Reanalysis of GW170817

<u>Koutarou Kyutoku (久徳 浩太郎)</u>

High Energy Accelerator Research Organization (KEK), Institute of Particle and Nuclear Studies (素粒子原子核研究所)

Led by T. Narikawa (Kyoto U.) and Nami Uchikata (Niigata U.) + Kyohei Kawaguchi (U. Tokyo), Kenta Kiuchi (Kyoto U.), Masaru Shibata (AEI/Kyoto U.), Hideyuki Tagoshi (U. Tokyo)

GW170817

The LIGO twins observed clear "chirp" signals, i.e., gravitational waves with increasing frequency and amplitude in time

But Virgo did not see... not useful for estimating binary's intrinsic parameter

Quadrupolar tidal deformability

Leading-order finite-size effect on orbital evolution (strongly correlated with the neutron-star radius)

$$\Lambda = G\lambda \left(\frac{c^2}{GM}\right)^5 = \frac{2}{3}k \left(\frac{c^2R}{GM}\right)^5 \propto R^5$$

 $k \sim 0.1$: (second/electric) tidal Love number

High Energy Astrophysics 2018

Particularly important parameters

Chirp mass $\mathcal{M} = \mu^{3/5} M^{2/5}$: accurately measured

- Total mass $M = m_1 + m_2$
- Reduced mass $\mu = m_1 m_2/M$

Symmetric mass ratio $\eta = \mu/M$: not very accurate... Binary tidal deformability ($m_1 \le m_2$)

$$\tilde{\Lambda} = \frac{0}{13} \left[(1 + 7\eta - 31\eta^2)(\Lambda_1 + \Lambda_2) - \sqrt{1 - 4\eta}(1 + 9\eta - 11\eta^2)(\Lambda_1 - \Lambda_2) \right]$$

Tight correlation of $\widetilde{\Lambda} - \mathcal{M}_c$

Important frequency range

 \mathcal{M} : low frequency (many gravitational-wave cycles) $\tilde{\Lambda}$: high frequency (closer orbit->large deformation)

Constraint on tidal deformability

Low-spin prior, $\chi_i \leq 0.05$	TaylorF2	SEOBNRT	PhenomDNRT
Binary inclination $\theta_{\rm JN}$	$146^{+24}_{-28} \deg$	$146^{+24}_{-28} \deg$	$147^{+24}_{-28} \deg$
Binary inclination $\theta_{\rm JN}$ using EM distance constraint [104]	$149^{+13}_{-10} \deg$	$152^{+14}_{-11} \deg$	$151^{+14}_{-10} \deg$
Detector frame chirp mass \mathcal{M}^{det}	$1.1975^{+0.0001}_{-0.0001} M_{\odot}$	$1.1976^{+0.0001}_{-0.0001} M_{\odot}$	$1.1975^{+0.0001}_{-0.0001} \mathrm{M}_{\odot}$
Chirp mass \mathcal{M}	$1.186^{+0.001}_{-0.001} \mathrm{M}_{\odot}$	$1.186^{+0.001}_{-0.001} \mathrm{M}_{\odot}$	$1.186\substack{+0.001\\-0.001}$
Primary mass m_1	$(1.36, 1.61) \mathrm{M}_{\odot}$	$(1.36, 1.59) \ M_{\odot}$	$(1.36, 1.60) \ M_{\odot}$
Secondary mass m_2	$(1.16, 1.36) \ M_{\odot}$	$(1.17, 1.36) \ M_{\odot}$	$(1.17, 1.36) \ M_{\odot}$
Total mass m	$2.73^{+0.05}_{-0.01} M_{\odot}$	$2.73^{+0.04}_{-0.01} { m M}_{\odot}$	$2.73^{+0.04}_{-0.01} \mathrm{M}_{\odot}$
Mass ratio q	(0.72,1.00)	(0.74, 1.00)	(0.73, 1.00)
Effective spin $\chi_{\rm eff}$	$0.00^{+0.02}_{-0.01}$	$0.00\substack{+0.02\\-0.01}$	$0.00\substack{+0.02\\-0.01}$
Primary dimensionless spin χ_1	(0.00, 0.02)	(0.00, 0.02)	(0.00, 0.02)
Secondary dimensionless spin χ_2	(0.00, 0.02)	(0.00, 0.02)	(0.00, 0.02)
Tidal deformability $\tilde{\Lambda}$ with flat prior (symmetric/HPD)	$340^{+580}_{-240}/340^{+490}_{-290}$	$280^{+490}_{-190}/\ 280^{+410}_{-230}$	$300^{+520}_{-190}/\ 300^{+430}_{-230}$

Top: LIGO-Virgo (2018) / Bottom: De+ (2018)

TaylorF2
Assume the EOS as
common to both
binary members

Mass prior	$ ilde{\Lambda}$	\hat{R} (km)	\mathcal{B}	$ ilde{\Lambda}_{90\%}$
Uniform	222_{-138}^{+420}	$10.7^{+2.1}_{-1.6}\pm 0.2$	369	< 485
Double neutron star	245^{+453}_{-151}	$10.9^{+2.1}_{-1.6}\pm0.2$	125	< 521
Galactic neutron star	233_{-144}^{+448}	$10.8^{+2.1}_{-1.6}\pm 0.2$	612	< 516

High Energy Astrophysics 2018

Never skip looking at the distribution

https://www.autodeskresearch.com/publications/samestats High Energy Astrophysics 2018 8

Double peak/high- $\widetilde{\Lambda}$ tail

Posterior distribution is far from Gaussian in LVC/non-LVC analysis Moderate dependence on waveform models

De+ (2018)

400

1000

200

800

600

Waveform model dependence

Kyoto model

TaylorF2: Post-Newton phase ($x \propto f^{2/3}$) $\Psi_{\text{tidal}}^{2.5\text{PN}} = \frac{3}{128\eta} \left(-\frac{39}{2} \tilde{\Lambda} \right) x^{5/2} \left[1 + \frac{3115}{1248} x - \pi x^{3/2} + \frac{28024205}{3302208} x^2 - \frac{4283}{1092} \pi x^{5/2} \right]$ + insignificant correction terms associated with η We introduce a nonlinear-in- $\tilde{\Lambda}$ term (empirically) $-\frac{39}{2}\tilde{\Lambda}(1+12.55\tilde{\Lambda}^{2/3}x^{4.240})$ Another model Pade-resums the post-Newton part $1 + \tilde{n}_1 x + \tilde{n}_{3/2} x^{3/2} + \tilde{n}_2 x^2 + \tilde{n}_{5/2} x^{5/2}$ $1 + \tilde{d}_1 x + \tilde{d}_{3/2} x^{3/2}$

Our independent analysis

Discrepancy of the LIGO twins

Dependence on high-frequency cutoff

Hanford detector:

- single (low) peak ^{1.5}
- converge smoothly 1.25
 - w.r.t f_{\max} change

Livingston detector:

- double peak
- irregular variation w.r.t *f*_{max} change

Random noise or specific component?

E.g., a glitch and incomplete subtraction thereof (this is just an example!) $500^{-10} - 8 - 6 - 4 - 2$

If the "second" peak is associated with noises that do not average out, future results will be biased -> noise hunting warranted

Low-frequency cutoff?

Degeneracy can be solved and constraints become tight

Uniform distribution, 20 Hz low-frequency cutoff
Double Neutron Stars, 20 Hz low-frequency cutoff
Galactic Neutron Stars, 20 Hz low-frequency cutoff
Uniform distribution, 25 Hz low-frequency cutoff

 $\tilde{\Lambda} = 222.29^{+419.83}_{-138.48}$ $245.39^{+453.12}_{-151.53}$ $233.39^{+447.55}_{-144.40}$ $321.73^{+661.82}_{-213.45}$

More than 3 detectors preferable

http://gwcenter.icrr.u-tokyo.ac.jp/wp-content/themes/lcgt/images/img_abt_lcgt.jpg

KAGRA (Kamioka, Japan)

Advanced LIGO (Hanford, USA) another at Livingston

https://www.advancedligo.mit.edu/graphics/summary01.jpg

Advanced Virgo (Pisa, Italy)

http://virgopisa.df.unipi.it/sites/virgopisa.df.unipi.it.virgopisa/files/banner/virgo.jpg

Summary

- We have independently analyzed LIGO-Virgo data of GW170817 using our waveform models.
- Constraints on tidal deformability are similar to those obtained by other analysis, that is, the posterior probability distribution exhibits a double peak structure.
- The second peak exists only for Livingston and behaves irregularly with respect to changes of the high-frequency cutoff (<-> Hanford).

Appendix

Parameters of GW170817

Low-spin: limiting to spin values observed for Galactic binary neutron stars that merge within the Hubble time (with some safe margins)

High-spin: as far as GW models may be applicable

LIGO&Virgo (2017)	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	$1.36-1.60 M_{\odot}$	$1.36-2.26 M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$	$0.86-1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002}M_{\odot}$	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0	0.4–1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01} M_{\odot}$	$2.82^{+0.47}_{-0.09} M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot}c^{2}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc	40^{+8}_{-14} Mpc
Viewing angle Θ	$\leq 55^{\circ}$	≤ 56°
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

High Energy Astrophysics 2018

22

Constraints on parameters

The NS radius may be smaller than ~13-14km

- this can be made tighter with better waveforms

Shape of mass constraints

Gravitational waves tightly constrain the chirp mass

$$\mathcal{M} = \frac{m_1^{3/5} m_2^{3/5}}{(m_1 + m_2)^{1/5}} = \mu^{3/5} M^{2/5}$$

But the mass ratio (e.g., $q = m_2/m_1 < 1$) tends to be degenerated with the spin of components,

$$\chi_i = \frac{cS_i}{Gm_i^2} \quad (i = 1,2)$$

The error in q appears large particularly for nearly equal-mass systems like binary neutron stars

Transient and host galaxy

First found by Swope Supernova Survey (not this)

GW170817 DECam observation (0.5–1.5 days post merger)

GW170817 DECam observation (>14 days post merger)

Faded -> transient!

J-GEM observation

Japanese observatories, for example Subaru/HSC, took well-sampled images

Stacking estimation

~tidal deformability

