中間質量ブラックホール候補の 超高光度X線源における新たな降着描像

A New Accretion Scenario for an Intermediate Mass BH Candidate: Ultra-Luminous X-ray sources

東京理科大学 (Tokyo University of Science) 小林翔悟 (Shogo B. Kobayashi)

shogo.kobayashi@rs.tus.ac.jp

The present work is submitted to MNRAS as

"A New Possible Accretion Scenario for Ultra-Luminous X-ray Sources"

S. B. Kobayashi, K. Nakazawa, K. Makishima, 2018

Distribution of the Black Hole (BH) Mass

- LIGO has finally revealed the existence of BHs heavier than 15 M_{\odot}
- X-rays from such BHs (or even more massive ones) can be expected just like the other accreting BHs.

Distribution of the Black Hole (BH) Mass

- LIGO has finally revealed the existence of BHs heavier than 15 M_{\odot}
- X-rays from such BHs (or even more massive ones) can be expected just like the other accreting BHs.

Ultra-Luminous X-ray source (ULX)

- Luminous X-ray sources in other galaxies.
- $L_{\rm X} > 10^{40} \, {\rm erg/s} > L_{\rm edd} \, {\rm of} \, 10 \, M_{\odot} \, {\rm BHs}.$
- Except for 3 sources, neither their central object masses nor accretion mechanisms are known.
 - ~100 M_{\odot} BHs with $L_x/L_{edd} \leq 1$ (Makishima+00)?
 - ~10 M_{\odot} BHs with $L_x/L_{edd} >> 1$ (Mineshige+00)?

X-ray Spectra

- Exhibit three distinct types of spectra 10⁻³ (e.g., Gladstone+09)
 Multi Color Disk like (MCD) state
 Hard Power Law (HPL) state
 Soft Power Law (SPL) state
- Comparing these with those of the well studied BH binaries (BHBs) should give clues to the problems.

• Reflects the accreting mechanisms and surrounding environments.

General Spectral Properties of Accreting BHs

- Reflects the accreting mechanisms and surrounding environments.
- Distinct states emerge as a function of L_X/L_{edd}

Objectives and Methods

Objectives

- A) Study the distribution of critical luminosity where the certain spectral states arise (estimate the range of BH mass).
- B) Examine whether the three states of ULXs correspond to either of the state of BHB (estimate the actual L_x/L_{edd}).
- C) Estimate possible accretion mechanisms/environment that explain the observed strength of Fe-K lines and absorption.

Methods

- We analyze the archival data of *Suzaku*, *XMM-Newton*, and *NuSTAR*.
- 9 representative ULXs in nearby (< 5 Mpc) galaxies are selected.
- We fit 56 spectra with a model widely used in BH studies (accretion disk emission+ thermal Comptonization; MCD+THC) to characterize the spectral shape in a quantitative way.
- Compare the results with those in the ordinary accreting systems.

Spectral Fitting (NGC 1313 X-1 SPL state)

Spectral Fitting (NGC 1313 X-1 HPL state)

Spectral Fitting (NGC 1313 X-1 MCD state)

- All spectra are successfully explained with the MCD+THC model.
- No significant Fe-K line or drastic change in absorption are detected.

Characterization of the Three States

• The spectral shapes of the individual states are quantitatively characterized in terms of *Q* and *yF*.

A. State Emerging Luminosity

- The state-emerging luminosity scattered by a factor of 20.
- If the general properties of the accreting objects are also held in ULXs, then their BH mass should also have similar range.
- If we assume 10 M_{\odot} as the minimum, the maximum will reach 100 M_{\odot}

A. State Emerging Luminosity

- The state-emerging luminosity scattered by a factor of 20.
- If the general properties of the accreting objects are also held in ULXs, then their BH mass should also have similar range.
- If we assume 10 M_{\odot} as the minimum, the maximum will reach 100 M_{\odot}

B. Estimation of the Accretion Regime

 How do the three states of ULXs correspond to those of the ordinary stellar mass BHBs?

SPL→Very High state (L_X/L_{edd}~0.3), MCD→Slim Disk state (L_X/L_{edd}~1).
 HPL→ a unique state of ULXs?

B. Phase Diagram in spectral states of BHs

• The spectral states of BHs might not be uniquely determined by L_X/L_{edd} but also with their masses.

C. Estimation of the Accretion Environment

- Comparison with High Mass Xray Binaries (HMXB)
 - ULXs are often considered as binary systems with high-mass companion (HMXB).
 - N_H in ULXs are smaller and more stable than those in HMXBs in our Galaxy.
 - Strength of Fe-K line is weaker than the HMXBs, as well.
 - Matters surrounding ULXs should be poor.

ULXs are unlikely to harbor highmass companion stars.

A new accretion scenario is required.

高エネルギー宇宙物理学研究会 2018/High Energy Astrophysics 2018

C. Possible Accretion Mechanism

Conditions to be fulfilled

- Central BHs are relatively massive.
- Surrounding matters that account for the Fe lines/absorption are poor.
- Sufficient mass accretion rate to sustain $L_{\chi} \sim 10^{40}$ erg/s.

Bondi-Hoyle accretion onto BHs (Mii & Totani 2005)

- Consider an isolated BH with a mass $M_{\rm BH}$ entering an interstellar medium with velocity v.
- The BH will accrete mass within a range of Bondi-radius which yield $L_{\rm X} \propto M_{\rm BH}^2 n v^3$
- Fe-K line is expected to be ~10 eV.
- $L_{\rm X} \sim 10^{40}$ erg/s, $N_{\rm H} \sim 10^{21}$ cm⁻² assuming typical density/size for gas cloud and relatively slow entering velocity (Nakamura+16).

Conclusions

- 56 spectra of 9 representative ULXs are analyzed.
- All of the spectra were successfully explained with MCD+THC model.
- The state emerging luminosity scattered over a range of 20 among the present ULX sample, suggesting BH mass have also similar range.
- Fe-K lines in ULXs are weaker than 30 eV and absorption was small and stable as $N_{\rm H} \sim 10^{21} \, {\rm cm}^{-2}$.
- ULXs are unlikely to harbor massive companion star.
- Possibly they are isolated BHs which are directly accreting the surrounding interstellar medium.