
Observational Cosmology Journal Club Dec. 10 2019
Takahiro Nishimichi

Title Authors Reference

[1]

Euclid preparation: II. The
EuclidEmulator — A tool to
compute the cosmology
dependence of the nonlinear
matter power spectrum

Euclid Collaboration, M. Knabenhans,
J. Stadel, S. Marelli, D. Potter, R.
Teyssier, L. Legrand, A. Schneider, B.
Sudret , L. Blot and S. Awan

arXiv:
1809.04695

[2]
Learning to Predict the
Cosmological Structure
Formation

S. He, Y. Li, Y. Feng, S. Ho, S.
Ravanbakhsh, W. Chen and B.
Póczosh

arXiv:
1811.06533

[3]
CosmoFlow: Using Deep
Learning to Learn the
Universe at Scale

A. Mathuriya*, D. Bard, P. Mendygral†,
L. Meadows*, J. Arnemann, L. Shao*,
S. He, T. Karna*, D. Moise†, S. J.
Pennycook*, K. Maschhoff†, J. Sewall*,
N. Kumar*, S. Ho, M. F. Ringenburg†,
Prabhat and V. Lee*

arXiv:
1808.04728

[1] Euclid preparation: II. The EuclidEmulator

‣ Eventual goal: 1% accuracy
on P(k) up to k ~ 10 h/Mpc

‣ Euclid “flagship”
simulations ongoing

‣ Prepare a framework to
interpolate across the
cosmological parameter
space efficiently and
accurately
‣ For the moment, using

cheaper but still big simulation
suite

‣ —> Emulator for matter P(k)

From arXiv:1503.05920

‣ c.f. Previous example (Coyote Universe; Heitmann+’09, 10, Lawrence et al. ’10)

Perturbation
theory

16 x low-res
PM runs

4 x mid-res
PM runs

1 x high-res
Gadget run

(x fudge
factor)

‣ LH design

‣ Gaussian Process

‣ SVD decomposition

(x1, t1)

(x2, t2)

(x3, t3)
(x4, t4)

(x5, t5)
(x6, t6)

input

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

45.4: Examples of covariance functions 543

matrix for the vector tN+1 ≡ (t1, . . . , tN+1)T. We define submatrices of CN+1

as follows:

CN+1 ≡

⎡

⎢⎢⎢⎣

⎡

⎣ CN

⎤

⎦

⎡

⎣ k

⎤

⎦

[
kT

] [
κ
]

⎤

⎥⎥⎥⎦
. (45.35)

The posterior distribution (45.34) is given by

P (tN+1 | tN) ∝ exp
[
−1

2
[
tN tN+1

]
C−1

N+1

[
tN

tN+1

]]
. (45.36)

We can evaluate the mean and standard deviation of the posterior distribution
of tN+1 by brute-force inversion of CN+1. There is a more elegant expression
for the predictive distribution, however, which is useful whenever predictions
are to be made at a number of new points on the basis of the data set of size
N . We can write C−1

N+1 in terms of CN and C−1
N using the partitioned inverse

equations (Barnett, 1979):

C−1
N+1 =

[
M m
mT m

]
(45.37)

where

m =
(
κ− kTC−1

N k
)−1 (45.38)

m = −m C−1
N k (45.39)

M = C−1
N +

1
m

mmT . (45.40)

When we substitute this matrix into equation (45.36) we find

P (tN+1 | tN) =
1
Z

exp

[
−(tN+1 − t̂N+1)2

2σ2
t̂N+1

]
(45.41)

where

t̂N+1 = kTC−1
N tN (45.42)

σ2
t̂N+1

= κ− kTC−1
N k. (45.43)

The predictive mean at the new point is given by t̂N+1 and σt̂N+1
defines the

error bars on this prediction. Notice that we do not need to invert CN+1 in
order to make predictions at x(N+1). Only CN needs to be inverted. Thus
Gaussian processes allow one to implement a model with a number of basis
functions H much larger than the number of data points N , with the com-
putational requirement being of order N 3, independent of H. [We’ll discuss
ways of reducing this cost later.]

The predictions produced by a Gaussian process depend entirely on the
covariance matrix C. We now discuss the sorts of covariance functions one
might choose to define C, and how we can automate the selection of the
covariance function in response to data.

45.4 Examples of covariance functions

The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {xn}N

n=1.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

45.4: Examples of covariance functions 543

matrix for the vector tN+1 ≡ (t1, . . . , tN+1)T. We define submatrices of CN+1

as follows:

CN+1 ≡

⎡

⎢⎢⎢⎣

⎡

⎣ CN

⎤

⎦

⎡

⎣ k

⎤

⎦

[
kT

] [
κ
]

⎤

⎥⎥⎥⎦
. (45.35)

The posterior distribution (45.34) is given by

P (tN+1 | tN) ∝ exp
[
−1

2
[
tN tN+1

]
C−1

N+1

[
tN

tN+1

]]
. (45.36)

We can evaluate the mean and standard deviation of the posterior distribution
of tN+1 by brute-force inversion of CN+1. There is a more elegant expression
for the predictive distribution, however, which is useful whenever predictions
are to be made at a number of new points on the basis of the data set of size
N . We can write C−1

N+1 in terms of CN and C−1
N using the partitioned inverse

equations (Barnett, 1979):

C−1
N+1 =

[
M m
mT m

]
(45.37)

where

m =
(
κ− kTC−1

N k
)−1 (45.38)

m = −m C−1
N k (45.39)

M = C−1
N +

1
m

mmT . (45.40)

When we substitute this matrix into equation (45.36) we find

P (tN+1 | tN) =
1
Z

exp

[
−(tN+1 − t̂N+1)2

2σ2
t̂N+1

]
(45.41)

where

t̂N+1 = kTC−1
N tN (45.42)

σ2
t̂N+1

= κ− kTC−1
N k. (45.43)

The predictive mean at the new point is given by t̂N+1 and σt̂N+1
defines the

error bars on this prediction. Notice that we do not need to invert CN+1 in
order to make predictions at x(N+1). Only CN needs to be inverted. Thus
Gaussian processes allow one to implement a model with a number of basis
functions H much larger than the number of data points N , with the com-
putational requirement being of order N 3, independent of H. [We’ll discuss
ways of reducing this cost later.]

The predictions produced by a Gaussian process depend entirely on the
covariance matrix C. We now discuss the sorts of covariance functions one
might choose to define C, and how we can automate the selection of the
covariance function in response to data.

45.4 Examples of covariance functions

The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {xn}N

n=1.

ou
tp

ut

‣ Strategy of this work

Perturbation
theory

16 x low-res
PM runs

4 x mid-res
PM runs

1 x high-res
Gadget run

(x fudge
factor)

‣ LH design

‣ Gaussian Process

‣ SVD decomposition

(x1, t1)

(x2, t2)

(x3, t3)
(x4, t4)

(x5, t5)
(x6, t6)

input

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

45.4: Examples of covariance functions 543

matrix for the vector tN+1 ≡ (t1, . . . , tN+1)T. We define submatrices of CN+1

as follows:

CN+1 ≡

⎡

⎢⎢⎢⎣

⎡

⎣ CN

⎤

⎦

⎡

⎣ k

⎤

⎦

[
kT

] [
κ
]

⎤

⎥⎥⎥⎦
. (45.35)

The posterior distribution (45.34) is given by

P (tN+1 | tN) ∝ exp
[
−1

2
[
tN tN+1

]
C−1

N+1

[
tN

tN+1

]]
. (45.36)

We can evaluate the mean and standard deviation of the posterior distribution
of tN+1 by brute-force inversion of CN+1. There is a more elegant expression
for the predictive distribution, however, which is useful whenever predictions
are to be made at a number of new points on the basis of the data set of size
N . We can write C−1

N+1 in terms of CN and C−1
N using the partitioned inverse

equations (Barnett, 1979):

C−1
N+1 =

[
M m
mT m

]
(45.37)

where

m =
(
κ− kTC−1

N k
)−1 (45.38)

m = −m C−1
N k (45.39)

M = C−1
N +

1
m

mmT . (45.40)

When we substitute this matrix into equation (45.36) we find

P (tN+1 | tN) =
1
Z

exp

[
−(tN+1 − t̂N+1)2

2σ2
t̂N+1

]
(45.41)

where

t̂N+1 = kTC−1
N tN (45.42)

σ2
t̂N+1

= κ− kTC−1
N k. (45.43)

The predictive mean at the new point is given by t̂N+1 and σt̂N+1
defines the

error bars on this prediction. Notice that we do not need to invert CN+1 in
order to make predictions at x(N+1). Only CN needs to be inverted. Thus
Gaussian processes allow one to implement a model with a number of basis
functions H much larger than the number of data points N , with the com-
putational requirement being of order N 3, independent of H. [We’ll discuss
ways of reducing this cost later.]

The predictions produced by a Gaussian process depend entirely on the
covariance matrix C. We now discuss the sorts of covariance functions one
might choose to define C, and how we can automate the selection of the
covariance function in response to data.

45.4 Examples of covariance functions

The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {xn}N

n=1.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

45.4: Examples of covariance functions 543

matrix for the vector tN+1 ≡ (t1, . . . , tN+1)T. We define submatrices of CN+1

as follows:

CN+1 ≡

⎡

⎢⎢⎢⎣

⎡

⎣ CN

⎤

⎦

⎡

⎣ k

⎤

⎦

[
kT

] [
κ
]

⎤

⎥⎥⎥⎦
. (45.35)

The posterior distribution (45.34) is given by

P (tN+1 | tN) ∝ exp
[
−1

2
[
tN tN+1

]
C−1

N+1

[
tN

tN+1

]]
. (45.36)

We can evaluate the mean and standard deviation of the posterior distribution
of tN+1 by brute-force inversion of CN+1. There is a more elegant expression
for the predictive distribution, however, which is useful whenever predictions
are to be made at a number of new points on the basis of the data set of size
N . We can write C−1

N+1 in terms of CN and C−1
N using the partitioned inverse

equations (Barnett, 1979):

C−1
N+1 =

[
M m
mT m

]
(45.37)

where

m =
(
κ− kTC−1

N k
)−1 (45.38)

m = −m C−1
N k (45.39)

M = C−1
N +

1
m

mmT . (45.40)

When we substitute this matrix into equation (45.36) we find

P (tN+1 | tN) =
1
Z

exp

[
−(tN+1 − t̂N+1)2

2σ2
t̂N+1

]
(45.41)

where

t̂N+1 = kTC−1
N tN (45.42)

σ2
t̂N+1

= κ− kTC−1
N k. (45.43)

The predictive mean at the new point is given by t̂N+1 and σt̂N+1
defines the

error bars on this prediction. Notice that we do not need to invert CN+1 in
order to make predictions at x(N+1). Only CN needs to be inverted. Thus
Gaussian processes allow one to implement a model with a number of basis
functions H much larger than the number of data points N , with the com-
putational requirement being of order N 3, independent of H. [We’ll discuss
ways of reducing this cost later.]

The predictions produced by a Gaussian process depend entirely on the
covariance matrix C. We now discuss the sorts of covariance functions one
might choose to define C, and how we can automate the selection of the
covariance function in response to data.

45.4 Examples of covariance functions

The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {xn}N

n=1.

ou
tp

ut

No matching

—>UQLab (uncertainty qualification software)

‣ Simulations

Training
Validation

Volume requirement

Resolution requirement

※ PF: “Pairing and Fixing” simulations (Angulo & Pontzen ’16)

‣ Convergence study

‣ Data flow
100 designs 100 (z < 5)

1100 (k<5.48h/Mpc)
of log(Bc(k,z))

Initial:

PCA:

(Sparse Polynomial
Chaos Expansion)

—> Least Angle Regression (LARS) determines
the optimal sparse set of polynomials A

for a given internal parameter set

“p” can be determined
automatically by

UQLab

Parameter grid search at 3,000 points

SPCE:

‣ Hyperparameter optimization
Based on log(B(k,z))Based on P(k,z)

‣ Generate Halofit (w/
Takahashi et al. parameters)
template at 16 x 10,000
cosmologies to find the best
hyper parameters

‣ “Emulation-Only-Error” (EOE)
is estimated as the L∞-norm
(=max) of

hh

w0

‣ Results
‣ Cross validation test done at 36

cosmologies outside the design

‣ Comparison with previous works
@ Euclid reference cosmology

[2] Learning to Predict the Cosmological Structure Formation

‣ ML for forward modeling of the cosmic large scale structure

‣ Develop a deep neural network called “Deep Density
Displacement Model (D3M)”

‣ Just a proof of concept at this stage

“D3M” displacement field “D3M” density field

‣ Dataset
‣ Pairs of (Zel’dovich Approx. — full N-body simulation)
‣ ZA as the input

‣ N-body as the output

‣ Perform 10,000 pairs of particle realizations
‣ L = 128 Mpc/h, N = 323

‣ For one particular cosmology (PLANCK 2015)

‣ (training:validation:test) = (80%:10%:10%)

‣ Additional data for tests
‣ 1,000 2LPT realizations

‣ Different cosmological parameter sets (discussed later)

‣ ML Architecture
‣ U-Net (Ronneberger, Fischer &

Brox, “U-Net: Convolutional
Networks for Biomedical Image
Segmentation”,arXiv:1505.0459)

‣ won the ISBI cell tracking
challenge 2015 in these categories
by a large margin

‣ U-Net

‣ U-Net

‣ U-Net

‣ U-Net

Contract the image size
Add more channels

‣ U-Net

‣ U-Net

Contract the image size
Add more channels

Create High
resolution maps

Copy and Crop

Copy and Crop

‣ U-Net implementation for this study
‣ 2D —> 3D

‣ Care must be taken for
‣ periodic boundary

‣ Shift and rotational symmetry of the system

‣ Initial and final feature channels:
‣ Density (1 channel) or displacement (3 channels)

‣ At 32^3 locations

‣ Total of 8.6 x 106 trainable parameters

‣ Loss function

‣ Results (error vector)

ZA 2LPT D3M

Average relative displacement error: 9.3% (2LPT) vs 2.8% (D3M)

‣ Results (2pt correlation function)

‣ Results (3pt correlation function)

‣ Results (3pt correlation function)

‣ Results (2ptCF, A_s varied cosmology)

‣ Results (2ptCF, O_m varied cosmology)

[3] CosmoFlow: Using Deep Learning to Learn the Universe at Scale

‣ ML for backward modeling of the cosmic large
scale structure

‣ DL application with high scalability
‣ Efficient implementation of many element-wise

operations for threading to improve training
performance on Intel Xeon Phi processors

‣ Also utilize Cray PE Machine Learning Plugin for efficient
scaling to multiple nodes

‣ First large-scale science application of the
TensorFlow framework at supercomputer scale
with fully synchronous training

‣ 8192 nodes, 77% parallel efficiency, 3.5 Pflop/s

‣ Goal
‣ 3D cosmology datasets (large-scale

structure) —> cosmological parameters

‣ Significant update from their previous
paper (with only cosmologists; arXiv:
1711.02033)
‣ x3 improved constraint on (Omega_m,

sigma_8) compared to the standard P(k)
analysis

‣ Dataset
‣ L=512Mpc/h, N=512^3

‣ 12,632 simulations with COLA
‣ 150 as validation data, 50 as test data

‣ Density values in 8 sub-volumes at
128^3 voxels (101,056 sub-volumes in
total)

‣ Simulations with 3 varied cosmological
parameters (Omega_m, sigma_8, n_s) From arXiv:1711.02033

‣ ML architecture and training
>7,000,000 parameters

69.33 Gflop / mimi-batch (mini-batch size = 1)

‣ Results

