The Rotating Core-Collapse Supernova Dynamics and Neutrino Distributions by Full Boltzmann Neutrino Transport

Akira Harada (University of Tokyo) Collaborators: W. Iwakami, H. Okawa、S. Yamada (Waseda) H. Nagakura (Princeton), K. Sumiyoshi (Numazu), H. Matsuhuru (KEK)

Core-Collapse Supernovae

- · Gravitational Collapse \rightarrow Core Bounce \rightarrow Stalled shock
- Neutrino Heating Mechanism?

Boltzmann Neutrino Transport

- •Explosion failed in 1D \leftarrow confirmed by the Boltzmann transport
- •The Boltzmann transport is also required for multi-D simulations.

Multi-D Boltzmann Simulation

Nagakura+ (2018)

Results of multi-D Boltzmann simulations
 Collapse of the 11.2 M
 (Woosley+ 2002)
 progenitor

Comparison of the equations of state is shown

Setup

- •Progenitor: 11.2 Mo (Woosley+ 2002)
- EOS: Furusawa EOS (multi-nuclear species, Relativistic Mean Field theory)
- ν-reactions: Standard set of Bruenn (1985)
 +GSI electron capture、Bremsstrahlung
- Rotational velocity: Sheller rotation

$$\Omega(r) = \frac{1 \, \text{rad/s}}{1 + (r/10^8 \, \text{cm})^2}$$

•Grid number:

 $(N_r, N_\theta, N_\phi, N_\nu, N_{\bar{\theta}}, N_{\bar{\phi}}) = (384, 64[128], 1, 20, 10, 6)$

Entropy (rotating)

Evolution until ~ 200 ms after bounce

Entropy (non-rotating)

Evolution until ~ 200 ms after bounce

Nagakura+ (2018)

Time evolutions of shock radii

- Evolution until ~ 200 ms after bounce
- Comparison between rotating and non-rotating models.

Trajectory of the PNS center

- Evolution until ~ 200 ms after bounce
- Comparison between rotating and non-rotating models.

Neutrino Distributions

~60 km

Neutrino Distribution functions at ~ 10 ms after bounce.

~170 km

Neutrino Distributions

 Neutrino Distribution functions at ~ 10 ms after bounce.

~170 km

Neutrino fluxes

 $\cdot \phi$ -component of the neutrino flux at ~ 10 ms after bounce

- •The sign of the flux is different between in the fluid-rest-frame and in the laboratory frame.
- •The Ray-by-Ray approximation can not capture this feature.

Evaluating M1-closure method-Eddington tensor

$$E^{ij} = \begin{cases} \frac{\int fn^i n^j d\Omega}{\int f d\Omega} \\ \frac{3\chi - 1}{2} \delta^{ij} + \frac{1 - \chi}{2} \frac{F^i F^j}{F^2} \\ w/\chi = \frac{3 + 4\tilde{F}^2}{5 + 2\sqrt{4 - 3\tilde{F}^2}}, \tilde{F} = \frac{|\mathbf{F}|}{E} \end{cases}$$

Eddington tensor at ~ 10 ms after bounce

Eddington tensor at ~ 10 ms after bounce

Tensors calculated by the distribution functions and the M1-closure

- •Eddington tensor at ~ 10 ms after bounce
- Radial profiles of eigenvalues
- ~20% errors in M1-closure method

•The Eddington factor does not necessarily increase with the flux factor increasing.

•The Eddington factor does not necessarily increase with the flux factor increasing.

Comparison of distribution functions

- •The flux factor $\propto \langle \cos \theta_{\nu} \rangle$
- \cdot The Eddington factor $\propto \langle \cos^2 heta_
 u
 angle$
- •The distribution function at $\cos \theta_{\nu} \sim -1$ decreases with getting closer to the shock \rightarrow The flux factor increases and the Eddington factor decreases.

Eddington factor

Prolateness of distribution

•M1: prolateness is estimated from deviation of distribution

Summary

- Collapse of rotating progenitor is simulated by Boltzmann-Radiation-Hydro code.
- Features which can not be reproduced by approximate methods are discovered.
- The accuracy of the M1-closure method is evaluated.

