Report of the cross-correlation study of the gamma-ray background with HSC clusters

Daiki Hashimoto , Atsushi J. Nishizawa, Hiroyuki Tashiro, Kenji Hasegawa (Nagoya Univ.) Masato Shirasaki (NAOJ), Musamune Oguri (Univ. of Tokyo) Shunsaku Horiuchi, Oscar Macias (Virginia Tech.)

高エネルギー物理学研究会2018@東京大学

Image Credit: NASA

Fermi gamma-ray sky by Fermi-LAT

Fermi Gamma-ray Space Telescope

Image Credit: NASA/DOE/Fermi LAT Collaboration

(launched in 2008)

>1GeV

Image Credit: NASA/DOE/Fermi LAT Collaboration

residuals E>1 GeV

residuals E>1 GeV

Unresolved Gamma-ray Background (UGRB)

...Extragalactic emission from unresolved sources containing astronomical or unknown objects

residuals E>1 GeV

Motivation for probing nature or origins of UGRB:

- reveal the nature of high energy phenomena like AGN
- lead to probe exotic matters like annihilating or decaying dark matter

Unresolved Gamma-ray Background (UGRB)

...Extragalactic emission from unresolved sources containing astronomical or unknown objects

residuals E>1 GeV

Motivation for probing nature or origins of UGRB:

- reveal the nature of high energy phenomena like AGN
- lead to probe exotic matters like annihilating or decaying dark matter

What is associated with UGRB ? - large scale structure, galaxy cluster or galaxy Previous Work Branchini et al.(2017)

Stacking Analysis & Cross-Correlation Analysis of UGRB with 3 galaxy cluster catalogs

Stacked Image

Previous Work Branchini et al.(2017)

Stacking Analysis & Cross-Correlation Analysis of UGRB with 3 galaxy cluster catalogs

Cross-Correlation Analysis

This Work

Probe association of UGRB with galaxy clusters

Data set : HSC cluster catalog (CAMIRA) UGRB by Fermi-LAT

To detect the correlation signal...

Analysis : *Stacking Analysis Cross-Correlation Analysis*

+ Additional study

Data: HSC cluster & UGRB map

• HSC cluster catalog (CAMIRA catalog)

• UGRB map (Fermi-LAT)

Number of clusters : ~4000 Area size : ~200 deg^2 Redshift range : 0.1 < z < 1.1

HSC-cluster distribution

1.0 4 3 0.8 decl. [deg.] 2 0.6 0.4 0 $^{-1}$ 0.2 -2 142 134 132 130 140 138 136 128 R.A. [deg.] (example)

Energy range : 1-100 GeV Fermi-PSF : <~1.0 deg (1GeV < E < 10 GeV) ~0.2 deg (E > 10 GeV)

UGRB intensity map corresponding to HSC region

Data: HSC cluster & UGRB map

Data: HSC cluster & UGRB map

• HSC cluster catalog (CAMIRA catalog)

• UGRB map (Fermi-LAT)

Number of clusters : ~4000 Area size : ~200 deg^2 Redshift range : 0.1 < z < 1.1

HSC-cluster distribution

Energy range : 1-100 GeV Fermi-PSF : <~1.0 deg (1GeV < E < 10 GeV) ~0.2 deg (E > 10 GeV)

UGRB intensity map corresponding to HSC-region

Construction of UGRB Map

Fluctuation field of UGRB around cluster position

Fluctuation field of UGRB using different Galactic foreground models

Fluctuation field of UGRB using low-z clusters and high-z clusters

Fluctuation field of UGRB using low-z clusters and high-z clusters

The average separation of the CAMIRA clusters is ~0.2 degrees. It is much smaller than the image size of 4 degrees.

 \rightarrow Some photons appear multiple times at different positions in the stacked image.

So we NOT perform quantitative analysis using this result.

2-point angular cross-correlation function: $\xi(\theta)$

 $\xi(\theta)$: Correlation of UGRB intensity with cluster position with separation angle θ from cluster center

 $\xi(\theta) = \langle n_{clu}(0)\delta_{\gamma}(\theta) \rangle$

$$\begin{split} n_{clu}(0) &: \text{number density of clusters at } \theta = 0 \; (\because n_{clu}(0) = 1) \\ \delta_{\gamma}(\theta) &= \frac{I(\theta) - \bar{I}}{\bar{I}} \end{split}$$

* We use the Landy-Szalay estimator to compute $\xi(\theta)$, the Jackknife method to estimate statistical errors

Cross-correlation function using different Galactic foreground models

Cross-correlation function using low-z clusters and high-z clusters

Statistical significance

redshift range	baseline	Model A	Model B	Model C
0.1 < z < 1.1	2.2	2.0	2.0	2.0
0.1 < z < 0.6	2.2	2.1	2.1	2.3
0.6 < z < 1.1	1.9	1.6	1.6	1.6

Implication

What are the components of the cross-correlation signal ?

Possible gamma-ray emitters :

Blazar, Star-forming Galaxy, Radio galaxy

$$P_{\mathrm{c}\gamma}(\ell) = \sum_{X} \int rac{\mathrm{d}\chi}{r(\chi)^2} W_{\gamma,X}(\chi) W_{\mathrm{clu}}(\chi) P_{\mathrm{h}X}^{(\mathrm{3D})}\left(rac{\ell}{r(\chi)}, z(\chi)
ight)$$

 $W_{
m clu}(\chi)$: the effective window function for CAMIRA clusters $W_{\gamma,X}(\chi)$: the window function for population X $P_{
m hX}^{
m (3D)}$: three dimensional cross power spectrum between cluster and X

$$\xi(\theta) = rac{1}{\langle n_{
m clu} \rangle \langle I_{\gamma} \rangle} \int rac{{
m d}^2 \ell}{(2\pi)^2} \exp\left[i \boldsymbol{\ell} \cdot \boldsymbol{\theta}
ight] P_{
m c\gamma}(\ell) \hat{W}(\ell, \theta_G)$$

 $\hat{W}(\ell, \theta_G)$: Gaussian smoothing

Ref: Shirasaki et al. Phys. Rev. D,97,123015 (2018)

Implication

Cross-correlation signals using Baseline foreground model and model predictions with 3 gamma-ray emitters

This simple model for 3 gamma-ray emitters can explain the signal so far.

<u>Summary</u>

Probe cross correlation of UGRB intensity map with HSC clusters position:

Cross-correlation signal

- Significance level : 0.1 < z < 1.1 and 0.1 < z < 0.6 : 2.0-2.3 σ , 0.6 < z < 1.1 : 1.6-1.9 σ .
- Confirm the consistency for correlation signal between: *Cross-Correlation Analysis* & *Stacking Analysis*.
- Implication for the signal
 - Assume 3 gamma-ray emitters to model cross-correlation signal: Blazar, Star-Forming Galaxy, Radio Galaxy.
 - The detected signal is consistent with the theoretically predicted model.

✓ In the future ...

- HSC observation area will increase by *at least 3 times*, statistical error can be reduced by *a factor of* $1/\sqrt{3}$.
- This leads to further probe of gamma-ray emitters or exotic matters such annihilating or decaying dark matter.

Gamma-ray Point Source

How to estimate two point cross-correlation

Calculate the cross-correlation functions $\xi(\theta)$ in sub regions by using the Landy-Szalay estimator

$$\xi(\theta) = \frac{D_{\text{cluster}}(0)D_{\gamma}(\theta) - D_{\text{cluster}}(0)R_{\gamma}(\theta) - R_{\text{cluster}}(0)D_{\gamma}(\theta) + R_{\text{cluster}}(0)R_{\gamma}(\theta)}{R_{\text{cluster}}(0)R_{\gamma}(\theta)}$$

 $D_{\rm cluster}(0):$ count of CAMIRA cluster's numbers in the cluster's position, so $D_{\rm cluster}(0)$ = 1 at all time

 $R_{
m cluster}(0)$: count of cluster's numbers in random clusters catalog in the cluster's position, so $R_{
m cluster}(0)$ = 1 at all time

 $D_{\gamma}(\theta)$: count of photon numbers in Fermi map separation θ from cluster

 $R_{\gamma}(\theta)$: count of photon numbers in random map separation θ from cluster

How to estimate statistical error

• We use the Jackknife method to estimate the error:

(actually, all cluster regions are divided into 21 regions.)

How to compute statistical significance

• Covariance matrix $C_{\theta\theta'}^{\rm JK}$

$$C_{\theta\theta'}^{\rm JK} = \frac{M-1}{M} \sum_{k=1}^{M} [\xi_k^{\rm obs}(\theta) - \xi^{\rm mean}(\theta)] \times [\xi_k^{\rm obs}(\theta') - \xi^{\rm mean}(\theta')]$$

Scranton & Johnston (2002)

$$\begin{split} &\mathsf{M}: \mathsf{number of jackknife-subsumples} \\ &\xi_k^{\mathrm{obs}}(\theta): \mathsf{correlation function in k-th subsumple} \\ &\xi^{\mathrm{mean}}(\theta): \mathsf{averaged correlation function over all } \xi_k^{\mathrm{obs}}(\theta) \end{split}$$

•
$$\chi^2$$

 $\chi^2 = \sum_{i,j} (\xi^{mean}(\theta_i) - m_i) C_{ij}^{-1}(\xi^{mean}(\theta_j) - m_j)$
 m_i : correlation with certain model (null correlation $\rightarrow m_i = 0$)

 $\rightarrow\,$ the significance σ is represented by χ

Covariance Matrix

Number of eigen value : 10

↑Angular bins has a strong correlation with other bins.

P8R2_SOURCE_V6 acc. weighted PSF

Implication

Shot-noise amplitude (10^{-9} cm ⁻² s ⁻¹ sr ⁻¹)				
redshift range	Baseline	Model A	Model B	Model C
0.1 < z < 1.1	5.1	6.3	5.6	5.2
0.1 < z < 0.6	2.8	4.4	3.6	3.6
0.6 < z < 1.1	4.2	6.9	6.3	5.6

Implication

redshift range	Baseline	Model A	Model B	Model C
$\begin{array}{l} 0.1 \ < z < \ 1.1 \\ 0.1 \ < z < \ 0.6 \\ 0.6 \ < z < \ 1.1 \end{array}$	0.30	0.29	0.28	0.27
	2.2	1.9	1.8	2.2
	2.5	0.79	0.76	0.78

Shot-noise amplitude (10 ⁻⁹ cm ⁻² s ⁻¹ sr ⁻¹)				
redshift range	Baseline	Model A	Model B	Model C
0.1 < z < 1.1	5.1	6.3	5.6	5.2
0.1 < z < 0.6	2.8	4.4	3.6	3.6
0.6 < z < 1.1	4.2	6.9	6.3	5.6

Distribution of Fermi observation area we use

Cross-correlation function × mean intensity of gamma-rays

