Plasma particle dynamics in collisionless magnetic reconnection

Seiji ZENITANI

Kyoto University

0. Old tales
1. Ion dynamics
2. Electron dynamics
3. Perspectives

U. Tokyo, STP (Solar Terrestrial Physics) group

- "Super Terasawa Physics" "Masahiro Hoshino Dynamics"
 - We initially considered:
 - Relativistic magnetic reconnection (SZ, Ph.D thesis 2006)
 - Reconnection in rotating systems (Hoshino, Shirakawa, 2013-2015)

Relativistic reconnection: Particle-in-Cell (PIC) simulation

- Relativistic reconnection is a particle accelerator
- SZ & Hoshino 2001-2008 (5 papers; 440 citations)

(シミュレーション研究会スライド)

Selected topics on Relativistic Particle-in-Cell Simulations

S. Zenitani (Kyoto U), T. N. Kato (NAOJ), T. Umeda (Nagoya U)

- 1. Loading
 - Loading velocity distributions by random variables (Sobol 1976, Swisdak 2013, Zenitani 2015)
 - Lorentz transformation for the spatial part (Zenitani 2015)

• 2. Computation

- EM field (Haber 1974, Vay 2013, Ikeya & Matsumoto 2015)
- Particle (Vay 2008, Zenitani & Kato 2018b, Zenitani & Umeda 2018c)
- 3. Diagnosis & Interpretation
 - Relativistic fluid decomposition (Zenitani 2018a)

(シミュレーション研究会スライド)

Poster

Selected topics on Relativistic Particle-in-Cell Simulations

S. Zenitani (Kyoto U), T. N. Kato (NAOJ), T. Umeda (Nagoya U)

- 1. Loading
 - Loading velocity distributions by random variables (Sobol 1976, Swisdak 2013, Zenitani 2015)

- Lorentz transformation for the spatial part (Zenitani 2015)

• 2. Computation

- EM field (Haber 1974, Vay 2013, Ikeya & Matsumoto 2015)
- Particle (Vay 2008, Zenitani & Kato 2018b, Zenitani & Umeda 2018c)
- 3. Diagnosis & Interpretation
 - Relativistic fluid decomposition (Zenitani 2018a)

(シミュレーション研究会スライド)

Selected topics on Relativistic Particle-in-Cell Simulations

S. Zenitani (Kyoto U), T. N. Kato (NAOJ), T. Umeda (Nagoya U)

- 1. Loading
 - Loading velocity distributions by random variables (Sobol 1976, Swisdak 2013, Zenitani 2015)
 - Lorentz transformation for the spatial part (Zenitani 2015)

• 2. Computation

- EM field (Haber 1974, Vay 2013, Ikeya & Matsumoto 2015)
- Particle (Vay 2008, Zenitani & Kato 2018b, Zenitani & Umeda 2018c)
- 3. Diagnosis & Interpretation
 - Relativistic fluid decomposition (Zenitani 2018a)

Relativistic fluid mechanics is a nightmare...

Reconnection as a particle accelerator

Beyond MHD

Our recent results (SZ+ 2013,2016)

Ion velocity distribution function (VDF)

Ion orbits in PIC simulation

Electron VDFs in PIC simulation

Chen+ 2008 JGR

- Many PIC studies on electron VDFs
 - Hoshino+ 2001, Pritchett 2006, Chen+ 2008, 2009, Ng+ 2011, 2012, Bessho+ 2014, Shuster+ 2014, 2015, Cheng+ 2015

•	•	•	•	•	•	•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	0	0	•	•	•	•	۲	0	•	•	•	•	•	•	0	•	•	•	0	•	0	0	•	•	•	•	0	0
•	0	0	•		0	0	0	0			•	0	0	•	0	•	•	0	0	0	•	•	•	•	•	0	0	0
0	0	0	•	•	0	0		0	0	0	•	0	0	0	0	•	•	0	0		0	0	0	0	0	0	0	0
0	0	0	•	•	0	0	0	0	•	•	•	0	0	0		•	0	0	0	0	0	0	0	0	•	\bigcirc	0	0
		•			0	0						•	0	0		•	•	•	0	0	0	•		0	•	0	۰	0
٠	•	•	•	•	0	•					•	•	0	•		•	•	•	0	0	•	•	•	•	•	•	•	0
٠		•			•	•	•	•	•	•	•	•	0	0		•	0	•	0	•	•	•	•	•	•	0	0	0
•	•	0		•	0	0	0	•	•	•	•	•	0	0		•	•	•	0	•	•	0	•	0	•	0	0	0
•	0	0	•	•	0	•	0	0	•	•	•	•	0	0	0	•	0		0	0	•	0	•	•	•		0	0
•	0	0	•	•	0	0	0	0	•	•	•	0	0	0	0	•	0	0	0	0	0	•	•	0	0		0	0
•	•	0	•		0	0	0	0		•		0	0	0		0	•	0	0	0		0	•	0			0	0
	•	•			•	•	•	•			•	0	0	•			•	•	•			0	•	0			0	0
	•	•		•	•	•	•	•	•				•	•			•	•	•	•		0	•				0	0
					•		•	•	•		0	0	0					0				0	•		0	0	0	0
•		•			•	0	0		-	0		0	•	•		-	•	0	0			•	0	0	0	0	0	0
•	-	•	•	•	•	0	0	0		0	0	0	0	0			0	0	0	0	0	0	-	0	0	\bigcirc	0	0
•		0	•	•	0	-	0	0	-	-	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0
-	-	2.		-	-	-	-	0	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	-	0)			-	-		0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0	Ó	Ó	0
٠	•																		0					C	0	(Ċ	¢

Electron VDFs vs electron orbits

VDFs

Trajectory analysis in PIC simulations

PIC simulation & full Lagrange analysis

- 2.5D
- m_i/m_e=100
- 76.8 x 38.4 [d_i]
- Harris sheet
- $n_{bg}/n_{cs} = 0.2$
- 2 x 10⁹ particles
- 20,000,000 electron orbits from 1250 snapshot data
- 3,000 orbits are inspected with eyes

Electron Speiser VDFs in PIC simulation

Electron regular orbits

Orbit theories

2016

1980's

Chen & Palmadesso 1986, Buchner & Zelenyi 1989

Speiser 1965

A related theory came out recently: Tsai+ 2017

Zenitani & Nagai 2016

PIC シミュレーション研究の課題

- ・2010年代 大規模PICシミュレーションで複雑かつ乱流的描像が見えてきた
- ・2015年~ MMS衛星が電子運動論スケールのプラズマ観測を開始
- ・流体量解析+粒子加速研究に行き詰まり感 → さらに進んだ解析で突破
 - ・ 乱流、分布関数、軌道(Zenitani & Nagai 2016)
 - ・粒子データを活かした解析

Summary

• 0. M.H.D.

- Particle acceleration and electron dynamics

• 1. Ion dynamics

- Poincaré-map analysis has revealed figure-8 shaped orbits
- 2. Electron dynamics
 - Full-Lagrange analysis has revealed many new electron orbits
 - Noncrossing electrons: majority in number density

• 3. Future direction

- Better usage of PIC data: Orbits, particle mixing, and entropy...

• References

- Zenitani, Shinohara, Nagai, & Wada, Phys. Plasmas 20, 092120 (2013)
- Zenitani & Nagai, Phys. Plasmas 23, 102102 (2016)

Thank you for your attention!