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Improving Optically Thick H2 Line Cooling in Simulations of Primordial Star

Formation and its E�ect on Fragmentation:

Primordial star formation is an important �eld of current research, because the properties
of these �rst stars in�uence the chemical enrichment, turbulent mixing, and reionisation
of the primordial gas. Therefore, they de�ne the initial conditions for subsequent star and
galaxy formation.
Molecular hydrogen (H2) is the dominant coolant in primordial gas. When the H2 lines
become optically thick at high densities, we need a special numerical treatment in order
to model H2 cooling accurately. In order to do so, we implement a new method for
the determination of e�ective column densities in the SPH code Gadget2. This new
method directly sums up matter contributions and weights them with the relative spectral
line overlap. A comparison to commonly used local, isotropic methods shows that these
local methods generally underestimate the photon escape fraction, because they miss the
�attening of the cloud. While analytical �t formulas break down completely (mean relative
error of 20�70%), we �nd that a combination of the Sobolev and Gnedin approximation
might �t the exact results (mean relative error of 5�20%).
Our new method yields lower temperatures in the centre of the cloud and hence promotes
fragmentation in the density regime 1010 cm−3 ≤ n ≤ 1012 cm−3. This is why we expect
Pop III stars to have lower masses than previously thought.

Verbesserung der Sobolev-Näherung zur Bestimmung der e�ektiven Säulen-

dichte in primordialen Sternentstehungssimulationen und deren Ein�uss auf

Fragmentation:

Sternentstehung im frühen Universum ist von besonderer Bedeutung, da diese ersten
Sterne das interstellare Medium ionisieren und mit schweren Elementen anreichern.
Dadurch beein�ussen sie maÿgeblich die Entstehung weiterer Sterne und Galaxien.
Primordiales Gas kühlt vor allem durch Roto-Vibrations-Übergänge des molekularen
Wassersto�s. Ab einer bestimmten Dichte wird dieser jedoch optisch dicht und die Pho-
tonen können der Wolke nicht mehr ungehindert entweichen. Die Wahrscheinlichkeit
der Photonen zu entweichen muss dann über die Säulendichte berechnet werden. Dazu
entwickeln wir eine neue Methode, welche das Gas entlang der Sichtlinien aufsummiert
und mit dem entsprechenden Überlapp der Spektrallinien gewichtet. Diese sehr genaue
Methode vergleichen wir mit bisher üblichen Näherungen (Sobolev, Gnedin, analytische
Formeln) und kommen zu dem Ergebnis, dass diese Näherungen die Wahrscheinlichkeit der
Photonen zu entweichen unterschätzen. Während die analytischen Formeln um 20-70%
abweichen, erzielt eine Kombination aus Gnedin- und Sobolev-Näherung gute Ergebnisse
mit Fehlern von lediglich 5-20%.
Die Verwendung unserer neuen Methode liefert deutlich niedrigere Temperaturen im In-
nern der Wolke. In einem Dichtebereich von 1010 cm−3 ≤ n ≤ 1012 cm−3 kann das Gas
somit leichter fragmentieren, woraus wir folgern, dass die ersten Sterne leichter sind als
bisher angenommen.



Contents

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Cosmological Structure Formation . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Cosmological Framework . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Thermal and Chemical Evolution . . . . . . . . . . . . . . . . 10
1.2.3 Jeans Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Non-Linear Structure Formation . . . . . . . . . . . . . . . . . 14

1.3 Star Formation in the Early Universe . . . . . . . . . . . . . . . . . . 15
1.3.1 Primordial Chemistry . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Heating and Cooling . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Collapse of a Primordial Cloud . . . . . . . . . . . . . . . . . 23
1.3.4 Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.5 Evolution of Protostars . . . . . . . . . . . . . . . . . . . . . . 26
1.3.6 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4 Theory of Optically Thick H2 Line Cooling . . . . . . . . . . . . . . . 35
1.4.1 Optically Thin H2 Line Cooling . . . . . . . . . . . . . . . . . 35
1.4.2 Escape Probability Method . . . . . . . . . . . . . . . . . . . 37
1.4.3 Sobolev Approximation . . . . . . . . . . . . . . . . . . . . . . 43

2 Cooling Approaches 45

2.1 Sobolev Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1.1 Line Pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1.2 Line Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1.3 E�ective Column Density . . . . . . . . . . . . . . . . . . . . 47
2.1.4 Overlap with Other Lines . . . . . . . . . . . . . . . . . . . . 48

2.2 TreeCol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.1 General Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.2 Using TreeCol to Determine E�ective Column Densities . . . . 52

2.3 Further Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 Gnedin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.2 Jeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.3 Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4 Reciprocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.5 Analytical Fits . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Simulations 60

5



Contents

3.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.1 Smoothed Particle Hydrodynamics (SPH) . . . . . . . . . . . 60
3.1.2 Gadget2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.3 Chemistry, Heating and Cooling . . . . . . . . . . . . . . . . . 64
3.1.4 Sink Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.5 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.6 Implementation of Cooling Approaches . . . . . . . . . . . . . 67

3.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.1 Primordial Star-Forming Clouds . . . . . . . . . . . . . . . . . 70
3.2.2 Synthetic Initial Conditions . . . . . . . . . . . . . . . . . . . 70
3.2.3 Cosmological Initial Conditions . . . . . . . . . . . . . . . . . 71

4 Results 74

4.1 Validity of TreeCol-Based Cooling Approaches . . . . . . . . . . . . . 74
4.2 Comparison of Cooling Approaches . . . . . . . . . . . . . . . . . . . 80
4.3 Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.2 Comparison of Methods . . . . . . . . . . . . . . . . . . . . . 103

4.4 IMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4.1 Accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4.2 Mass Function of Protostars . . . . . . . . . . . . . . . . . . . 113

5 Discussion 115

5.1 Why Sobolev Fails . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1.1 Neglect of True Line Overlap . . . . . . . . . . . . . . . . . . 115
5.1.2 Variations of Velocity Divergence and Density . . . . . . . . . 115
5.1.3 Angular Dependence of Escape Fractions . . . . . . . . . . . . 118
5.1.4 Accretion Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 So Which Method to Use? . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4 Fragmentation Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

I Appendix 129

A Acknowledgements 130

B Positions of Protostars 132

C Lists 135

6



1 Introduction

1.1 Motivation

Where does the �rst light in the Universe come from? This question is not only
of general interest, but is also a focus of current research in astrophysics. The
�rst stars in the Universe are so called Population III (or Pop III) stars. They
emerged several hundred million years after the big bang and dramatically changed
the physical conditions of their environment. Their birth marks the transition from
the so called �Dark Ages� of the Universe towards the manifoldness we can observe
nowadays. Since the chemical composition of the primordial gas and the physical
properties of star forming regions in the early Universe are fundamentally di�erent
from the present-day ones, Pop III star formation is an independent �eld of current
research. The importance of this topic is based on several aspects. On the one hand,
the properties of Pop III stars have a fundamental in�uence on many subsequent
physical processes:

• Synthesis of heavy elements and enrichment of the interstellar medium (Umeda
& Nomoto 2003; Whalen et al. 2008b; Stacy et al. 2013; Hirano et al. 2013;
Stacy & Bromm 2013).

• Formation of the next generation of stars (Glover 2013; Hirano et al. 2013).

• Reionisation of the Universe (Schaerer 2002; Schleicher et al. 2008a; Whalen
et al. 2008a; Stacy et al. 2013; Hirano et al. 2013; Stacy & Bromm 2013).

• Assembly of the �rst galaxies (Whalen et al. 2008b; Glover 2013).

• In�uences the polarization (Bromm 2013) and the power spectrum (Schleicher
et al. 2008b) of the cosmic microwave background.

• Super massive black hole formation (Schleicher et al. 2013; Latif et al. 2013a;
Hirano et al. 2013; Latif et al. 2013b).

On the other hand, we hardly understand many crucial processes characterising
Pop III star formation (see Glover et al. (2008) for a compilation of these open
questions). Already Sobolev (1960) pointed out that �one of the chief needs of
theoretical astrophysics at the present time is, in my opinion, the development
of the theory of radiative equilibrium for a moving medium�. Although progress
has been made regarding this problem, it is not yet completely solved. Especially
the in�uence of optically thick H2 cooling in primordial star formation is an open
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1 Introduction

question according to Glover (2013) and will be addressed in this Master Thesis.
A main outcome of a consistent theory of Pop III star formation is the primordial
initial mass function, which assigns the number of expected stars to each mass
bin. Especially in a primordial environment without any metals, the mass of a
Pop III star is the crucial parameter which de�nes its luminosity, temperature,
spectrum, radius, lifetime and its �nal fate. An overview of the individual mass
ranges, proposed by di�erent authors, can be seen in Figure 1.1. The signi�cant

Figure 1.1: Expected mass range of primordial star formation as a function of publication
year. The indicated mass ranges are only rough estimates and sometimes rely on di�erent
assumptions. The idea of this plot is based on a slide by Naoki Yoshida, complemented
with data by Bromm et al. (2001) [1], Omukai & Palla (2001) [2], Omukai & Palla (2003)
[3], Omukai & Yoshii (2003) [4], Johnson & Bromm (2006) [5], McKee & Tan (2008) [6],
Ohkubo et al. (2009) [7], Clark et al. (2011a) [8], Greif et al. (2008) [9], Hosokawa et al.
(2012) [10], Hirano et al. (2013) [11].

variations and uncertainties in the mass ranges reveal the lack of understanding of
the primordial gas' fragmentation behaviour. Fragmentation as an open question in
Pop III star formation was already mentioned by Abel et al. (2000); Ripamonti &
Abel (2004); Omukai et al. (2005); Glover et al. (2008); Clark et al. (2011a); Smith
et al. (2011); Greif et al. (2012, 2013); Machida & Doi (2013) and will be addressed
in this Master Thesis.

1.2 Cosmological Structure Formation

Early in the Universe, matter was almost homogeneously distributed. Recently, the
Planck satellite analysed temperature �uctuations of the cosmic microwave back-
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1 Introduction

ground (CMB) as a footprint of the tiny but crucial inhomogeneities (Figure 1.2).
According to the standard model of cosmology, structure has formed hierarchically

Figure 1.2: Map of temperature �uctuations of the CMB spectrum, showing tiny inho-
mogeneities about 378000 years after the big bang. The �uctuations are of the order of
∆T/T ' 10−5 (ESA and the Planck Collaboration 2013).

from those small density �uctuations. The subsequent merging of successively larger
structures formed the Universe as we know it today. In order to understand the the-
oretical framework, the thermal evolution and non-linear structure formation, we
want to introduce the basic principles in cosmology (mainly based on Bartelmann
2007, 2009; Clark & Glover 2013; Glover 2013).

1.2.1 Cosmological Framework

The standard model of cosmology is based on two assumptions:

1. On su�ciently large scales, the Universe is isotropic.

2. The position from where we observe the Universe is by no means preferred to
any other position (Copernican principle).

These two fundamental assumptions are commonly summarised by claiming that the
Universe is �homogeneous and isotropic� (cosmological principle). The only relevant
force on cosmological scales is gravity. Due to the cosmological principle, gravity
can be described by a Robertson-Walker metric

g = −c2dt2 + a(t)2
[
dw2 + fk(w)2

(
dθ2 sin2 θdφ2

)]
, (1.1)

where a(t) is the scale factor and fk(w) is a function, which depends on the radial
coordinate w and the curvature of space-time. Since the Universe expands (or might
shrink), the scale factor describes its relative size (atoday = 1). The whole dynamics
of the Universe is reduced to the dynamics of the scale factor a(t), which can be
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1 Introduction

described by the Friedmann equations

ȧ(t)2

a(t)2
=

8πG

3
ρ(t)− kc2

a(t)2
+

Λ

3
, (1.2)

ä(t)

a(t)
= −4πG

3

(
ρ(t) +

3p(t)

c2

)
+

Λ

3
, (1.3)

where G is the gravitational constant, ρ(t) is the matter density, k parametrises the
curvature of space-time, Λ is the cosmological constant and p(t) the pressure. The
Friedmann equations can be combined to the adiabatic equation

d

dt

(
a(t)3ρ(t)c2

)
+ p(t)

d

dt

(
a(t)3

)
= 0, (1.4)

which can be interpreted by means of energy conservation. For non-relativistic
matter the adiabatic equation yields the time-dependent matter density ρm(t) =
ρm,0a

−3, whereas for relativistic matter it yields ρr(t) = ρr,0a
−4 with the current

matter density ρm,0 and current energy density of radiation ρr,0. Since the individual
energy contributions scale with di�erent powers of a, we can distinguish di�erent
epochs in cosmic history and derive their expansion behaviour. The early Universe
(t . 522yr) is dominated by the radiation energy density and the time evolution
of the scale factor in this epoch is given by a ∝ t1/2, whereas the epoch thereafter
is dominated by matter and the scale factor evolves as a ∝ t2/3 (Einstein-de Sitter
limit). The spectrum of distant galaxies is redshifted because, due to the expansion
of the Universe, they are moving away from us (the faster, the farer away they
are). This redshift z is related to the scale factor of the Universe at emission of the
photons by

1 + z =
1

a
(1.5)

and therefore represents a commonly used measurement for the age of the Universe.

1.2.2 Thermal and Chemical Evolution

A fundamental parameter for the description of the thermal and chemical evolution
of the Universe is obviously the temperature. According to the Stefan-Boltzmann
law, the energy density of radiation scales as ρr ∝ T 4, whereas we have seen above
that it also relates to the scale factor by ρr ∝ a−4. Combining these two relations
and using Equation 1.5 we derive

Tr ∝ 1 + z, (1.6)
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1 Introduction

which states that the Universe was hotter in the past. For a non-relativistic gas
with adiabatic index γ = 5/3 the relation

Tm ∝ (1 + z)2 (1.7)

describes the temperature evolution. The Universe has to evolve adiabatically on
large scales, because any heat �ow might violate the cosmological principle.
The Universe starts in a very hot, dense state and cools by expanding afterwards.
Hence, di�erent particle species freeze out at di�erent times, because the temper-
ature drops and they are no longer in thermal equilibrium. Once the temperature
drops below TkB ' 800keV the equilibrium between protons and neutrons can no
longer be maintained. At the moment of �freeze-out�, the neutron-to-proton number
density is given by

nn
np

= e−∆mc2/kBT ' 1

6
, (1.8)

where ∆mc2 ' 1.4MeV is the mass di�erence between neutrons and protons. Since
nuclear fusion becomes e�cient at a temperature of TkB ' 80keV (about three
minutes after the big bang), some free neutrons have time to decay and the �nal
neutron-to-proton ratio is

nn
np
' 1

7
. (1.9)

At this point, nucleosynthesis fuses the existing particles to isotopes and heavier
elements, which can be seen in Figure 1.3. Hence, the primordial gas consists of

Figure 1.3: Fractional abundance of di�erent primordial species as a function of time for
the standard cosmological model. Adopted by Wright (2012).

roughly 76% hydrogen atoms, 24% helium atoms and tiny traces of other isotopes
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1 Introduction

and elements. The gas is still ionised until the reaction

H+ + e− ↔ H + γ (1.10)

freezes out and the gas recombines. This recombination process can be described
by the Saha equation and is delayed due to the very large photon-to-baryon ratio.
Recombination occurs at z = 1100 ± 80, which corresponds to 378000 years after
the big bang. Beyond this point, the gas is mainly neutral, until the �rst stars will
reionise it again.

1.2.3 Jeans Analysis

Obviously (and luckily), the Universe is not completely homogeneous. Even on
astronomical scales we observe inhomogeneous, �lamentary structures as you can
see in Figure 1.4. In order to understand structure formation, we �rst have to

Figure 1.4: Large scale structure in the northern equatorial slice of the SDSS main
galaxy redshift sample. The slice is 2.5 ◦ thick and galaxies are colour-coded by luminosity.
Adopted by SDSS (2008).

review the governing physics. The main set of equations are the equation of state
and the equations of hydrodynamics, which are discussed in section 3.1.1. In a �rst,
linear approximation we derive the evolution of small perturbations in density

ρ(~x, t) = ρ0(t) + ∆ρ(~x, t) (1.11)
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1 Introduction

and expansion velocity

~v(~x, t) = ~v0(t) + ∆~v(~x, t). (1.12)

By de�ning the density contrast

δ =
∆ρ

ρ0

, (1.13)

using the isothermal equation of state p = ρ0c
2
s with the sound speed cs and neglect-

ing all quadratic terms in the perturbations, we derive the second-order di�erential
equation

δ̈ + 2Hδ̇ =

(
4πGρ0 +

c2
s∇2δ

a2

)
, (1.14)

where H = ȧ/a is the Hubble function. On large scales in an Einstein-de Sitter
Universe, δ(z) = δ0(1 + z)−1 solves this equation, which indicates the growth of
density perturbations with time. Decomposing Equation 1.14 into a set of plane
waves

δ(~x, t) =

∫
d~k

(2π)3
δ̂(~k, t)e−i

~k~x, (1.15)

yields

¨̂
δ + 2H

˙̂
δ =

(
4πGρ0 −

c2
sk

2δ̂

a2

)
. (1.16)

Identifying the right hand side of this equation as the source term of a damped
harmonic oscillator equation, the criterion of growing density perturbations is

k < kJ =
2
√
πGρ0

cs
. (1.17)

Alternatively, we can de�ne the Jeans length according to

λJ =
2π

kJ
= cs

√
π

Gρ0

. (1.18)

Perturbations smaller than the Jeans length oscillate, whereas perturbations larger
than the Jeans length collapse. In a similar fashion we de�ne the Jeans mass

MJ =
4π

3
ρ0

(
λJ
2

)3

=
π5/2

6G3/2
c3
sρ
−1/2
0 (1.19)
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1 Introduction

that describes the minimum mass that a density perturbation must have in order to
collapse under its own gravity. At high redshift z � 100 the Jeans mass is given by
(Barkana & Loeb 2001)

MJ = 1.35× 105

(
Ωmh

2

0.15

)−1/2

M�, (1.20)

where Ωm is the dimensionless cosmological matter density parameter, and h is the
value of the Hubble constant in units of 100kms−1Mpc−1. In the low redshift limit
(z < 100), the Jeans mass is given instead by (Glover 2013)

MJ = 5.18× 103

(
Ωmh

2

0.15

)−1/2(
Ωbh

2

0.026

)−3/5(
1 + z

10

)3/2

M�, (1.21)

where Ωb is the dimensionless cosmological baryon density parameter. The evolution
of the Jeans mass with redshift can be seen in Figure 1.5.

Figure 1.5: Jeans mass (solid line) and critical minihalo mass (see Equation 1.41), re-
quired for e�cient H2 cooling (dotted line) as a function of redshift. Adopted by Glover
(2013).

1.2.4 Non-Linear Structure Formation

In order to derive Equation 1.14 we had to assume |δ| � 1. Since δ can become
arbitrarily large, we have to �nd a di�erent description for structure formation in
the non-linear regime. One common approach is the spherical collapse model. The
main question is, under which conditions an overdense cloud decouples from the
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1 Introduction

cosmic expansion and collapses to a bound object. At the time of decoupling, the
cloud has an overdensity of ζ ' 5.55 with respect to the cosmological background
density at the same time. At the point, when we expect the halo to be collapsed in
our spherical collapse model, its linear density contrast might be

δc ' 1.69. (1.22)

This means that a halo can be considered to be collapsed when its density contrast
expected from linear theory reaches a value of δc. Assuming the cloud to be in virial
equilibrium, the resulting density contrast with respect to the background density
is

∆ = 32ζ ' 178. (1.23)

The spherical collapse model answers the question whether an overdensity collapses
and what we actually mean by �collapsed�.
Beyond this, it might be helpful to quantify the expected number of halos with a
certain mass in a given cosmological volume. Press & Schechter (1974) addressed
this question by deriving the halo mass function. Their original derivation was wrong
by a factor of one half (they argued that it should be there due to normalization),
which was �xed few years later by Bond et al. (1991). The comoving halo number
density is then given by

N(M, z)dM =

√
2

π

ρ0δc
σR

d lnσR
dM

exp

(
− δ2

c

2σ2
R

)
dM

M
, (1.24)

where σ2
R is the smoothed density variance within a sphere of radius R. On small

scales the mass function scales as

N(M, z)dM ∝M−2dM, (1.25)

which implies that there are many more low-mass objects than high-mass objects.
These �ndings illustrate the hierarchical structure formation, because massive ob-
jects form over time by successively merging low-mass objects. This process is shown
in Figure 1.6, where we can see the halo mass function for di�erent redshifts. At high
redshifts, the possibility of �nding a high-mass object was signi�cantly smaller and
even at redshifts which are of interest for primordial star formation (z = 20 − 30),
the distribution of halo masses is di�erent than today.

1.3 Star Formation in the Early Universe

In the last section, we discussed the cosmological framework, which de�nes the
initial conditions for star formation in the early Universe. In this section we want
to derive characteristics of Pop III star formation, like the primordial IMF. So far,
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1 Introduction

Figure 1.6: Evolution of the comoving number density of collapsed halos (Press-Schechter
mass function). Note that the �cut-o�� mass grows with time. Most of the mass fraction
in collapsed halos at a given epoch is contained in halos with masses around the �cut-o��
mass. Adopted by Avila-Reese (2006).

all the steps and processes in between are a black box to us, which we want to
enlighten. Since star formation is a highly complex process with a lot of connections
and dependencies between individual processes and quantities, we will illustrate this
network at the end of each following subsections. Our current �understanding� of
Pop III star formation is illustrated in Figure 1.7.

Figure 1.7: Diagram of primordial star formation. In the following illustrations, only the
direct dependencies are displayed.

A consistent model of primordial star formation evolved over the last decades (the
following brief historical overview is based on Greif et al. 2013). In the 1960's
H2 was considered to be an important coolant in low-metallicity gas, which might
provide the necessary release of thermal energy for primordial gas clouds to collapse
and create protostars (Saslaw & Zipoy 1967; Peebles & Dicke 1968; Hirasawa 1969;
Matsuda et al. 1969; Takeda et al. 1969). Subsequent studies modelled Pop III star
formation with the help of one-zone models, which were able to follow the dynamics
with a simpli�ed treatment of radiative cooling (Yoneyama 1972; Hutchins 1976;
Silk 1977; Carlberg 1981; Palla et al. 1983; Silk 1983; Kashlinsky & Rees 1983;
Carr et al. 1984; Couchman & Rees 1986; Uehara et al. 1996; Tegmark et al. 1997).
With increasing computing capacity, three-dimensional simulations of primordial
star formation were able to include more physical processes and follow the collapse
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1 Introduction

with a higher spatial resolution (Abel et al. 1998; Bromm et al. 1999; Abel et al. 2000;
Bromm et al. 2002; Abel et al. 2002). As already mentioned in section 1.1, Pop III
star formation is fundamentally di�erent from present-day star formation: the CMB
temperature is higher, there are no metals which provide e�cient cooling channels
and there is no radiation �eld by nearby stars. According to Bromm (2013), the
characteristics of the dark matter minihalo which hosts the star-forming cloud is one
of the main ingredients of Pop III star formation. The Press-Schechter formalism
yields an estimate of the number of dark matter halos as a function of redshift and
the Jeans analysis determines whether these halos are gravitationally stable. Even if
those halos are gravitationally unstable, the question still is, whether they can cool
in a su�ciently short time (for a detailed discussion about cooling see section 1.3.2).
The virial theorem contributes to this questions, by providing a rough estimate for
the mass and temperature that a minihalo should at least have in order to provide
e�cient cooling:

Mvir = 2× 107h−1
( µ

0.6

)2/3

Ω−1/2
m

(
1 + z

20

)−3/2

M� (1.26)

Tvir = 2× 103

(
M

106M�

)2/3(
1 + z

30

)
K (1.27)

Since the virial mass is signi�cantly above the estimated Jeans mass, we expect
minihalos with masses around MJ and temperatures of roughly Tvir ' 500K to be
the �rst objects which provide the required conditions for star formation. A further
analysis of the underlying physics yields masses for the minihalo of 105 − 106M�
at virialisation redshifts around z = 20 − 30 (Bromm & Larson 2004; Glover 2005;
Yoshida et al. 2006; O'Shea & Norman 2007; Greif et al. 2008; McKee & Tan 2008;
Yoshida et al. 2008; Glover et al. 2008; Bromm et al. 2009; Turk et al. 2009; Peters
et al. 2010; Turk et al. 2011; Clark et al. 2011a; Greif et al. 2012; Stacy et al. 2013;
Hirano et al. 2013; Stacy & Bromm 2013; Greif et al. 2013; Bromm 2013). A helpful
overview of these criteria is illustrated in Figure 1.8. Since this �gure shows the
time at which the central gas density reaches ∼ 106 cm−3 (which is quite high for
minihalos), the peak of virialisation is shifted to smaller redshifts compared to the
referred values above. However, we should keep in mind that not the total baryonic
mass of the minihalo is transformed into stars. Rather a small fraction of the baryons
within a virialised object can participate in Pop III star formation, which yields star
formation rates of 0.1%− 1% (Abel et al. 2000; Klessen 2011; Stacy et al. 2013).

1.3.1 Primordial Chemistry

The second important ingredient in order to understand Pop III star formation
is the chemical composition of the primordial gas cloud. Although the number
of involved species is much lower than in the present-day Universe, the chemical
network is still complex. We only present the most important reactions, whereas
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Figure 1.8: The number of dark matter minihalos that host star-forming gas clouds as
a function of redshift. The histogram shows the distribution of redshifts when the central
gas density reaches ∼ 106 cm−3. Adopted by Hirano et al. (2013).

Glover & Savin (2009) model this primordial network containing 30 species and 392
reactions. A detailed list of all important chemical reactions and the corresponding
rate coe�cients can be found in Yoshida et al. (2006).

Formation Channels and Rates

The most essential molecule in primordial star formation is molecular hydrogen.
Therefore, we want to focus on its di�erent formation and destruction channels.
The chemistry of H2 in primordial gas has been reviewed in several studies (Abel
et al. 1997; Galli & Palla 1998; Stancil et al. 1998; Glover & Abel 2008), while the
following overview is mainly based on Clark & Glover (2013) and Glover (2013).
Due to the non-existing dipole moment, H2 cannot form directly via the radiative
association reaction

H + H→ H2 + γ. (1.28)

Whereas in the local Universe most H2 forms via surface reactions on dust grains, this
mechanism is not possible in primordial gas. Hence, most H2 in the early Universe
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is created via the pathway

H + e→ H− + γ (1.29)

H− + H→ H2 + e− (1.30)

and about 10% via the pathway

H + H+ → H+
2 + γ (1.31)

H+
2 + H→ H2 + H+. (1.32)

The rate limiting step of these reactions is the rate at which H− ions form (Turk
et al. 2011). However, since the creation and destruction rates of H− are uncertain
by up to an order of magnitude, this also leads to an uncertainty in the creation
rate of H2 . Additionally, H2 can form via the 3-body processes

H + H + H→ H2 + H, (1.33)

H + H + H2 → H2 + H2 , (1.34)

H + H + He→ H2 + He. (1.35)

Since the possibility of these reactions scale with n3, formation via the 3-body pro-
cesses becomes only important at densities above n & 108 cm−3 (Omukai et al. 2005;
Glover et al. 2008; Stacy et al. 2013). The onset of 3-body H2 formation marks an
important point in Pop III star formation, because subsequently most hydrogen is
transformed into H2 and the gas is almost fully molecular at a density of around
n ' 1012 cm−3. However, the rate coe�cient for this reaction is uncertain by nearly
an order of magnitude and the choice of its value might in�uence accretion, long-
term stability of the disc, and fragmentation (Turk et al. 2011; Clark et al. 2011b).
In order to destroy H2 , its binding energy of 4.48eV has to be overcome, which is far
above the mean kinetic energy of the CMB photons at the corresponding redshift.
Also the collisional dissociation

H2 + H→ H + H + H, (1.36)

H2 + H2 → H + H + H2 (1.37)

or charge transfer with H+

H2 + H+ → H+
2 + H (1.38)

are ine�ective at low temperatures. Hence, the primordial gas remains molecular,
until a strong, ionising radiation �eld (e.g. by massive stars or black holes) dissoci-
ates most H2 .
It is mainly dissociated by photons with energies in the range 11.15 to 13.6eV
(so called Lyman-Werner photons), since these photons are not strongly absorbed
by neutral hydrogen. Although this process might not be relevant for the initial
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H2 abundance in the �rst minihalos, photodissociation via the so-called Solomon
process (Solomon 1965; Stecher & Williams 1967; Abel et al. 1997; Wolcott-Green
et al. 2011; Latif et al. 2013a)

H2 + γ → H∗2 → H + H (1.39)

is very important for the accretion and evolution of primordial protostars. However,
since Lyman-Werner lines have a spectral width of ∆ν/ν ' 10−5, only 15% of the
absorptions are followed by photodissociation of H2 .

Primordial Abundances

According to Equation 1.9, the mass ratio of helium to hydrogen is about 1/4, which
yields a fractional helium abundance of 8.3%. The abundance of molecular hydrogen
in the post-recombination Universe is between 10−4 . xH2 . 10−3 (Omukai et al.
2005; Yoshida et al. 2008; Turk et al. 2011; Clark et al. 2011a; Clark & Glover
2013; Bromm 2013). Following Clark et al. (2011a) and Greif et al. (2008), further
primordial abundances are roughly xH+ ' 10−7, xHD ' 3×10−7 and xD+ ' 3×10−12.
These and other abundances are illustrated in Figure 1.3 as a function of time.
Hence, the mean molecular weight of primordial gas is roughly µ ' 1.33.

1.3.2 Heating and Cooling

By the terms �heating� and �cooling� we generally describe all processes that might
inject or release thermal energy from the cloud. During the gravitational collapse,
the gas temperature rises due to compressive heating. Consequently, in the absence
of any cooling process, the gas might not be able to contract to stellar densities.
Generally, cooling is based on the creation of photons that might escape the cloud
and therefore transport thermal energy outwards. Until the cloud becomes optically
thick at densities of n ' 1016 cm−3 (Glover et al. 2008; Clark et al. 2011a), molecular
hydrogen is the most important coolant (Saslaw & Zipoy 1967; Haiman et al. 1996;
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Anninos et al. 1997; Abel et al. 2000; Glover & Brand 2003; Glover 2005; Glover &
Jappsen 2007; Glover et al. 2008; Clark et al. 2011b; Hirano et al. 2013). In this
section we focus on the most relevant heating and cooling mechanisms that might
be relevant for the further understanding of this thesis. A list of all heating and
cooling processes in primordial gas can be found e.g. in Glover & Brand (2003).

H2 Line Cooling

H2 line cooling is relevant in the density regime 108 cm−3 . n . 1014 cm−3 and is
based on the rovibrational transitions of molecular hydrogen. A detailed discussion
of this cooling process is given in section 1.4.

CIE Cooling

A single, isolated H2 molecule has no dipole moment. However, when two H2 mole-
cules collide, they brie�y induce a charge displacement, which leads to a non-zero
dipole moment for a very short period of time. During this collision, they can
absorb or emit radiation through dipole transitions, which have much higher transi-
tion probabilities. A detailed discussion of this process can be found in Frommhold
(1993). Generally this process can occur at any given density, but since the pos-
sibility that two H2 molecules collide depends on the H2 abundance and increases
quadratically with density, CIE cooling becomes merely important at densities of
around n ' 1014 cm−3 (Ripamonti & Abel 2004; Omukai et al. 2005; Glover et al.
2008; Clark et al. 2011a; Hirano & Yoshida 2013; Glover 2013). Due to the short
lifetime of the collision state, the lines are very broad and almost merge into a con-
tinuum. Hence, the high opacity in the rovibrational lines does hardly reduce the
amount of energy that can be radiated away by CIE. Only when the gas density
reaches a value of n & 1016 cm−3, opacity e�ects become important. A corresponding
correction was �rstly introduced by Ripamonti & Abel (2004) and several of these
correction methods are compared in Hirano & Yoshida (2013). Summing up, CIE
cooling provides an e�cient cooling channel, even if the opacity at high densities
reduces the H2 line cooling rate.

HD Cooling

Generally, the gas can cool by HD line emissions to a temperature of T ' 100K.
However, the cooling rate is very small and hardly a�ects the overall evolution of
the cloud for metallicities below Z ≤ −6. This cooling process is only e�ective for
low densities and higher electron abundances than we �nd in Pop III star formation
(Omukai et al. 2005; Glover et al. 2008; Greif et al. 2012; Hirano & Yoshida 2013).
According to Glover et al. (2008), the next relevant coolant might be H+

3 , which
contributes to the overall cooling rate at the level of a few percent.
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H2 Formation Heating and Dissociation Cooling

As we have seen in section 1.3.1, molecular hydrogen is created and might be de-
stroyed during the formation of Pop III stars. Since each H2 molecule has a binding
energy of 4.48eV, these processes also a�ect the thermal evolution of the cloud.
Each time, an H2 molecule is formed, the release of binding energy heats the gas.
Due to the fact that the formation of H2 goes along with a dramatic increase in the
H2 cooling rate, this energy input of the formation heating is generally overcom-
pensated. On the other hand, H2 dissociation cooling is a very crucial process. At
densities above n & 1016 cm−3 there are no e�ective radiative cooling channels. How-
ever, the dissociation of H2 provides the necessary cooling for the core to collapse to
protostellar densities of around n ' 1020 cm−3 (Ripamonti et al. 2002; Glover et al.
2008; Clark et al. 2011a; Glover 2013).

Overview

A compilation of the main heating and cooling mechanisms in primordial gas as a
function of density is shown in Figure 1.9. This �gure illustrates that compressional

Figure 1.9: Left: gas heating rates in a typical primordial cloud. Red shows compressive
heating, green shows heating due to H2 formation and blue shows the heating due to
accretion. The heating rate from accretion is of the same order as that from H2 formation
and about 2 orders of magnitude lower than that from compression during the collapse.
Right: the gas cooling rates in a typical primordial cloud. Blue shows H2 line cooling,
green shows CIE cooling, red shows cooling from re-expansion of previously compressed
gas and pink shows the cooling due to H2 dissociation. Adopted from Smith et al. (2011).

heating is the dominant heating mechanism and H2 line and CIE cooling are the
most relevant cooling channels. Nevertheless, one should keep in mind that the
individual cooling rates are rather uncertain and the temperature evolution of the
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gas in the density regime 108 ≤ n ≤ 1013 is unclear by about 50% (Glover et al.
2008).

Cooling Time

An important concept which is related to the previously presented cooling rates is
the cooling time. If Λ denotes the net cooling rate, the cooling time is given by

tcool =
1

γ − 1

nkBT

Λ
, (1.40)

where γ is the adiabatic index, n is the total number density of particles, and T
is the gas temperature. Thus, this timescale is a �rst order approximation for the
time, the cloud might need to loose its total thermal energy. If the cooling time
is shorter than the dynamical time of the cloud, cooling is e�cient enough and
the cloud undergoes runaway collapse. According to Glover (2013) this criterion is
related to a critical minihalo mass

Mcrit ' 6× 105h−1
( µ

1.2

)−3/2

Ω−1/2
m

(
1 + z

10

)−3/2

M�. (1.41)

This mass corresponds to the minimum mass which a halo should have in order to
provide e�cient cooling and is illustrated in Figure 1.5.

1.3.3 Collapse of a Primordial Cloud

A characteristic timescale for the collapse of a gas cloud is the free-fall time

tff =

√
3π

32Gρ
, (1.42)

where ρ is the mean density (Klessen 2011). A homogeneous, pressureless gas cloud,
which is initially at rest might collapse within this time. Although these criteria are
not ful�lled, the free-fall time yields nevertheless a useful characteristic timescale
for the collapse of a cloud.
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The gas does not simply undergo hierarchical fragmentation, but rather evolves in a
highly complex and non-linear fashion. Hence, we have to study the di�erent phases
and the corresponding physical processes. A state of hydrodynamic and thermo-
dynamic equilibrium is reached at a density of n ' 104 cm−3 and a temperature of
T ' 200K (Glover et al. 2008; Clark et al. 2011a). Following Bromm (2013), the
subsequent collapse can be divided into three phases:

1. Atomic phase: for densities n ≤ 108 cm−3 the gas is mostly atomic, except a
tiny amount of molecular hydrogen.

2. Molecular phase: 3-body H2 formation sets in and provides an e�cient cooling
channel until the lines of molecular hydrogen become optically thick at around
n ' 1014 cm−3.

3. Approaching protostellar conditions: CIE and H2 dissociation cooling can pro-
vide a release of thermal energy up to densities of n ' 1017 cm−3. Above this
value, pressure and temperature decrease steeply and a protostar is formed.

Although the density decreases by ten orders of magnitude within the �rst two
phases, the temperature remains almost constant. This is why the collapse of a
primordial gas cloud is generally considered to be isothermal with an e�ective adi-
abatic index of γ ' 1.1 (Glover et al. 2008; Hirano et al. 2013; Stacy & Bromm
2013; Glover 2013). Only once the H2 content of the collapsing gas is exhausted, the
collapse becomes adiabatic at densities of around n ' 1020 cm−3 (Clark et al. 2011b;
Glover et al. 2008).
Larson (1969) and Penston (1969) derived a set of self-similar solutions for the col-
lapse of gas clouds. Accordingly, the �rst two phases of the collapse of a primordial
cloud can be described by the radial density slope

n ∝ r−2.2 (1.43)

(Ripamonti et al. 2002; Machida & Doi 2013; Glover 2013; Bromm 2013). This
typical radial density slope is observed in many other simulations of primordial star
formation (Clark et al. 2008, 2011b; Greif et al. 2012; Clark & Glover 2013; Greif
et al. 2013; Hirano et al. 2013). Another important ingredient of star formation
is turbulence (Klessen 2011). Primordial star formation is mainly dominated by
transonic turbulence (Clark et al. 2008; Greif et al. 2013; Stacy et al. 2013; Bromm
2013) and the assembly of the �rst galaxies marks the onset of supersonic turbulence
(Bromm 2013),

1.3.4 Fragmentation

Under certain conditions, the cloud does not simply collapse and form one central
star, but rather fragment into several clumps. The possibility of fragmentation in
primordial clouds is considered by Sabano & Yoshii (1977); Clark et al. (2008); Turk
et al. (2009); Clark et al. (2011a); Greif et al. (2011); Clark et al. (2011b); Greif
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et al. (2012); Machida & Doi (2013); Glover (2013); Bromm (2013). Generally, one
can distinguish between two di�erent types of fragmentation. In the case of the
�chemo-thermal� instability a sudden increase in the net cooling rate enables local
contraction, while the disc fragmentation relies on instabilities of the accretion disc.
Fragmentation is a very chaotic, non-deterministic process and the actual outcome
depends sensitively on the initial conditions. Turk et al. (2009) and Greif et al.
(2013) simulate di�erent primordial clouds and �nd them to fragment in one out
of �ve and in two out of nine realisations, respectively. This shows that one can
not de�nitively predict the outcome of fragmentation. Nevertheless, there are three
analytical expressions in order to quantify the possibility of a gas cloud to fragment:

• In order to locally contract instead of globally collapse, a necessary criterion
for fragmentation is (Turk et al. 2009)

tcool

tff
< 1. (1.44)

• Toomre (1964) analyses the stability of rotating gas discs and derives the
instability criteria

Q =
csκ

πGΣ
< 1, (1.45)

where κ is the epicyclic frequency and Σ is the surface density of the disc.
For Keplerian discs one can replace κ by the orbital frequency ω. Formally,
this criterion is only valid for thin discs and Goldreich & Lynden-Bell (1965)
extended the criterion by requiring Q < 0.676 for a �nite-thickness isothermal
disc to fragment.

• Gammie (2001) investigates the nonlinear outcome of a stability analysis of
a Keplerian accretion disc. Based on numerical experiments he derives the
instability criterion

3tcool

ω
< 1, (1.46)

where ω is the orbital frequency. The Gammie criterion expresses the possibil-
ity that pieces of the disc cool and collapse before they have the opportunity
to collide with one another in order to reheat the disc.

In their study on the formation and evolution of primordial protostellar systems,
Greif et al. (2012) �nd the Toomre criterion insu�cient for the quanti�cation of
gravitational instability and additionally use the Gammie criterion. Non of these
criteria guarantees fragmentation (Yoshida et al. 2006), but a combination of them
might yield a reliable quanti�cation of instabilities in the gas cloud.
A lot of recent studies detect the formation of a rotationally supported disc around
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Pop III protostars, which might become gravitationally unstable and leads to frag-
mentation (Clark et al. 2011b; Hosokawa et al. 2011; Greif et al. 2012, 2013; Glover
2013; Latif et al. 2013a). This disc extends out to 400 − 1000AU and has a char-
acteristic temperature of 1500 − 2000K (Clark et al. 2011b; Hosokawa et al. 2011;
Glover 2013). While the chemo-thermal instability occurs in company with the on-
set of 3-body H2 formation, disc fragmentation generally occurs at higher densities
(1013 − 1014 cm−3) very close (r = 1− 20AU) to the centre of the cloud (Ripamonti
& Abel 2004; Omukai et al. 2005; Clark et al. 2011a,b; Greif et al. 2012; Machida &
Doi 2013). Fragmentation in the central part of the cloud is stopped, when the last
cooling mechanism is eliminated by the dissociation of H2 and the thermal evolution
becomes adiabatic.
Another important ingredient for fragmentation (and a topic on its own) is the
presence of turbulence, which might provide support on global scales, but triggers
fragmentation on small scales. A detailed discussion on the role of turbulence in
(primordial) star formation can be found in Klessen (2011); Clark et al. (2011a) and
references therein.

1.3.5 Evolution of Protostars

In order to determine the mass accretion rate, feedback and other processes that
might in�uence the protostellar environment, we have to understand the basic princi-
ples of primordial protostellar evolution. Except for some quantitative disagreements
(see e.g. Turk et al. 2011), there is broad agreement on the qualitative evolution of a
Pop III protostar. Although this evolution is a complex interplay of many processes,
it can be summarised by a few characteristic steps. Since we are only interested in
the e�ects which might a�ect the protostellar environment, we present a brief sum-
mary and reference to other studies for the details of protostellar evolution, e.g.
Stahler et al. (1986); Omukai & Palla (2001).

1. At densities above n & 1019 cm−3 most of the molecular hydrogen is dissoci-
ated, the adiabatic index rises from γ ' 1.1 to γ ' 5/3 and the self-similar
solution breaks down (Omukai & Palla 2001; Haardt et al. 2002; Omukai et al.
2005; Yoshida et al. 2006; McKee & Tan 2008; Greif et al. 2012).
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2. A quasi-hydrostatic core with a mass ofM∗ ' 0.01M� forms and a shock front
develops at the protostellar surface (Omukai & Nishi 1998; Haardt et al. 2002;
Greif et al. 2012; Hirano et al. 2013).

3. In the early phase, luminosity and thermal energy are mostly produced by
contraction (Omukai & Palla 2001; Krumholz & McKee 2008). Consequently,
temperature rises slowly and at a mass of around M∗ ' 5M� the outer layers
expand (due to the negative heat capacity of stars).

4. At masses aroundM∗ ' 35M� the pp-chain becomes e�cient (Hosokawa et al.
2011).

5. Hydrogen fusion halts the contraction at higher masses and the star reaches
the zero age main sequence (ZAMS) after approximately 106yr of protostellar
evolution (Yoshida et al. 2006; Glover 2013).

The evolution of the protostar in the Hertzsprung-Russle diagram is illustrated in
Figure 1.10.

Figure 1.10: H-R diagram for primordial protostars. The evolution of the photosphere
and core surface is shown by the thick solid line and the dashed line, respectively. For
comparison, we also show the locus of the metal-free ZAMS stars. The numbers on both
tracks label the value of the core mass (in solar units). The �lled circles on the dashed line
have the same meaning. Adopted from Omukai & Palla (2001).

Regarding the protostellar evolution, there are some special characteristics for the
primordial case, compared to the present-day one. These characteristics of primor-
dial protostellar evolution are summarised in the following list:

27



1 Introduction

• Deuterium burning does not play an important role (Omukai & Palla 2001;
Schleicher et al. 2013; Glover 2013).

• High-mass stars reach the main sequence while they are still accreting (Peters
et al. 2010; Klessen 2011).

• Massive star formation can not be spherically symmetric (Klessen 2011).

• While Pop III protostars are large, �u�y objects, the �nal stars are smaller
than their present day counterparts (Smith et al. 2011; Clark & Glover 2013).

The previously discussed evolution of primordial protostars goes along with an inter-
dependent network of other important processes that are discussed in the following
subsections.

Accretion

Accretion is a crucial process in the determination of the �nal masses of Pop III stars.
Hirano et al. (2013) even claims a direct analytic relation, correlating the accretion
rate and the �nal stellar mass. Due to the chemical composition of the primordial
gas and the comparatively high temperature, accretion in the early Universe di�ers
signi�cantly from accretion in present-day star formation. Since there are no dust
grains, radiative pressure is less e�cient and the accretion rates are consequently
higher. A �rst estimate for the accretion rate can be derived from the assumption
that a Jeans mass is accreted in about one free-fall time:

Ṁ =
MJ

tff
∝ c3

s ∝ T 3/2 (1.47)

The temperature of the star-forming gas in a primordial minihalo is of the order
of T ' 1000K, far larger than the 10K temperatures of present-day star forming
clouds (Omukai & Palla 2001; Bergin & Tafalla 2007; Glover 2013). Consequently,
the primordial accretion rates are much higher than local accretion rates, which
are of the order of Ṁ ' 10−5M�yr−1 (Glover et al. 2008). Typical values for
the accretion rate in primordial star formation range from Ṁ ' 10−3M�yr−1 to
Ṁ ' 10−1M�yr−1 (Ripamonti et al. 2002; Hosokawa et al. 2011; Clark et al. 2011b;
Hirano et al. 2013). However, these accretion rates are highly variable in time
(Klessen 2011; Smith et al. 2011; Hirano et al. 2013; Stacy et al. 2013; Glover 2013).
Depending on the physical conditions and the structure of the disc, there are several
analytical expressions for the accretion rate at di�erent phases of the collapse which
can be seen in Figure 1.11. This �gure also illustrates the previously mentioned high
and strongly variable accretion rates. A main question is, when accretion is stopped
and by what processes. In order to answer this question, we can distinguish two
cases:

• In the case of a �smooth accretion� model, major parts of the infalling envelope
might be accreted by the central object. Since protostellar radiation can not
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Figure 1.11: Three di�erent estimates for the accretion rate onto a Pop III protostar,
taken from Tan & McKee (2004) (solid line), Turk et al. (2011) (dashed line) and Smith
et al. (2011) (dotted line). Adopted from Glover (2013).

halt this in�ow, the mass accretion rate decreases rather slowly with increasing
stellar mass (Machida & Doi 2013; Hirano et al. 2013).

• While in the case of �competitive accretion�, the gas is accreted by several
protostars. Consequently, each individual protostar has to compete for gas and
the reservoir might get exhausted. This scenario (also called �fragmentation
induced starvation�) is discussed e.g. by Peters et al. (2010).

In reality, there is no clear distinction between these two scenarios and the accretion
rate might remain high, although there are several protostars competing for infalling
gas. Ultimately, accretion stops for protostellar masses between 43M� (Clark &
Glover 2013) and 100M� (Turk et al. 2009).
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Protostellar Mass

As already seen in Figure 1.1, the uncertainties in the expected mass range are very
large. Since the accretion rate is very high and primordial gas contains almost no
metals, Pop III stars can become very massive (Omukai & Palla 2001; Clark et al.
2008). Though, the most interesting question is: how massive? Assuming a constant
accretion rate of Ṁ ' 10−3M�yr−1 over the typical Kelvin-Helmholtz timescale
tKH ' 105yr yields a rough upper limit of 100M�. Even if we consider continuing
accretion during the main sequence lifetime, this might merely increase the upper
mass limit by the factor of a few to ∼ 600M�. However in reality, protostellar
feedback and competitive accretion limit the stellar masses to much smaller values.
Reliable upper mass limits for Pop III stars are in the range 20M� to 140M� (Clark
et al. 2008; Bromm 2013).

Protostellar Radius

The protostellar radius mainly depends on the interplay between accretion, feedback
and energy production. Based on the semi-analytic model by Smith et al. (2011)
the protostellar radius can be described by the broken power-law

R ∝


26M0.27(Ṁ/10−3)0.41 for M ≤ 5M�

A1M
3 for 5M� < M ≤ 7M�

A2M
−2 for 7M� < M and R < Rms

(1.48)

where A1 and A2 are numerical constants and Rms is the main-sequence radius

Rms = 0.28M0.61R� (1.49)

according to Omukai & Palla (2003). This power law is suitable for a mass accretion
rate of Ṁ ' 10−3M�yr−1, while for other accretion rates, the transition values
between the individual slopes have to be adopted. The protostellar radius as a
function of mass can be seen for di�erent accretion rates in Figure 1.12. The radius
increases, reaches a sharp peak at a protostellar mass of 10M� with a maximum
value of roughly 100R� and then decreases to its main-sequence value. In any case,
the protostellar radius is smaller than 1AU, which is relevant for fragmentation and
possible merger events.
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Figure 1.12: The protostellar radius as a function of mass found in the stellar evolution
models of Omukai & Palla (2003) for three di�erent accretion rates. The dotted black lines
show the stellar radius given by Equation 1.48 for these accretion rates. Adopted from
Smith et al. (2011).

Feedback

Generally, radiative feedback from the accreting protostar has several e�ects on its
environment:

• The radiative pressure counteracts the gravitational force and therefore reduces
accretion.

• The radiation might heat the gas and therefore stabilise it against fragmenta-
tion.

• Some photons might be energetic enough to photodissociate the H2 .

The question, whether these processes actually occur and can signi�cantly in�uence
primordial star formation is not �nally solved. Although the number of ionising
photons is small in the early protostellar phase, their number steeply rises with
mass, as it can be seen in Figure 1.13. Above a protostellar mass of 10 − 15M�, a
star can e�ectively photodissociate the molecular hydrogen (Glover 2000; Glover &
Brand 2003; Smith et al. 2011; Klessen 2011; Hirano et al. 2013). Although accretion
feedback heats the gas and even removes the dominant coolant, it is not believed to
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Figure 1.13: Evolution of Lyman-Werner photon luminosity for a typical primordial
protostar, including e�ects of stellar feedback. The total (solid line) and contributions
from the protostellar surface (long-dashed line), boundary layer (short-dashed line), and
accretion disc from r < 10R� (dotted line) are shown. Adopted from McKee & Tan (2008).

suppress fragmentation on large scales (Krumholz & McKee 2008; Peters et al. 2010;
Clark et al. 2011b,a; Greif et al. 2011; Glover 2013). However, Smith et al. (2011)
and Machida & Doi (2013) �nd fragmentation to be suppressed in the inner ∼ 20AU
due to accretion luminosity heating. Even if fragmentation can not be suppressed by
accretion feedback, it is delayed up to ∼ 1000yr. Regarding the radiative pressure
one can say that this e�ect is rather ine�ective at early protostellar stages, but
becomes important for protostellar masses above ∼ 50M� and can even halt further
gas accretion (Omukai & Palla 2001; Haardt et al. 2002; Hosokawa et al. 2011, 2012;
Hirano et al. 2013).
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IMF

Since primordial gas contains no metals, almost all stellar properties depend on the
initial mass of the star. Therefore, the primordial IMF is the key in determining
the characteristics of Pop III stars and their e�ects on the environment. The IMF
is generally expected to be top-heavy and �atter than the present-day IMF (Glover
et al. 2008; Clark et al. 2008; Greif et al. 2011; Smith et al. 2011; Stacy et al. 2013;
Bromm 2013). However, the exact shape of the IMF and even the mass range of
Pop III stars is only poorly understood, which is for example illustrated in Figure
1.1. The best approximation of a primordial IMF with most statistical evidence
is recently given by Hirano et al. (2013), who determine the evolution of 100 Pop
III protostars. Their IMF can be seen in Figure 1.14. The main characteristics

Figure 1.14: The �nal distribution of the calculated stellar masses for 110 �rst stars.
The red, blue, and black histograms represent di�erent paths of protostellar evolution (see
original paper for details). Adopted from Hirano et al. (2013).

of primordial star formation are present in their plot. The characteristic mass is
signi�cantly above one solar mass and there is no single peak, but the distribution
appears to be �at.

33



1 Introduction

Final Stages

The �nal fate of a Pop III star does mainly depend on its mass and slightly on its
rotation. Since these processes are only of minor relevance for the understanding of
the thesis, they are only brie�y summarised in Table 1.1, in order to complete the
concept of primordial star formation. Since rotation supports mixing of the elements

Mass Range Final Fate
10M� ≤M < 40M� Type II Supernova

40M� ≤M < 100M� Black Hole
100M� ≤M < 250M� Pair Instability Supernova (PISN)

M ≥ 250M� Black Hole

Table 1.1: Final stages of non-rotating Pop III stars as a function of their initial mass.
The indicated values are mean values from Glover et al. (2008) and Stacy & Bromm (2013).

inside the star and therefore leads to a more homogeneous evolution, the minimum
mass for a rotating Pop III star to end in a PISN is decreased to ∼ 65M� (Stacy
& Bromm 2013). However, the fact that the characteristic odd-even abundance
patterns of PISN are not observed in early star forming regions, might reveal a
further restriction to the actual mass range of Pop III stars.

1.3.6 Open Questions

Although the previously presented scenario of primordial star formation seems to
be consistent, there are a lot of uncertainties and open questions. In this section we
give an overview of unsolved problems and their possible e�ects. A more detailed
discussion on these open questions in the study of Pop III star formation can be
found in Glover et al. (2008).

• Dark matter annihilation can generate luminosities up to 140L� and might
therefore in�uence heating, prevent fragmentation by stabilising the disc, or
even hold the collapse (Glover 2013; Bromm 2013).

• Although the generation and strength of magnetic �elds in primordial gas
clouds is only poorly understood, they seem to stabilise the cloud and hence
suppress fragmentation (Machida & Doi 2013; Bromm 2013).

• Until now, no Pop III star has ever been observed and we do not even know,
how many Pop III remnants we can expect in the galactic neighbourhood.
Recently, Christlieb et al. (2002); Frebel et al. (2005), and Ca�au et al. (2011)
discovered very promising candidates and following generations of telescopes
have to check this assumption.
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• When and under what conditions does the formation of Pop III stars end and
transform into another star formation channel? In the preionised Universe with
still primordial abundances, a second generation of stars (so called �Pop III.2�
stars) might form. The higher electron abundance boosts the HD abundance
and therefore provides another e�cient cooling channel at low temperatures
(Greif et al. 2008; Turk et al. 2009; Clark et al. 2011a; Glover 2013). Con-
sequently, the gas is more susceptible to fragmentation and hence Pop III.2
stars are thought to have lower masses on average than Pop III.1 stars (Clark
et al. 2011a; Hosokawa et al. 2012; Clark & Glover 2013). The formation of
Population II stars is marked by a critical metallicity of around Zcrit ' −3.5
(Greif et al. 2008).

• Another fundamental uncertainty are the values of rate coe�cients for certain
reactions in the primordial gas (see section 1.3.1).

However, Glover et al. (2008) doubt at the end of their discussion that any of these
processes might change the overall picture of Pop III star formation considerably.

1.4 Theory of Optically Thick H2 Line Cooling

Since molecular hydrogen is the dominant coolant in primordial gas, we want to
focus on its cooling properties in the optically thin and thick regime and on the
underlying equations of line transfer.

1.4.1 Optically Thin H2 Line Cooling

H2 cooling relies on rovibrational transitions of the H2 molecule. Hence, we have to
understand the concept of radiative transfer and the level populations for these rovi-
brational states (the �rst part of this section is mainly based on Dullemond 2013).
The radiative transitions between level populations is described by the radiative
transfer equation

dIν
ds

= jν − ανIν , (1.50)

where the index ν indicates the dependence on frequency. For a spontaneous radia-
tive decay from level i to level j (Ei > Ej) with the line pro�le function φij(ν) (see
Equation 2.1), the emissivity is given by

jij,ν =
hνij
4π

NiAijφij(ν), (1.51)

where Ni is the occupation number density of state i, hνij = Ej − Ei = Eij is the
energy separation of the levels and Aij is the Einstein A-coe�cient. Similarly we
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determine the extinction coe�cient by

αij,ν =
hνij
4π

(NjBji −NiBij)φij(ν) (1.52)

with the Einstein B-coe�cients Bij and Bji. The Einstein relations

Aij =
2hν3

ij

c2
Bij (1.53)

Bij =
gj
gi
Bji (1.54)

relate the Einstein coe�cients to one-another, where gi and gj are the statistical
weights of the individual levels. In local thermodynamic equilibrium (LTE) the levels
are populated thermally (Ni/Nj = gi/gj exp[−(Ei − Ej)/kBT ]) and the radiative
transfer equation can be solved straightforwardly (knowing the relevant molecular
lines, levels and rates). If the populations are not in LTE, di�erent regions of the
gas might have di�erent level populations. Hence, we have to solve the equation of
statistical equilibrium∑

j>i

njAji −
∑
j<i

niAij +
∑
j

[njCji − niCij] = 0, (1.55)

where ni and nj are the fractional occupation numbers and Cij and Cji are the
collision rates between the levels. Since the collision rates generally depend on the
local temperature, density and chemical composition of the gas, di�erent regions of
the cloud are no longer radiatively coupled and the problem of line transfer becomes
non-trivial. Before we explain commonly used approximations to this problem,
we brie�y highlight the special properties of molecular hydrogen as the dominant
coolant in primordial gas:

• It is a symmetric molecule. Hence, it has no permanent dipole moment and
can only produce quadrupole radiation, which generally has a much smaller
Aij.

• It therefore has only rovibrational transitions (Le Bourlot et al. 1999).

• Its lowest energy level is at T = 512K. Hence, H2 is a poor coolant at low
temperatures (Clark & Glover 2013; Glover 2013).

• It has to obey the selection criterion of ∆J = ±2 due to the missing dipole
moment.

• For a given perturber density, rotational excitation is dominated by collisions
with He and H2 , whereas rovibrational excitation is dominated by collisions
with H (Le Bourlot et al. 1999).
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• Its cooling rate drops exponentially for decreasing T and it can only cool the
gas to T ' 100K (Clark & Glover 2013).

• Its cooling is due to a number of lines without a single dominant line (Haardt
et al. 2002).

As we have seen before, radiative cooling is fundamentally di�erent in LTE (at high
densities) than in non-LTE (at low densities). A commonly used approximation to
model the cooling rates is the one proposed by Galli & Palla (1998), which is based
on the idea by Hollenbach & McKee (1979) to interpolate the LTE and non-LTE
case according to

ΛH2 [nH, Tg] =
Λ(LTE)

1 + [ncr/nH]
, (1.56)

where Λ(LTE) is the LTE cooling function, ncr is the critical density de�ned as

ncr

nH

=
ΛH2 (LTE)

ΛH2 [nH → 0]
, (1.57)

and ΛH2 [nH → 0] is the low-density limit of the cooling function, which is indepen-
dent of the hydrogen number density nH. The latter depends only on the collisional
and radiative deexcitation coe�cients, which are introduced above. The tempera-
ture dependent approximation of this function yields

log(ΛH2 [nH → 0]) =− 103.0 + 97.59 log(Tg)− 48.05(log(Tg))
2

+ 10.80 log(Tg)
3 − 0.9032(log(Tg))

4 (1.58)

in the range 10K ≤ Tg ≤ 104K. This approximation is widely used e.g. by Yoshida
et al. (2006) who uses it in the low density limit and apply a �t by Hollenbach &
McKee (1979) for the LTE-case. A comparison of both cooling rates can be seen in
Figure 1.15. Although their approximation yields accurate results in most relevant
cases, one important caveat of their method is that they only account for collisions
with atomic hydrogen. Hence, we apply the cooling function described by Glover &
Abel (2008) in our simulations, who model rotational and vibrational line emission
from H2 that includes collisions of H2 with H, He, H2 , protons, and electrons. A
detailed discussion of their approach can be found in Glover & Abel (2008), whereas
we brie�y summarise their results graphically in Figure 1.16. Their cooling rates are
generally higher than those determined by Galli & Palla (1998). The optically thin
cooling rates can be applied up to densities of n ' 109 cm−3. Above this density,
most H2 lines become optically thick and we have to use another approach.

1.4.2 Escape Probability Method

So far we assume that the photons, which are emitted in the rovibrational transitions,
can escape the cloud freely (without being scattered or absorbed) and therefore
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Figure 1.15: Radiative cooling rates per molecule as a function of temperature. Non-LTE
(low density limit nH = 1 cm−3) for H2 (solid line) and LTE (high density limit) cooling
function for H2 (dashed line). Adopted from Yoshida et al. (2006).

Figure 1.16: H2 cooling rates per molecule, computed for n = 10−4 cm−3, for collisions
with H (lower solid line), H2 (lower dashed line), He (dash-dotted line), e− (lower dotted
line), and H+ (upper dotted line). In every case an ortho-para ratio of 3:1 is assumed. H+

actually heats the gas at T . 150. Also shown is the widely used Galli & Palla (1998)
cooling function (upper solid line), which considers only collisions between H and H2 .
Adopted from Glover & Abel (2008).
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transport thermal energy outwards e�ectively. In the optically thick case, we have to
consider scattering and absorption events that might capture the photons and hence
decrease the overall cooling e�ciency. These scattering, absorption, and stimulated
emission events introduce a coupling between the individual level populations and
the intensity of the radiation in the lines connecting them (Elitzur 1992). In order to
tackle this problem one generally assumes complete redistribution of the frequency.
This means that the molecule has enough time between an absorption and emission
event, to redistribute its velocity (and thereby the Doppler-shifted frequencies of
its spectral lines) completely. Otherwise, the current velocity has to be assigned
to each molecule individually, which complicates the problem by introducing more
dimensions.
The most common approach to solve the problem of optically thick cooling is the
�escape probability method�. Following Emerson (1996) and Kogure & Leung (2007),
we determine the possibility that a single photon with frequency ν might escape the
cloud to be

pν = e−τν , (1.59)

where τν is the optical depth to the cloud's surface. For a speci�c line with the line
pro�le function φν the escape probability is given by

βe =

∫ ∞
0

φνpνdν. (1.60)

In order to determine this escape probability, we have to understand the dynamics
of the cloud. If the photon is emitted in the centre of the cloud and an envelope of
gas is moving towards it with a constant velocity gradient dv/ds, then the photon
observes the spectral lines of the envelope to be Doppler-shifted with respect to
its rest frame. Assuming the photon's line pro�le to have a Doppler width ∆νth

(see section 2.1.1) and a central frequency ν0, we can determine the characteristic
distance L after which the lines appear to be Doppler-shifted by one thermal line
width of the photon. This characteristic distance L is related to a di�erence in radial
velocities

∆v =
dv

ds
L =

∆νth

ν0

c. (1.61)

Commonly one assumes the photon to escape freely after it has travelled this distance
L, because its line pro�le is shifted and the possibility of reabsorption is very small
beyond this point. Introducing the relative line displacement

x = (ν − ν0)/∆νth (1.62)
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we can determine the optical depth by

τ =
κ′

∆νth

ρ

∫ ∞
0

φx(x− s/L)ds, (1.63)

where κ′ is the absorption coe�cient integrated over the whole absorption line.
Applying the substitutions x′ = x− s/L and ds = −Ldx′ we rewrite this expression
as

τ = τs

∫ x

−∞
φx(x

′)dx′, (1.64)

where

τs = κ′ρ
L

∆νth

. (1.65)

The escape probability at frequency shift x is then given by

pν = exp

[
−τs

∫ x

−∞
φx(x

′)dx′
]
. (1.66)

Performing the frequency average (Equation 1.60) yields

βe =

∫ ∞
0

φ(x) exp

[
−τs

∫ x

−∞
φx(x

′)dx′
]

dx. (1.67)

By introducing the integration variable

η =

∫ x

−∞
φx(x

′)dx′ (1.68)

we can determine the escape probability to be

βe =

∫ 1

0

e−τsηdη =
1− e−τs

τs
. (1.69)

In this approximation, the optical thickness

τs =
κ′ρ

ν0

c

dv/ds
(1.70)

corresponds to the optical thickness of the characteristic length L. Although the
problem seems to be solved, the escape probability still has to be averaged over all
possible directions

〈βe〉 =
1

4π

∫
βedΩ, (1.71)
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with generally angle dependent velocity gradient and density, which complicates the
problem and requires further assumptions and approximations. Nonetheless, the
escape probability method decouples the level populations from the line transfer
problem (Lockett & Elitzur 1989) and therefore simpli�es optically thick cooling.
Historically, the �escape probability� idea is quite old and has been developed over
the years. During its development, both a lot of improvements and false assump-
tions have been made. Since we will refer to these papers, approximations and
assumptions afterwards and we have to understand the basic concepts, variations
and shortcomings, it is worth to brie�y review the historical development:

• Ambartsumian (1933) studied motionless nebula, where the photon can escape
from any optical depth, if it is emitted in the wings of a line.

• Assuming a monotonic velocity �eld and a parallel slab of gas, Zanstra (1934)
was the �rst who derived an escape probability. For simpli�cation, he assumed
the absorption coe�cient to be non-zero only in the interval [ν0 −∆νth, ν0 +
∆νth], although there might be absorption and emission events in the wings
of the line pro�le.

• Sobolev (1947) derived the escape probability for constant velocity gradients
in his study of expanding envelope. Based on Zanstra (1934) he assumed the
absorption coe�cient to be zero outside the interval [ν0 − ∆νth, ν0 + ∆νth].
This simpli�cation leads to an underestimation of the e�ective cooling rate
as we see in section 5.1.1. Commonly, people refer to the English translation
(Sobolev 1960) of Sobolev's original work from 1947 (which was written in
Russian).

• A few years later, Sobolev (1957) reinvestigated this problem and assumed a
three-dimensional medium, which consists of plane parallel layers. For very
large velocity gradients, the escape probability does not depend on the speci�c
shape of the line pro�le function. He already mentioned that the accuracy of
this approach increases with increasing velocity gradient in the medium and
derived the escape probabilities for a rectangular line pro�le and for a Doppler
pro�le:

βrect =
1

2u

dv

dτ
, βdopp =

1√
πu

dv

dτ
, (1.72)

where u is the characteristic width of the pro�les.

• Weymann & Williams (1969) numerically analysed the escape probabilities by
determining the optical depths for Doppler pro�les. For this purpose, they
considered the absorption coe�cients to be non-zero within the frequency in-
terval [ν0 − 6∆νth, ν0 + 6∆νth].

• Castor (1970) was the �rst who derived an expression for the escape probability
in a spherical symmetric case.
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• Lucy (1971) explicitly assumed the narrow line limit (line pro�le is only af-
fected within one thermal line width) for his study of expanding atmospheres
with spherical symmetry.

• Hummer & Rybicki (1982) analysed the escape probability for di�erent line
pro�le functions in static and moving media. They found out that extremely
large optical depths are required to match the βdopp case, if the pro�le is actu-
ally dominated by the natural line width (described by a Lorentzian pro�le).
Moreover, they concluded that photons in optically thick medium remain com-
paratively localised until they escape the medium in one long �ight.

• Gnedin et al. (2008) used the escape probability method to determine the
escape fraction of ionising radiation from high-redshift galaxies and found an
average angular value of β = 1 − 3%, whereas the escape fraction varies by
more than one order of magnitude along di�erent lines of sight.

Most important for our further discussion is the application of the escape probability
method by Yoshida et al. (2006) to the case of optically thick cooling in primordial
gas. The cooling rate in an optically thick medium is then given by

ΛH2 ,thick =
∑
l,u

EluAluβesc,lunu, (1.73)

where nu is the population density of hydrogen molecules in the upper level, Elu is
the energy separation between the lower and upper level, and βesc,lu is the probability
for an emitted line photon to escape without absorption. Based on our derivation,
the escape probability is given by

βesc,lu =
1− e−τlu

τlu
, (1.74)

where τlu is the opacity at the line centre. Since the absorption coe�cient for a
transition from the lower to the upper level is given by

αlu =
Elu
4π

nlBlu

[
1− exp

(
−Elu
kBT

)]
φ(ν), (1.75)

we can express the opacity as

τlu = αluLchar, (1.76)

where Lchar is a characteristic length scale (Castor 1970; Goldreich & Kwan 1974; de
Jong et al. 1975; Stahler & Palla 2005). According to Equation 1.75 the expression
αlu/nH2 is a function only on temperature. Following Clark et al. (2011a) we express
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the optical depth by

τlu =

(
αlu
nH2

)
nH2 Lchar, (1.77)

where

nH2 Lchar = NH2 ,eff (1.78)

de�nes an e�ective column density. Hence, the last task for the determination
of optically thick cooling is the determination of the e�ective column density and
the characteristic length. Knowing these quantities, we can generally determine the
angular dependent escape probability and afterwards average it over the total sphere
and all relevant rovibrational lines. A common assumption is spherical symmetry,
such that

〈βesc〉 = β, (1.79)

whereas Yoshida et al. (2006) proposed an average over three orthogonal directions

β =
βx + βy + βz

3
. (1.80)

In section 5.1.3 we con�rm the necessity of a proper angular average in order to
capture the dynamics of the collapse. The averaged escape probability relates the
optically thin and optically thick cooling rate by

ΛH2 ,thick = β · ΛH2 ,thin (1.81)

and is therefore also know as �opacity correction�. Since we mostly use binned, mass
averaged representations of the opacity correction, one should still keep in mind that
there is actually a scatter as illustrated in Figure 1.17. For a given density, there is a
possible range of opacity corrections. This is due to the dependence on the velocity
pro�le and temperature.

1.4.3 Sobolev Approximation

A widely used method for the determination of the e�ective column density is the
�Sobolev approximation� (Sobolev 1947, 1957). This approximation has been used
in many simulations of primordial star formation (Yoshida et al. 2006, 2008; Turk
et al. 2011; Clark et al. 2011a,b; Greif et al. 2011; Wolcott-Green et al. 2011; Greif
et al. 2012; Hirano & Yoshida 2013; Stacy et al. 2013; Hirano et al. 2013; Stacy &
Bromm 2013; Greif et al. 2013). The main idea is based on the Doppler-shift of
spectral lines due to the velocity gradient (Equation 1.61). According to Sobolev,
a photon is not absorbed and can escape freely, if the spectral lines of a possibly
absorbing H2 molecule are shifted by more than one thermal line width. In terms of
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Figure 1.17: Opacity correction as a function of density for a representative snapshot.
For a given density, the opacity correction might scatter within a certain range, depending
on the local cloud properties.

the (constant) velocity gradient, this criterion can be expressed as a typical length
scale after which a photon might not be reabsorbed. This length scale is known as
the Sobolev length

Lsob =
∆vth

|dvr/dr|
. (1.82)

Phrased di�erently, all relevant matter that might reabsorb a photon is within its
Sobolev length. Therefore, the e�ective column density (Equation 1.78) can be
determined by

NH2 ,eff = nH2 Lsob. (1.83)

Since the velocity divergence captures the three-dimensional dynamics of the col-
lapse, one normally uses

Lsob =
∆vth

|~∇ · ~v|
(1.84)

for the determination of the Sobolev length (Neufeld & Kaufman 1993). A fun-
damental problem of the Sobolev approximation was already mentioned by several
authors: both, the velocity gradient and the number density have to be constant
within one Sobolev length (Lucy 1971; Bujarrabal et al. 1980; Hummer & Rybicki
1992; Neufeld & Kaufman 1993; Wolcott-Green et al. 2011), because otherwise the
integrals can not be simpli�ed in the applied manner. The validity of this assumption
is analysed in section 5.1.2.
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Radiative cooling is a crucial process in primordial star formation. In this section we
present several cooling approaches, which will be compared in the following chapters
of the Master Thesis.

2.1 Sobolev Correction

The Sobolev method is the most commonly used approximation for optically thick
H2 cooling. However, the original formula, proposed by Sobolev (1947) need revision,
which is discussed in the following sections.

2.1.1 Line Pro�les

Generally, there are di�erent e�ects that shape the line pro�le function φ(ν). First of
all, the thermal motion of the gas particles causes a Doppler-broadening of spectral
lines. This e�ect can be expressed as a Gaussian pro�le

φ(ν) =
1

∆νth

√
π

exp

(
−(ν − ν0)2

∆νth
2

)
(2.1)

with the central frequency of the line ν0 and the thermal line width for molecular
hydrogen

∆νth = ν0
vth

c
=
ν0

c

√
kT

mH

. (2.2)

Furthermore, collisional broadening and the natural line width, which can both be
described by Lorentz pro�les, should take into account (Dullemond 2013). For mole-
cular clouds however the dominant broadening mechanism is the thermal broadening
due to the Doppler e�ect and we can properly approximate the line pro�le by a Gauss
function and neglect all deviations from this shape.

2.1.2 Line Overlap

According to the Sobolev approximation a photon can escape freely from the op-
tically thick gas after one Sobolev length LS. This length scale is directly related
to a shift of spectral lines in velocity space: after one Sobolev length, the spectral
line of the escaping photon is Doppler-shifted by one thermal line width ∆νth with
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respect to the spectral line of the possibly absorbing H2 molecule. For simplicity
Sobolev (1947) assumed the absorption coe�cient to be zero outside the interval
[ν0 − ∆νth, ν0 + ∆νth] and therefore ignored all possible absorption events beyond
this point. This frequency range and the relative overlap of line pro�les after one
Sobolev length are shown in Figure 2.1. From there we can determine the line over-

Figure 2.1: Normalised thermal line pro�les of H2 lines as a function of frequency in units
of the thermal line width ∆νth. Left: the blue area indicates the frequency range in which
Sobolev assumed a non-zero absorption coe�cient. Right: the red pro�le is shifted by one
thermal line width with respect to the blue pro�le. The overlapping area is marked in
magenta and shows a relative overlap of 62%.

lap after one Sobolev length to be 62% (see Equation 2.3). Since the overlap of
spectral lines indicates the absorption probability, we can conclude that we have
a non-negligible absorption possibility beyond one Sobolev length and therefore we
need a correction in order to cover the additional matter beyond one Sobolev length.
The overlap is linearly proportional to the absorption probability and hence the next
step is the quanti�cation of the relative overlap as a function of the line displace-
ment. In terms of the relative line displacement (Equation 1.62) we are interested in
the overlap o(x). According to the right plot in Figure 2.1 this problem is symmetric
with respect to the intersection point of the blue and red pro�le. Therefore, we can
determine the overlap by

o(x) = 2

∫ x/2

−∞

1√
2π

[
exp

(
−1

2
ν2

)
− exp

(
−1

2
(ν − x)2

)]
dν. (2.3)

This function is illustrated in Figure 2.2 up to a line displacement of x = 10. From
this �gure we see once more that we have to take care of the line overlap beyond
one Sobolev length because the relative line overlap after three Sobolev lengths is
for example still 13%.
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Figure 2.2: Relative line overlap o(x) as a function of the line displacement x. There is
still a non-negligible overlap of spectral lines beyond one Sobolev length (x = 1).

2.1.3 E�ective Column Density

In order to �nd a proper correction for this overlap, we have to step back a little bit
and consider the basic de�nition of the column density

N =

∫ ∞
0

nH2 dr, (2.4)

where r is the radial coordinate and nH2 is the number density of molecular hy-
drogen. The column density thus represents the amount of H2 integrated along one
line of sight. However, we are not interested in the total column density but rather
in the e�ective column density which includes only the gas that could be relevant
for the reabsorption of escaping H2 line photons. The Sobolev approximation gives
a very simple answer to the question which gas we have to include in the e�ective
column density, namely all gas within one Sobolev length. Expressed in terms of
line overlap we write this as

Nsob =

∫ Lsob

0

1 · nH2 dr︸ ︷︷ ︸
100% overlap

+

∫ ∞
Lsob

0 · nH2 dr︸ ︷︷ ︸
0% overlap

= nH2 Lsob. (2.5)

In the last step a constant number density of molecular hydrogen is assumed. This
is a great simpli�cation whose validity is checked in section 5.1.2. Thus, Sobolev
overestimated the overlap and therefore the matter contributions within one Sobolev
length but neglected all matter contributions beyond one Sobolev length. Since we
want to account for the true overlap of spectral lines, we introduce the relative line
overlap o(x) as a weighting function into this determination of the e�ective column
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density:

Neff =

∫ ∞
0

o(x)nH2 dr (2.6)

The remaining problem is to relate the line displacement x to the distance r along
the line of sight. Assuming a constant velocity gradient along the line of sight, we
can rewrite Equation (1.82) into

dr =
Lsob

vth

dvr (2.7)

and transform the radial integration into an integration in velocity space

Neff =

∫ ∞
0

o(x)nH2

Lsob

vth

dvr. (2.8)

Assuming the number density to be constant, we rewrite this as

Neff = nH2 Lsob

∫ ∞
0

o(x)
dvr

vth

(2.9)

and replace the integration over the radial velocity by an integration over the relative
line displacement

Neff = nH2 Lsob

∫ ∞
0

o(x)dx. (2.10)

The numerical solution of this integral is∫ ∞
0

o(x)dx = 1.694, (2.11)

which hence is the correction factor for the Sobolev approximation:

Neff = 1.694 ·Nsob (2.12)

In other words, the relevant column density for the determination of the escape
probability of line photons is about 1.7 times higher than originally assumed by
Sobolev. A simpli�ed illustration of the Sobolev approximation and its corrected
version can be seen in Figure 2.3. Although we correct for the line overlap, we should
still keep in mind that this derivation implies some assumptions (e.g. constant
velocity gradient or constant density) whose validity is checked in section 5.1.2.

2.1.4 Overlap with Other Lines

Molecular hydrogen has more than two hundred spectral lines in the range 1.0µm ≤
λ ≤ 32µm which could be relevant for cooling in primordial gas (Ripamonti et al.
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Figure 2.3: Illustration of the Sobolev approximation (left) and the corrected Sobolev
approximation (right). The black arrows indicate the relative velocities (which are irrele-
vant for these approximations). In both cases we want to determine the column densities
for the central yellow particle and therefore determine the corresponding Sobolev lengths.
For the commonly used Sobolev approximation we include all mass within one Sobolev
length, whereas for the corrected approximation we include all mass within 1.694 Sobolev
lengths.

2002). An illustration of these lines at di�erent temperatures is given in Figure
2.4. Since these lines appear to be very close to each other, we should check the
possibility that a photon is emitted in one line with a certain frequency and absorbed
by another line which is Doppler-shifted into the emitting frequency. An illustration
of this phenomena is given in Figure 2.5. In order to do so, we should not just check
the overlap between one and the same line but also between di�erent lines in the
spectrum of molecular hydrogen. Ripamonti et al. (2002) provide a table with all
relevant lines and the line total luminosities. We model the spectrum of molecular
hydrogen according to this information, using Gaussian pro�les for the individual
lines. When there is no velocity gradient and therefore no Doppler-shift of spectral
lines towards each other, the relative overlap of di�erent lines is of the order of
10−6. Whereas, if we assume a velocity gradient and determine the relative overlap
of di�erent spectral lines up to a line displacement of x = 10, we �nd out that the
maximum relative overlap is of the order of 10−5 which is still much less than the
average overlaps between one and the same line. Therefore, we can conclude that
this e�ect is negligible for our calculations.
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Figure 2.4: Emitted spectra when the central temperature is (a) 650K, (b) 1500K, and
(c) 2338K. Line widths are actually smaller than the lines in this plot, so that overlaps are
only apparent. Adopted from Ripamonti et al. (2002).

Figure 2.5: Exemplary spectrum of molecular hydrogen. Illustration of di�erent spectral
lines that might be Doppler-shifted into each other. The overlap of di�erent lines is marked
in magenta.
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2.2 TreeCol

The main problem of the Sobolev approximation is that we have to stick to local
quantities and therefore neglect all information about density gradients, velocity
pro�le and the actual shape of the cloud like deviations from spherical symmetry.
Generally, the most exact way to determine e�ective column densities in SPH might
be to sum up all relevant mass along all possible lines of sight for each particle
individually for every timestep. In order to avoid this extremely high computational
e�ort, Clark et al. (2012) invented the TreeCol algorithm which determines column
densities using the tree structure, which is already present in many gravitational
N-body solvers.

2.2.1 General Idea

The general idea of TreeCol is to create a spherical map of column densities around
each particle. In contrast to direct summation of all particle contributions, TreeCol
makes use of the particle grouping in the tree, which is illustrated in Figure 2.6.
Generally, the shape and positions of the pixels on the sphere are arbitrary but

Figure 2.6: Schematic illustration of the TreeCol algorithm. The particles are already
clustered into tree nodes (boxes). TreeCol creates a spherical map around each particle by
projecting the mass contributions of the tree nodes onto the spherical grid. Adopted from
Clark et al. (2012).

since we want to determine the e�ective column densities and related photon escape
probabilities for each pixel and average them over the entire sphere, the pixels should
have equal areas. For this purpose TreeCol uses a spherical pixelation based on
HEALPix (Górski et al. 2005). Originally designed for harmonic decomposition and
the determination of the CMB power spectrum, HEALPix matches a lot of our
requirements: it creates a spherical map of equal area pixels, which are distributed
along iso-latitude circles as it can be seen in Figure 2.7. During the walk of the
tree for the determination of the gravitational force, all relevant data for the column
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Figure 2.7: Distribution of diamond shaped pixels on the sphere following the HEALPix
algorithm. We use a discretisation with 48 pixels which are distributed along iso-latitude
circles. Adopted from Górski et al. (2005).

density map are collected and projected onto the spherical grid. The tree nodes are
assumed to appear squarish in the sky. The code now has to check which pixels
are a�ected by this particular node, which requires a common coordinate system for
the tree node and the spherical map. Since we want to describe the spatial overlap
of a pixel and the tree node by two angles dθ and dφ we have to avoid that the
node is located at one of the poles of our spherical coordinate system. Therefore,
we rotate the coordinate system into a new one where the node's position vector
de�nes the new x-axis. Consequently, we determine the overlap between node and
pixel unambiguously and hence the node's contribution to the ith pixel is given by

Σcont,i =
dθdφ

p2
Σn, (2.13)

where p is the size of a pixel and Σn is the nth node's column density contribution (its
mass divided by its area). Since the particle data are already stored in a tree, TreeCol
can use this information and therefore reproduces the N logN -scaling. However, in
our simulations the usage of TreeCol slows down the simulation by a factor of about
�ve with respect to a run without TreeCol. This slowdown is mainly related to
the evaluation of several inverse trigonometric functions for each particle and pixel.
Nevertheless, TreeCol provides a very exact way of determining column densities
with an accuracy of better than 10%.

2.2.2 Using TreeCol to Determine E�ective Column Densities

We use TreeCol to overcome several shortcomings of the Sobolev approximation.
First of all, we do not have to assume a constant density because we directly sum
up the individual contributions of the SPH particles. Furthermore we can use the
velocity information of the tree nodes and do not have to assume a constant velocity
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gradient. Additionally, we account for the actual spatial matter distribution and
do not have to stick to a crude one dimensional approximation. While the origi-
nal TreeCol scheme includes all tree nodes (respectively particles), along the line
of sight, we have to take into account the Doppler shifts and �nd a criterion for
the determination of the tree nodes that we want to include and those which are
irrelevant for the e�ective column density. In order to do so, we use the information
about the relative velocities between the particle for which the column density map
is created and the individual tree nodes, which are projected onto the spherical grid.
We implement three di�erent approaches to solve this problem.

Sobolev-like

Following the Sobolev approximation, all relevant mass for the column density is
located within one Sobolev length. Translated into velocities, we should only include
particles or tree nodes whose relative velocity is smaller than the thermal velocity.
Thus, we modify TreeCol in order to include only mass contributions of nodes that
ful�l this criterion. A schematic illustration of this approach is given in Figure
2.8. From there we already see that the relevant volume around a particle does not

Figure 2.8: Illustration of the Sobolev-like criterion implemented in TreeCol. The black
arrows indicate the relative velocities vr. In order to a�ect the e�ective column densities
of the grey target particle, the relative velocities of the tree nodes have to be smaller
than the thermal velocity vth of the target particle. Note that the relative velocities do not
necessarily have to point towards this particle but can also be distributed more chaotically.
In any case the absolute value of the relative velocity is relevant for the criterion. In this
simple illustration the tree nodes are distributed randomly rather than being merged or
split according to the true opening criterion.

necessarily have to be spherically symmetric but can rather capture the dynamic
shape of the cloud. Since we just switch on TreeCol for this approach but do not
care about any overlap or corrections, this method will be labelled as �on�.
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Corrected Sobolev

Regarding the correction factor of 1.694 (Equation 2.12) for the e�ective column
densities, the next possible approach might be to include all tree nodes whose relative
velocities ful�l the criterion |vr| < 1.694vth. Using this criterion, we take into account
the non-negligible overlap beyond one Sobolev length. A schematic illustration of
this approach is given in Figure 2.9. Again we see that this approach captures the

Figure 2.9: Illustration of the corrected Sobolev criterion implemented in TreeCol. The
black arrows indicate the relative velocities vr. In order to a�ect the e�ective column
densities of the grey target particle, the relative velocities of the tree nodes have to ful�l
|vr| < 1.694vth. Note that the relative velocities do not necessarily have to point towards
the target particle but can also be distributed more chaotically. In this simple illustration
the tree nodes are distributed randomly rather than being merged or split according to the
true opening criterion.

dynamic shape of the cloud instead of using just a one-dimensional length scale.
Since we assume a mean overlap of spectral lines for all particles in the relevant
regime, we will label this method as �mean�.

Lookup

There is still one shortcoming regarding the previously presented methods: although
the Doppler-shifting of spectral lines is a smooth process, we so far de�ne a clear
cut o� between particles that are included for the column density estimation and
particles that are excluded. The overlap of spectral lines and therefore the relevance
for the e�ective column density depends only on the relative velocity. Since we know
this information for the individual tree nodes, we can weight their contributions to
the column density map with their relative spectral line overlap. In order to do so,
we have to determine the relative velocities, assign the associated overlap to the
tree node and weight its column density contribution by this weighting factor. A
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schematic illustration of this approach is given in Figure 2.10. This approach will

Figure 2.10: Illustration of the lookup method implemented in TreeCol. The black
arrows indicate the relative velocities vr. The contribution to the column density of each
tree node is weighted by the relative overlap of spectral lines which in turn depends on
the relative velocities between the tree node and the grey target particle. The weighting
is illustrated by the partial �lling of the nodes. Note that the relative velocities do not
necessarily have to point towards the target particle but can also be more chaotic. In this
simple illustration the tree nodes are distributed randomly rather than being merged or
split according to the true opening criterion.

clearly yield the most accurate results because we do not rely on any assumptions
(like a constant velocity gradient or number density), but capture the complete three
dimensional collapse of the cloud and take care of the true line overlaps. Since we
store the weighting factors for this approach in a lookup table, we will label this
method as �lookup�.

2.3 Further Approaches

Besides the commonly used Sobolev approximation and our new TreeCol-based
methods, there are several other approaches. Two analytical �t formulas directly
relate a given density to the opacity correction, whereas other one-dimensional meth-
ods use the local information of the cloud to determine the e�ective column density
and hence the opacity correction. These methods are brie�y presented in the fol-
lowing sections.

2.3.1 Gnedin

Gnedin et al. (2009) modelled molecular hydrogen and star formation in cosmological
simulations. They determine H2 column densities for the self-shielding of H2 against
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Lyman-Werner photons by using a �Sobolev-like� approximation. Therefore, they
de�ne a characteristic length scale

LGnedin =
nH2

|~∇nH2 |
(2.14)

based on the number density and its gradient. The column density then is simply
given by

NGnedin = nH2 LGnedin. (2.15)

In one dimension the length scale LGnedin is the distance after which the number
density has dropped to zero in a linear approximation. In three dimensions this
can be seen as a �rst order approximation to Equation 2.4. In any case, this ap-
proach accounts for the density gradient, which is naturally present in molecular
clouds. The accuracy of this method can be seen in Figure 2.11. They claim that

Figure 2.11: Comparison of the total hydrogen column density from the Sobolev-like
approximation (which we label NGnedin) and the true column density as integrated along
random lines of sight through the simulation box. Grey points show individual lines of
sight; black solid lines show the average NSobolev for a given NTrue, while black dashed
lines give the rms scatter. The thin black dotted line is a diagonal of the plot. The units
on the axis should actually be cm−2. Adopted from Gnedin et al. (2009).

this approximation provides a very good estimation for the column density in the
range 3 × 1020cm−2 < NHI + 2NH2 < 3 × 1023cm−2. Although we are dealing with
star formation on much smaller scales than they did, their method seems to be
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a reasonable, scale-invariant approach for the determination of column densities.
Furthermore, this method depends only on local quantities and therefore is easy to
implement in di�erent codes. Nevertheless, we should keep in mind that this method
includes no information about the velocity pro�le of the cloud and therefore neglects
the enhanced photon escape probability due to the Doppler-shifting of lines.

2.3.2 Jeans

Since the Jeans length (Equation 1.18) is a typical length scale for gravitationally
collapsing clouds, it might also be a good approximation for the column density. We
determine the H2 column density based on the Jeans length by

NJeans = nH2 λJ . (2.16)

2.3.3 Gadget

In regions with a very small velocity divergence, the Sobolev length and therefore
the column density might become arti�cially large. In order to avoid this problem,
we can determine the column density by

NGadget = min[NSobolev, NJeans]. (2.17)

When we use the (corrected) Sobolev approximation in our simulations, we actually
use this slightly modi�ed version in order to avoid arti�cially small photon escape
probabilities. Since this method is originally implemented in Gadget2, we will label
it as �Gadget�.

2.3.4 Reciprocal

One main goal of this Master Thesis is to �nd a method for the determination of
column densities which is accurate, easy to implement and does not slow down the
code. The TreeCol-based methods ful�l only the �rst criterion whereas the other
presented methods ful�l only the last two criteria as we see in section 4.2. Therefore,
we should �nd a method that only depends on local quantities of the collapse, is easy
to implement but nevertheless captures the dynamics of the cloud and reproduces
the TreeCol-based results.
The corrected Sobolev approximation (NSobolev) takes the line overlap into account
but neglects the decreasing density and hence generally overestimates column den-
sities. On the other hand, the Gnedin approximation (NGnedin) takes the decreasing
number density into account but neglects the Doppler-shifting of lines. Since each
method on its own generally overestimates column densities (as we see in section
4.2), the general idea behind this new approach is to combine these two methods in
order to overcome their individual shortcomings. Mathematically there are several
ways of combining these two characteristic length scales, but the most simple one
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providing the right limits is

1

Lrec

=
1

LGnedin

+
1

LSobolev

. (2.18)

There is no derivation or proof for this formula, but it is physically motivated by
ful�lling the required criteria in the two limiting cases:

• If both lengths are of the same order (L1 ' L2), the result should be smaller
than both lengths (Lrec < L1 ' L2), since each length individually overesti-
mates the column density.

• If one length is signi�cantly smaller than the other length L1 � L2, the result
should be equal to the smaller one (Lrec ' L1), because after this smaller
length the photon can escape freely anyway.

Following this methods, the number density is simply given by

Nrec = nH2 Lrec. (2.19)

2.3.5 Analytical Fits

We are interested in the column densities in order to determine the opacity cor-
rections (Equation 1.81) for the H2 line cooling. Besides the previously presented
methods, there are two analytical �t functions that directly relate a given number
density of the gas to the opacity correction. The �rst �tting function

β = min
[
1, (n/n0)−0.45

]
(2.20)

with n0 = 8 × 109 cm−3 was proposed by Ripamonti & Abel (2004). They analyse
the role of CIE cooling in primordial star formation analytically and use this simple
approximation as a correction for the optically thick H2 line cooling. They compare
the analytic �t formula to results of previous simulations by Ripamonti et al. (2002)
and �nd out that it reproduces the results up to densities of n ' 8 × 1016 cm−3

remarkably precise if the cloud remains approximately spherical during the collapse.
Their method has been applied in a lot of (mainly grid-based) simulations like O'Shea
& Norman (2006); Turk et al. (2011) or Hirano & Yoshida (2013).
A second method was proposed by Greif et al. (2013) who study chemo-thermal
instability in primordial star-forming clouds. The idea follows the approach by
Ripamonti & Abel (2004) but with a smooth transition and therefore a continuous
derivative towards the optically thin regime. The formula is given by

β =

{
1.45x

x1.45+0.45
forx ≥ 1

1 for x < 1
(2.21)

where x = n/n0 and n0 = 4 × 109 cm−3. A comparison between both �ts can be
seen in Figure 2.12. These �ts are the easiest and most direct way to determine
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Figure 2.12: Comparison of the two �tting formulas for the opacity correction. Equation
2.20 following Ripamonti & Abel (2004) in blue and Equation 2.21 with a continuous
derivative according to Greif et al. (2013) in red.

the opacity correction but their use does not account for any information about the
temperature, velocity or density pro�les.
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We study the collapse of primordial gas clouds with numerical simulations. Since we
want to cover more than twelve orders of magnitude in density and time, we have
to apply various numerical methods in order to tackle this problem. In this chapter
we want to explain the basic concept of SPH, the code we are using, our choice of
initial conditions and the di�erent cooling approaches we want to compare.

3.1 Numerical Methods

In order to understand the basic numerical concepts and methods, we brie�y present
the underlying physics and the numerical implementation in the following sections.

3.1.1 Smoothed Particle Hydrodynamics (SPH)

We want to simulate the gravitational collapse of a gas cloud without following
the time evolution of every single atom. Comparing it to a blob of gas, you do
not have to know the complete 6N-dimensional probability distribution function to
characterise it, because you can describe the gas by its temperature, pressure, and
density. Hence, we can also simplify our problem by means of an approximation. In
order to do so, there are generally two di�erent approaches: the introduction of a
spatial grid discretises space. Density, temperature or acceleration are then assigned
to the grid cells (Eulerian point of view). Alternatively, we can discretise mass by
introducing individual particles which carry information about mass, velocity and
other hydrodynamic quantities (Lagrangian point of view). This second approach
is the basic principle of smoothed particle hydrodynamics (SPH) which is used for
the following simulations. In this section (mainly based on Landau & Lifshits 1987;
Klessen 2002) we want to understand the underlying theory and the main principles
and features of SPH in order to understand the simulations, results and caveats.
The time evolution of the gas is given by the four equations of hydrodynamics:

• The conservation of mass is formulated by the continuity equation

dρ

dt
=
∂ρ

∂t
+ ~v(~∇ρ) = −ρ(~∇~v), (3.1)

where ρ is the density and ~v is the velocity.
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• The conservation of momentum is formulated by the Navier-Stokes equation

dṽ

dt
=
∂~v

∂t
+ (~v~∇)~v = −

~∇p
ρ
− ~∇φ+ η~∇2~v +

(
ζ +

η

3

)
~∇(~∇~v) (3.2)

with the pressure p, the gravitational potential φ and the viscosity coe�cients
η and ζ.

• The energy equation formulates the conservation of energy

dε

dt
=
∂ε

∂t
+ ~v(~∇ε) = T

ds

dt
− p

ρ
(~∇~v), (3.3)

where ε is the energy density, T is the temperature and s is the entropy.

• The Poissons equation

~∇2φ = 4πGρ (3.4)

relates the gravitational potential φ to the matter density.

In order to solve the hierarchically nested Maxwell-Boltzmann transport equations,
we need a closure equation, where one normally uses the equation of state

p = Kργ (3.5)

with the adiabatic index γ. These �ve equations are the theoretical framework of
hydrodynamics and further heating and cooling processes can be coupled via the
ds-term in the energy equation.
In principle, we can use these equations to simulate the collapsing cloud, but since
we want to use a particle representation, we have to solve one more problem. In
a real gas close encounters between gas particles can be neglected with respect to
the overall dynamics of the gas. However, SPH particles are more massive and
close encounters might completely control the dynamics which is obviously non-
physical. Therefore, one generally introduces the soothing function W (~r, h) (also
called �smoothing kernel�), which smears out the mass of an individual particle in a
region de�ned by the smoothing length h. This approach was at �rst implemented
individually by Lucy (1977) and Gingold & Monaghan (1977). The local average of
a quantity is then given by

〈f(~r)〉 =

∫
f(~r′)W (~r − ~r′, h)d3r′ (3.6)
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which imposes several conditions to the smoothing function (normalization and con-
vergence for h→ 0). Our simulation code uses the spherical spline kernel

W (r, h) =
8

πh3


1− 6

(
r
h

)2
+ 6

(
r
h

)3
for 0 ≤ r

h
≤ 1

2

2
(
1− r

h

)3
for 1

2
≤ r

h
≤ 1

0 for r
h
> 1

(3.7)

by Monaghan & Lattanzio (1985). Clark et al. (2011b) state that this choice of the
smoothing kernel tends to suppress fragmentation in unresolved regions rather than
promote it, which is of interest for the later discussion. The smoothing length h is
adaptively chosen in order to guarantee a constant number of 57 ± 1 neighbouring
particles within one smoothing length.

3.1.2 Gadget2

We use a modi�ed version of the cosmological simulation code Gadget2. The origi-
nal code was written by Springel (2005) in order to simulate structure formation by
means of smoothed particle hydrodynamics. The SPH implementation in Gadget2
conserves energy and entropy, apart from shocks where energy is injected by an
arti�cial viscosity term.
The main challenge of gravitational N-body codes is the calculation of the gravita-
tional force which classically scales as N2. Gadget2 solves this problem by clustering
the particles into so called �tree nodes� (see Figure 3.1) which reduces the compu-
tational e�ort to a N logN -scaling. The general idea of the tree is to cluster all

Figure 3.1: Illustration of the tree concept. The simulation volume is decomposed (left)
and the particles are clustered into tree nodes (right).
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particles that lie within a certain region into one tree node. Hence, we can deter-
mine the gravitational potential of the nodes rather than the individual particles.
The question whether e.g. particle 4 and 5 appear close enough to be clustered or
should be treated individually is obviously di�erent for particle 2 than for particle
7. In order to quantify this clustering criterion, one can either de�ne an opening
angle (Barnes & Hut 1989) or alternatively use the condition

GM

r2

(
l

r

)2

≤ α|~a|, (3.8)

which is implemented in Gadget2 where M is the mass of the node, l is its ex-
tension, r is its distance to the particle, ~a is the total acceleration acting on this
particle and α . 0.01 is a tolerance parameter. This criterion guarantees that the
relative error of the gravitational force is below 1%. The domain decomposition is
implemented by successively dividing each volume segment into 8 subvolumes until
each volume segment contains only one particle (compare left side of Figure 3.1).
The gravitational potential is then determined by �walking� the tree and summing
up the contributions of the nodes or open them if the criterion (Equation 3.8) is
violated.
Another important feature are adaptive timesteps. As already mentioned, we have
to cover several orders of magnitude in space and time. However, there are particles
in very dense, highly dynamic regions and other particles with small accelerations in
slowly evolving environments. Hence, it might be extremely ine�ective to use only
one timestep for all particles, because this timestep has to be very small in order to
capture also the highly dynamic processes. Using a small timestep for all particles
results in a lot of time iterations and therefore in very long computational times.
In order to minimise the number of time integrations and hence the computational
e�ort, Gadget2 uses adaptive timesteps following the criterion

∆t ∝ 1√
|~a|
, (3.9)

where ~a is the acceleration of the last timestep. Moreover, the timesteps are a power
of two subdivision of a global timestep. This restriction ensures the synchronization
of particles after each global timestep in order to output data, exchange particles
between processors or call the chemical network. The time evolution is calculated
with a KDK-leapfrog integrator (�kick� and �drift� operators see Quinn et al. 1997)
which is most stable against non-Hamiltonian perturbations.
Additionally, the timestep has to ful�l the Courant criterion (Courant et al. 1928)
which guarantees that the hydrodynamical timesteps are always below any other
occurring timescale. This ensures that the discretised motion of SPH particles does
not su�er from rapidly propagating pressure or potential gradients.
We want to start our simulations from spherical gas clouds which are cut out from
the densest regions of collapsing minihalos. However, since Gadget2 only allows
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vacuum or periodic boundary conditions we have to implement an additional exter-
nal pressure term (Benz 1990; Clark et al. 2011a) in order to compensate for the
missing gas contribution from the surrounding minihalo. Therefore, we modify the
gas pressure contribution∑

j

mj

[
fi
Pi
ρ2
i

~∇iWij(hi) + fj
Pj
ρ2
j

~∇iWij(hi)

]
(3.10)

of the momentum equation by replacing Pi and Pj with Pi − Pext and Pj − Pext,
respectively. Pext is the constant external pressure and the symmetry of this equa-
tion guarantees that the pressure cancels for particles that are surrounded by other
particles. Whereas at the edge of the cloud, this term does not vanish and thus
mimics the pressure contribution from a surrounding medium (Clark et al. 2011a).
We do not want to arti�cially squeeze the cloud and therefore we set the external
pressure to the smallest occurring pressure in the outer 10% of the clouds.

3.1.3 Chemistry, Heating and Cooling

The assumption of an isothermal collapse with constant abundances is not valid
throughout the whole star formation process. We rather have to take care of the
chemical and thermal evolution of the collapsing gas cloud, solve the rate equations
and couple the relevant heating and cooling terms to the hydrodynamic equations.
Therefore, we use a code that is originally based on Glover et al. (2003) and was
substantially modi�ed by Simon Glover in order to model the chemistry and cooling
in star formation simulations. The primordial chemistry network includes H, D, He,
H2, H

+, H−, D+, H+
2 , HD, He

+, He++ and e−. The rate equations between these
species are solved self-consistently for every timestep. The following dominating
heating and cooling processes are implemented in our simulation code:

• H2 line cooling (see section 3.1.6).

• CIE cooling: we assume fully molecular gas which is generally true for the
relevant densities. The optically thin cooling rate is taken from Ripamonti
& Abel (2004) and to correct for the continuum absorption at high number
densities, we follow the prescription by M. Turk (2010, private communication)
and Clark et al. (2011a)

ΛCIE,thick = ΛCIE,thin ×min

[
1− exp−τCIE

τCIE

, 1

]
, (3.11)

where

τCIE =

(
n

1.4× 1016 cm−3

)2.8

. (3.12)
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• H2 three-body formation heating: binding energy of 4.48eV is released for every
newly formed H2 molecule.

• Accretion heating: the protostars accrete gas with an accretion luminosity of

Lacc =
GM∗Ṁ

R∗
, (3.13)

where Ṁ is the mass accretion rate and M∗ and R∗ are the mass and radius of
the protostars respectively sink particles (Smith et al. 2011). We use Equation
1.48 for the radius and for the accretion rate we assume a constant value of
Ṁ = 10−2M�yr−1 This is consistent with Clark et al. (2011b) and Hirano
et al. (2013) and valid as we see in section 4.4.1. The heating rate is then
given by

Γacc = ρκP

(
Lacc

4πr2

)
, (3.14)

where ρ is the gas density, κP is the Planck mean opacity and r is the distance
from the source.

Furthermore, there are a lot of other heating and cooling processes implemented in
the code like electronic excitation, recombination, photodissociation, HD-cooling,
Compton cooling or Bremsstrahlung (Glover & Jappsen 2007; Clark et al. 2011a)
but these processes have only minor e�ects in our simulations. We should note
that our current implementation has no transition to equilibrium chemistry. Hence,
the chemical timesteps become very short if the equilibrium for a certain species is
almost reached which might even cause the code to crash if the chemical timestep
becomes shorter than the dynamical timestep.

3.1.4 Sink Particles

We have already seen that star formation is a highly dynamic process which co-
vers many orders in density. Especially in the high density regime, the dynamical
timesteps become very short and therefore the computational e�ort extremely large.
Furthermore, we have not implemented all relevant physical processes which occur
in the protostar. Hence, we use so called sink particles as a computational trick to
overcome these computational problems.
Our sink particle implementation is based on Jappsen et al. (2005), which was al-
ready used before e.g. in Boss & Black (1982); Boss (1987, 1989) and Bate et al.
(1995). Above a certain density threshold ncrit all SPH particles are merged into
one single sink particle, which now contains all mass and momenta of the merged
particles. This approach conserves mass and momentum, avoids small dynamical
timesteps and we can identify the protostars by the new formed sink particles. This
critical density threshold is normally chosen to be the resolution criterion ncrit = nres
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(3.1.5) which guarantees the validity of the SPH approach throughout the simula-
tion. The sink particles also have an accretion radius racc which is normally of the
same order as the local Jeans length, representing the typical length scale that can
be resolved. An existing sink particle accretes any further gas particle which comes
inside the accretion radius and is bound to the system.
Nevertheless, we should keep in mind that sink particles are just a computational
trick which also causes problems like a discontinuity in the mass and number of
particles, a lack of pressure forces at the accretion radius and the violation of the
hydrodynamic equations because the accretion onto the sink particle happens in-
stantaneously (Greif et al. 2012). In order to minimise those shortcoming of the
sink particle approach and to guarantee that the formation of a sink particle actu-
ally represents the local collapse to a protostar, there are several additional criteria
to check prior to the formation of a sink particle:

• The �ow should converge (~∇~v < 0).

• It should be a bound structure with a negative total energy (Etot < 0).

• The region should be Jeans unstable which is equivalent to |Egrav| > 2Eth

(Federrath et al. 2010).

• The distance to the nearest other sink particle should be at least 2racc.

• The smoothing length of the particles must be smaller than the accretion
radius of the sink particle.

Federrath et al. (2010) compared sink particle implementations in AMR and SPH
and con�rmed that the density threshold test alone is not su�cient because shocks
might lead to very dense, converging �ows which are nevertheless unbound. Us-
ing these additional criteria, the accretion rates onto sink particles are in excellent
agreement with theoretical predictions.
Sink particles gravitationally interact with each other and the surrounding gas. This
is why they also have a smoothing length which is of the same order as the sink par-
ticle's accretion radius in our simulations. However, sink particles can merge or be
dynamically ejected after close encounters (Greif et al. 2012). A close encounter
might lead to a remarkable decrease in accretion rate because the sink particles can
not accrete very e�ciently in the outer region of the cloud, whereas a merger might
lead to a shift in the mass function to higher protostellar masses. Although Greif
et al. (2012) found that nearly two-thirds of the secondary protostars have merged
away, we have not yet implemented this feature in our code but this might be one
of the next improvements.
Another crucial value is the accretion radius racc. While Clark et al. (2011b) found
that racc = 1.5AU and racc = 3AU yield qualitatively the same results, Greif et al.
(2011) claims that the accretion radius has an in�uence on the fragmentation be-
haviour. Furthermore Machida & Doi (2013) found that fragmentation always occurs
on a scale several times larger than racc, indicating that the sink radius arti�cially
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yields the fragmentation scale. On the other hand, Greif et al. (2012) and Machida &
Doi (2013) say that fragmentation does not occur for densities above n ' 1017 cm−3

(n ' 1015 cm−3, Smith et al. 2011) because there are no more chemical heating terms
that might prevent the gas from collapsing.
Phrased di�erently, the choice of the accretion radius might have an in�uence on the
fragmentation behaviour but as long as the critical density is ncrit & 1016 cm−3, we
should capture all fragmentation of the cloud. Finally, we should keep in mind that
sink particles represent protostars rather than �nished Pop III stars (Smith et al.
2011) and therefore the sink mass function cannot directly be related to the IMF.

3.1.5 Resolution

As already mentioned in section 3.1.1, SPH discretises mass and therefore it should
be clear that we cannot resolve any structures smaller than a single SPH particle.
In our SPH implementation each particle should have Nngb = 57 ± 1 neighbours
which is the best compromise between e�ciency and accuracy (P. Clark 2013, private
communication). Since SPH smooths the particle properties like temperature within
a certain volume, several particles (in our case 57) contribute to the temperature
of a single point in space. This means that we need at least 57 SPH particles
to resolve all quantities properly. Actually, the resolution criterion formulated by
Bate & Burkert (1997) requires 2Nngb ' 100 particles for a proper resolution. This
resolution criterion is important in the high density regime and especially for the
choice of the critical density ncrit and the accretion radius racc of the sinks. The
smallest mass we can resolve is

mres = 100mSPH, (3.15)

where mSPH is the average mass of an SPH particle. Furthermore, we want to ensure
that we can resolve a Jeans mass throughout the simulation which yields

mres ≤ mJ . (3.16)

Assuming the smallest possible temperature in this density regime, we can determine
the critical density at which the Jeans mass is equal to the resolution massmres. The
accretion radius is then given by the Jeans length at this temperature and density.

3.1.6 Implementation of Cooling Approaches

The general idea of the di�erent cooling approaches has already been discussed
in chapter 2. In this section we want to address the actual implementation of
these approaches into the code, point out some approximations, give hints for the
reproduction and comment on the e�ciency.
The optically thin cooling rate ΛH2 ,thin is determined based on the number density,
abundances and temperature of the gas (see section 1.4.1). The optically thick
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cooling rate ΛH2 ,thick is given by Equation 1.81, where the opacity correction β can
be expressed as a function of the column density divided by the thermal velocity of
the H2 molecules (N/vth) and the temperature T . The distribution of β can be seen
in Figure 3.2 and its values are stored in a lookup table for 31.6K ≤ T ≤ 31600K
and 1017s cm−3 ≤ N/vth ≤ 1027s cm−3.
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Figure 3.2: Opacity correction β as a function of temperature and column density over
thermal velocity. In the code β is determined based on an interpolation of this lookup
table.

For the TreeCol-based determination of the e�ective column densities we have to
create another lookup table, which relates the relative velocities in units of the
thermal velocities (vr/vth) to an overlap of spectral lines. Since the relative velocities
are distributed roughly equally throughout the simulation, we created this lookup
table with linear steps in velocity space. We want to avoid numerous calculations
of square roots because they are computationally very expensive. Therefore, we
simply look up the squared velocities because both the relative velocity vr = [(vx,i−
vx,j)

2 + (vy,i− vy,j)2 + (vz,i− vz,j)2]1/2 and the thermal velocity vth ∝
√
T require the

calculation of a square root which can be avoided using their squared values. For
each node that might contribute to the e�ective column density we �rst check if(

vr
vth

)2

≤ 43.3 (3.17)
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because otherwise the line overlap is smaller than 10−3 and can be neglected any-
way. The computational e�ort of the lookup of relative overlaps is negligible small
compared to the computational cost of TreeCol itself.
For the Gnedin approximation (section 2.3.1) we have to determine ∇n whose deter-
mination is not yet implemented in the code (but it should be possible following the
implementation for the determination of ∇v which is already present in the code).
In order to compare the results nevertheless, we approximately determine ∇nH2 ,
LGnedin and the related opacity correction based on the density distribution in the
output �les. The best approximation for the density gradient of the i-th particle is

|~∇ni| =
∑
j

|ni − nj|
|ri − rj|

W (hij), (3.18)

where the summation is over all neighbours. Unfortunately, this approach scales as
N2 and is therefore extremely expensive because no tree structure is present in the
output �les. Hence, we use an approximation and assume a spherically symmetric
density pro�le with shells of constant density that are distributed logarithmically
along the radius. This approach scales as N because we just have to average the
density within these spheres, determine the density gradient

|~∇nij| =
|ni − nj|
|ri − rj|

(3.19)

between two spheres i and j and assign the corresponding density gradient to each
particle. We have checked the validity of this approximation by comparing it to
the more exact approach given by Equation 3.18. For typical conditions in our
simulation we determine the density gradients and the associated opacity corrections
with both methods and compare the results in Figure 3.3. Although the deviations
between these two methods are small and therefore Equation 3.19 seems to be a
valid approximation, we should keep in mind that we have to assume a spherical
density pro�le and thus do not capture any other structures e.g. the formation
of a disc. Nevertheless, we use this approximation because of the extremely high
computational cost for the more exact approximation.

3.2 Initial Conditions

In our study we want to focus on the non-linear collapse of the central core rather
than the linear collapse of the minihalo. Yoshida et al. (2003) examined the statisti-
cal properties of primordial star-forming clouds and compared di�erent methods of
generating cosmological initial conditions. They found out that the choice of initial
conditions does not only a�ect the density �eld in the linear regime but also the
properties of the non-linear collapse. Therefore, we have to create realistic initial
conditions for our simulations.
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Figure 3.3: Comparison of the opacity corrections based on Equation 3.18 (Lr) and Equa-
tion 3.19 (Lr_rad). The red line indicates the desired bisectrix, on which all points should
lie. Although the faster approximation overestimates the opacity correction systematically,
the deviations are small.

3.2.1 Primordial Star-Forming Clouds

Due to hierarchical structure formation in the Universe, the star-forming clouds
form in the centre of dark matter minihalos, decouple from it and undergo self-
gravitating collapse (Yoshida et al. 2006). These decoupled gas clouds have masses
between M = 500M� (Clark et al. 2008) and M = 1000M� (McKee & Tan 2008;
Clark et al. 2011b; Hirano et al. 2013). Smaller values of around M ' 200M� are
also mentioned in earlier works by Abel et al. (2000); Yoshida et al. (2006) and
McKee & Tan (2008). A critical number density of n = 105 cm−3 is given by Abel
et al. (2000) for the decoupling of the �rst star forming clouds. Based on these
information, we desire to start our simulations from gas clouds with M ' 1000M�
and an average number density of n = 105 cm−3.

3.2.2 Synthetic Initial Conditions

For the �rst test runs we create synthetic initial conditions in order to test the
newly implemented cooling approaches in a reproducible but quite realistic environ-
ment. The homogeneous gas cloud should have a mass of M = 1000M�, an average
number density of n = 105 cm−3 and hence a radius of R = 4.1pc. Therefore, we
randomly place 643 ' 2.6 × 105 equally massive SPH particles in a sphere and im-
pose a turbulence �eld with vrms = 0.4cs to mimic inhomogeneities and increase the
randomness of the initial conditions. For these runs we do not include an initial solid
body rotation for the homogeneous cloud. The free-fall time of this con�guration is

70



3 Simulations

tff = 5× 105yr. The initial temperature of T = 300K and the chemical abundances

xH2 = 10−3 (3.20)

xH+ = 10−7 (3.21)

xHD = 3× 10−7 (3.22)

xD+ = 2.6× 10−12 (3.23)

are chosen according to Clark et al. (2011a) (in agreement with Greif et al. 2008).
The cosmological D/H ratio of 2.6 × 10−5 is adopted from Molaro (2008). The
density and temperature pro�le of these initial conditions can be seen in Figure
3.4. Following the prescription described in section 3.1.5, the resolution mass is

Figure 3.4: Pro�les of the logarithmic number density (left) and temperature (right) for
the synthetic initial cloud. Both distributions are rather homogeneous and presumably
lower temperatures at the edge are artefacts due to the a posteriori applied smoothing
kernel.

mres = 0.38M� and the number density which we can resolve above T = 300K is
nres = 1013 cm−3. Therefore, the critical density for the creation of sink particles is
ncrit = 1013 cm−3 with an accretion radius of racc = 22AU.

3.2.3 Cosmological Initial Conditions

Since we are interested in the e�ects of di�erent cooling approaches in realistic
star-forming regions, we create another set of initial conditions from a primordial
dark matter minihalo. These data are kindly provided by Mei Sasaki who performs
a cosmological structure formation simulation with the moving mesh code Arepo
(Springel 2010). She uses a periodic box with 1Mpc/h side length, initialised at
redshift z = 100. Applying several re�nements of mass resolution, she follows the
collapse of several density peaks into the non-linear regime. At a redshift of z = 19.55
she centres on the most massive minihalo and cuts out a box with a side length of
1.944pc, turns on mass re�nement, which results in N ' 6 × 107 SPH particles
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with a total mass of M ' 2400M�. In order to minimise computational e�ort
and to reduce unintentional artefacts at the edges of the (now non-periodic) box,
we cut out a sphere with radius R = 0.5pc centred on the centre of mass. The
characteristics of this spherical star-forming cloud, which we use as initial conditions
for our simulations, are as follows:

• Number of particles: N = 1.9× 107 ' 2683

• Total mass of the cloud: M = 1279M�

• Radius of the cloud: R = 0.5pc ' 105AU

• Average number density: n̄ ' 7.5× 104 cm−3

• Average temperature: T̄ = 393K

• Average molecular hydrogen abundance: xH2 = 1.1× 10−3

• Mass range of SPH particles: 1.25× 10−6M� ≤ mSPH ≤ 1.45× 10−3M�

The actual distribution of density and temperature for these cosmological initial
conditions can bee seen in Figure 3.5. In order to determine the critical density

Figure 3.5: Pro�les of the logarithmic number density (left) and temperature (right) for
the initial cloud based on cosmological initial conditions.

and the accretion radius of the sink particles, we should be aware of the radial mass
distribution of SPH particles, which can be seen in Figure 3.6. Due to the re�nement
strategy, there are less massive SPH particles (and hence a better mass resolution)
in the centre of the cloud. Since we expect the stars to form in the centre, we can
use these central particles to de�ne the resolution criterion and hence the critical
density for sink particle formation. Therefore, we determine the resolution based
on the inner 104AU, which contain 9.3× 106 particles with an average mass of m̄ =
1.5× 10−5M�. The mass resolution is then given by mres = 100m̄ = 1.5× 10−3M�.
The lowest temperature we expect in this central region is T = 300K. We want to
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Figure 3.6: Radial pro�le of the SPH particles' masses with 1σ standard deviations. The
data are radially binned so that each logarithmic bin contains about the same number of
particles. In the inner region, the SPH particles have smaller masses and therefore we have
a better resolution in the centre.

ensure mres ≤ mJ throughout the simulation. Thus, we can determine the highest
number density which still satis�es this criterion to be nres = 3.42 × 1015 cm−3.
Beyond this density, we can not guarantee to resolve the local Jeans mass with
at least 100 SPH particles. Therefore, the critical density for the formation of
sink particles is equal to this resolution density ncrit = nres = 3.42 × 1015 cm−3.
The resolution length scale is equal to the Jeans length which yields λJ = 0.3AU
under these conditions. Such a small accretion radius might lead to tiny dynamical
timesteps in the vicinity of sink particles and hence increase the computational
e�ort. Therefore, we set the accretion radius to racc = 3AU, which clearly ful�ls the
resolution criterion.
Due to the huge amount of data, we implemented a small change in the output
routine of the code which increases speed and minimises memory requirements.
One normal snapshot of these runs contains all information about position, velocity,
density, temperature, chemical abundances, cooling and heating rates, smoothing
lengths, and the column densities for each particle. This is why a normal snapshots
has a size of 40GB. A main part of this memory is used for the column densities
because for every particle the values for each of the 48 HEALPix pixels for H, H2 and
CO are stored. In order to minimise this e�ort, we only store the e�ective column
density of H2 (logarithmically averaged over all HEALPix pixels) for each particle.
Using this simpli�cation, we reduce the size of one snapshot to 2GB and therefore
increase the time resolution of our analysis by decreasing the output intervals.
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In this chapter we want to present the results of our simulations. First, we anal-
yse the TreeCol-based cooling approaches and compare them to the other cooling
implementations. Furthermore, we want to analyse the collapse of the cloud, its
fragmentation behaviour and �nally estimate the primordial IMF, based on the cos-
mological initial conditions.

4.1 Validity of TreeCol-Based Cooling Approaches

We presented three methods to determine the column density which are based on
TreeCol (section 2.2.2). In a �rst check we want to verify if these methods actu-
ally work and whether they reproduce the Sobolev-like estimations for the column
density or if they yield signi�cantly di�erent results. Therefore, we run 5 individual
simulations, each with a di�erent cooling approach (summarised in Table 4.1). In

LS 1.694LS exact overlap
local density o� o�_corr -

TreeCol on mean lookup

Table 4.1: Overview and nomenclature of the �ve cooling approaches used for the syn-
thetic initial conditions. The Sobolev (�o��) and corrected Sobolev approach (�o�_corr�)
are based on local quantities (and TreeCol is switched o�), whereas the TreeCol-based
methods directly sum up the mass contributions for the column density.

order to judge if di�erences between these methods are random e�ects and might
vary from cloud to cloud or if di�erences are systematic trends, which might occur
in all primordial clouds, we create two realizations of the synthetic initial conditions.
Both realizations have the same global properties (mass, radius, temperature, chem-
ical composition) but di�er in the random initial positions of the SPH particles and
in the random seed for the turbulence �eld generation.
The general structure of the collapse can be seen in Figure 4.1. All �ve methods
reproduce the typical n ∝ r−2.2 slope for primordial clouds (compare Equation 1.43)
and di�er only slightly in the high density regime. The H2 column densities as a
function of density can be seen in Figure 4.2 for di�erent times of the collapse.
Generally, the Sobolev-based methods overestimate the e�ective column density in
the optically thick regime. The systematic discrepancies between the Sobolev- and
TreeCol-based methods di�er by up to a factor of one hundred. For one and the
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Figure 4.1: Radial density pro�les of the clouds for di�erent cooling approaches. The
snapshots are taken before (top) and after (bottom) formation of the �rst sink particle for
two di�erent realizations (left and right) of the synthetic initial conditions. There are no
signi�cant di�erences or trends for the cooling approaches. The typical n ∝ r−2.2 slope
(illustrated by the purple dotted line) is reproduced by all methods.
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Figure 4.2: H2 column density as a function of density for di�erent cooling approaches.
The snapshots are taken before formation of the �rst sink particle (top), after formation of
the �rst sink particle (middle) and at the end of the simulation (bottom) for two di�erent
realizations (left and right) of the synthetic initial conditions. In the relevant high density
regime, the Sobolev-based methods overestimate the column densities by up to two orders
of magnitude. For all plots and density regimes, �mean� seems to �t lookup best, which
we expect to be the most exact method.
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same con�guration we generally expect the corrected Sobolev method to yield higher
column densities than the uncorrected version. However, since we are dealing with
di�erent dynamical properties in di�erent simulations, this trend does not have to
be present all the time.
Realizing that the Sobolev approximation already overestimates column densities,
one might ask why we need this additional correction factor, which even worsens
the approximation. A detailed answer to this question is given in section 5.1 but we
already want to emphasise the total neglect of any density gradient. The Sobolev
approximation assumes a constant density, but the density of molecular hydrogen
generally decreases when moving radially outwards. Hence, this approximation is
not valid, but leads to an overestimation of the column density (already for the
uncorrected Sobolev method). However, we can justify the correction factor by a
comparison of the TreeCol-based methods. The lookup approach explicitly accounts
for the true line overlaps and therefore is the most exact method. While �mean�
accounts for the correction factor and �ts lookup remarkably precise in almost all
cases, �on� corresponds to the uncorrected Sobolev method and generally underes-
timates the e�ective column density. Consequently, we need this correction factor
to account for the exact overlaps.
The H2 column density is directly related to the H2 opacity correction. Its depen-
dency on density can be seen in Figure 4.3 for the 5 di�erent methods. Since the
Sobolev-based methods overestimate the column density, they underestimate the
H2 opacity correction. Smaller values of the opacity correction mimic a higher opac-
ity for the photons and therefore suppress e�cient cooling. Moreover, we see the
same trend as above, namely that �mean� �ts lookup best, which demonstrates once
more the need of the newly introduced correction factor. Another interesting e�ect
is the increasing discrepancies between the methods with time. While the Sobolev-
based methods suppress almost all cooling because of very high opacities at late
stages of the collapse, the TreeCol-based methods yield correction factors close to
one. This development of the correction factor for the TreeCol-based methods might
be explained by the formation of a disc-like structure and the increased photon es-
cape fraction perpendicular to the disc (see section 5.1.4). The discy structure can
be captures by the TreeCol-based methods but is missed by the Sobolev methods
which depend only on local quantities and hence cannot re�ect the structure of the
collapse completely.
The discrepancies in the opacity corrections yield di�erent temperature pro�les of the
clouds which can be seen in Figure 4.4. As already mentioned before, the Sobolev-
based methods prevent e�cient cooling in the centre of the cloud and therefore
the temperature is generally higher. Whereas the runs with TreeCol-based meth-
ods yield central temperatures which are lower by several hundred Kelvin. These
di�erences in the cooling e�ciency and temperature pro�le have e�ects on the frag-
mentation behaviour as we see in section 4.3.
Finally, we can conclude four important �ndings of this �rst analysis:

1. The TreeCol-based methods work and systematically yield smaller column
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Figure 4.3: H2 opacity correction as a function of density for di�erent cooling approaches.
The snapshots are taken before formation of the �rst sink particle (top), after formation of
the �rst sink particle (middle) and at the end of the simulation (bottom) for two di�erent
realizations (left and right) of the synthetic initial conditions. The Sobolev-based me-
thods clearly underestimate the opacity correction (actually they overestimate its necessity)
throughout the collapse. Especially at the end of the simulation, the Sobolev-based and
TreeCol-based methods di�er strongly, which might be explained by the formation of a
disc (see section 5.1.4). We expect the lookup approach to be the most exact one, which
seems to be �tted best by the �mean� method.

78



4 Results

Figure 4.4: Temperature as a function of density for di�erent cooling approaches. The
snapshots are taken before (top) and after (bottom) formation of the �rst sink particle for
two di�erent realizations (left and right) of the synthetic initial conditions. In the high
density regime, the Sobolev-based methods yield higher temperatures.
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densities in the optically thick regime.

2. The correction factor is necessary although it worsens the Sobolev approxima-
tion (which can be explained by the neglected density gradient).

3. The lookup method comes with almost no additional computational e�ort.
This is why we only use this method as a reference for further studies.

4. We expect lower temperatures in the centre of collapsing minihalos than pre-
viously expected based on the Sobolev approximation.

4.2 Comparison of Cooling Approaches

After identifying the lookup method to be the most accurate approximation for the
determination of e�ective column densities, we can compare other approaches to
this method. Therefore, we set up two simulations based on the same cosmological
initial conditions (section 3.2.3). One time we apply the commonly used Sobolev
approximation and one time we use the lookup approach. We run both simulations
independently so that they start identically, but di�er when entering the optically
thick regime. Hence, we can compare the dynamical di�erences of the collapse and
the fragmentation properties imposed by the two cooling approaches. However, in
this section we compare the individual cooling approaches and are not yet interested
in the fragmentation behaviour of the clouds. Therefore, we only use the lookup
simulation and determine all relevant information based on its output �les. By doing
so, we can focus on the actual intrinsic di�erences of the methods (determined un-
der the same physical conditions) rather than comparing di�erent simulations with
presumably di�erent dynamical pro�les.
Using an accretion radius of racc = 3AU forces the simulation to crash quite early,
when the most massive sink particle has a mass of M ' 1.6M�. In order to avoid
an early crash of the code due to a small chemical timestep, we set up a second set
of simulations with a larger accretion radius of racc = 20AU. Hence, we guarantee to
capture the collapse and the formation of the �rst sink particles with a high spatial
resolution, whereas the long-term behaviour of the cloud and subsequent sink for-
mation can be studied as long as possible. We do not explicitly distinguish between
the two runs in this section, because the accretion radius has no direct in�uence on
the cooling approaches.
The �rst direct outcome of the di�erent methods is obviously the column density.
Since we want to �nd an accurate cooling approach that reproduces the lookup
method best, we compare the commonly used Sobolev approximation with the ap-
proach proposed by Gnedin and our new reciprocal method, which combines Sobolev
and Gnedin. The column density for these di�erent approaches can be seen in Fig-
ure 4.5. Generally, the local methods overestimate the e�ective column density in
the optically thick regime (n & 109 cm−3). Especially at later stages of the collapse
these di�erences increase, because the slope of the lookup method �attens with time
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Figure 4.5: E�ective column density as a function of density for di�erent cooling ap-
proaches. The snapshots are taken at di�erent times of the collapse (from top left to bot-
tom right): nmax = 3×1013 cm−3, nmax = 3×1014 cm−3, msinks = 0.2M�, msinks = 1.6M�,
msinks = 5M� andmsinks = 10M�. �reciprocal� represents the reciprocal sum of the Gnedin
and the uncorrected Sobolev length, whereas �reciprocal_corr� uses the corrected Sobolev
length. The solid black line indicates the lookup approach which should be �tted by the
other methods. In the optically thick regime (n & 109 cm−3) almost all methods overesti-
mate the column density (up to two orders of magnitude). Especially after formation of
the �rst protostars, the lookup column density decreases with time in the optically thick
regime, which is not reproduced by the local approaches.
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in the optically thick regime. This noteworthy decrease of e�ective column density
might be explained by the formation of a disc (see section 5.1.4) and the enhanced
photon escape fraction perpendicular to it. The (corrected) Sobolev method overesti-
mates the column density all the time whereas the Gnedin and reciprocal approaches
overestimate the column density only for high number densities. The latter yield
apparently accurate �ts for the density regime 109 cm−3 . n . 1012 cm−3, whereby
one should keep in mind that the relative importance of H2 line cooling decreases
above n ' 1013 cm−3. A quantitative analysis of these results is given below.
The opacity correction as a function of density can be seen in Figure 4.6 for di�erent
methods. Although there are slight di�erences between the individual approaches,
all methods seem to �t the lookup approach (around formation of the �rst sink
particles) quite precise. At later stages, the lookup approach yields higher values
for the opacity correction, corresponding to a smaller e�ective opacity of the cloud.
The other methods, which depend only on local quantities, can not reproduce this
behaviour and therefore underestimate the opacity correction. At the end of the
simulation (total mass in sink particles of msinks = 10M�), the cloud appears al-
most optically thin to the H2 photons which can be explained by the formation of a
disc-like structure so that the photons can escape perpendicularly to the disc. The
relative H2 cooling rate (ΛH2/(ΛH2 + ΛCIE)) is shown by the purple dotted line and
indicates the relevance of an accurate opacity correction.
Furthermore we compare the accuracy of the analytical �t formulas to the lookup
method. Therefore, we parametrise the two �tting functions (section 2.3.5) accord-
ing to

βRA(n) = min
[
1, (n/nRA)−bRA

]
(4.1)

and

βG(n) =

{
(1+bG)x

x(1+bG)+bG
forx ≥ 1

1 forx < 1
(4.2)

with x = n/nG and the �t parameters nRA, bRA, nG and bG. In Figure 4.7 we see
the original functions and the best �ts to the lookup method. The newly adjusted
�ts minimise the weighted scatter sum

NSPH∑
i=1

|βanalytic(i)− βlookup(i)|
βlookup(i)

· ΛH2(i)

ΛH2(i) + ΛCIE(i)
, (4.3)

where NSPH is the number of particles, βanalytic(i) is the analytic �t, βlookup(i) is the
opacity correction based on the lookup approach, ΛH2(i) is the H2 cooling rate and
ΛCIE(i) is the CIE cooling rate for the i-th particle, respectively. The weighting by
the relative cooling rate accounts for the decreasing relevance of H2 cooling at higher
densities.
For each single snapshot, the exact data can be �tted remarkable exact by an an-
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Figure 4.6: Opacity correction as a function of density for di�erent cooling approaches.
The snapshots are taken at di�erent times of the collapse (from top left to bottom right):
nmax = 3× 1013 cm−3, nmax = 3× 1014 cm−3, msinks = 0.2M�, msinks = 1.6M�, msinks =
5M� and msinks = 10M�. The solid black line indicates the lookup approach which should
be �tted by the other methods and the purple dotted line illustrates the relative strength of
H2 cooling. While at the beginning all methods �t the lookup data quite precise, the slope
of lookup �attens for later stages and the other methods can not reproduce this feature.
A quantitative analysis is given below.
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Figure 4.7: Opacity correction as a function of density for the two analytical �t formulas
(the purple dotted line shows the relative strength of H2 cooling). The snapshots are taken
at di�erent times of the collapse (from top left to bottom right): nmax = 3 × 1013 cm−3,
nmax = 3 × 1014 cm−3, msinks = 0.2M�, msinks = 1.6M�, msinks = 5M� and msinks =
10M�. The solid black line indicates the lookup approach which should be �tted by the
analytic formulas. The blue and red line represent the original �ts, whereas the yellow and
green line represent the �ts adjusted to the lookup method. For each time, the data can
generally be �tted by an analytic function. However, the �t parameters change dramatically
during the collapse.
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alytic formula. However, the slope and therefore both �t parameters vary strongly
during the collapse. Whereas the original �ts are a satisfying approximation at the
beginning of the collapse, their accuracy decreases during the collapse and they to-
tally miss the true opacity corrections at later stages.
The time evolution of the slope might reveal an interesting insight in the structure
of the collapse. In Figure 4.8 we compare the time evolution of the �t parameters
b for both �t formulas. The parameter b quanti�es the slope and therefore repre-
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Figure 4.8: Time evolution of the �t parameters bRA (Equation 4.1) and bG (Equation
4.2) to the lookup data (formation of the �rst sink particle at t = 0). The blue dashed
line illustrates the original slope of the �ts (b = 0.45). This plot is intended to show the
impossibility of one global �t function rather than to assign individual �tting parameters
to di�erent times of the collapse.

sents the dependence of the opacity on density. For large b and a steep slope, the
cloud becomes opaque with increasing density very promptly, whereas for small b
and a shallow slope the opacity remains low although the density increases. The
blue dashed line illustrates the original slope for both �ts of b = 0.45, but the newly
�tted formulas to the lookup data reveal that the actual slope is shallower and most
notably varies with time. The shallow slope for t < 200yr is caused by the fact that
there are almost no particles in the optically thick regime, which might de�ne the
slope. Whereas the shallow slope of b ' 0.1 at later stages of the collapse might be
related to a �attening of the cloud. Furthermore, a disc-like structure might increase
the e�ective opacity correction at higher densities. Hence, it might be impossible
to �nd one single analytical �t, which describes the dynamics of the collapse com-
pletely.
In order to analyse the accuracy of the di�erent cooling approaches quantitatively,
we determine the relative error of the opacity correction. Therefore, we compare
the opacity corrections of all particles above a certain density threshold to the ones
determined with the lookup method. The density threshold is necessary, because
below n = 109 cm−3, the opacity correction is very close to one anyway and hence
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there are no signi�cant deviations between the methods. The relative error

|βmethod − βlookup|
βlookup

(4.4)

is weighted by the relative H2 cooling rate (ΛH2/(ΛH2 + ΛCIE)), so that the mean
relative opacity correction error can be expressed as

∆β =
1

Nthresh

Nthresh∑
i=1

|βmethod(i)− βlookup(i)|
βlookup(i)

· ΛH2(i)

ΛH2(i) + ΛCIE(i)
, (4.5)

where Nthresh is the number of particles above a certain density threshold. We chose
the density thresholds 109 cm−3, 1010 cm−3 and 1011 cm−3, so that we can compare
how accurate the methods are in a speci�c density regime. Below 109 cm−3 the
opacities are still in the optically thin regime and above ∼ 1012 cm−3 the number of
particles is negligibly small, so that they do not contribute signi�cantly to the overall
cooling. Since we combine the available data from the simulations with the small
and the large accretion radius, there are multiple data points for some times of the
collapse. This might cause a small o�set around formation of the �rst sink particle
but thereby we guarantee to capture the whole collapse with the best possible time
resolution. The time evolution of the mean relative opacity correction error for the
threshold 109 cm−3 can be seen in Figure 4.9.
The relative error is very small at early times of the collapse because all opacity
corrections are close to one anyway. Whereas at later times, more particles enter
the optically thick regime and the relative errors rise to values between 5−30%. For
a better clarity we split the data into two plots, one contains the most promising
methods (Sobolev, corrected Sobolev, Gnedin, reciprocal and corrected reciprocal)
with relatively small errors and the other plot contains the method based on the
Jeans length, the method used in Gadget2 and the two analytical �t formulas with
their original slopes. The Jeans approximation is the most inaccurate approach,
whereas the method that is originally used in Gadget2 yields quite good results
with errors between 5− 15%. The analytical �ts are comparatively inaccurate with
errors around 20%, however the analytical �t function proposed by Greif et al. (2013)
yield somewhat better results than the one proposed by Ripamonti & Abel (2004).
The Sobolev and Gnedin approximations yield errors around 10% throughout the
simulation, whereas the Gnedin approach is the best method around formation of
the �rst sink particle. Interestingly, the corrected Sobolev approach is more accurate
(compared to the uncorrected one) before formation of the �rst sink particle, whereas
this reverses after formation of the �rst sink particle. The reciprocal approaches seem
to be the most accurate methods for the long time evolution with errors below 5% at
later stages of the collapse. The same plots for a density threshold of n > 1010 cm−3

can be seen in Figure 4.10.
Basically we observe similar results as above but the mean relative errors are higher.
Whereas the analytical �ts yield errors between 30 − 40% in the relevant regime
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Figure 4.9: Mean relative error of the opacity correction for di�erent methods as a
function of time (at t = 0 the �rst sink particle form) for all particles above n > 109 cm−3

(selection of most promising methods at the top, other methods at the bottom). At early
times all opacity corrections are close to one and thus their mean error is very small.
Whereas at later stages the relative error is between 5 − 30% and the accuracy of the
individual methods di�er signi�cantly.
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Figure 4.10: Mean relative error of the opacity correction for di�erent methods as a
function of time (at t = 0 the �rst sink particle form) for all particles above n > 1010 cm−3

(selection of most promising methods at the top, other methods at the bottom). At early
times all opacity corrections are close to one and thus their mean error is very small.
Whereas at later stages the relative error is between 5 − 50% and the accuracy of the
individual methods di�er signi�cantly.
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(Greif13 slightly smaller errors than RA04), the Jeans approximation yield errors
around 50%. The method used in Gadget2 as well as the Gnedin and Sobolev
approximations have mean relative errors between 10 − 30%. Around formation of
the �rst sink particle, the errors for the reciprocal approaches are above 20% but
they become very small (< 10%) for later stages of the collapse and hence yield
the best approximation at this later epoch. The mean relative error of the opacity
correction for all particles above n > 1011 cm−3 can be seen in Figure 4.11.
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Figure 4.11: Mean relative error of the opacity correction for di�erent methods as a
function of time (at t = 0 the �rst sink particle form) for all particles above n > 1011 cm−3

(selection of most promising methods at the top, other methods at the bottom). When
the �rst particles enter this density regime, the mean relative errors are already between
15− 70%, rise to 30− 90% just before formation of the �rst sink particle and �nally drop
below 20% (at least for the reciprocal methods).

The particles enter this density regime at later times and the mean relative errors
are generally higher (20 − 90%). The Jeans approximation and analytical �ts fail
completely in this density regime with errors above 50%. Although the other local
approaches yield high mean relative errors between 20−50%, the reciprocal methods
seem to converge towards an error of ∼ 20%. A direct comparison of the two
reciprocal methods shows that the one which uses the uncorrected Sobolev lengths
yields small mean relative errors at late stages of the collapse but errors above 50%
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around formation of the �rst sink particle, whereas the reciprocal method which
uses the corrected Sobolev length yields smaller errors around formation of the �rst
sink particles. We can summarise this discussion and the quantitative comparison
of di�erent methods with four important �ndings:

1. During the formation of subsequent sink particles (respectively protostar) the
cloud might �atten, which increases the photon escape probability perpendic-
ular to the disc-like structure. The enhanced opacity correction due to this
e�ect can only be captured by the lookup method and is totally missed by all
other approaches which depend only on local quantities.

2. Although the opacity correction can be �tted analytically for each single
timestep, one global �t function fails because the slope �attens with time.
However, the �tting formula by Greif et al. (2013) yields slightly better results
than the one proposed by Ripamonti & Abel (2004).

3. The Gnedin or Sobolev approaches might be accurate for some time or density
regimes but still yield mean relative errors of ∼ 20%.

4. Since we capture only the �rst hundred years of the total primordial star for-
mation (actually several thousand years), we should focus on the methods with
the most promising long time accuracy. Only the newly introduced reciprocal
approaches yield the satisfactorily small relative errors at later stages with
mean relative errors below ∼ 10%.

4.3 Fragmentation

We want to analyse the fragmentation behaviour of a primordial cloud in order to
answer the question, whether we end up with one massive star or with a bunch of
small stars. As we have seen in Figure 1.1, this is a crucial but poorly understood
question. We want to answer it under the aspect of di�erent cooling implementa-
tions. The �rst intuitive approach might be the analysis and comparison of the sink
particles at the end of the simulation. In Figure 4.12 we see the time evolution of the
number of sink particles and the number of sink particles as a function of the most
massive one. Based on these plots alone, we can hardly see a trend for the di�erent
methods. However, ionising radiation photodissociates the molecular hydrogen, once
the �rst protostar reaches a mass of 10− 15M� (Smith et al. 2011). Hence, cooling
might become ine�ective and fragmentation is suppressed. Using this criteria (indi-
cated in the right plot by the horizontal grey dashed lines at 15M�) and ignoring
all further sink particle creations beyond this point, there is a clear trend. While
the TreeCol-based methods might yield �nal protostar numbers around 8 (left) and
10 (right), the �nal number of protostars for the Sobolev-based runs are 4 (left) and
8 (right). Since we have not yet implemented a proper protostellar feedback model
into the code, nor do we account for merging events, we can only speculate about
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Figure 4.12: Number of sink particles as a function of time (left plot) and as a function
of the most massive sink particle (right plot) for di�erent cooling approaches. These plots
are based on two di�erent realisations of the synthetic initial conditions (left/right within
plots). The horizontal grey dashed lines on the right hand side indicate the moment when
the most massive sink particle has a mass of 15M�.

properties and the number of protostars beyond this point. Furthermore, fragmen-
tation is a highly chaotic process and we can not base our conclusions on only two
realisations.
Consequently, we have to increase the statistics and analyse further properties of
the collapse to see, whether di�erent cooling implementations have an in�uence on
the fragmentation behaviour. As already seen in section 1.3.4 there are di�erent
fragmentation criteria. The quanti�cation and comparison of these criteria yields a
much more general and fundamental analysis than merely the number of sink par-
ticles.
We compare the two runs based on cosmological conditions with the Sobolev ap-
proximation and the lookup method. Since one run might cool faster, the clouds
might not collapse synchronously. In order to compare the simulations at the same
stages of the collapse anyway, we de�ne several criteria and assign the correspond-
ing output �les. An overview of these criteria and other important quantities of the
collapse are given in Table 4.2 for the lookup runs and in Table 4.3 for the Sobolev
runs. For both methods individually, we combine data from the run with the small
accretion radius (which crashes quite early) and the run with a larger accretion ra-
dius. Even though the choice of accretion radius does not have any in�uence on
the large-scale behaviour of our cloud, there is a decrease in the number of sink
particles for this transition. Since the superposition of both simulations is the best
alternative to both resolve the �rst part of the collapse with high spatial resolution
and the later stages as long as possible, we nevertheless stick to this.
One remark about the binning, smoothing and scatter of the following plots: Gen-
erally, each simulation contains about 20 million particles, but we can not plot all
these data points at once. Furthermore, SPH particles have a smoothing length,
which should be considered for projections of individual quantities. Hence, we use
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label criterion time [yr] #sinks macc[M�] mmax[M�] racc[AU]
a n . 1010 cm−3 −893 0 - - 3
b n . 3× 1013 cm−3 −22.6 0 - - 3
c n . 3× 1014 cm−3 −5.2 0 - - 3
d �rst sink 0 1 0.163 0.163 3
e macc ' 1.6M� 8.7 3 1.565 0.594 3
f macc ' 5M� 33.9 2 5.054 2.942 20
g macc ' 10M� 99.2 2 9.923 5.493 20

Table 4.2: Overview and nomenclature of di�erent snapshots as a reference for the follow-
ing plots. Contains data from the two simulations (with small and larger accretion radius)
which are based on the cosmological initial conditions and use the lookup method. The
criteria guarantee comparability with the Sobolev runs. macc is the total mass accreted by
all sink particles, whereas mmax is the mass of the most massive sink particle. The com-
parison of these values indicates that the sink particles are almost equally massive at each
time. Since we combine two di�erent simulations, the number of sink particles decreases
between snapshot e and f. Although this is physically not realistic, it is the best option we
could do in order to follow the collapse and fragmentation as long as possible.

label criterion time [yr] #sinks macc[M�] mmax[M�] racc[AU]
a n . 1010 cm−3 −898 0 - - 3
b n . 3× 1013 cm−3 −19.1 0 - - 3
c n . 3× 1014 cm−3 −7.0 0 - - 3
d �rst sink 0 1 0.298 0.298 3
e macc ' 1.6M� 13.9 1 1.623 1.623 3
f macc ' 5M� 37.4 1 5.067 5.067 20
g macc ' 10M� 103 1 9.914 9.914 20

Table 4.3: Overview and nomenclature of di�erent snapshots as a reference for the fol-
lowing plots. Contains data from the two simulations (with small and larger accretion
radius) which are based on the cosmological initial conditions and use the Sobolev approxi-
mation. The criteria guarantee comparability with the lookup runs. macc is the total mass
accreted by all sink particles, whereas mmax is the mass of the most massive sink particle.
One should keep in mind that we combine two di�erent simulations in order to follow the
collapse and fragmentation as long as possible.
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two plotting routines:

• Radius/density/enclosed mass are binned and the particular quantity is the
mass weighted mean within each bin. An equidistant binning might overin-
terpret bins which contain only few particles. Therefore, we start with 128
(logarithmically) equidistant bins and recursively split the bin which contains
the most particles and merge those bins which contain fewest particles until
the minimal and maximal number of particles in each bin is within a factor
of 104. We do generally not plot the scatter of the individual bins, because it
might be confusing and does rarely contain any additional information.

• For projections of a certain quantity onto the plane, we create two dimen-
sional histograms - one histogram of the required quantity and a second one
of the smoothing lengths. Combining these two histograms and smearing out
the desired quantity based on the smoothing kernel yields the �nal projec-
tion. Indeed, it might be interesting to see, where the protostars are in these
projections. However, the protostars are either too tiny to be seen or they
are too large and might cover other interesting characteristics of the projec-
tion. Therefore, a compilation of their positions can be found in the appendix
(Figure B.1 to Figure B.4).

4.3.1 Collapse

First of all, we want to analyse the collapse for the lookup method, because on the
one hand we expect them to be the most realistic simulations. Thus, we can see
the general collapse behaviour and afterwards focus on those quantities which are
relevant for fragmentation. On the other hand, we can directly compare the results
of our new method to the �ndings of previously published studies of primordial star
formation. Since we are particularly interested in the di�erences in the optically
thick regime and the fragmentation behaviour, we do not track the complete col-
lapse, but rather follow the last ∼ 1000yr. Pro�les of the density, enclosed mass,
H2 abundance and temperature at di�erent times of the collapse are shown in Fig-
ure 4.13. The radial pro�le of the density has the expected n ∝ r−2.2 slope in the
outer regime (compare cetion 1.3.3). Since the enclosed mass only accounts for the
gas mass, its radial slope steepens again after formation of the �rst sink particle.
The H2 fraction depends strongly on the density, because it is mainly formed in
three-body reactions at a density of around 1010 cm−3 (see section 1.3.1). Hence, we
merely see any evolution with time. The temperature as a function of density shows
the typical features of the collapse of primordial gas (see e.g. Yoshida et al. 2006).
The dip between 109 − 1010 cm−3 characterises the interplay between the release of
binding energy in three-body H2 formation reactions and the almost optically thin
H2 line cooling.
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Figure 4.13: Di�erent pro�les of the collapse for the snapshots b�g. Top left: radial
density pro�les and the expected n ∝ r−2.2 slope in purple. Top right: enclosed gas
mass as a function of radius. Bottom left: radial pro�le of the logarithmic H2 abundance
(xH2 = 0.5 corresponds to fully molecular). Since this is mainly a function of density, we
do not see any considerable change with time. Bottom right: temperature as a function of
density.
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Density

Since the dominating force on large scales is gravity, we �rst want to focus on the
matter distribution of the cloud. The general density structure can be seen in Figure
4.14. The density pro�les clearly show the formation of two clumps which leads to

Figure 4.14: Density pro�les of the snapshots b (top) and b�d (bottom). Top: zoom
on star forming region 22.6yr before the �rst sink particle form (mind the di�erent colour
scalings). Bottom: Time evolution from snapshot b to the formation of the �rst sink
particle (which is formed exactly in the centre of this last snapshot).

the formation of several sink particles. The elongated structure with two density
peaks is already present some years before the formation of the �rst sink particle.

Opacity correction

In order to determine the regions and length scales on which the H2 cooling becomes
optically thick and the opacity correction actually has to be applied, Figure 4.15
illustrates a zoom on the central region of the cloud. From this �gure it is clear
that the opacity correction is only relevant in the inner part of the cloud and we
can focus on this region. A time evolution of this region can be seen in Figure 4.16.
The e�ects of opacity correction are most dominant around formation of the �rst
sink particles. At the beginning of the collapse, the density is not yet so high and
the opacity corrections does not deviate strongly from a value of one. Although the
density increases during the collapse, the cloud might �atten with time (compare
section 5.1.4) and the e�ective, angle-averaged opacity correction is even closer to
one at the end of our simulation.
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Figure 4.15: Opacity correction maps and zoom on region of interest for snapshot d
(formation of the �rst sink particle).

Figure 4.16: Time evolution of the opacity correction for snapshots b (top left) to g
(bottom right). The e�ects of opacity correction are most pronounced around formation
of the �rst sink particle (top right), whereas its in�uence decreases for later stages of the
collapse.
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Temperature

The cooling has direct in�uence on the temperature pro�le of the cloud, which
can be seen in Figure 4.17. Since we are dealing with star formation in the early

Figure 4.17: Temperature pro�les of the snapshots b�d (top) and d (bottom). Top: time
evolution from 22.6yr before the �rst sink particle form to the formation of the �rst sink
particle. Bottom: zoom on star forming region at formation of the �rst sink particle (mind
the di�erent colour scalings). The snapshots with a side length of 2000AU clearly show a
cold diagonal pattern. These deviations from sphericity is discussed in section 4.3.1.

Universe, the temperatures are generally higher than for present-day star formation
(TCMB ' 60K, Equation 1.6). Although the temperature distribution seems to be
very inhomogeneous on larger scales (whose deviations from spherical symmetry is
discussed in section 4.3.1), it is roughly constant in the central 200AU.

Velocities

The opacity correction and di�erent fragmentation criteria depend on characteristic
velocities of the collapse. The radial pro�les of these velocities are illustrated in
Figure 4.18. While the radial pro�le of the sound speed and the Keplerian velocity
remains almost the same during the collapse, the other velocities generally increase
with time. Since the opacity correction is based on relative gas velocities, a higher
radial velocity might boost the Doppler-shift of lines, therefore increases the photon
escape probability and hence decreases the temperature by a higher cooling rate.
As long as the tangential velocity is smaller than the Keplerian velocity, the disc is
rotationally supported. This criterion is valid for regions with r & 50AU.
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Figure 4.18: Radial pro�les of di�erent characteristic velocities for the snapshots c (left),
e (middle), and f (right). Absolute (rms) velocity v (black solid), absolute value of the
radial velocity vr, which is generally pointing inwards (blue dotted), tangential velocity
vt (green dashed), sound speed cs (red dash-dotted), and Keplerian velocity vkep (yellow
dot-dash-dotted).

Accretion Rate

The accretion rate quanti�es the ability of the cloud to transport matter inwards
and is illustrated in Figure 4.19. If the cloud is not able to forward gas inwards

Figure 4.19: Mass accretion rate (Macc = 4πr2ρvr) through spherical shells as a function
of enclosed mass (left) and density (right). A peak in the accretion rate indicates that
mass can not be transported inwards rapidly enough.

e�ciently enough, the gas accumulates somewhere in the radial shells and probably
fragment to form a new protostar. Since these are averaged pro�les, this e�ect is
not very pronounced, but the accretion rate as a function of enclosed mass peaks at
some points, which might be an indicator for further fragmentation.

Timescales

A very convenient way to quantify the collapse and identify relevant processes is
the comparison of di�erent timescales, as it can be seen in Figure 4.20. While the
radial pro�le of the free-fall time, the sound-crossing time and the orbital period
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Figure 4.20: Radial pro�les of di�erent characteristic timescales for the snapshots b
(left), c (middle), and g (right). Cooling time tcool (black solid), free-fall time tff (blue
dotted), sound-crossing time tsound (green dashed), and orbital period torbit (red dash-
dotted). Generally one can say, the smaller the time scale, the more dominating the
process is.

can roughly be described by power laws, the cooling time can be classi�ed into two
regimes: a value of tcool = 10−100yr for the inner ∼ 100AU and a value tcool > 104yr
for regions beyond 1000AU. Since the free-fall time is always (except for the inner
∼ 10AU) below the sound-crossing time, we can conclude two things. On the one
hand, the cloud is gravitationally unstable (compare 1.3.4). On the other hand,
possible artefacts due to the cut out of the whole cloud (which propagate roughly
with sound speed) can not a�ect the process of star formation in the centre. Of
special interest are those regions, where the cooling time is below the free-fall time
(r ' 100AU), because fragmentation is promoted in these regions, as we see in the
next section.

Stability Criteria

Finally, we analyse the fragmentation behaviour of the cloud. As we have seen
before, there are di�erent criteria, thresholds and regimes for fragmentation (see
section 1.3.4). The three most common ones are probably the Gammie criterion
(Equation 1.46), the Toomre parameter (Equation 1.45), and the comparison of
cooling to free-fall time. The time evolution of the latter criterion can be seen in
Figure 4.21. If tcool < tff the cloud can locally contract instead of globally collapse.
The inner region seems to be unstable all the time, whereas the conditions for
the outer regions change during the collapse. The radial pro�les of this criterion are
illustrated in Figure 4.22. The dip around r ' 100AU indicates the region where the
cloud is most susceptible to fragmentation. Nevertheless, one single criterion is not
su�cient in order to judge whether one should expect fragmentation or not (compare
section 1.3.4). Therefore, we also want to include the other two criteria. The
combination of all three criteria should be a valid quanti�cation for fragmentation.
Three maps of these criteria can be seen in Figure 4.23. Whereas the Gammie
criterion and the comparison of times almost yield the same qualitative pro�le,
the map of the Toomre parameter looks comparatively inhomogeneous. Hence, a
quanti�able comparison of these criteria is given in Figure 4.24. If we require all three
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Figure 4.21: Sequence of snapshots b (top left) to g (bottom right), illustrating the
stability criterion tcool/tff . Regions with log(tcool/tff ) < 0 might be susceptible to frag-
mentation. Whereas the inner ∼ 100AU are unstable, the outer region appears to be stable
against fragmentation.

Figure 4.22: Radial pro�les of tcool/tff . Below the black dotted line, we expect the
gas to be gravitationally unstable and thus susceptible to fragmentation. While there is a
∼ 50AU stable �island� in the centre until formation of the �rst sink particles, this region
dissolves at later time.
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Figure 4.23: Di�erent (in)stability criteria at formation of the �rst sink particle (snapshot
d). Left: Gammie criterion. Middle: tcool/tff . Right: Toomre parameter. While the
Gammie and cooling time pro�le qualitatively look the same, the map of the Toomre
parameter is much more inhomogeneous.

Figure 4.24: Di�erent (in)stability criteria as a function of density (top) and enclosed
mass (bottom). The plots show di�erent stages of the collapse: c (left), d (middle), and f
(right). Since we require all instability criteria to be ful�lled for the cloud to fragment, we
illustrate these regions in purple. Interestingly, the Gammie criterion is ful�lled in these
regions anyway and does not add an additional restriction. Hence, regions with densities of
1010−1012 cm−3 and an enclosed mass of 1−20M� are most susceptible to fragmentation.
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criteria to be ful�lled in order for the gas to fragment, these plots yield a quite exact
prediction, where fragmentation should occur. In regions with densities between
1010 cm−3 and 1012 cm−3 the gas is most likely to fragment. This corresponds to an
enclosed gas mass of 1− 20M�.

Deviation from Spherical Symmetry

As we have seen before and as Figure 4.25 additionally illustrates, the collapse is
not spherically symmetric. Even on large scales, the collapse is not isotropic, as the

Figure 4.25: Pro�les of the radial velocity (left) for snapshot b and the mass accretion rate
(right) for snapshot g. These plots exemplarily illustrate that the collapse of a primordial
cloud is by no means spherically symmetric.

pro�le of the radial velocity shows. These deviations from spherical symmetry are
due to the turbulent initial conditions and torques that act on the gas cloud. Since
the Sobolev approach is a one-dimensional approximation that assumes spherical
symmetry, it might not be able to capture the structure of the collapse. In order
to show that these deviations from spherical symmetry are not just odd projection
e�ects, Figure 4.26 shows the temperature projection along di�erent axis. Since

Figure 4.26: Temperature maps for snapshot d projected along the z- (left), y- (middle),
and x-axis (right). Obviously the collapse is not spherically symmetric but rather there
are individual radial streams of cold gas.
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we see cold streams of gas, which point irregularly into di�erent directions, we can
conclude that the collapse is not spherically symmetric.

4.3.2 Comparison of Methods

In the last section we have extensively analysed the collapse and fragmentation be-
haviour of the lookup runs. In this section, we want to compare the basic quantities
of these runs to the runs using the Sobolev approximation. At this point, we want
to strengthen the fact that both runs only di�er in the determination of e�ective
column densities for the opacity correction of H2 cooling. The runs start from ex-
actly the same initial conditions and start to di�er when entering the optically thick
regime. Figure 4.27 shows the temperature as a function of density for both sim-
ulations before entering this regime. Hence, we can be sure that all subsequent

Figure 4.27: Temperature as a function of density for snapshot a. Up to the moment
when the gas enters the optically thick regime, both simulations are completely identical.

di�erences do only rely on the di�erent cooling implementations.

Opacity correction

The �rst quantity to compare is naturally the opacity correction. Figure 4.28 il-
lustrates the time evolution of the opacity correction for both methods. While the
spatial distribution of the opacity correction seems to be smoother for the lookup
run, the distribution is comparatively structured for the Sobolev approximation.
Additionally, we see another important di�erence. Using the lookup method yields
values for the opacity correction close to one at the end of the simulation, whereas
the Sobolev approximation yields smaller photon escape fractions. Obviously, the
Sobolev approximation is not able to capture the �attening of the cloud (see section
5.1.4). Furthermore, the Sobolev-based simulation develops only one central core,
while an elongated core with two peaks is formed in the lookup run. Since the
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Figure 4.28: Opacity correction maps for the Sobolev method (top) and the lookup
method (bottom) at di�erent times of the collapse: b (left), c (middle), and g (right). The
opacity correction appears to be smoother for the lookup approach.

opacity correction has a direct in�uence on the cooling rates, we are consequently
interested in the H2 cooling rates, which are illustrated in Figure 4.29. Surprisingly,
the cooling rate is not much higher for the lookup run, although the photon escape
fractions are higher. This can be explained by the cooling implementation: due to
the presumably higher cooling rate in the lookup run, the thermal equilibrium is
reached for lower temperatures. Thus, the cloud simply remains cooler instead of
increasing its cooling rate signi�cantly.

Temperature

The temperature maps for the two di�erent methods are shown in Figure 4.30.
The hot gas is more centrally concentrated for the Sobolev-based run, whereas the
hot gas is �u�ly distributed in the inner region for the lookup run. As already
mentioned above, the gas in the Sobolev run is generally hotter, which can also be
seen in Figure 4.31. The di�erence of temperatures in this inner regime can be up
to ∼ 500K, which has signi�cant in�uence on the fragmentation behaviour, as we
see below.

Density

A comparison of the density pro�les can be seen in Figure 4.32. While the cloud
appears to be more spherically symmetric and has only one density peak for the
Sobolev run, the run using the lookup method yields a more elongated core with
two density peaks. This second peak leads to the formation of another sink particle.
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Figure 4.29: H2 cooling rate for the Sobolev method (left) and the lookup method (right)
at formation of the �rst sink particle (snapshot d). The region of e�cient cooling is larger
in the right plot.

Figure 4.30: Temperature pro�les for the Sobolev method (top) and the lookup method
(bottom) at di�erent times of the collapse: d (left) and g (right). In the upper plots, the
temperature is generally higher.
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Figure 4.31: Temperature as a function of density (left) and as a function of radius
(right) shortly after formation of the �rst sink particle (snapshot d). Comparison of the
Sobolev approximation (green dotted) and the lookup method (red dashed). In the inner,
high-density regime, the lookup approach yields lower temperatures by up to ∼ 500K.

Figure 4.32: Density for the Sobolev method (left) and the lookup method (right) at
formation of the �rst sink particle (snapshot d). For the lookup approach the high-density
core is more elongated and about to fragment into two pieces.
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Since the chemo-thermal instability (section 1.3.4) might occur independently of
the cooling approach, its in�uence should be present in both simulations. Hence we
conclude that this second density peak is an outcome of the new cooling method.

Accretion Rate

As we have seen above, the accretion rate can be an indicator for fragmentation if the
gas can not be transported inwards e�ciently enough. The maps of mass accretion
rates are illustrated in Figure 4.33. While the spherical mass accretion rate is lower

Figure 4.33: Mass accretion rate for the Sobolev method (left) and the lookup method
(right) at formation of the �rst sink particle (snapshot d). The yellow peak in the right
plot indicates the birthplace of the �rst protostar, whereas the smaller peak in the centre
leads to the formation of subsequent sink particles.

and comparatively smooth for the Sobolev-based run, it is more structured and
shows a clear o�-centre peak for the lookup run. This peak in the mass accretion
rate is an indicator for fragmentation, because the gas accumulates in this region
and can locally collapse.

Stability Criteria

Finally, we compare di�erent fragmentation criteria of the clouds. Figure 4.34 shows
the radial and density pro�le of the Toomre parameter. In the radial pro�le as well
as in the density pro�le, the value of the Toomre parameter remains longer under
the threshold of stability for the lookup run. Hence, the region and density regime
where we expect fragmentation to occur is larger in this case. A map of the Gammie
criterion is shown in Figure 4.35. Since the value of zero indicates the transition
between stable and unstable, there is an obvious trend towards more fragmentation
for the lookup-based run. Although the fragmentation behaviour in the central re-
gion is almost the same for both cooling approaches, the gas in the lookup method
is much more susceptible to fragmentation in the outer region. The ratio of the
cooling time over the free-fall time is illustrated in Figure 4.36. Here, we see a clear
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Figure 4.34: Toomre parameter as a function of density (left) and as a function of radius
(right) for snapshot d. Comparison of the Sobolev approximation (green dotted) and the
lookup method (red dashed). The cloud is susceptible to fragmentation for values below
one, which is indicated by the black dotted line. In the inner high-density regime, the
lookup value remains longer under this threshold, implying a susceptibility to fragmenta-
tion.

Figure 4.35: Gammie criterion for the Sobolev method (left) and the lookup method
(right). 100 years after the �rst sink particle has formed (snapshot g), there is a huge
di�erence in the fragmentation behaviour. According to the Gammie criterion, the gas in
the lookup run is much more likely to fragment.
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Figure 4.36: tcool/tff as a function of density (left) and as a function of radius (right)
for snapshot e. Comparison of the Sobolev approximation (green dotted) and the lookup
method (red dashed). The cloud is susceptible to fragmentation for ratios below one,
which is indicated by the black dotted line. While the Sobolev pro�le is clearly above this
threshold in the inner high-density regime, the lookup value is almost completely below it.
This illustrates a clear preference for fragmentation in the lookup run.

di�erence in the inner (∼ 30AU) high-density region. While the ratio for the lookup
run is almost completely below the critical threshold, it is almost entirely above one
for the Sobolev-based run in this regime. Therefore, we expect fragmentation more
likely to happen in the lookup run.
Summing up these three stability criteria, the gas is more susceptible to fragmen-
tation in the lookup run than in the Sobolev run, according to each of these three
criteria individually.
As a �nal remark one should mention that we obviously selected individual plots
at certain times of the collapse in order to verify our assumptions. Clearly, we can
not include all possible plots, pro�les, and snapshots in this thesis. However, the
general trend presented in this section is present in almost all of the remaining plots.
Hence, the selected plots are a representative sample of the collapse quantities.
The main �ndings of this section can be summarised by these �ve conclusions:

1. We reproduce the main characteristics of a collapsing primordial cloud.

2. The cooling implementation has a signi�cant in�uence on the collapse and the
fragmentation behaviour.

3. The Sobolev approximation is not able to capture the increase of the photon
escape fraction at later stages of the collapse.

4. Several fragmentation criteria individually support the trend towards more
fragmentation in the lookup runs, compared to the Sobolev-based ones.

5. The primordial gas cloud is most susceptible to fragmentation in the density
regime 1010 cm−3 ≤ n ≤ 1012 cm−3.
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4.4 IMF

Primordial gas does not contain any metals (log(Zprimordial/Z�) < −5, compare
Figure 1.3). Hence, the primordial IMF is of special interest, because it de�nes
almost all characteristics of primordial stellar populations. Since no Pop III star
has been discovered until today, the IMF can not be constrained observationally
but only based on simulations. As already discussed in section 1.3.5, the shape of
the primordial IMF is only poorly understood and the scatter and uncertainties are
large. Generally, the IMF is expected to be more top-heavy in the early Universe,
because Pop III stars tend to be more massive than their present-day counterparts.
Hence, we want to �nd a characteristic mass range and verify this assumption about
the primordial IMF based on our simulations. Since we use a sink particle approach,
we do not simulate the stellar physics properly. Rather, we use a very simple model
for the accretion luminosity feedback and do not consider e�ects of ionising radiation.
Moreover, the current code does not capture merger events, nor do we run the
simulation long enough to really determine an initial mass function. The only thing
we can derive based on our simulations is a characteristic mass scale for primordial
protostars, respectively a �sink particle mass function�.

4.4.1 Accretion

Once a protostar has formed, its �nal mass is mainly based on its ability to accrete
surrounding gas. Since for primordial gas the temperature is higher, also the accre-
tion rate is increased (Equation 1.47). The data outputs of our simulations are only
at discrete timesteps and therefore the accretion rates of individual sink particles
�uctuate intensely, which is unphysical. Hence, we illustrate the accreted mass by all
sink particles as a function of time in Figure 4.37. The slope of these plots represents
the mass accretion rate of the sink particles and is almost equal for all methods.
The mean mass accretion rate for all sink particles in this time interval is roughly
Ṁ ' 0.036M�yr−1, while we should keep in mind that 4�11 sink particles have been
formed in these simulations. The accretion process is signi�cantly in�uenced by the
characteristics of the most massive sink particle, due to accretion feedback, ionising
radiation, and fragmentation induced starvation (compare section 1.3.5). Therefore,
we illustrate the mass of the most massive sink particle as a function of time in Fig-
ure 4.38. The most massive sink particle (which is generally the �rst sink particle
to be formed) starts with a very high accretion rate (Ṁ1 ' 4.4× 10−2M�yr−1) and
decreases the accretion to Ṁ2 ' 6.6 × 10−3M�yr−1 when subsequent sink particles
form. The most massive sink particle generally accretes faster for the Sobolev-based
runs. Since the overall accretion rate onto all sink particles is roughly the same for
the individual methods (compare Figure 4.38), we conclude that more sink particles
form in the TreeCol-based runs (which is in compliance with Figure 4.12). These
sink particles necessarily have smaller masses than those in the Sobolev-based runs
(�fragmentation induced starvation�, compare section 1.3.5).
We can perform a similar analysis for the simulations based on cosmological initial
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Figure 4.37: Accreted mass of all sink particles as a function of time for di�erent cooling
approaches. These plots are based on two di�erent realisations of the synthetic initial
conditions (left/right). The overall gas accretion rate is approximately constant with a
value of Ṁ ' 0.036M�yr−1.

Figure 4.38: Mass of the most massive sink particle as a function of time for di�erent
cooling approaches. These plots are based on two di�erent realisation of the synthetic initial
conditions (left/right). For both realisations we see the trend that the TreeCol-based runs
generally yield smaller masses for the most massive sink particle.
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conditions. These simulations capture only a shorter period of the collapse, have
less time to fragment and form stars and therefore su�er even more by the lack of
statistical evidence. Nevertheless, we follow the collapse with a very high spatial and
temporal resolution. A comparison of the accreted mass for individual sink particles
and the associate accretion rates are illustrated in Figure 4.39, The lookup-based

Figure 4.39: Mass of the individual sink particles (top) and accretion rate (bottom) as
a function of time. Comparison of the lookup method (red) and Sobolev approximation
(green) for the run with an accretion radius of racc = 3AU (left) and racc = 20AU (right).
Although the overall accretion rate is roughly the same for all runs and methods, the
individual accretion rates onto the sink particles di�er, due to the variable number of sink
particles in each simulation. Whereas the Sobolev-based simulation tend towards less sink
particles and higher individual accretion rate, the lookup-based runs generally create more
sink particles with smaller accretion rates.

runs tend to promote fragmentation and hence create more sink particles, whereas
only one or two sink particles form for the Sobolev-based runs. Generally, the accre-
tion rates are higher (Ṁ2 = 10−2−10−1M�yr−1) compared to previous �ndings (see
section 1.3.5). If only one sink particle is present, its accretion rate is signi�cantly
higher to those cases, where several sink particles competitively accrete gas. Hence,
we can conclude that while the Sobolev approximation promotes the creation of a
few massive stars, the lookup methods seems to create more low-mass stars. Nev-
ertheless, one should keep in mind the low number of stars and therefore the poor
statistical evidence of these �ndings.
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4.4.2 Mass Function of Protostars

Since we can not derive the actual IMF and since all simulations crash at di�erent
times, we have to �nd a criterion at which point in time we want to compare the mass
functions. According to Smith et al. (2011), we have not implemented the required
physics to follow the protostars beyond the point when the �rst protostar reaches
a mass of 15M�. Hence, we use this criterion and illustrate the corresponding sink
particle mass functions in Figure 4.40. Since neither the histograms are normalised

Figure 4.40: Sink particle mass function for di�erent cooling approaches. These plots
are based on two di�erent realisation of the synthetic initial conditions (left/right). The
trend is the same as in Figure 1.14, although with a much smaller number of protostars.

(total stellar mass might be di�erent for the methods), nor do they include a su�-
cient number of sink particles, we can not draw a general conclusion about the shape
of the IMF. Even the cumulative mass function (see Figure 4.41) does not reveal
any trends between the methods. Nevertheless, the cumulative mass function clearly

Figure 4.41: Cumulative mass function of the sink particles for di�erent cooling ap-
proaches. These plots are based on two di�erent realisations of the synthetic initial condi-
tions (left/right).

113



4 Results

identi�es the sink particle mass function to be top-heavy (dominated by stars with
M > M�), whereas the present-day IMF is generally dominated by smaller stars
with a characteristic mass of roughly mc ' 0.2M� Chabrier (2003). Hence, we can
con�rm that the primordial IMF is shifted towards higher-mass stars, regardless the
cooling implementation.
The �ve most important �nding of this section are:

1. The accretion rate onto primordial protostars is very high (Ṁ2 = 10−2 −
10−1M�yr−1) compared to present-day accretion rates.

2. The overall accretion rate onto all sink particles is almost the same, regardless
the implemented cooling approach.

3. Since the lookup methods favours fragmentation, more sink particles form and
the individual accretion rates are lower, compared to the Sobolev-runs.

4. Due to the small number of sink particles and thus the low statistical evidence,
we can not constrain the shape of the mass function.

5. The primordial mass function is shifted towards high-mass stars, regardless
the implemented cooling approach.
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5.1 Why Sobolev Fails

In section 4.2 we have seen that the Sobolev approximation fails in determining the
proper e�ective column densities for H2 cooling. Although it yields acceptable results
up to the formation of the �rst sink particles, the Sobolev approach breaks down
at later phases of the collapse, because it can not capture the evolving dynamical
structure. Yet, we want to understand in detail, which assumptions break down,
which approximations might be valid and under which circumstances one can still
use the Sobolev method. In this section we focus on the Sobolev method, although
most of the �ndings are also valid for other local approaches like the Gnedin or Jeans
approximation.

5.1.1 Neglect of True Line Overlap

In his original derivation, Sobolev (1947) considered possible absorption and emis-
sion only in the frequency interval [ν0 −∆νth, ν0 + ∆νth] (see section 2.1.2). Hence,
he neglected all possible absorption events beyond one Sobolev length and therefore
underestimated the column density by a factor of 1.694 (Equation 2.12). The ap-
propriate consideration of the overlap is very important as we have seen in section
4.2, although even the uncorrected Sobolev approximation generally overestimates
column densities. Consequently, there must be further shortcoming of the Sobolev
approximation.

5.1.2 Variations of Velocity Divergence and Density

The Sobolev approximation assumes the velocity divergence and the density to be
constant within one Sobolev length. These simpli�cations avoid the evaluation of
integrals along the line of sight but are formally only valid for large velocity gradients.
Therefore, we should check, if this assumption of a large velocity gradient is valid and
hence the velocity divergence and the density can be considered to be constant within
one Sobolev length. In order to check the validity of the assumptions, we analyse
several snapshots of di�erent phases of the collapse by performing the following
algorithm:

1. We select all particles above the optically thick density threshold n ≥ 109 cm−3

because below this density the Sobolev approximation is not applied.
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2. We choose a random subset of these particles (every 100th particle, because
otherwise the computational e�ort might be too big).

3. We loop through all chosen particles and for each �target� particle we

a) determine the Sobolev length Lsob

b) estimate the number Nsob of all particles within this Sobolev length

c) loop through all these particles and calculate the deviations of

• H2 density nH2 (i)/nH2(target),
• thermal velocity vth(i)/vth(target),
• and the velocity divergence between the target particle and the indi-
vidual particles within its Sobolev length. In order to compare the
velocity divergence |~∇ ~vtarget|, we relate it to the discretised velocity
gradients |~vtarget − ~vi|/|~rtarget − ~ri|.

d) Finally we create a histogram, based on these deviations. The contri-
butions of the particles are weighted by Nsob, because otherwise target
particles with a large Sobolev length might contribute with dispropor-
tional many particles to the histogram. Applying the weighting factor,
each target particle contributes with a total count of one.

Based on di�erent runs we verify that these histograms look qualitatively the same,
regardless the time of collapse or the initial conditions. Hence, we present two
histograms based on the cosmological initial conditions and the Sobolev cooling
approach in Figure 5.1. If the Sobolev assumptions might be correct and the quan-

Figure 5.1: Histograms illustrating the deviations of di�erent quantities within one
Sobolev length. Based on the cosmological initial conditions at a peak density of
nmax ≈ 1012 cm−3 (left) and shortly after formation of the �rst sink particle (right). The
histograms show that especially the H2 number density varies by more than a factor 100
within one Sobolev length, while the thermal velocity is tolerably constant. It is important
to mention that the distributions are not symmetric because otherwise one could argue
that these deviations might cancel out.

tities are constant within one Sobolev length, the histograms should be very narrow.
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nH2 vth dv/dr
below zero 41% 44% 63%
above zero 59% 56% 37%
mean deviation 1.13 1.04 0.76

Table 5.1: Quanti�cation of the histogram's asymmetry (for the right histogram shortly
after formation of the �rst sink particle).

However, H2 number density, thermal velocity and the gradient of the velocity vary
by a factor of up to one hundred. While the thermal velocity seems to be rather
constant within one Sobolev length (because it scales as vth ∝

√
T ), the H2 number

density varies most strongly. One should emphasise that the histograms are not
symmetric and the contributions below and above zero can not just cancel out. A
quanti�cation of this asymmetry is given in Table 5.1. Although this analysis clearly
shows the shortcomings of the Sobolev approximation, we should keep in mind that
the �counting� of deviations between particles is biased by two e�ects which are
illustrated in Figure 5.2.

• The number of SPH particles increases towards the centre of the cloud and
therefore there are systematically more particles with higher densities or ve-
locities.

• There is a smaller fraction of the �Sobolev volume� around a target particle
closer to the cloud's centre (19 − 50%) than further away from it. Assuming
radially decreasing pro�les of the quantities leads to unequal distributions
within the Sobolev length.

Figure 5.2: Illustration of the two e�ects, which bias the histograms: due to the SPH
approach there is a higher particle density towards the centre of the cloud, which might
overestimate their contributions to the histogram, as each particle contributes individually.
On the other hand, the fraction of the �Sobolev volume� which is closer to the cloud's centre
is smaller than the fraction which is farer away than the target particle.

Although these two e�ects might cancel out, we should be aware of them when
interpreting these histograms.
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5.1.3 Angular Dependence of Escape Fractions

Due to tidal forces and an initial angular momentum, the collapse does not proceed
spherically symmetric. Spherical symmetry might be a valid assumption on large
scales, but breaks down on length scales of star formation. Hence, the escaping
photons does not see a smooth distribution of column densities, but rather an inho-
mogeneous distribution. Exemplary, Figure 5.3 shows the hammer projection of the
column density as seen by a particle close to the centre of the cloud before the �rst
sink particle form. In order to quantify the angular dependence of the escape frac-

Figure 5.3: Hammer projection of column density for a particle, which is located∼ 100AU
from the cloud's centre of mass, shortly before the �rst sink particle forms. The distribution
of column densities (and therefore photon escape fractions) is inhomogeneous and angle
dependent.

tion, we use the HEALPix maps of the opacity corrections based on the synthetic
initial conditions. For each of the 48 pixels, the exact escape fraction according
to the lookup method can be compared to the Sobolev-based escape fraction. The
radial pro�le of the maximal relative deviation

maxi∈[1,48] |βlookup(i)− βsob|
βsob

(5.1)

can be seen in Figure 5.4 for di�erent times of the collapse. Especially after forma-
tion of the sink particles (bottom plots), the relative deviations are close to one in
the inner ∼ 100AU. Although this �gure illustrates just the maximal relative devi-
ation, it clearly demonstrates the failing of the Sobolev approximation in modelling
inhomogeneous, non-spherical density distributions. In order to verify the angular
dependence of opacity correction, we analyse its spread among the HEALPix pixels
for each particle individually. Therefore, we plot the radial pro�le of the maximal
spread between the HEALPix pixels as it can be seen in Figure 5.5. Shortly before
formation of the �rst sink particle (top right plot), the opacity corrections in the
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Figure 5.4: Radially binned pro�les of the maximal relative deviation between the
Sobolev-based opacity correction and the TreeCol-based ones. The snapshots are taken
at di�erent times of the collapse (in chronological order from top left to bottom right). For
a value close to zero, all 48 pixels yield about the same opacity correction as the Sobolev
approximation, whereas for a value close to one, the Sobolev approximation can not capture
the very inhomogeneous distribution of the opacity correction around the particles.

119



5 Discussion

Figure 5.5: Radially binned pro�les of the maximal spread of the TreeCol-based opacity
corrections. The snapshots are taken at di�erent times of the collapse (in chronological
order from top left to bottom right). A value of βmax/βmin = 10 e.g. means that the
opacity corrections in this radial bin vary by a factor of 10 within each HEALPix sphere
for the individual particles.
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inner ∼ 100AU vary by factors of 10− 100. During the further collapse, this value
decreases but is still between 2 − 20 in the centre of the cloud. The detailed time
evolution of this behaviour can be seen in Figure 5.6. The previous plots clearly

Figure 5.6: Maximal spread of the angular dependent opacity correction as a function of
time (formation of the �rst sink particle at t ' 750yr). A value of 100 means that there
is at least one particle in the simulation, whose values for the opacity correction vary by
a factor of 100. Although this illustrates only the most extreme case, the previous �gures
support the general trend of a non-isotropic opacity correction.

illustrate that local, isotropic approximations of the column density, respectively
opacity correction, have to fail and we need an improved method for the determi-
nation of e�ective column densities.
Hirano & Yoshida (2013) also mention this problem during their comparison of dif-
ferent cooling implementations in simulations of primordial star formation. Figure
5.7 shows their plot of the e�ective escape probability for three orthogonal directions.
The slope of the opacity correction for the three orthogonal directions is di�erent,
whereas especially the z-direction tends towards higher values. Using TreeCol, we
were able to reproduce the direction dependence of the opacity correction but with
a better angular resolution. Interestingly, we �nd a di�erent trend regarding the
magnitude of opacity correction. While Hirano & Yoshida (2013) say that �using an
isotropic approximation for optically thick H2 line cooling overestimates the net cool-
ing rate�, we �nd out that an isotropic approximation underestimates the optically
thick cooling rate.

5.1.4 Accretion Disc

Since we have seen the e�ects of a non-spherical collapse (angular dependency of
opacity correction), we want to understand and determine the deviations from spher-
ical symmetry. A �rst qualitative insight into the processes which occur during the
collapse is given by Figure 5.8. This is a sequence of snapshots from a movie, illus-
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Figure 5.7: Opacity correction as a function of density. The long-dashed, short-dashed,
and dot-dashed lines show the three orthogonal components (x, y, and z) when the central
density is nmax = 1014 cm−3. The solid lines show the evolution of the direction-averaged
mean value at nmax = 1010, 1012 and 1014 cm−3. Adopted from Hirano & Yoshida (2013).

trating the collapse of the cloud based on synthetic initial conditions. The sequence
shows the rotation of the central 665AU at the point where 6 sink particles were
already formed. The accretion disc is a very prominent feature, which has formed
during the collapse and all sink particles lie roughly in this disc. According to Smith
et al. (2011), the disc-like structure is a typical feature due to the inability of the
halo to transfer angular momentum outwards quickly enough. Hence, it should be
clear that the photon escape fraction is enhanced perpendicular to that disc, whereas
the medium is optically thick in the disc plane. A local, isotropic column density
estimation can not capture this feature and therefore generally underestimates the
photon escape probability.
In order to identify the disc and to quantify the ellipticity of the collapsing cloud,
we use several methods. The most promising one that was able to capture this trend
is the estimation of the ellipticity

ε =
a− b
a

, (5.2)

where a is the major and b is the minor axis of the ellipsoid that is generated when
we cut out all gas above the optically thick density threshold n ≥ 109 cm−3. The
time evolution of the ellipticity can be seen in Figure 5.9. While a value of ε = 0
might correspond to a spherical cloud, a value of ε = 0.5 characterises a cloud whose
longest cross section is twice as long as any perpendicular cross section. Hence, we
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Figure 5.8: Sequence of snapshots illustrating the rotation of the central 665AU (6 sink
particles have formed). The colour indicates the density projection and the yellow crosses
mark the positions of sink particles. One clearly sees the accretion disc, which has formed
and the sink particles lie roughly in this plane.
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Figure 5.9: Time evolution of the ellipticity for all gas above n ≥ 109 cm−3. The simula-
tion is based on synthetic initial conditions and the �rst sink particle form at t = 0. The
trend towards higher ellipticities indicates the formation of a disc-like structure.

clearly see the trend of an accretion disc that forms during the collapse of the cloud.

5.2 So Which Method to Use?

A main topic of this Master Thesis is the comparison of di�erent cooling implemen-
tations for simulations of primordial star formation. Basically, we can distinguish
these methods between those which depend on local properties of the gas and those
which determine the e�ective column densities based on TreeCol. Although the
TreeCol-based methods are computationally expensive and slow down the code, we
clearly recommend the lookup approach, because it captures the whole collapse of
the cloud properly and takes the true line overlaps into account. Regarding the
local methods, there is no general answer to this question. Most of these methods
assume spherical symmetry and hence their validity breaks down, when a disc forms
around the protostars. Since primordial star formation lasts for several thousand
years, while we only capture the �rst hundred years in our simulations, one should
use an approach which yields a suitable long-time accuracy. The reciprocal method
is the only approach that considers both gradients in density and a spatially varying
velocity divergence. Therefore, this method is the most accurate approach for the
determination of the e�ective column density even after subsequent sink particle
formation. Whether one uses the corrected or uncorrected reciprocal method seems
to be of minor relevance, because whereas the corrected reciprocal method yields
more accurate results around the formation of the �rst sink particle, both methods
approximately yield the same results for later stages of the collapse. The two ana-
lytical �ts might be useful during the collapse of the primordial cloud, but also fail
when the disc-like structure starts to form. The commonly used Sobolev method
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generally overestimates column density and hence underestimates the photon escape
fraction. In our simulations, this leads to higher temperatures in the centre of the
cloud, less fragmentation and higher masses of the protostars.

5.3 Mergers

The possibility of merging is crucial for a complete theory of star formation, since
mergers of protostars do shift the IMF towards higher masses. Pop III protostars are
likely to merge during their dynamical formation and subsequent accretion process,
because they are large, �u�y objects. Close encounters might either eject at least one
star to higher orbits or merge both protostars. According to Greif et al. (2012) and
Stacy & Bromm (2013) more than half of the protostars are lost to mergers. Since we
have not implemented possible merging in the code, we should at least afterwards try
to constrain the possibility of merging events in our simulation. Therefore, we �rst
constrain the protostellar radii using Equation 1.48 and compare it to the spatial
separation of the sink particles (see Figure 5.10). Throughout the simulation, the
distances between sink particles are larger than their protostellar radii, but as Pop
III protostars are large, �u�y objects, they might merge nevertheless. Following
Greif et al. (2012), a valid criterion for possible merging is the comparison of the
minimum separation of two sink particles to the sum of their protostellar radius at
this time (see Figure 5.11). Although the protostars in our simulation seem to be
separated su�ciently far enough, we should keep in mind that we only follow the
�rst ∼ 200 years, whereas Greif et al. (2012) follows the protostellar evolution for
∼ 1000 years after formation of the �rst protostar.

5.4 Fragmentation Behaviour

Fragmentation is a highly chaotic process and slight changes in the initial condi-
tions or in the implementation of the governing physics can completely change the
outcome. Therefore, solely the number of sink particles is not a valid quanti�cation,
since we do not have enough realisations for any statistical signi�cance. Neverthe-
less, we determine and compare di�erent fragmentation criteria for the individual
cooling approaches and �nd out that the lookup method promotes fragmentation
according to all criteria. In other words, commonly used cooling approximations
generally underestimate the number of Pop III stars and therefore overestimate
their mass. Moreover, we have to notice that the disc is just about to form, when
we end our simulations. Therefore, the di�erences between the individual cooling
approaches and their e�ect on fragmentation might even be more pronounced for
later stages of the collapse. In any case, we expect more Pop III stars with lower
masses than previously expected.
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Figure 5.10: Protostellar radii, distances between sink particles, and accretion radii of
the sink particles as a function of time for the runs based on the cosmological initial
condition. Top: Sobolev approximation. Bottom: lookup method. Left: racc = 3AU.
Right: racc = 20AU. Although the protostellar radius seems to be smaller than the distance
all the time, the distance between sink particles might become smaller than the accretion
radius of the sink particle.
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Figure 5.11: Comparison of the minimum separation of each protostar to any other
protostar with the sum of the protostellar radii during their closest encounter. Left: plot
by Greif et al. (2012) indicating di�erent protostellar masses with di�erent symbols. Almost
all protostars experience a possible merging event. Right: data from our simulations based
on initial conditions. No protostar experiences a merging event.

5.5 Caveats

There are several open questions, shortcomings and approximations, which one
should keep in mind, when interpreting the previously presented results. First of
all, our analysis is su�ering from a low statistical evidence. All results are based on
two realisations of the synthetic initial condition on one set of cosmological initial
conditions. Although we run several simulations for each set of initial conditions,
statistical statements must be treated with caution and we can not be sure, whether
our initial clouds where representative or by some means biased.
Since we follow the fragmentation of the cloud only for the �rst ∼ 100yr after for-
mation of the �rst protostar, we miss information about the physical conditions
thereafter. Although we only capture a small fraction of the whole star formation
process, it is likely that the disc-like structure will proceed to grow and most of our
statements remain valid.
Computer simulations are only models for the real physical processes. The ap-
proximations, on which these models are based, are mostly valid under the given
conditions. However, there are some crucial points regarding the accuracy and com-
pleteness of our simulation:

• We do not account for mergers, whereas they seem not to be relevant on the
timescales we consider.

• The protostellar model assumes a constant accretion rate and does not include
the e�ects of ionising radiation.

• High uncertainty for the value of several rate coe�cients see section 1.3.1.
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• No magnetic �eld, which might in�uence the collapse (for a detailed discussion
of the e�ects of magnetic �elds in primordial star formation see Machida &
Doi (2013) and references therein).

Besides, we should also keep in mind that the escape probability, as the theoretical
basis for our cooling implementation, is an approximation by itself (e.g. we use one
average escape fraction for all photons, instead of determining the individual escape
probabilities for each line separately).

5.6 Conclusion

Since H2 is the dominant coolant in primordial gas clouds, line cooling by molecular
hydrogen is a crucial process in the formation of Pop III stars. While the cool-
ing rates in the optically thin regime can be calculated accurately, optically thick
cooling is only poorly understood, although it basically in�uences the temperature
pro�le and fragmentation of the cloud. The commonly used Sobolev approximation
has to be corrected for the e�ect of line overlap. However, since the Sobolev and
other approximations of the e�ective column density assume isotropy and certain
quantities to be constant, they all fail in re�ecting the actual shape of the cloud.
While the cloud �attens and develops a disc during the collapse, the local column
density approaches generally yield too small values for the photon escape fraction
(mean relative errors of 20%). Only the TreeCol-based methods are able to capture
this dynamical feature and consequently yield lower temperatures in the centre of
the cloud. Merely a newly invented combination of the Sobolev and Gnedin approx-
imation might reproduce accurate values for the opacity correction, also at later
stages of the collapse.
Primordial gas is most susceptible to fragmentation in the density regime from
n = 1010 cm−3 to n = 1012 cm−3. Whereas local methods tend to suppress fragmen-
tation and result in the creation of few high-mass Pop III stars, the TreeCol-based
methods promote fragmentation and therefore cause the creation of more lower-mass
stars. Regardless the cooling implementation, the protostars have very high mass
accretion rates and the mass function is dominated by high-mass stars.
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Figure B.1: Positions of sink particles for snapshot d. The size of the protostars corre-
spond to an accretion radius of racc = 3AU. Left: Sobolev. Right: lookup.

Figure B.2: Positions of sink particles for snapshot e. The size of the protostars corre-
spond to an accretion radius of racc = 3AU. Left: Sobolev. Right: lookup.
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Figure B.3: Positions of sink particles for snapshot f. The size of the protostars corre-
spond to an accretion radius of racc = 3AU. Left: Sobolev. Right: lookup.

Figure B.4: Positions of sink particles for snapshot g. The size of the protostars corre-
spond to an accretion radius of racc = 3AU. Left: Sobolev. Right: lookup.
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