中間質量ブラックホールによる 白色矮星の潮汐破壊と熱核爆発 WD TDE and explosion by IMBH Ataru Tanikawa (The University of Tokyo) High Energy Astrophysics 2018 The University of Tokyo Hongo, September 5th, 2018

- · Tanikawa et al. (2017, ApJ, 839, 81)
- · Tanikawa (2018, ApJ, 858, 26)
- · Tanikawa (2018, MNRAS, 475, L67)
- · Kawana et al. (2018, MNRAS, 477, 3449)

Tidal Disruption Event

- Tidal disruption of a star (e.g. main sequence stars) by a BH
 - Bright flare powered by accretion of the stellar debris
- Several ten candidates (Kommosa 2015)
 - TDEs of main sequence stars
 - Several candidates of WD TDEs (e.g. loka et al. 2016)

Tidal detonation

- Supersonic combustion induced by a tidal field of a BH
 - The WD is compressed in zdirection.
 - The compression induces a shock wave.
 - Bounce generates a pressure wave.
 - The pressure wave steepens into the shock wave.
 - The shock wave triggers a detonation wave.
 - The detonation wave synthesizes large amounts of ⁵⁶Ni.
 - The WD TDE can be powered by ⁵⁶Ni, similarly to SNe Ia.

Probe to search for

Intermediate mass black hole

- Tidal detonation requires a WD TDE.
- A WD can be tidally disrupted only by an IMBH.
 - swallowing a stellar-mass BH.
 - $\cdot\,$ swallowed by a massive BH.
- WD TDEs can illuminate only IMBHs.
- WD TDEs can be probes to search for IMBHs.

Previous and our studies

· Previous studies

- Demonstration of large amounts of ⁵⁶Ni yielded
- No convergence check about mass resolution
- No demonstration of shock generation
- \cdot Our studies
 - · Convergence check
 - Demonstration of shock generation

SPH simulation

- SPH simulation in the same way as in previous studies, but with higher-mass resolution
 - Massively-parallel 3D SPH simulation code
 - · Helmholtz EoS
 - Aprox13 nuclear reaction networks
 - · N >~ 10⁷

 Ni yielded by spurious heating due to low resolution, not by a shock wave

Spurious heating

- In small-N cases, the number of SPH particles is too few in zdirection.
 - Distant particles interact incorrectly.
- Velocity gradient is overestimated.
- Overestimated velocity gradient falsely switches on artificial viscosity.
- The artificial viscosity raises spurious heating and false nuclear reactions.
- Note that artificial viscosity is correct, but velocity gradient is wrong.

Switch 3D to 1D

- · 3D SPH simulation
 - 0.45M_☉ HeWD disrupted by 300M_☉ IMBH
 - \cdot N~3x10⁸ for the He WD
 - \cdot without nuclear reactions
- Extracting z-columns indicated by white crosses
 - 1D mesh simulation
 - · z-columns
 - \cdot with nuclear reactions

Results

Nucleosynthesis

- The detonation wave leaves 20% ⁴He and 80% ⁵⁶Ni.
 - The detonated region has high density (>10⁶ gcm⁻³).
- The total ⁵⁶Ni mass is about 0.3M_☉, comparable to SNela.

Variety of tidal detonation

Kawana et al. (2018, MNRAS, 447, 3449)

Future work

- Estimate of the event rate
- Radiative transfer calculation of WD TDEs
- WD mass function of TDEs
 - The same as that of single WDs?
 - Top-heavy mass function due to dynamical effects?

Summary

- We have studied tidal detonation of WDs.
- We should be careful of spurious heating in low-resolution SPH simulation (Tanikawa et al. 2017, ApJ, 839, 81).
- We have verified tidal detonation of WDs in the case of He WD with 0.45M⊙ in which large amount of ⁵⁶Ni (~0.3M⊙) is synthesized (Tanikawa 2018, ApJ, 858, 26).
- Helium shell helps tidal detonation (Tanikawa et al. 2018, MNRAS, 475, L67).
- We have investigated various tidal detonation (Kawana et al. 2018 MNRAS, 477, 3449).
- · WD TDEs can be a clue to search for IMBHs.