent vector k̃. This

screen is also perpendicular to the propagation direction of the light ray and is spanned by the

vectors E1,2 which are parallel transported along the ray

∇k̃Ei = 0 (3.17)

and can be combined to a complex vector ε = E1 + iE2. Equation 3.12 can be written as a matrix

equation

∇2
k̃

(
v1

v2

)
= T

(
v1

v2

)
(3.18)

with the so called tidal matrix

T =

(
R+ <(F) =(F)

=(F) R−<(F)

)
(3.19)
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and its components

R = −1

2
Rαβ k̃

αk̃β +
1

2
Cαβγδε

αk̃β k̃γε∗δ, (3.20)

F =
1

2
Cαβγδε

αk̃β k̃γεδ. (3.21)

The Weyl curvature Cαβγδ will be discussed and speci�ed below. We are allowed to distinguish

between di�erent curvature contributions: On the one hand we have the background curvature in

the homogeneous and isotropic universe described be the Friedmann-Lemaître-Robertson-Walker

metric and on the other hand we have local matter contributions and structure inhomogeneities

described by their gravitational potential. This division is veri�ed by our assumptions of small

peculiar velocities and weak gravitational �elds of the inhomogeneities. Therefore we are allowed

to split up the tidal matrix into a background part and clump contributions:

T = Tbg + Tcl. (3.22)

3.2.3 Background Contribution

In order to describe the background contribution, we introduce the Friedmann-Lemaître-Robertson-

Walker metric

ds2 = a(η)2
(
−dη2 + dw2 + f2K(w)dΩ2

)
(3.23)

with the spatial curvature K and the conformal time η which is related to the coordinate time

by adη = cdt. The comoving angular-diameter distance fK as a function of the comoving radial

distance w can be expressed as:

fK(w) =


1√
K

sin(
√
Kw) K > 0

w K = 0

1√
−K

sinh(
√
−Kw) K < 0

(3.24)

The Weyl curvature has to vanish for the homogeneous contribution because we assume the space

time to be symmetric and locally �at, but we are still left with the contribution of the Ricci tensor

Rαβ . Since k̃ is a null vector, we can directly relate the Ricci tensor to the energy-momentum

tensor Tαβ by Einstein's �eld equation

Rαβ k̃
αk̃β = Gαβ k̃

αk̃β =
8πG

c4
Tαβ k̃

αk̃β . (3.25)

Assuming the energy-momentum tensor of an ideal �uid with negligible pressure, we can write

Tαβ k̃
αk̃β = ρc2〈u, k̃〉2 (3.26)

with the velocity u of a comoving observer. If we set k̃ωobs = k, the projection gives the (negative)

frequency ωobs measured by an observer

|〈k̃, u〉| = |〈k, u〉|
ωobs

=
ω

ωobs
= 1 + z. (3.27)

As we have seen before, matter density evolves as ρ = ρ0(1 + z)3 with the density ρ0 measured by

the comoving observer. Now we can express the diagonal elements of the tidal matrix by

R = −4πG

c2
ρ0(1 + z)5. (3.28)
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In a next step we want to solve the Jacobi equation for this background contribution. According

to our normalization of k̃ we have to choose λ such that |〈k̃, u〉| = 1+ z. Based on our assumption

that peculiar velocities are negligible we can project k̃ on the mean �ow velocity uµ = δµ0 and have

to satisfy

〈k̃, u〉 =
〈
dx
dλ
, u

〉
=

dx0

dλ
=
cdt
dλ

= 1 + z = a−1. (3.29)

Using the relation between conformal and cosmic time we can write dλ = acdt = a2dη and can

express the Jacobi equation for the homogeneous background as

∇2
k̃
vi =

d2vi

dλ2
= T i

bg jv
j = Rvi (3.30)

where we have used that the basis vectors of the perpendicular screen are parallel transported

along the light ray. Since ds = 0 for light, we can express dλ by dw using that dw = dη = a−2dλ

and can conclude dλ = a2dw. Now we introduce comoving bundle dimensions vi/a for the �ducial

ray and can express the propagation with the comoving distance by

d2

dw2

(
vi

a

)
= a2

d
dλ

(vi
′
a− via′) = a2(vi

′′
a− via′′) (3.31)

where the primes denote the derivative with respect to λ. Together with the relation dλ = acdt

we can calculate the derivatives

a′ =
da
dλ

=
1

ca

da
dt

=
ȧ

ca
, (3.32)

a′′ =
da′

dλ
=

1

ac

da
dt

da′

da
=

1

c2
ȧ

a

d
da

ȧ

a
=

1

2c2
d
da

(
ȧ

a

)2

. (3.33)

The (ȧ/a)2 term can be replaced with the help of Friedmann's equation and the cosmological-

constant term vanishes because k̃ is a null vector. The second derivative then reads

a′′ = −4πG

c2
ρ0
a4

+
K

a3
(3.34)

and can be inserted into the propagation equation. Using equation 3.28 and 3.30 we can express the

propagation equation for the comoving light bundle in the Friedmann-Lemaître-Robertson-Walker

metric by
d2

dw2

(
vi

a

)
= a3vi

′′
+

4πG

c2
ρ0
a2
vi −K

vi

a
= −Kvi

a
(3.35)

or in a more simple form (
d2

dw2
+K

)
vi

a
= 0 (3.36)

which has a very intuitive interpretation: If there is no curvature, the bundle dimension will linearly

increase according to its initial angle. If the curvature is negative, we have an exponential solution

and the light rays will drive apart on this hyperbolic manifold. But if the curvature is positive,

we have oscillatory solutions which represent the case where we sent out two light rays at the

north pole with a certain initial angle to each other and they meet again at the south pole due to

curvature of the sphere.

3.2.4 Inhomogeneities' Contribution

We assume a perturbed Friedmann-Lemaître-Robertson-Walker metric with local inhomogeneities

characterized by their gravitational potential. We still expect these perturbations to be small and

their Newtonian potential is given by Φ = φc2 � c2. The peculiar velocities of the inhomogeneities

should be negligible compared to the cosmic �ow and therefore we can write the perturbed line
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element as

ds2 = a(η)2
[
−(1 + 2φ)dη2 + (1− 2φ)

(
dw2 + f2K(w)dΩ2

)]
. (3.37)

The spatial extent of the perturbations should be small compared to the curvature scale of the

background universe. This assumption is generally valid and allows us to expand the comoving dis-

tance function to �rst order fK(w) ≈ w for all three cases. Hence we can analyse light propagation

in the comoving Newtonian metric

ds2 = −(1 + 2φ)dη2 + (1− 2φ)d~w2. (3.38)

It is convenient to introduce the dual basis

θ0 = (1 + φ)dη, θi = (1− φ)dwi (3.39)

in order to receive a Minkowskian representation of the metric with the signature (−1, 1, 1, 1). We

perform a linear perturbation analysis and neglect all terms of O(φ2) or higher and assume φ to be

time independent. Now we use Cartan's structure equations to calculate the Riemann and Ricci

tensors. The �rst structure equation implies the connection forms

ω0
i = φiθ

0, ωi
j = −φjθi + φiθ

j (3.40)

wherein we use the abbreviation φj = ∂jφ and take all derivatives with respect to comoving

Cartesian coordinates. The curvature forms

Ω0
i = φikθ

k ∧ θ0, Ωi
j = −φjkθk ∧ θi + φikθ

k ∧ θj (3.41)

can be calculated with Cartan's second structure equation. Thus the only non-vanishing elements

of the Riemann tensor are

R0i0j = φij , Rijij = φii + φjj , R1213 = φ23, R1223 = −φ13, R1323 = φ12 (3.42)

and the Ricci tensor and Ricci scalar are

Rαβ = ~∇2φ14, R = 2~∇2φ (3.43)

with the notation ~∇2 = ∂i∂i. The Einstein tensor hence is

Gαβ = ~∇2φδ0αδ
0
β . (3.44)

Now we can compute the Weyl tensor needed for the inhomogeneity contributions to the optical

tidal matrix. The Weyl curvature is de�ned by

Cαβγδ = Rαβγδ − gα[γRδ]β + gβ[γRδ]α +
R

3
gα[γgδ]β (3.45)

and has the only non-vanishing components

C0i0j = φij −
1

3
~∇2φηij , Cijij = φii + φjj −

2

3
~∇2φ, (3.46)

C1213 = φ23, C1223 = −φ13, C1323 = φ12. (3.47)

According to equation 3.20 and 3.21 we can calculate the contributions to the Weyl tensor in our

comoving metric caused by local inhomogeneities

Rcl = −~∇2φ, Fcl = −(φ11 − φ22)− 2iφ12 (3.48)
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and receive for the optical tidal matrix

Tcl = −2

(
φ11 φ12

φ12 φ22

)
(3.49)

or expressed in components: (Tcl)ij = −2∂i∂jφ. Denoting φ(0) as the gravitational potential passed

by the �ducial ray, we can expand the potential gradient as

∂i

(
φ− φ(0)

)
= ∂iδφ = ∂j∂iφ

∣∣∣∣
0

xj = −1

2
(Tcl)ijxj . (3.50)

This expansion allows us to write the Jacobi equation for the clump contributions in the form

d2xi

dλ2
=

d2xi

dw2
= −2∂iδφ. (3.51)

We are still allowed to gauge the potential properly because the absolute value of the gravitational

potential has no invariant meaning and therefore we can just set δφ = φ. Finally we have to keep in

mind that the bundle dimensions xi evaluated in the local frame are comoving bundle dimensions

vi/a in the cosmological frame. Now we can combine the global, homogeneous (equation 3.36) and

the local clump contribution (equation 3.51) to �nd the inhomogeneous propagation equation for

the comoving bundle dimension xi (
d2

dw2
+K

)
xi = −2∂iφ. (3.52)

This linear di�erential equation with the inhomogeneity−2∂iφ caused by local perturbations allows

us to describe light propagation in a very general way.

3.3 Lensing Properties

3.3.1 Lensing Potential

In a next step we want to analyse the solutions and derive an equation for the e�ective lensing

potential which is a fundamental tool to study gravitational lenses. The di�erential operator

d2/dw2 +K is solved by the Green's function

G(w,w′) =
1√
K

sin
(√

K(w − w′)
)
Θ(w − w′)

= fK(w − w′)Θ(w − w′) (3.53)

with the previously de�ned comoving angular diameter distance fK(w). We assume two light rays

starting simultaneously at the same point where they enclose the angle (θ1, θ2). That de�nes the

initial conditions at the observer (w = 0) for the Green's function

xi
∣∣∣∣
w=0

= 0,
dxi

dw

∣∣∣∣
w=0

= θi. (3.54)

Thus, the solution for the propagation of the bundle dimension is

xi(w) = fK(w)θi − 2

∫ w

0

dw′fK(w − w′)∂iφ(xj(w′), w′). (3.55)

As we are dealing with small gravitational potentials, the de�ection angle is small and we can

integrate along the unperturbed light path xi(w′) ≈ fK(w′)θi (Born's approximation). The ob-

server is at the position w = 0, the source at the comoving radial distance ws and we can de�ne
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xi(ws) = fK(ws)β
i which gives us

βi = θi − 2

∫ ws

0

dw′ fK(ws − w′)

fK(ws)
∂iφ

(
fK(w′)θj , w′) . (3.56)

De�ning the reduced de�ection angle

αi(θj) = 2

∫ ws

0

dw′ fK(ws − w′)

fK(ws)
∂iφ

(
fK(w′)θj , w′) (3.57)

we obtain the lens equation

βi = θi − αi(θj). (3.58)

Now we introduce derivatives with respect to angular coordinates θj on the sky

∂x =
∂θ

fK(w)
(3.59)

which have to be interpreted as covariant derivatives on the sphere if the curvature is not negligible.

For later purposes it is convenient to write the reduced de�ection angle as the angular gradient of

an e�ective lensing potential

ψ(θj) = 2

∫ ws

0

dw′ fK(ws − w′)

fK(w′)fK(ws)
φ
(
fK(w′)θj , w′) . (3.60)

The lensing potential can be specialised to di�erent lens models and is a very powerful tool to

study the behaviour of lens mapping as we will see later on. The de�ection angle then reads

αi = ∂iψ (3.61)

and we can introduce the convergence κ as the Laplacian of the lensing potential

κ =
1

2
∂i∂iψ (3.62)

and write it in the general form

κ(xj) =

∫ ws

0

dw′ fK(ws − w′)fK(w′)

fK(ws)
∂xi∂x

i

φ(xj , w′). (3.63)

We will understand the meaning and utility of the convergence later on but for the moment we

need it to apply Poisson's equation. Using Poisson's equation

∇2φ =
4πG

c2
ρ (3.64)

we can express the convergence by the local density ρ

κ(θj) =
4πG

c2

∫ ws

0

dw′ fK(ws − w′)fK(w′)

fK(ws)
ρ(fK(w′)θi, w′). (3.65)

3.3.2 Lens Geometry

For a gravitational lens system we need a source, a mass distribution acting as a gravitational lens

and an observer who is interested in this phenomenon. Usually the distances between source, lens

and observer are very large compared to the spatial extent of the gravitational lens. Therefore we

are allowed to use the thin-lens approximation where we assume the mass distribution to be two
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dimensional in the lens plane and can use the line-of-sight projection of the Newtonian potential

φ→ δ(w − wd)

∫
dw′φ = δ(w − wd)φ̃. (3.66)

The distance wd denotes the distance from the observer to the lens. Furthermore we introduce

ws as the distance between observer and source and wds as the distance between source and lens

(�gure 13). From this geometry we can express the reduced de�ection angle (equation 3.57) as

Figure 13: Geometry of a simple gravitational lens system. The comoving radial distances wd, ws

and wds denote the distances between observer and lens, observer and source and lens and source
respectively. The optical axis is de�ned by the line of sight from observer to the centre of the
gravitational lens. The lens and source planes are perpendicular to this line of sight. The light
beam intersects the lens plane at ξ and is de�ected by an angle α̂(ξ) [16].

α(θ) =
wds

ws
α̂(wdθ) (3.67)

and the lens equation using the thin lens approximation and assuming fK(w) = w yields

βi = θi − 2
wdwds

ws
∂iφ̃(wdθ

j). (3.68)

According to equation 3.65 we can express the convergence as

κ(θi) =
4πG

c2
wdswd

ws

∫ ws

0

dw′ρ(w′θi, w′) (3.69)

and see that it is proportional to the geometrically weighted surface-mass density of the lensing

mass distribution. The surface-mass density of the lens is suitably de�ned by the projection of the

spatially extended density ρ onto the lens plane along the line-of-sight

Σ(θi) =

∫
dw′ρ(w′θi, w′). (3.70)

De�ning the critical surface mass density

Σcr =
c2

4πG

ws

wdswd
(3.71)
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we can express the convergence of a thin lens as

κ(θi) =
Σ(θi)

Σcr

. (3.72)

3.3.3 Lensing by a Point Mass

We want to apply our knowledge about gravitational lensing to the most simple case of a point

mass acting as lens. The spatial extend of this point mass M is described by a delta function

ρ(~x) =Mδ(~x) (3.73)

and the convergence turns into

κ(~θ) =
4πGM

c2
wdswd

ws
δ(wd

~θ). (3.74)

The lensing potential can be written in the form

ψ(~θ) =
4GM

c2
wds

wdws
ln |~θ| (3.75)

from where we can derive the de�ection angle

~α = ~∇ψ =
4GM

c2
wds

wdws

~θ

~θ2
. (3.76)

Inserting this into the lens equation we obtain

~β = ~θ − 4GM

c2
wds

wdws

~θ

~θ2
(3.77)

which is one-dimensional because of the axisymmetry of the lens. This quadratic equation is

very useful to study the qualitative behaviour of the lens mapping for this simple geometry. We

introduce the Einstein radius

θE =

(
4GM

c2
wds

wdws

)1/2

(3.78)

which simply�es the equation to

0 = θ2 − βθ − θ2E . (3.79)

We want to analyse the solutions and its interpretations:

• β = 0 describes the case where the source is located directly behind the lens. Observer, lens

and source are on one line and the problem is axially symmetric. The lens equation has the

solution θ = θE which means that the source is mapped into a circular image around the lens.

Such images are called Einstein rings and there are some known cases of observed Einstein

rings e.g. �gure 14.

Figure 14: Einstein Ring Gravitational Lens SDSS J162746.44-005357.5: The source is almost
exactly behind the lens and is seen as a circular image [25].
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• β 6= 0 is the most general case and we expect two solutions which are collinear with the lens

and the source. These two images are at the positions θ± = 1
2

(
β ±

√
β2 + 4θ2E

)
. One of the

images is located on the same side of the lens as the source and the second image is located

on the other side (Figure 15).

Figure 15: Sketch of a gravitational lens system with a point mass located at L. If the mass is
su�ciently large we might be able to observe 2 images of the original source [14].

• β � θE describes the situation where the in�uence of the gravitational lens is negligible but

formally we have two solutions at θ1 ≈ 0 and θ2 ≈ β. The �rst solution is not observable

because it is too faint (see later) and located behind the lens whereas the second solution

represents the unperturbed position of the original source.

• All of these cases are summarized in �gure 16 where we can see the behaviour for small and

large β and for the general case in between.
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Solutions of the lens equation: Apparent positions θ as a function of the real position β
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Figure 16: Apparent positions of the source as a function of the real position. All angles are scaled
by the Einstein radius θE . For β = 0 the source is seen as a circular image which is called the
Einstein ring. For β � θE the function turns towards the identity function and for moderate values
of β we have two solutions at di�erent sides of the lens.

So far we have seen the lensing properties of a point mass lens. This is the simplest lens model

but it already reveals some interesting characteristics of gravitational lensing. To understand more

complex lensing systems, we have to study the local lensing properties (magni�cation, convergence,

shear) and the di�erent mass distributions in detail.
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3.3.4 Magni�cation

Light beams coming from the source to us are bundles of rays with a certain cross section. This

cross section of a bundle is di�erentially de�ected and therefore geometrically distorted: Rays

passing closer to the lens are more de�ected than those rays of the bundle which are passing

farther away. Liouville's theorem and the absence of emission or absorption of photons imply that

lensing conserves the speci�c intensity Iν and therefore the surface brightness. Hence, magni�cation

arises only because the lens mapping changes the solid angle under which the source appears. The

observed �ux is the product of surface brightness and solid angle but as the surface brightness is

conserved, the �ux changes according to the solid angle. Let ωs be the solid angle, the source would

subtend if no lens was present and ω the observed solid angle of the image. The magni�cation is

then given by

µ :=
ω

ωs
(3.80)

The magni�cation can be calculated by the di�erential area distortion of the lens mapping

µ =
θ

β

dθ
dβ

=

∣∣∣∣det(∂βi

∂θj

) ∣∣∣∣−1

. (3.81)

We can now determine the magni�cation for each individual image

µ± =

[
1−

(
θE
θ±

)]−1

=
u2 + 2

2u
√
u2 + 4

± 1

2
(3.82)

where we have introduced u = β/θE as the position scaled by the Einstein radius. The total

magni�cation can be expressed by adding the two contributions

µ = µ+ + µ− =
u2 + 2

u
√
u2 + 4

. (3.83)

The magni�cation is always positive but nevertheless, the determinant of the Jacobi matrix may

have either sign. The concept of parity de�nes the orientation of the lensed image with respect

to the image in the source plane and the sign of det(∂βi/∂θj) determines the associated parity:

Images of the source for which the determinant is positive (negative) are said to posses positive

(negative) parity. But it is also possible, that a source has images for which the determinant

vanishes. These locations in the lens plane are called critical curves and they separate regions of

di�erent parity. According to equation 3.81 the magni�cation factor formally diverges on these

critical curves. However this divergence does not cause an in�nitely magni�ed source because we

have to consider two additional e�ects:

• Real sources are extended and the actual magni�cation is the weighted mean which is always

a �nite value.

• Even for point-like sources the magni�cation is bounded, because the assumptions of geo-

metrical optics are no longer valid and we also have to consider interference e�ects.

The lens equation directly relates positions in the lens plane to positions in the source plane. If we

thus know the location of the critical curves, we can calculate the associated locations in the source

plane, which are called caustics. The concept of critical curves and caustics is very important to

understand the qualitative behaviour of lens mapping: �The number of images changes by two if

and only if the source crosses a caustic� [26] which is valid for gravitational lenses with a smooth

surface mass density. Depending on the direction of crossing, two images with opposite parity

merge into one image on the critical curve and then disappear or vice versa. Figure 17 shows an

example for critical lines and caustic of a non-singular, circularly symmetric lens. Magni�cation

is an important tool for the observation of gravitationally lensed images because astrometry gets
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preciser the brighter the images are. But as we will see later on, we can not just choose the

brightest images for the determination of H0 because we also have to ful�ll additional geometrical

criteria. The partial derivatives in equation 3.81 can also be written as

Figure 17: Imaging of a point source by a non-singular, circularly symmetric lens. Left: image
positions and critical lines; right: source position and corresponding caustics [15].

∂βi

∂θj
= δij −

αi

θj
= δij −

∂2ψ

∂θi∂θj
= δij − ψi

j (3.84)

using the lens equation and the de�nition of the lensing potential. We can separate this matrix

into its trace and trace-free part

∂βi

∂θj
=

(
1− κ 0

0 1− κ

)
−

(
γ1 γ2

γ2 −γ1

)
(3.85)

where κ is the convergence de�ned in equation 3.62 and

γ1 =
1

2
(ψ1

1 − ψ2
2), γ2 = ψ1

2 = ψ2
1 (3.86)

are the components of the shear

γ = γ1 + iγ2. (3.87)

Now, we are able to express the magni�cation by the convergence and the shear components

µ =
1

(1− κ)2 − γ12 − γ22
(3.88)

and we will need this relation later on as one way to break the so called mass-sheet degeneracy.

3.3.5 Time Delay

Generally we observe multiple images of one source but the light travel time along the rays are

di�erent. This time delay between multiple images has two reasons: First, the individual rays are

de�ected by di�erent angles and therefore their geometrical lengths are di�erent. Second, the light

rays are retarded by the gravitational potential of the lens which is known as the Shapiro delay:

• Geometrical Time Delay: According to �gure 18 we can express the distance wds from

the source to the de�ector with the help of the cosine law

w2
ds = w2

s + w2
d − 2wswd cos(θ − β) ≈ (ws − wd)

2 + wswd(θ − β)2 (3.89)

using the �rst-order Taylor expansion of the cosine in the second step. Furthermore we can
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Figure 18: Illustration of the geometrical length di�erence of the de�ected and unde�ected light
paths. The total di�erence can be expressed by the angle di�erence θ − β [13].

approximate

wds ≈ ws − wd +
wswd

2(ws − wd)
(θ − β)2 (3.90)

and invert the equation to write

ws − wd ≈ wds − wdws(θ − β)2. (3.91)

The comoving geometrical distance between the de�ected and the unde�ected path lengths

is thus

∆w = wd + wds − ws ≈
wswd

2(ws − wd)
(θ − β)2 ≈ wswd

wds

(θ − β)2

2
(3.92)

where we have neglected terms of the order O([θ − β]4). The geometrical time delay can

hence be written as

∆tgeo =
∆w

c
=
wswd

wdsc

(θ − β)2

2
. (3.93)

• Gravitational Time Delay: The Shapiro delay was �rst observed in 1964 by I. I. Shapiro

[27]. Due to a time dilatation of the photons, electromagnetic waves passing a strong gravi-

tational �eld take longer to travel to a target than they would take without the presence of

a gravitational �eld. This gravitational time delay can generally be calculated by

∆tgrv = −2

∫ observer

source

dw′φ(θw
′, w′)

c
(3.94)

or in terms of the lensing potential

∆tgrv(θ) = −1

c

wswd

wds
ψ(θ) (3.95)

The two contributions of the time delay can be added to derive an expression for the total time

delay

∆t(θ) =
1

c

wswd

wds

(
(θ − β)2

2
− ψ(θ)

)
. (3.96)

According to Fermat's principle, the light-travel time is stationary for the actual trajectory of

the light ray compared to neighbouring trajectories. The stationarity of light-travel time can be
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expressed by

∂i∆t = 0. (3.97)

If the source is far away from the lens, one image is formed. Further images are formed in pairs as

the source moves behind the lens and therefore the total number of images is odd. This odd-number

theorem is not valid for all observations, because images might be merged together, loacted behind

the lens or just to faint to be observable. The time delay function depends on observable quantities

as the distances of source and lens or the lensing potential which can be calculated for various lens

models. The comoving radial distances w depend on the redshift according to equation 2.25. This

integral might be di�cult to solve for a given cosmological model but in any case the relation

w ∝ 1

H0
(3.98)

is valid. This leads to a very fundamental conclusion for this thesis: The time delay is proportional

to the inverse of the Hubble constant

∆t ∝ 1

H0
. (3.99)

Turning this argument around, we are able to determine Hubble's constant based on observable

quantities. In section 4 we will see in detail, what these quantities are and how to determine them.

3.3.6 Mass-Sheet Degeneracy and its Elimination

To determine the Hubble constant we have to �nd a suitable mass model of the lens which re-

produces the observations and leads to an e�ective lensing potential. Possible lens models are a

point mass, a singular isothermal sphere, a non-singular isothermal sphere, or elliptical models and

will be discussed in detail later on. One can ask now, if such a model of the mass distribution

is unique. In 1985 Falco et al. discovered, that there exists a transformation which leaves the

observable images unchanged but creates a family of di�erent mass distributions. This invariance

leaves the relation between the intrinsic and observed ellipticity unchanged and therefore it can

not be broken by just using measurements of the distortion of the background sources. This trans-

formation and the connected ambiguity is known as the mass-sheet degeneracy:

The observable data (image position, �ux ratios, image shapes,...) are best �t by the mass distri-

bution κ(θ). The transformation

κλ(θ) = (1− λ) + λκ(θ) (3.100)

then creates a band of equally good �ts to the data which can be shown by inserting into the lens

equation

β = θ − αλ(θ)

= θ − ((1− λ)θ + λα(θ)) (3.101)

where quantities with the index λ correspond to the scaled mass distribution κλ(θ). Furthermore

we have to satisfy

αλ(θ) = ∇ψλ(θ) (3.102)

with

ψλ(θ) =
1− λ

2
|θ|2 + λψ(θ) (3.103)

and the Poisson equation

∇2ψλ = 2κλ. (3.104)
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Combining these equations we receive the transformed lens equation

β

λ
= θ − α(θ) (3.105)

for the mass distribution κλ which has the same form as the untransformed equation up to a scaling

factor λ−1 which is not directly observable. The second term in our original transformation de-

scribes a rescaling of the mass distribution κ(θ) and the �rst term can be related to a homogeneous

surface mass density κh = 1 − λ which is added to the scaled original mass density and explains

the name of this degeneracy.

As the mass distribution κ is not uniquely de�ned, nor is the lensing potential ψ. But to calcu-

late ψ and derive a value for H0 we have to �nd an independent way of breaking this mass-sheet

degeneracy. There are di�erent possible methods for doing so:

• The time delay ∆t is proportional to the di�erence in the lensing potential calculated at two

di�erent image positions and therefore is changed by this transformation. Generally, we can

use the value of Hubble's constant from other cosmological observations to break the mass

sheet degeneracy but as we are interested in calculating H0 independently, this method is

not suitable for our purpose.

• The critical surface density Σcr depends on the lens geometry as well as on the distances

between source, lens and observer. If we are able to detect sources at di�erent distances ws1

and ws2 de�ected by the same lens, the resulting convergence κ = Σ/Σcr will be di�erent

for the individual sources. The mass-sheet degeneracy can be broken by this additional

information of a second lensed source but unfortunately, the possibility for such an event is

very low.

• As we see in equation 3.105 the source position β is not invariant under the mass-sheet

transformation. Generally we are not able to observe β, unless the lens moves relatively

to the source. A time dependent lens system might provide the information of the lensed

and unlensed source and with the help of this additional information we can eliminate the

mass-sheet degeneracy.

• The convergence and shear transform as

1− κλ = λ(1− κ), γλ = λγ (3.106)

and thus the magni�cation transforms according to

µλ =
1

(1− κλ)2 − γλ2
=

1

λ2
1

(1− κ)2 − γ2
∝ λ−2. (3.107)

In order to break the mass-sheet degeneracy, we have to �nd an independent way of measuring

the relative magni�cation of the images. One method uses the fact, that gravitational lensing

conserves the surface brightness and if we know the original size of the galaxy we can calculate

the magni�cation. The size of elliptical galaxies can be determined statistically, based on the

velocity dispersion and the surface brightness (which are both independent of gravitational

lensing) with the help of the fundamental plane. The other method is based on two e�ects

of gravitationally lensed �elds: on the one hand the number of observable galaxies increases

because of the magni�cation. On the other hand the number of galaxies per solid angle

decreases because the solid angle is stretched due to the lens mapping. By quantifying

these two e�ects with the help of empirical estimations for the logarithmic slope of the

intrinsic number count function, one can calculate the magni�cation and break the mass

sheet degeneracy.
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All these methods can help us to break or at least constrain the mass-sheet degeneracy. But

even without knowing about the exact value of our transformation parameter λ, we know that

only certain values for λ are physically meaningful. The non-negativity of the surface mass-sheet

density restricts possible values of λ and consequently possible values of H0.

3.4 Lens Models

So far, we have only assumed point masses as gravitational lenses. This simple model is very useful

to study the general behaviour and e�ects of gravitational lensing, but in order to study real mass

distributions and calculate their lensing potentials, we have to consider further mass models. As

Newtonian gravity is linear, we can just superpose the mass distributions or associated lensing

potentials to derive more complex models. In this chapter we want to discuss the most prominent

lens models which can be used to �t the observed data.

3.4.1 Singular Isothermal Sphere (SIS)

We are mainly interested in gravitational lensing by galaxies and therefore we have to �nd a way to

describe the mass and density distribution in a galaxy. The most prominent model is a SIS where

we assume an equation of state to describe the single stars thermodynamically like gas particles

and the Euler equation to derive a density pro�le. These assumptions are generally justi�ed but

we have to keep in mind that this is still an idealised model which has to be modi�ed later on. We

start from the equation of state

p =
ρkBT

m
(3.108)

where p is the pressure, ρ is the density, m is the mass of a single star and T is the associated

temperature which is assumed to be constant in the galaxy. The mass of each star in the galaxy

should be the same and we can relate the velocity dispersion σ to the temperature

mσ2 = kBT. (3.109)

As the temperature is homogeneous in the galaxy, so is the velocity dispersion. The problem is

spherically symmetric and we can simplify Euler's equation

~∇p
ρ

= −GM(r)

r2
~er (3.110)

to a one dimensional problem with the radial distance as remaining coordinate. Using the equation

of state we can integrate Euler's equation to derive one solution for the density pro�le

ρ(r) =
σ2

2πG

1

r2
∝ r−2. (3.111)

This density distribution reproduces the �at rotation curves of galaxies and σ can simply be

measured with the help of spectroscopy through line widths. In many cases this simple model

reproduces the lensing properties very well. The surface mass density is the projection along the

line of sight and can be calculated to be

Σ(ξ) =
σ2

2Gξ
(3.112)

with the radial distance ξ. The projected mass enclosed by the radius r can be expressed by

M(r) = 2π

∫ r

0

dξΣ(ξ)ξ =
πσ2r

G
(3.113)
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and we obtain the lensing potential

ψ = 4π
(σ
c

)2 wds

ws
|~θ|. (3.114)

The de�ection angle of a SIS

~α0 = 4π
(σ
c

)2 wds

ws

~θ

|~θ|
(3.115)

is obviously independent of θ. If |β| < α0 we expect two solutions whose separation is of the order

of arcseconds and independent of θ. The magni�cation of a SIS is given by

µ(θ) =

∣∣∣∣ θ/α0

θ/α0 − 1

∣∣∣∣. (3.116)

This model is suitable for many lenses but it needs further modi�cations in order to describe more

complex mass distributions.

3.4.2 Non-Singular Isothermal Sphere

Obviously, the SIS can not be a physically correct model because the density might diverge for

r → 0 and the total mass might be in�nite without a de�ned outer bound of the galaxy. The outer

bound can be chosen according to the size of the galaxy and the diverging density can be corrected

by introducing a core radius rc with the associated density pro�le of the non-singular isothermal

sphere

ρ(r) =
σ2

2πG

1

r2 + r2c
. (3.117)

De�ning the angular core radius θc = rc/wd we can derive the surface mass density

Σ(θ) =
σ2

2Gwd

1√
θ2c + θ2

. (3.118)

Therefore the convergence is given by

κ(θ) =
κ0

2
√
θ2c + θ2

(3.119)

with

κ0 = 4π
σ2

c2
wds

ws
. (3.120)

If the angle θ is much larger than the angular core radius θ � θc the e�ective lensing potential

ψ(θ) = κ0

(√
θ2c + θ2 − θc ln

θc +
√
θ2c + θ2

θ

)
(3.121)

can be approximated by

ψ(θ) ≈ 2κ0
√
θ2c + θ2. (3.122)

The de�ection angle

α(θ) =
κ0
√
θ2c + θ2

θ
(3.123)

is independent of θ for vanishing θc. Typical images of a non-singular isothermal sphere can be

seen in �gure 19.
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Figure 19: Two extended sources lensed by a non-singular isothermal sphere. The left image shows
the lensed image positions with critical curves and the right image shows the original position
of the sources with the caustics. The inner source is located close to the line of sight and is
mapped onto two long tangentially oriented arcs and a faint image at the centre, whereas the outer
source is imaged onto a radially elongated image which consists of two merging images and a third
tangentially oriented image [15].

3.4.3 Constant Matter Sheet and Constant Shear

• It can be useful to consider a sheet of constant density in order to describe external mass

distributions. The matter sheet of constant convergence κ0 has the lensing potential

ψ(θ) =
κ0
2
θ2. (3.124)

• Furthermore we can consider the case of vanishing convergence but constant shear created

by external mass distributions. The lensing potential is given by

ψ(θ) =
γ1
2
(θ21 − θ22) + γ2θ1θ2. (3.125)

Combining these two lensing potentials we can model the environment like clusters or dark matter

halos of the lens. The lensing potential

ψ(θ1, θ2) =
κ

2
(θ21 + θ22) +

γ

2
(θ21 − θ22) (3.126)

is very useful to describe the surroundings of a lens and to introduce external e�ects.

3.4.4 Elliptical Lens Model

If the lensing galaxy itself is not circularly symmetric, we have to develop further models for the

mass distribution and lensing potential in order to model the observations. We assume a galaxy

with elliptical isodensity contours which is in agreement with real matter distributions in galaxies.

The surface mass density can be described by

Σ(θ1, θ2) =
1√

θ2c + (1− ε)θ21 + (1 + ε)θ22
(3.127)

with the ellipticity ε, the angular core radius θc and the orthogonal coordinates θ1 and θ2. This

model has analytical solutions only for some special cases. Therefore it is more convenient and

still su�cient to use the elliptical e�ective lensing potential

ψ(θ1, θ2) =
wds

ws
4π
(σ
c

)2√
θ2c + (1− ε)θ21 + (1 + ε)θ22 (3.128)
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which �ts the real lenses remarkably well for small ε. If we deal with non-circular lenses, the

image, lens and source do not necessarily have to lie on a line and we can not analyse the system

as a one dimensional problem. The one dimensional time delay function has to be replaced by a

two dimensional time delay surface for an elliptical lens model. The mapping of a non-singular

isothermal sphere can be seen in �gure 20. All these models can be used to describe the grav-

Figure 20: Lensing by an elliptical lens of a source which is moving from the optical axis outwards.
The left image shows the lensed image positions with the critical curves and the right image shows
the original position of the source with the caustics [15].

itational lenses and their environment. According to the required accuracy we can choose even

more sophisticated models, but in most cases the presented models and their superpositions are

su�cient for our purposes.
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4 Measuring Hubble's Parameter by Gravitational Lensing

Gravitational lensing is a well known e�ect and many lenses are observed. But among all these

lensing e�ects there are only a few that produce multiple images of time dependent sources. If

the lensed source shows a characteristic time dependent behaviour (e.g. supernova explosion), the

information does not reach us simultaneously, but with a certain time di�erence ∆t between the

single lensed images. As we have seen in the previous section, this time delay can be used to

measure the Hubble constant. But in order to do so, we need information on the image positions,

magni�cation, cosmological parameters, redshifts and especially the lens' mass distribution. In

this chapter, we want to describe observable quantities and how to derive the essential lensing

parameters. Furthermore we investigate the errors and their relative in�uence on the value of H0.

This analysis enables us to distinguish between important parameters which should be measured

more precisely and other parameters, which have a negligible in�uence on Hubble's parameter. At

the end of this chapter we study the quadruple gravitational lens B1608+656 regarding its mass

model dependence and the in�uence of measurement uncertainties.

4.1 Refsdal's Proposal

In 1964 S. Refsdal published a paper �on the possibility of determining Hubble's parameter [...]

from the gravitational lens e�ect� [23]. Although no gravitational lens had been observed at

that time, the theory on gravitational lensing prospered. Refsdal based his theory on simpli�ed

assumptions and obtained a reasonable expression for H0 depending on observational parameters.

He assumed the lensing galaxy to be spherically symmetric and the redshift of lens and source to

be small. Hence he was able to use the linear distance-redshift relation and derived an expression

for Hubble's parameter

H0 =
zszdα12

2

∆t(zs − zd)

√
L1/L2 − 1√
L1/L2 + 1

(4.1)

with the redshift of the source zs and de�ector zd, the time di�erence ∆t, the image separation

α12 and the luminosities of the individual images L1 and L2. Refsdal admits that this model

is too simple and corrections for the actual mass distribution and more suitable galaxy models

are necessary. Furthermore he pointed out that the observation of such a lensing event with

measurable time delay should be possible every third year. Refsdal was the �rst who considered

this new method of determining the Hubble constant and his theoretical foundation developed

during the next years. The two main aspects which had to be clari�ed are the model dependences

and the mass sheet degeneracy with its correction [28].

4.2 What do Gravitational Lens Time Delay Measure?

The key information for measuring the Hubble constant by gravitational lensing is the time delay

between di�erent images of one source, because without any time di�erence there would be no

possibility to determine the expansion rate. The time delay is based on the geometrical di�erence

of the light paths on the one hand and on a time dilatation of the photons in the gravitational

potential on the other hand. Therefore we want to analyse in a �rst step what information we can

draw from the time delay ∆t and we want to derive relations between the observable quantities

and Hubble's parameter. This section is based on two papers by C. S. Kochanek published in the

year 2002 [29] and 2003 [30] and the book �Gravitational Lensing: Strong, Weak and Micro� by P.

Schneider, C. S. Kochanek and J. Wambsganss [16].

4.2.1 Analytic Models for Gravitational Lenses

First we try to �nd analytic solutions for the time delay function starting from axially symmetric

mass distributions up to more sophisticated lens models. For simplicity we introduce the dimen-
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sionless time delay

τ =
1

2
(x− u)2 +

1

2
(y − v)2 − ψ(x, y) (4.2)

with the angular coordinates x and y in the lens plane and the angular coordinates u and v in

the source plane. The dimensionless time delay is related to our previously introduced time delay

(equation 3.96) by

∆t =
1

c

wswd

wds
τ (4.3)

and we observe images at stationary points of the time delay

∇τ = 0. (4.4)

The lens produces two images at the radii R1 and R2 with an average radius

〈R〉 = R1 +R2

2
(4.5)

and they de�ne an annulus of width

∆R = R2 −R1 (4.6)

where we have assumed R2 > R1 without loss of generality.

Spherical Symmetric Lens: In the case of an axially symmetric mass distribution, the lensing

potential depends only on the radial coordinate

ψ(x, y) = ψ0(R) (4.7)

and the two images at R1 and R2 lie on a line through the lens centre. The geometrical time delay

between the two images can be written as

∆τgeo =
1

2
(R2

2 −R2
1)(1− 2〈κ〉) (4.8)

where

〈κ〉 = 2

R2
2 −R2

1

∫ R2

R1

κ(u)udu (4.9)

is the average convergence in the annulus bounded by the images which represents the average

surface mass density in units of the critical mass density. In order to calculate the geometrical

delay we only need the derivative of the lensing potential because the Poisson equation states

∇2ψ = 2κ (4.10)

and the radial derivatives ψ′
0(R) at the image positions can be expressed by

R2ψ
′
0(R2) = R1ψ

′
0(R1) + 〈κ〉(R2

2 −R2
1) (4.11)

which does only depend on the potential's derivatives at the image positions. In case of an isother-

mal lens (κ = 1/2) the geometrical time delay vanishes. Therefore we only have to consider the

gravitational time delay which depends on the surface density distribution in the annulus and the

mean surface density. The total time delay is the sum of geometrical and gravitational time delay

which can be expanded in a series of ∆R/〈R〉. Assuming that the surface density in the annulus

can be described by a power law

κ = κ1

(
R

R1

)1−η

(4.12)
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de�ned by the logarithmic slope of the density (ρ ∝ R−η), the time delay can be expressed as

∆τ = (R2
2 −R2

1)

(
(1− 〈κ〉)− 1− η〈κ〉

12

(
∆R

〈R〉

)2

+O

([
∆R

〈R〉

]4))
. (4.13)

The �rst term represents the exact solution for the SIS (η = 2 and 〈κ〉 = 1/2) and the second-order

correction adjusts for small changes in the Einstein radius with the shape of the density pro�le. For

this simple model we have seen, that the time delay depends on the image positions, the average

surface density in the annulus and the logarithmic slope of the density. We will see later on, how

these quantities can be determined but �rst we want to study more complex and therefore more

realistic lens models.

Axially Symmetric Lens with External Shear: Real lenses are rather non-symmetrical and in

a �rst step we keep the concept of an axially symmetric lens but add external shear. In the

analytical model we assume the external shear to be created by a quadrupole which is de�ned by two

amplitudes and its orientation. The e�ects of higher order angular structures are negligibly small.

If the quadrupole is generated entirely by material outside the annulus region, the quadrupole

potential

ψ2 =
γext
2
R2 cos(2(ϕ− ϕext)) (4.14)

can be expressed by the amplitude of the external shear γext and its orientation ϕext. We expect

two images at the positions (R1 cosϕ1, R1 sinϕ1) and (R2 cosϕ2, R2 sinϕ2). This information can

be used to solve for the mass inside the Einstein ring and the amplitude of the external shear. We

expand the time delay in a series of ∆R/〈R〉

∆τ = (R2
2 −R2

1)

[
T0 +

∆R

〈R〉
T1 +

(
∆R

〈R〉

)2

T2 +O

[(
∆R

〈R〉

)3
]]

. (4.15)

The �rst term

T0 = (1− 〈κ〉) sin2
(
∆ϕ12

2

)
(4.16)

depends on the image separation ∆ϕ12 = ϕ1 − ϕ2 and yields the same result as a spherically

symmetric lens for collinear images (∆ϕ12 = π). The �rst order correction

T1 = −1

2
(1− 〈κ〉) sin(∆ϕ12) cot(ϕ1 + ϕ2 − 2ϕext) (4.17)

is de�ned by the orientation of the shear axis and vanishes for collinear images as expected for the

spherical lens. The second-order correction

T2 =
1

12
[−(1− 〈κ〉)(4 + 3 cos(∆ϕ12) + 〈κ〉(η − 1)] (4.18)

depends only on the surface density in the annulus. Comparing the axially symmetric lens with

and without external shear, we see that new terms occur which depend only on derivatives of the

monopole potential and on the mean surface mass density in the annulus.

Axially Symmetric Lens in a General Quadrupole: In a next step we want to consider the general

case of a spherical mass distribution embedded in a quadrupole structure. The quadrupole potential

can be split up in two shear components: the internal shear γint generated by quadrupole structures

within the annulus and the external shear γext based on the structure of the environment. Hence,

the quadrupole lensing potential is given by

ψ2 =
1

2

(
γextR

2 + γint
〈R〉4

R2

)
cos(2(ϕ− ϕγ)) (4.19)
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where ϕγ denotes the shear angle. De�ning the shear ratio

fint =
γint

γint + γext
(4.20)

we can express the leading term in the time delay series as

T0 = −(1− 〈κ〉) sin2(∆ϕ12/2)

1− 4fint cos2(∆ϕ12/2)
(4.21)

which has again the expected (1− 〈κ〉) scaling. Furthermore we can see that the ratio of internal

and total shear fint determine the angular dependence of the time delay. It is also important to

mention that the delay depends only little on the explicit structure of the quadrupole if the images

are almost collinear with ϕ2 = ϕ1+π+ δϕ, |δϕ| � 1 and the expansion terms are almost identical

to those for a spherical lens (equation 4.13). This means, that lensing systems with nearly collinear

images are quali�ed best for our purpose, because uncertainties in the lens model in�uence the

total error only on small scales. We will rediscover this statement of collinear images later in the

statistical approach.

4.2.2 Semianalytic Model for Gravitational Lenses

Even the analytical model of a spherical lens in a general quadrupole is not su�cient to describe

realistic lenses. Therefore we need semianalytic corrections in order to determine the complete

structure of the lens' mass distribution. The spherical lens is modelled by the mass inside the

average image radius and the surface density κ(r) in the annulus between the images. It can be

parametrised by the mean surface density 〈κ〉 and the logarithmic slope η according to κ(r) ∝ r1−η.

The monopole de�ection is then given by

ψ′
0(R) = b0

〈R〉
R

+
2

R

∫ R

〈R〉
κ(r)rdr (4.22)

where b0 determines the mass inside 〈R〉. The monopole can be combined with a general quadrupole

ψ2(R,ϕ) =
1

2
γextR

2 cos(2(ϕ− ϕext)) +
1

2
γint

〈R〉4

R2
cos(2(ϕ− ϕint)) (4.23)

based on the internal and external shear components with the associated amplitudes and orienta-

tions (γint, ϕint) and (γext, ϕext). Now we are able to �t our semianalytic model to the observed

image position: The values of b0 and the shear components should minimize the di�erences in

the projected source position. The remaining expressions depend on the monopole structure in

the annulus, namely 〈κ〉 and η. These two parameters can not be determined from the available

constraints and have to be speci�ed for each individual lens. We obtain the dimensionless time

delay as a function of these 2 free parameters by this �t procedure. According to Kochanek the

Hubble constant can thus be expressed in the form

H0 ≈ A(1− 〈κ〉) +B〈κ〉(η − 1) + C (4.24)

where the three coe�cients are obtained from the �t and scale inversely with the measured time

delay. The mass sheet transformation can simply be added to this model: Let κext be the additional

mass sheet and 〈κ〉0 the annular surface density. Hence the convergence of this model is reduced

to 〈κ〉 = (1− κext)〈κ〉0 and we receive a corrected expression for the Hubble constant

H0 ≈ (1− κext) (A[1− 〈κ〉0(1− κext)] +B〈κ〉0(η − 1) + C) (4.25)
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with the scaling H0 ∝ (1− κext) due to the mass sheet degeneracy.

This semianalytic approach clearly outlines the main dependences for the Hubble constant and

the question �what do gravitational lens time delay measure� can be satisfactorily answered: The

time delay mainly depends on the position of the lensed images and the surface density in the

annulus between the images. The mean annular surface density 〈κ〉 is more important than its

actual spatial distribution. In two-image lenses, where the images lie on opposite sides of the

lens galaxy, the time delay hardly depends on the angular structure of the lens whereas the time

delays of four-image lenses are very sensitive to the quadrupole structure of the potential. The

semianalytic model produces simple scaling solutions for the Hubble constant that can be veri�ed

by fully numerical methods.

4.2.3 CDM Lens Model

We are interested in �xing the values of 〈κ〉 and η in order to obtain a value for the Hubble constant
according to equation 4.24. Assuming a general lens model we try to determine these parameters

based on observable quantities. Focussing on early type galaxies, the density can be modelled by

the Hernquist pro�le

ρH(r) =
M0H

2π

rH
r(r + rH)3

(4.26)

with the scale length rH = 0.55Re so that the Hernquist model locally looks like a Vaucouleurs

pro�le with the e�ective radius Re. The e�ective radius de�nes the area of the projected galaxy

which emits half the luminosity and thus determines the density distribution of the visible baryons,

respectively stars. The mass enclosed by the radius r in the Hernquist pro�le can be expressed by

MH(< r) =M0H
r2

(r + rH)2
. (4.27)

The galaxy's Hernquist pro�le is embedded into a dark matter halo. For typical halo masses, it

can be described by a Navarro�Frenk�White (NFW) pro�le

ρN (r) =
Mvir

4πf(c)

1

r(r + rs)2
(4.28)

depending on the virial radius rvir, the scale radius rs which has to be �xed for the individual

halo, the mass Mvir inside rvir and the function

f(c) = ln(1 + c)− 1

1 + c
(4.29)

of the concentration c = rvir/rs. The enclosed mass in the NFW model is

MN (< r) =
Mvirf(r/rs)

f(c)
. (4.30)

In order to determine the lensing properties of these potentials we have to calculate the projected

surface density. Therefore it is convenient to de�ne the function

F(x) =
1√

|x2 − 1|

arctan(
√

|x2 − 1|) x > 1

arctanh(
√
|x2 − 1|) x < 1

(4.31)

with the normalized radial coordinate x = R/rH . Based on [31] the projected surface density of

the Hernquist pro�le can be written as

ΣH(x) =
M0H

r2H

(2 + x2)F(x)− 3

2π(x2 − 1)2
=
M0H

r2H
Σ̂H(x) (4.32)
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and the mass inside the radius x in the projected plane is

M(< x) =M0H
x2(1−F(x))

x2 − 1
=M0HM̂H(< x). (4.33)

In the same way we can express the surface density

ΣN (x) =
Mvir

r2s

1−F(x)

2πf(c)(x2 − 1)
=
Mvir

r2s
Σ̂N (x) (4.34)

and the enclosed mass

MN (< x) =Mvir

ln
(
x
2

)
+ F(x)

f(c)
=MvirM̂N (< x) (4.35)

for the NFW-model. The virial mass and radius are connected by the relation

Mvir =
4π

3
∆vir(z)ρu(z)r

3
vir (4.36)

with the virial overdensity ∆vir(z) and the mean matter density at the lens redshift

ρu(z) =
3H2

0

8πG
Ω0(1 + z)3. (4.37)

These expressions can empirically be approximated by

∆vir(z) ≈
18π2 + 82ξ − 39ξ2

Ω(z)
, ξ = Ω(z)− 1 (4.38)

and

Mvir = 0.232

[
(1 + z)rvir
100h−1kpc

]3(
Ω0∆vir

200

)
1012hM�. (4.39)

Furthermore the average concentration can be written as

c =
9

1 + z

(
Mvir

8.12 · 1012hM�

)−0.14

. (4.40)

The important statement of this derivation is, that of the total mass only the fraction

fb =
Ωb,cold

Ω0
(4.41)

cools to form stars. This fraction describes the ratio of baryons to the total mass of the galaxy.

Hence the mass of the Hernquist pro�le has to be M0H = fbMvir and the remaining mass of the

halo is (1− fb)Mvir. The convergence can be expressed in terms of the critical surface density

κ(R) =
Mvir

Σc

[
fb
r2H

Σ̂H

(
R

rH

)
+

1− fb
r2s

Σ̂N

(
R

rs

)]
. (4.42)

It depends on known or observable quantities and the cold baryon mass fraction fb. We can now �t

equation 4.42 in the annulus between the two images with a function κ ∝ R1−η. The �t provides

the mean surface density in the annulus 〈κ〉 and the logarithmic slope η of the surface density.

This CDM model depends on empirical relations, like the expressions for the virial mass and the

concentration parameter and it neglects other e�ects e.g. the compression of dark matter by the

cooling of the baryons. But although the model can be parametrized in an even more sophisticated

way, it o�ers one fundamental method of determining 〈κ〉, η and therefore H0.
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4.2.4 Results for the Semianalytic CDM Model

In the previous sections we saw how we can determine the Hubble constant based on a semianalytic

model for the lensing mass distribution. Kochanek [30] uses four well-characterized time delay

lenses to apply this model: PG 1115+080, SBS 1520+530, B1600+434 and HE 2149-2745. In a

�rst step we determine the baryonic mass distribution using the photometric pro�le of the lensing

galaxy and derive parameters which de�ne the lens' geometry. The concentration c and the cold

baryon fraction fb remain as free variables in equation 4.42. The mean convergence 〈κ〉 and the

logarithmic slope η can now be plotted depending on these free parameters. The two plots shown as

examples for HE 2149-2745 in �gure 21 and �gure 22. We see that 〈κ〉 and η depend only weakly

Figure 21: Average surface density 〈κ〉 of HE 2149-2745 as a function of the halo concentration
c = rvir/rs and the mass fraction of cold baryons in the visible galaxy fb =M0H/Mvir. The solid
lines are contours of equal 〈κ〉 and the heavy solid contour indicates an isothermal model with
〈κ〉 = 0.5. The heavy dashed line shows the most likely halo concentration and the light dashed
contours show the 1, 2 and 3 σ ranges for the concentration distribution [30].

on the concentration. Therefore we can simplify the results by considering the concentration-

probability-averaged values of 〈κ〉 and η as a function of fb only. The results of this simpli�cation

are shown in �gure 23 and 24 where the diagonally cross-hatched region shows the lower bound on

fb based on the local inventory of cold baryons. The horizontally cross-hatched region shows the

upper bound on fb, set by the global ratio of Ωb/Ω0 estimated from the CMB. The results for the

four gravitational lenses are almost similar for a �xed cold baryon fraction. For baryon fractions

similar to local accounting for cold baryons (fb ≈ 0.02) the convergence and the logarithmic slope

are remarkably close to the isothermal values of 〈κ〉 = 0.5 and η = 2. Whereas the CMB value for

the cold baryon fraction suggests a lens model roughly in the middle of isothermal and a constant

M/L model. Finally we can calculate the value of the Hubble constant according to equation 4.24.

The coe�cients for the single lenses are presented in table 1. In �gure 25 we see that the four

Lens A B C
PG 1115+080 92.3 4.6 0
SBS 1520+530 93.2 10.5 0
B 1600+434 103.9 20.6 0
HE 1149-2745 84.4 13.6 0

Table 1: Coe�cients in units of km s−1Mpc−1 [30].
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Figure 22: Average logarithmic slope (κ ∝ R1−η) in the annulus between the images of HE 2149-
2745 as a function of the halo concentration c = rvir/rs and the mass fraction of cold baryons in
the visible galaxy fb = M0H/Mvir. The solid lines are contours of η and the heavy solid contour
indicates an isothermal model with η = 2. The heavy dashed line shows the most likely halo
concentration and the light dashed contours show the 1, 2 and 3 σ ranges for the concentration
distribution [30].

Figure 23: Concentration-averaged estimates for 1− 〈κ〉 as a function of fb for the four mentioned
gravitational lenses. The solid (dashed) curves represent the models with (without) adiabatic
compression. The horizontal line marks the expected value for isothermal models [30].



4.3 Statistical Assessment of Lens Model Dependences and their Impact on H0 39

Figure 24: Concentration-averaged estimates for η as a function of fb for the four mentioned
gravitational lenses. The solid (dashed) curves represent the models with (without) adiabatic
compression. The horizontal line marks the expected value for isothermal models [30].

lenses yield similar values of H0 as a function of fb. The �nal value of H0 depends on the halo

model: If the baryon density is restricted to agree with the local baryon density, equation 4.24

yields H0 = (52± 6)km s−1Mpc−1 and if it is restricted to agree with the global baryon inventory,

it yields H0 = (65± 6)km s−1Mpc−1.

Although the calculation of the Hubble constant can be complex in detail, we have seen the whole

process of the determination and know that H0 mainly depends on the mean convergence in the

annulus 〈κ〉 and the logarithmic slope η, which can both be related to the cold baryon mass fraction

fb.

4.3 Statistical Assessment of Lens Model Dependences and their Impact on

H0

Time delays between lensed multiple images are a very elegant way to measure the Hubble constant.

But in many cases, the accuracy of this method is limited by measurement errors or degeneracies

of the lensing potential. Therefore it is convenient to use a statistical approach in order to limit the

bounds of H0. Even if the individual lenses do not supply enough information that allow detailed

investigation of the mass distribution, a combination of many lenses can put tight constraints on

the Hubble constant. This approach was realized by Saha [32] who combined 10 lensed quasar

systems to constrain Hubble's parameter. But unfortunately this method su�ers from selection

e�ects: Obviously it is more likely to observe brighter quasars, but bright quasars are generally

in denser environments such as groups and clusters. Generally spoken, we have to ensure that

our lenses are randomly distributed but in most cases we can not be sure about this requirement.

Another kind of statistical approach is presented by Oguri 2007 [33]. In contrast to Saha's method

who �rstly �ts image positions of individual lens systems and combines them afterwards, Oguri

apply the statistics to the lens parameters. This has the advantage that we can also include lens

systems that have too few constraints to determine the lensing potential properly. Using analytic

and numerical methods, this approach enables us to distinguish between image con�gurations

which are sensitive to the detailed structure of the lens and image con�gurations which are stable.

Sensitivity means, that even small variations in the potential lead to remarkable changes in the
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Figure 25: The Hubble constant as a function of fb. The heavy curves show the results for the
individual lenses. The shaded envelope bracketing the curves is the 95% con�dence region for the
combined lens sample. The vertical bands show the lower bound on fb from local inventories,
including its H0 scaling, and the upper bound from the CMB. The horizontal band shows the
estimate of H0 = (72± 8)km s−1Mpc−1 by the HST Key Project [30].

observational parameters. This distinction is very helpful because it is almost impossible to extract

an accurate value of H0 from a very sensitive image con�guration. This analysis can hence be used

to select which lens systems are more suitable for further determinations of H0.

4.3.1 Introducing Dimensionless Parameters

We want to describe the lensing properties based on dimensionless parameters and derive a distri-

bution of time delays by adopting realistic lens models. We introduce a coordinate system with its

origin in the centre of the lens and a source at the position ~u = (u1, u2). The image positions can

be expressed by polar coordinates

~xi = (xi, yi) = (ri cos θi, ri sin θi) (4.43)

and the time delay between these images is

∆tij =
1

c

wdws

wds

(
(~xi − ~u)2

2
− (~xj − ~u)2

2
− ψ(~xi) + ψ(~xj)

)
(4.44)

which depends on parameters that are not directly observable. According to Witt et al. [34] a

generalized isothermal potential ψ(~x) can be separated in the following way

ψ(~x) = rF (θ) (4.45)

where r is the radial coordinate and F (θ) is a function of θ. Using this result, the time delay can

be expressed in a simpli�ed form

∆tij =
1

2c

wdws

wds
(r2j − r2i ) (4.46)
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which depends only on the observable distance of the images from the centre of the lens. It is

convenient to introduce the reduced time delay

Ξ = 2c

∣∣∣∣ ∆tij
r2j − r2i

∣∣∣∣ wds

wdws
=

∣∣∣∣ (~xi − ~u)2 − (~xj − ~u)2 − 2ψ(~xi) + 2ψ(~xj)

r2j − r2i

∣∣∣∣ (4.47)

which is unity if the lensing potential is isothermal but can deviate from 1 if the potential is

perturbed e.g. by substructures or external shear. Using the results of Kochanek (equation 4.13),

the reduced time delay can be expressed by Ξ = 2(1− 〈κ〉) to �rst order in ∆R/〈R〉. The reduced
time delay measures the complexity of the lens system and indicates deviations from the simple

isothermal mass distribution. As Ξ is a dimensionless quantity, we can directly compare systems

of di�erent reduced time delays regardless of the actual size of the lens. Another important

dimensionless quantity of the lens system is the asymmetry of the images de�ned by

Rij =

∣∣∣∣rj − ri
rj + ri

∣∣∣∣. (4.48)

The asymmetry is close to zero if the images are roughly at the same distance from the lens centre

while we �nd Rij ≈ 1 for very asymmetric con�gurations. The third parameter is the opening

angle θij of the images

cos θij =
~xi~xj
rirj

(4.49)

which is close to zero for almost merging images and θij ≈ 180◦ for opposing images. The two

quantities Rij and θij con�gure the lens geometry and can be observed if the centre of the lens

galaxy is identi�able. This means that we do not have to assume any mass models in order to

calculate these parameters. In a next step we want to analyse model dependences of the reduced

time delay as a function of the image con�guration parameters Rij and θij .

4.3.2 Modelling Realistic Lens Models Based on Various Potential Distributions

We want to study various lensed image pairs and therefore many di�erent lensing potentials are

generated by a Monte Carlo simulation. But before we can do this, we have to �nd a general

and suitable model in order to cover all possible lensing e�ects. This is just a summary of the

contributions and assumptions which are presented more detailed in [33].

Elliptical Galaxy: More than 80% of the quasars are lensed by elliptical galaxies and hence it is

convenient to consider elliptical galaxies as primary lenses. We can write the associated convergence

in the form

κG(~x) =
α

2

[
REin

r
√
1− ε cos(2(θ − θe))

]2−α

(4.50)

where REin is the Einstein radius (equation 3.78), θe is the position angle of the ellipse and α

de�nes the logarithmic slope of the density distribution. Note that this is connected to our previous

notation by α = η − 1 and α = 1 corresponds to the standard isothermal mass distribution. The

ellipticity e is related to the parameter ε by

ε =
1− (1− e)2

1 + (1− e)2
. (4.51)

The corresponding lensing potential is

ψG(~x) =
1

α
REin

2−αrαG(θ) (4.52)
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where G(θ) is a complex trigonometric function of the angle θ with the special case G(θ) = 1

for vanishing ellipticity. Observations have indeed shown that elliptical galaxies have an almost

isothermal mass distribution. Based on many previous works, Oguri adopts a Gaussian distribution

α = 1±0.15 �as a conservative distribution of the slope� and e = 0.3±0.16 for the ellipticity which

is consistent with observations.

Multipole Terms: As we want to create realistic lensing potentials, we include multipole terms

of the order m = 3 and m = 4 into the potential. The multipole expansion can be expressed by

ψM (~x) =
1

α
REin

2−αrα
∑
m

(1−m2)Am cos(θ − θm) (4.53)

and has to be added to the elliptical lensing potential of equation 4.52.

External Perturbations: We also have to consider external perturbations in order to create lens

environments. The external shear is modelled by

ψE2(~x) = −γ
2
r2 cos(2(θ − θγ)) (4.54)

and we adopt a lognormal distribution with median shear amplitude γ = 0.05 and dispersion 0.2dex

which is consistent with N-body simulations [33]. In addition we include a third-order perturbation

e.g. an external singular isothermal object described by the lensing potential

ψE3(~x) =
σ

4

r3

REin
[cos(θ − θσ)− cos(3(θ − θσ))] (4.55)

with a small misalignment θσ of the position angle and the amplitude σ which can generally be

related to the shear by σ ≈ γ2.

Subhalos: Anomalous �ux ratios observed in many gravitational lens systems indicate substruc-

tures of the lens. These substructures are mainly subhalos in the lensing galaxy and additionally we

assume small halos along the line of sight. Each subhalo is modelled with a pseudo-Ja�e (truncated

singular isothermal) pro�le and contributes to the total lensing potential by the term

ψPJ,k(~x) = bk

(
r −

√
r2 + a2k − ak

2
ln

∣∣∣∣
√
r2 + a2k − ak√
r2 + a2k + ak

∣∣∣∣+ ak ln r

)
(4.56)

with the truncation radius ak and the mass normalisation bk. The subhalos are distributed ran-

domly in the two dimensional lens plane and their total contribution is the sum over the individual

potentials corrected for the convergence κ̄ averaged over all subhalos

ψS(~x) =
∑
k

ψPJ,k(~x− ~xsub,k)−
1

2
r2κ̄. (4.57)

4.3.3 Simulation of Lensing Potentials and Image Pairs

In a next step Oguri combines the presented lensing potential contributions. A Monte Carlo

simulation creates 10000 di�erent lensing potentials and places randomly sources in the source

plane. The public software Lensmodel solves the lens equation, determines the image positions

and computes the time delays. Now we have a catalogue of various gravitational lenses with

corresponding image con�gurations which are very close to realistic ones. Based on the reduced

time delay, we can now investigate to what extend these randomly created lenses deviate from a

simple isothermal potential. In order to trace back the individual in�uences, it is convenient to

study the contributions to the lensing potential separately.
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4.3.4 Contributions from the Lensing Potentials

We assume an isothermal (α = 1) elliptical lensing potential with multipole terms (ψG + ψM ) as

a basis. Now we add the potentials separately and calculate the deviations from Ξ = 1 which

is a quanti�cation of the nonisothermality and subsequently of the lens model's complexity. The

overall aim is to investigate under which conditions the time delay ∆tij is stable against small

perturbations in the lens model. The distinction of stable and sensitive lenses can only be based

on observational quantities and therefore it is convenient to plot the reduced time delay as a

function of the asymmetry Rij and the opening angle θij . The results of this analysis are shown

in �gure 26 and can be summarized as follows:

Figure 26: Dependence of the reduced time delay Ξ on several lensing potentials as a function of
asymmetry Rij (left) and opening angle θij (right). In each panel, reduced time delays of 500 double
lenses (blue squares) and 500 quadruple lenses (red circles) obtained by Monte Carlo simulations
are plotted. From top to bottom, we consider the external shear ψE2 (equation 4.54), third-order
external perturbations ψE3 (equation 4.55), subhalos ψS (equation 4.57) and nonisothermality
α 6= 1 in the primary lens model ψG (equation 4.52). For each panel we focus on one modi�cation
and ignore the other perturbations, thus the e�ect of each type of perturbation can be measured
by the deviation from Ξ = 1 [33].

• The External shear creates a scatter of Ξ around one as expected from the analytic exam-

ination but it preferentially produces image pairs with Ξ < 1 which corresponds to a steeper
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than isothermal pro�le. We can observe a remarkable scatter of quadruple lenses for small

opening angles.

• The third-order external perturbations create almost the same e�ects as the external

shear but the amplitudes of the scatter are smaller.

• In the same way the subhalos have a small in�uence on the reduced time delay and the

scatter is marginal except for quadruple lenses with a small opening angle which create

relatively strong deviations.

• The radial slope as a quanti�cation of the nonisothermality has a strong impact on Ξ. The

scatter is distinct for double and quadruple lenses and it is less dependent on the image

con�guration than the other contributions.

• Generally we can see that the asymmetry has remarkable in�uence only for image positions

that are almost equidistant from the lens. In all four cases the symmetric images are very

sensitive for perturbations and therefore cause a large scatter.

• The opening angle has a strong in�uence on the stability of the reduced time delay and

even θij ≈ 90◦ causes a signi�cant scatter. The most stable image con�gurations are opposite

images (θij = 180◦).

• The stability of double and quadruple lenses shows almost the same dependence on the

asymmetry Rij but the scatter of the opening angle θij is clearly dominated by quadruple

lenses.

This analysis enables us to check, which image con�gurations are less dependent on the exact

lensing potentials. We can conclude, that double lenses with asymmetric image con�guration and

almost opposite images have the least scatter and are therefore most suitable for determining

the Hubble constant. Although double lenses e�ect less scatter, quadruple lenses provide more

information about the lensing potential. Hence the number of images can not be used as a reliable

de�nition for valuable image con�gurations.

These results are an enormous help for further studies because on the one hand we know how

stable certain image con�gurations are regarding small variations in the lens model and on the

other hand we have discovered the relative strengths of the perturbing components.
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5 Error Propagation and Dependence on the Mass Model

In the last sections we introduced di�erent methods and ways of determining the Hubble constant.

All methods have in common, that they are based on observable quantities. In this chapter we

want to analyse the in�uence of the individual parameters. Especially in cosmology, the errors are

relatively large and therefore it is important to know, which parameters have a signi�cant in�uence

and which parameters have a negligible e�ect. Based on this analysis we can name quantities which

should be measured more precisely in order to receive proper values and reliable errors for Hubble's

parameter. As we will see, the accuracy of the the Hubble constant's determination and its error

does not only depend on the measured quantities but also on the mass model and the complexity

of the lensing potential. Hence we also assume di�erent mass distributions for one and the same

set of observed parameters.

5.1 Generalised Lens System

We are targeting an analysis of the quadruple lens system B1608+656 but before we study this

special case, we want to analyse a generalised lens system in order to understand the qualitative

behaviour and error propagation.

5.1.1 Assumptions for the Lens System

Let us assume the following settings: The model lensing galaxy is well described by a singular

isothermal ellipsoid (SIE) with external shear. This model can be analysed analytically but is still

complex enough to see variations from simpler models. In this �rst part of the analysis we are

interested in two e�ects: First we want to know the in�uence of each single parameter and we want

to see whether the errors are ampli�ed or damped. Second we want to analyse the dependence on

the mass model and therefore we take the SIE with external shear as a reference, apply simpli�ed

mass models and determine the changes.

First of all we have to set up and specify the lensing potential and the corresponding de�ection

angle. For the analysis it is convenient to introduce the dimensionless parameter

κ0 = 4π
(σ
c

)2 wds

ws
(5.1)

in order to simplify the following equations. The lensing potential of a SIE is given by

ψe(θ1, θ2) = κ0

√
(1− ε)θ21 + (1 + ε)θ22 (5.2)

with the ellipticity ε and the angular positions θ1 and θ2 of the lensed image. The associated

de�ection angle is

~αe = ~∇ψe(θ1, θ2) = κ0
1√

(1− ε)θ21 + (1 + ε)θ22

(
(1− ε)θ1

(1 + ε)θ2

)
. (5.3)

According to equation 3.125 the shear potential can be expressed by

ψs(θ1, θ2) =
γ1
2
(θ21 − θ22) + γ2θ1θ2 (5.4)

with the shear amplitudes γ1 and γ2. The corresponding de�ection angle yields

~αs = ~∇ψs(θ1, θ2) =

(
γ1θ1 + γ2θ2

−γ1θ2 + γ2θ1

)
(5.5)
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and the lens equation turns into

~β = ~θ − ~α = ~θ − (~αe + ~αs). (5.6)

As we want to study a realistic lensing system, we have to calculate the image positions and time

delay depending on the lens geometry. Therefore we set the lens' parameters to zs = 1.5, zd = 0.5,

σ = 260km s−1, ε = γ1 = γ2 = 0.15, Ωm = 0.27 and ΩΛ = 0.73. These parameters are chosen close

to existing lensing systems (compare table 4) and the lensing potentials are shown in �gure 27, 28

and 29. In order to obtain the image positions, we have to solve the system of equations

Lensing potential for a SIE with external shear
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Figure 27: SIE with external shear as initial lens-
ing potential.

Lensing potential for a SIE
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Figure 28: First simpli�cation of the lensing po-
tential (SIE).

β1 = θ1 −
κ0(1− ε)θ1√

(1− ε)θ21 + (1 + ε)θ22
− γ1θ1 − γ2θ2, (5.7)

β2 = θ2 −
κ0(1 + ε)θ2√

(1− ε)θ21 + (1 + ε)θ22
+ γ1θ2 − γ2θ1. (5.8)

We place the source at β1 = 0.5′′,β2 = 1′′ and determine the image positions numerically with

Maple. The image positions are listed in table 2 and can be seen in �gure 30. Oguri's analysis

Lensing potential for a SIS
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Figure 29: Second simpli�cation of the lensing
potential (SIS).
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Figure 30: Source and image positions for a SIE
with external shear.

suggests the choice of image A and D for further analysis because they are located asymmetric

and almost collinear with the lens. But unfortunately these images are too stable and we might

not see any signi�cant deviations. Hence we choose image B and C where we can investigate more
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Image θ1 θ2
A −0.047′′ 0.058′′

B −0.206′′ 0.168′′

C 0.616′′ 1.892′′

D 1.586′′ 1.866′′

E 1.743′′ 0.689′′

F 0.019′′ 0.028′′

Table 2: Image positions for a SIE with external shear and a source located at ~β = (0.5′′, 1′′).

interesting e�ects. In a next step we have to calculate the time delay for the selected images

∆ti =
1

c

wswd

wds

(
~α(θ1i, θ2i)

2

2
− ψ(θ1i, θ2i)

)
=

1

c

wswd

wds

(
1

2
[~αe(θ1i, θ2i) + ~αs(θ1i, θ2i)]

2 − [ψe(θ1i, θ2i) + ψs(θ1i, θ2i)]

)
. (5.9)

Furthermore we have to keep in mind that the comoving distances are given by

wij = −
∫ aj

ai

da
a

c

H0

[
a(t)−4Ωr + a(t)−3Ωm + a(t)−2Ωk +ΩΛ

]−1/2
(5.10)

which yields the dependence on Hubble's parameter. As measurements have shown, the radiation

and the curvature term can be neglected and the integral simpli�es to

wij = − c

H0

∫ aj

ai

da√
a−1Ωm + a2ΩΛ

(5.11)

which has to be calculated numerically nevertheless. For further simpli�cation we de�ne the integral

Wds =

∫ ad

as

da√
a−1Ωm + a2ΩΛ

(5.12)

and Ws and Wd correspondingly and we recall that the scale function is related to the redshift

by as = (1 + zs)
−1. Inserting the de�nitions of the potentials, de�ections angles and comoving

distances we obtain

H0∆ti =
WsWd

Wds

[
κ20
2

(1− ε)2θ21i + (1 + ε)2θ22i
(1− ε)θ21i + (1 + ε)θ22i

]
+
WsWd

Wds

[
1

2
(γ1θ1i + γ2θ2i)

2 +
1

2
(γ2θ1i − γ1θ2i)

2

]
+
WsWd

Wds

[
κ0

(1− ε)θ1i(γ1θ1i + γ2θ2i) + (1 + ε)θ2i(γ2θ1i − γ1θ2i)√
(1− ε)θ21i + (1 + ε)θ22i

]

+
WsWd

Wds

[
κ0

√
(1− ε)θ21i + (1 + ε)θ22i −

γ1
2
(θ21i − θ22i)− γ2θ1iθ2i

]
. (5.13)

We can calculate the time delay ∆tBC = ∆tC −∆tB up to a factor of H0 and obtain the whole set

of lensing parameters (table 3). We set each relative error to 10% with a Gaussian distribution. As

we will see later on, this might be exaggerated for certain quantities but nevertheless this choice

is convenient for a better comparability of the individual in�uences. Solving equation 5.13 for H0

yields an expression for the Hubble constant that depends on 13 parameters

H0 = H0(∆tBC , zd, zs, σ, θ1B , θ2B , θ1C , θ2C , ε, γ1, γ2,Ωm,ΩΛ). (5.14)

The time delay still depends on Hubble's parameter but as we are interested in the relative fraction

of true and disturbed value H0(~x+ δ~x)/H0(~x), this dependence cancels out.
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Parameter Symbol Value x0 Absolute Error ∆x Relative Error
Time di�erence ∆tBC 3.32 · 10−11H−1

0 3.32 · 10−12H−1
0 10%

Redshift lens zd 0.5 0.05 10%
Redshift source zs 1.5 0.15 10%

Dispersion velocity σ 260km s−1 26km s−1 10%
Position image B 1 θ1B −0.206′′ 0.021′′ 10%
Position image B 2 θ2B 0.168′′ 0.017′′ 10%
Position image C 1 θ1C 0.616′′ 0.062′′ 10%
Position image C 2 θ2C 1.892′′ 0.189′′ 10%
Ellipticity ε 0.15 0.015 10%
Shear amplitude 1 γ1 0.15 0.015 10%
Shear amplitude 2 γ2 0.15 0.015 10%
Matter density Ωm 0.27 0.027 10%
Dark energy density ΩΛ 0.73 0.073 10%

Table 3: Parameters of a model lens system. The values are close to real parameters in order to
ensure an authentic model.

5.1.2 Numerical Procedure

In this chapter we want to discuss brie�y the used programmes. The �rst programme analyses the

in�uence of each parameter individually: As input variables we have 13 parameters xi and their

relative errors of 10% from where we can derive the absolute errors ∆xi = σi. First we calculate

the �true� H0 in order to be able to compare the disturbed results. Then we vary one parameter

in the interval [xi−5σi, xi+5σi] and keep the remaining values �xed. For each step in the interval

we calculate the corresponding a priori probability and the disturbed value for Hubble's parameter

which is afterwards normalised by the true H0. Proceeding in the same way for the remaining 12

parameters, we receive probability distributions that relate the deviation of the original value to a

probability.

The second programme analyses the model dependence: First, we calculate H0 with the exact

values as a reference and then use a Monte Carlo simulation to study the error propagation. The

Hubble constant is calculated 1 million times with randomly created parameters. The random

function creates a Gaussian distribution which generates independent values for the 13 input pa-

rameters according to their particular σi. These values for the Hubble constant are divided by

the true value, stored in a histogram and normalized by the number of calculations. This pro-

cedure is executed for the SIE with external shear, for the SIE (γ1 = 0, γ2 = 0) and for the SIS

(γ1 = 0, γ2 = 0, ε = 0) so that we can compare the corresponding histograms and the model

dependence.

5.1.3 Results of the Error Propagation

Here we want to present and discuss the results of the �rst analysis. The parameters are divided

in 5 categories for a better overview of the plots. Each plot contains additionally a Gauss function

with µ = 1 and σ = 0.1 which represents the case of linear error propagation. If the calculated

probability distribution is narrower than the Gauss function, the error is damped and if it is broader

than the Gauss function the error is ampli�ed.

• Cosmological parameters: The corresponding probability distributions are shown in �gure

31. The parameters ΩΛ and Ωm enter only the integral in equation 5.12 and a�ect the value of

H0 little. Both errors are damped and both probability distributions are slightly asymmetric:

ΩΛ prefers lower values of Hubble's parameter whereas Ωm prefers higher values.

• Redshifts: The corresponding probability distributions are displayed in �gure 32 and the

lens' redshift zd contributes almost linearly. The probability distribution of the source's

redshift zs is asymmetric, preferring smaller values of H0. Hence we can conclude that
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Figure 31: Error propagation for the cosmological parameters with a relative error of 10%.

uncertainties in zs rather decrease the values of H0 for this lens system.
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Figure 32: Error propagation for the redshifts with a relative error of 10%.

• Velocity dispersion and time di�erence: The corresponding probability distributions

are shown in �gure 33. As the time di�erence ∆tBC enters inversely, the error propagates

almost linearly and the probability distribution is just shifted a little bit to higher values

of H0, compared to the standard Gaussian. The velocity dispersion σ describes mainly the

dynamics of the lens galaxy and therefore its error is remarkably (mind the logarithmic scale)

ampli�ed.

• Image positions: The corresponding probability distributions are shown in �gure 34. They

are quite symmetric and the errors of the parameters θ1B , θ2B and θ1C are damped for this

lens system. Therefore we can conclude, that small variations in these quantities do not e�ect

Hubble's parameter remarkably. Only the angular position θ2C obeys an almost linear error

propagation.

• Ellipticity and shear: The corresponding probability distributions are shown in �gure

35. Variations of the exact values for ellipticity ε and shear γ1, γ2 have only very little

in�uence on Hubble's parameter. The errors are damped strongly and the distributions are

fairly symmetric. Hence, the relative errors of 10% have no signi�cant in�uence on this lens

system.

We have to keep in mind, that these results are derived for one speci�c lens system and can not

easily be generalised to other systems. Nevertheless we have seen the qualitative error propaga-
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Figure 33: Error propagation for the velocity dispersion and time di�erence with a relative error
of 10%.
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Figure 34: Error propagation for the image positions with a relative error of 10%.
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Figure 35: Error propagation for the asymmetry parameters with a relative error of 10%.
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tion and investigated several remarkable e�ects: The errors of the time di�erence and velocity

dispersion are ampli�ed most strongly, whereas image positions, asymmetry parameters and the

cosmological model do not e�ect Hubble's parameter signi�cantly. The redshifts and therefore the

cosmological distances are very important for an exact measurement of H0. The redshifts' prob-

ability distributions are asymmetric, preferring smaller (zs) or larger (zd) values of the Hubble

constant.

5.1.4 Results of the Mass Model Dependence

We now understand the individual parameters' in�uence on H0 but moreover we have to control

the in�uence of a wrong or too simple mass model. Therefore we assume the lens system to be

exactly described by a SIE with external shear and analyse the consequences of a simpli�ed mass

model as described in the numerical procedure. The result of this analysis can be seen in �gure

36. The probability distributions can be described remarkably well by a Gaussian: For the SIE
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Figure 36: Comparison of a SIE with external shear and its simpli�cations. For each individual
parameter we assume a Gaussian distribution with a relative error of 10% and use a Monte Carlo
simulation with 1 million calculations for each model.

with external shear we �nd µ = 0.99 and σ = 0.25. For the SIE the �t generates µ = 1.04 and

σ = 0.24 and for the SIS we receive µ = 1.01 and σ = 0.23 with �t accuracies of less than 1%. The

�rst interesting outcome is that simpli�cations do not always have a negative impact on the result.

If we neglect the shear of the SIE, the programme yields values for Hubble's parameter that are

about 4% higher than the true value. But if we simplify this SIE even further to a SIS, the most

probable value of H0 is just 1% above the true value. Furthermore we discover that simpler and

more symmetric lens models create slightly narrower probability distributions and therefore are

apparently less sensitive to errors. Summing up we can conclude that relative parameter errors of

10% lead to a relative error for the Hubble constant of > 20% whereas the uncertainties due to

a wrong mass model yield deviations of < 5%. But nevertheless we have to clarify whether real

measurement errors lead to the same conclusion.
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5.2 Analysis of the Lens System B1608+656

We want to specialise this general analysis to a speci�c lens model: B1608+656 is a quadruple

gravitational lens with a radio galaxy's nucleus as a source and two galaxies acting as a lens. The

image con�guration is shown in �gure 37. We are interested in the error propagation based on

Figure 37: Observation of B1608+656 containing the galaxies G1 and G2 and the four images A,
B, C and D [35].

realistic measurements and the dependence on the lens model. Furthermore we want to point out

the most important parameters for the lens model which should be measured more precisely in

order to constrain the error margins of Hubble's parameter and to provide guidance for further

studies. Finally we determine the Hubble constant based on a given lens model with the help of

the Monte Carlo simulation.

5.2.1 Assumptions for the Lens System

Although Keeton and Kochanek state �that B1608+656 requires a non-trivial lens model� [36], we

use the ansatz by Myers et al. [37] and model the lens with a non singular isothermal ellipsoid.

The lensing potential for this model can be expressed by

ψ = κ0

√
θ2c + (1− ε)θ2a + θ2b (5.15)

with the core radius θc and the positions θa, θb that are de�ned in a coordinate system which is

perpendicular to the ellipse's major and minor semi-axes. We have to relate these coordinates to

the coordinates θ1, θ2 that are de�ned in a coordinate system with its axis pointing from west to

east and south to north. Therefore we have to apply a rotation by the position angle ϕ(
θa

θb

)
=

(
cosϕ − sinϕ

sinϕ cosϕ

)(
θ1

θ2

)
=

(
θ1 cosϕ− θ2 sinϕ

θ1 sinϕ+ θ2 cosϕ

)
(5.16)

and the potential turns into

ψ = κ0
√
θ2c + (1− ε)(θ1 cosϕ− θ2 sinϕ)2 + (θ1 sinϕ+ θ2 cosϕ)2. (5.17)

The de�ection angle yields

~α = ~∇ψ =
κ0√

θ2c + (1− ε)(θ1 cosϕ− θ2 sinϕ)2 + (θ1 sinϕ+ θ2 cosϕ)2
(5.18)

·

(
(1− ε)(θ1 cosϕ− θ2 sinϕ) cosϕ+ (θ1 sinϕ+ θ2 cosϕ) sinϕ

−(1− ε)(θ1 cosϕ− θ2 sinϕ) sinϕ+ (θ1 sinϕ+ θ2 cosϕ) cosϕ

)
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and the time delay can be expresses by

∆ti =
WsWd

H0Wds

(
~α(θ1i, θ2i)

2

2
− ψ(θ1i, θ2i)

)
(5.19)

which can be solved for Hubble's parameter. The observed parameters and corresponding errors

are listed in table 4. These values are mainly based on a paper by Myers et al. [37] and further

Parameter Symbol Value x0 Absolute Error ∆x Relative Error
Time di�erence ∆t12 36d 7d 19.4%
Redshift lens zd 0.6304 0.00063 0.1%
Redshift source zs 1.41 0.14 10%

Dispersion velocity σ 311.7km s−1 15km s−1 4.8%
Position image B 1 θ1C 1.07′′ 0.0045′′ 0.4%
Position image B 2 θ2C −0.96′′ 0.0046′′ 0.5%
Position image C 1 θ1D 1.08′′ 0.0045′′ 0.4%
Position image C 2 θ2D 0.54′′ 0.0049′′ 0.9%
Core radius θc 0.48′′ 0.10′′ 21%
Ellipticity ε 0.96 0.05 5%
Position angle ϕ 67.0◦ 1.3◦ 2%
Matter density Ωm 0.27 0.02 7.4%
Dark energy density ΩΛ 0.73 0.02 2.7%

Table 4: Observable parameters for the quadruple lens system B1608+656

information:

• Time di�erence: The value and error are listed in [38]. We choose the images B and C for

further analysis because they have the smallest time delay error.

• Redshift lens: Fassnacht et al. [38] provide the value and the relative error is chosen according

to the high precision of the measurement.

• Redshift source: The value is provided by Myers et al. and the error has to be large because

generally it is di�cult to receive a satisfactory spectrum.

• Velocity dispersion: The values are listed by Myers et al. and the error is adopted from [33].

• Angular positions: Myers et al. provide image positions with the corresponding errors.

• Core radius: Given by Myers et al.

• Ellipticity: Myers et al. provide value and error. During the calculation we require ε ≤ 0.999.

• Position Angle: Myers et al. set this value as the angle between the major axis and the

θ1-axis.

• Critical densities: Schneider [14] provides a table with the cosmological parameters and

corresponding errors.

5.2.2 Numerical Procedure

The two programmes work basically in the same way as described above but instead of using a

relative error of 10%, we choose the errors according to table 4. The simpli�cations in the second

part of the analysis are as follows: According to Myers et al. the non singular isothermal ellipsoid

is the best model and we simplify it to a SIE (θc = 0) and a SIS (θc = 0, ε = 0 ⇒ ϕ is meaningless

and can be set to zero).
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5.2.3 Results of the Error Propagation

Since a qualitative analysis of the error propagation was already given above, we now focus on the

new results and e�ects due to the real errors. The plots contain Gauss distributions (µ = 1 and

σ = 0.1) as a reference point.

• Cosmological parameters: The error propagation is damped for both parameters which

underlines the statement that the determination of the Hubble constant by gravitational

lensing depends only little on the cosmological model.

• Redshifts: The lens' redshift can be measured very precisely and therefore its error is

negligible (�gure 38). The error of the source's redshift propagates almost linearly, preferring

higher values for the Hubble constant.
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Figure 38: Error propagation for the redshifts.

• Velocity dispersion and time di�erence: The corresponding probability distributions

are shown in �gure 39. The error of the time delay is quite large and causes strong deviations

to higher values of H0. The probability distribution of the velocity dispersion is very asym-

metric. It declines dramatically at about 1.05 and hence we can conclude that uncertainties

in σ lead to smaller values of H0 for this lens system.
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Figure 39: Error propagation for the velocity dispersion and time di�erence.

• Image positions: The angular positions of the images can be measured very precisely and

their errors are negligible.
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• Core radius, ellipticity and position angle: All three parameters have a huge in�uence

on the measurement and their probability distributions can be seen in �gure 40. Although

the ellipticity has only small relative errors, the corresponding distribution function is very

broad and asymmetric. There is a cut o� point at about 1.4 which indicates the limiting

ellipticity ε = 0.999. Uncertainties in the position angle can not create values above the

true one because the probability distribution declines at 1. The core radius has a signi�cant

in�uence and prefers higher values for Hubble's parameter.
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Figure 40: Error propagation for core radius, ellipticity and position angle.

This analysis has outlined very important information regarding the required accuracy of the

model's parameters: Image positions, cosmological model and lens' redshift have a satisfying pre-

cision. The error of the Hubble constant is thereafter dominated by a few parameters: time delay,

velocity dispersion, source's redshift, core radius, ellipticity and position angle. In order to obtain

better estimates and smaller error margins for H0 it is important to determine these parameters

with higher accuracy.

5.2.4 Results of the Mass Model Dependence

We want to analyse the model dependence of the lens system B1608+656 in the same way as

above but with the real errors. The result of the Monte Carlo simulation can be seen in �gure

41. We �t a Gaussian function to these probability distributions and the values for the median

and standard deviation are listed in table 5. We can again observe the e�ect that simpli�cations

Mass model median µ standard deviation σ
Non singular isothermal ellipsoid 48.3 km s−1Mpc−1 26.7 km s−1Mpc−1

Singular isothermal ellipsoid 108.4 km s−1Mpc−1 46.5 km s−1Mpc−1

Singular isothermal sphere 63.5 km s−1Mpc−1 9.1 km s−1Mpc−1

Table 5: Fit parameters for di�erent lens models

of the model do not always shift the median in the same direction: The simpli�cation from a non

SIE to a SIE increases, the simpli�cation from a non SIE to a SIS decreases the value. The SIS

neglects 3 values that have a strong in�uence on the Hubble constant's error and therefore is the

narrowest distribution. If we neglect the core radius, the probability distribution of the SIE is very

broad which can be seen as an evidence for an unstable lens con�guration. Moreover the SIE's

shape slightly deviates from a Gauss function which might be caused by the very asymmetric error

propagation for ϕ and ε.

The medians of the individual distributions are spread over a wide range whereas the standard

deviations are comparatively small. Hence this analysis clearly outlines that the choice of a proper
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Figure 41: Comparison of a non singular isothermal ellipsoid and its simpli�cations. For each
individual parameter we assume a Gaussian distribution with its associated errors and use a Monte
Carlo simulation with 1 million calculations for each model.

lens model is more important than small error margins of single parameters. A more accurate

measurement of the observable quantities will clearly constrain the error of Hubble's parameter

but as Keeton and Kochanek already mentioned, we need a more complex model in order to gain

better estimations.

If we however trust in the lens model proposed by Myers et al. we can present our estimation for

the Hubble constant

H0 = (48.3± 26.7)
km

s Mpc
(5.20)

which agrees with most other measurements presented in the section 2.3. We have to admit that

this determination is based on model parameters provided by Myers et al. and that the method

becomes evidently more complex if we have to estimate these values on our own. Nevertheless, this

method enabled us to analyse the in�uence of the individual parameters, the dependence on the

mass model and �nally we obtained a probability distribution which yields the value of Hubble's

parameter. Furthermore we were able to constrain the error margins of Hubble's parameter and

we investigated that the errors of certain quantities and the lens model have to be improved in

order to obtain more accurate estimations for Hubble's parameter.
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