Searching for cosmic missing baryons with DIOS (Diffuse Intergalactic Oxygen Surveyor)

Yasushi Suto Department of Physics University of Tokyo

July 12, 2004 University of Durham

Our recent work at Univ. of Tokyo (1)

- Triaxial modeling of density profiles of dark matter halos (Jing & Suto 2002), and its application to X-ray/SZ effect (Lee & Suto 2002) and to lensing arc statistics (Oguri, Lee & Suto 2003)
- 2. Cosmological light-cone effect (Hamana et al. 2001)
- **3.** Properties of Lyman break galaxies and Lyman alpha emitters from their clustering (Hamana et al. 2003)
- 4. Phase correlation in Fourier space from nonlinear gravitational clustering (Hikage, Matsubara & Suto 2003)
- Topology (Minkowski functionals) of SDSS galaxy distribution (Hikage et al. 2003)

6. Morphological dependence in two- and three-point correlation functions of SDSS galaxies (Kayo et al. 2004) WHIM and DIOS

Our recent work at Univ. of Tokyo (2)

- 7. The largest-separation QSO multiple lensed images from SDSS survey (Inada et al. 2003)
- Largest-scale clustering and baryonic signatures from twopoint correlation function of SDSS QSOs (Yahata et al. 2004)
- The highest angular-resolution Sunyaev-Zel'dovich map (150GHz) and the first submm SZ map (350GHz) of RX J1347-1145 (Komatsu et al. 1999,2001; Kitayama et al. 2004)
- 10.Searching for atmospheric signatures from the transiting extrasolar planet HD209458b with Subaru High-Dispersion-Spectrograph (Winn et al. 2004; Narita et al. 2004)
- 11.Locating missing cosmic baryons via Oxygen emission lines with DIOS (Yoshikawa et al. 2003, 2004)

vs $\Omega_{RRN} = 0.04$ (*h* = 0.7)

7'. Plasma in groups

 $\Omega_{star} + \Omega_{HI} + \Omega_{H_2} + \Omega_{hot X-ray} = 0.0068^{+0.0041}_{-0.0030}$

A cluster region in SPH simulation

A (30h⁻¹Mpc)³ box around a massive cluster at z=0 CDM SPH simulation (Yoshikawa et al. 2001) Galaxy (cold clump)

All gas particles

WHIM and DIOS

Warm gas (10⁵K<T<10⁷K)

Four phases of cosmic baryons Dave et al. ApJ 552(2001) 473 ■ Condensed: >1000, T<10⁵K Stars + cold intergalactic gas ■ *<u>Diffuse:</u>* <1000, T<10⁵K Photo-ionized intergalactic medium Ly absorption line systems ■ <u>*Hot:*</u> T>10⁷K X-ray emitting hot intra-cluster gas ■ <u>Warm-hot</u>: 10⁵K<T<10⁷K Warm-hot intergalactic medium (WH/H/M)

Emission lines of oxygen in WHIM

Ovii (561eV, 568eV, 574eV, 665eV), Oviii (653eV)

Why oxygen emission lines ?

- Most abundant other than H and He
- Good tracers of gas around T=10⁶ ~ 10⁷ K
- No other prominent lines in E=500-660eV
- Not restricted to regions towards background QSOs

systematic WHIM survey

DOS: <u>D</u>iffuse <u>Intergalactic</u> <u>Oxygen</u> <u>S</u>urveyor

A Japanese proposal of a dedicated X-ray mission to search for missing baryons

- A dedicated satellite with cost < 40M USD to fill the gap between Astro-E2 (2005) and NeXT (2010?). Launch proposed in 2008 (?).
- Unprecedented energy spectral resolution $\Delta E=2eV$ in soft X-ray band (0.1-1keV)
- Aim at detection of (20-30) percent of the total cosmic baryons via Oxygen emission lines
 - $\Delta E=2eV$, $S_{eff} \Omega=100 [cm^2 deg^2]$
 - flux limit = 6x10⁻¹¹ [erg/s/cm²/str]

PI: Takaya Ohashi (Tokyo Metropolitan Univ.)

Light-cone output from simulation

- Cosmological SPH simulation in $\Omega_m = 0.3$, $\Omega_{\Lambda}=0.7$, $\sigma_{8}=1.0$, and h=0.7 CDM with N=128³ each for DM and gas (Yoshikawa, Taruya, Jing, & Suto 2001)
- Light-cone output from z=0.3 to z=0 by stacking 11 simulation cubes of (75h⁻¹Mpc)³ at different z **5° × 5° FOV mock data** in 64x64 grids on the sky • 128 bins along the redshift direction ($\Delta z = 0.3/128$) WHIM and DIOS

Surface brightness on the sky

Metallicity models <u>Oxygen enrichment scenario in IGM</u>

Metallicity of WHIM is quite uncertain <u>Adopted models for metallicity distribution</u>

Model I : uniform and constant $Z = 0.2 Z_{solar}$ Model II : uniform and evolving

 $Z = 0.2 Z_{solar}(t/t_0)$

Model III : density-dependent (Aguirre et al. 2001)

 $Z = 0.005 Z_{solar} (\rho/\rho_{mean})^{0.33}$ (galactic wind driven)

Model IV : density-dependent (Aguirre et al. 2001) $Z = 0.02 Z_{solar} (\rho/\rho_{mean})^{0.3}$ (radiation pressure driven) WHIM and DIOS

Creating Mock spectra from light-cone simulation output

For a given exposure time,

- convolve the emissivity according to gas density and temperature in (5°/64)² pixels over the lightcone
- Add the Galactic line emission (McCammon et al. 2002)
- Add the cosmic X-ray background contribution (power-law+Poisson noise)

Then statistically subtract the Galactic emission and the CXB and obtain the residual spectra for $\Delta E = 2eV$ resolution.

Simulated spectra: region D **Deeper observation of targeted fields with DIOS (5²pixels)** $19'x19' = 0.098 \text{ deg}^2$

T_{exposure}=10⁶sec

Searching for cosmic missing baryons with DIOS (Diffuse Intergalactic Oxygen Surveyor)

Univ of Tokyo: K. Yoshikawa **Y.Suto ISAS:** N. Yamasaki K. Mitsuda **Tokyo Metropolitan Univ.:** T. Ohashi Nagoya Univ.: Y. Tawara A. Furuzawa

Simulating the local universe

Simulation by Dolag et al. (astro-ph/0310902)

- Initial condition: smoothing the observed galaxy density field of IRAS 1.2 Jy galaxy survey over 5h⁻¹Mpc
- adiabatic run of dark matter and baryons (without cooling or feedback) in a canonical LCDM model

Locating the WHIM in the local universe

- mock observation of the local universe via oxygen emission from WHIM
- Yoshikawa, Dolag, Suto, Sasaki, Yamasaki, Ohashi, Mitsuda, Tawara, Fujimoto, Furusho, Furuzawa, Ishida & Ishisaki (2004) submitted to PASJ

Simulated local universe vs. 2MASS map

S(0.5-2keV) [erg/s/cm²/sr] SG +90° A: Galactic Plane B: Hercules Supercluster sg -90° G: Perseus-Pisces Supercluster C: Coma Cluster "Local Void" Η. D: Shapley Concentration/ I: Galactic Center Hydra-Centaurus Supercluster J: Pavo-Indus Supercluster E: Virgo Cluster/Local Supercluster K: "Great Attractor"/Abell 3627 F: Bootes Void L: Horologium Supercluster

Soft X-ray map of the simulated local universe (Yoshikawa et al. 2004)

Tour of the simulated local universe

Klaus Dolag (2003) 18

Simulated gas distribution on the supergalactic plane

gas temperature

(adopted) metallicity

19

Mock observation of X-ray filament extending around simulated A3627

Mock observation of simulated Coma

a small clump in front of simulated Coma

Soft X-ray excess of Coma

 XMM-Newton observations of the outskirts of Coma (Finoguenov, Briel & Henry 2003, A&A 410, 777)

X-ray filament of 0.2keV warm gas ?

Fraction of cosmic baryons detectable via oxygen emission

Locating Warm-Hot Intergalactic Medium via Oxygen emission lines

 Mock spectral observation of oxygen emission (Yoshikawa et al. 2003, 2004)

- DIOS will be able to locate ~ 20 percent of the total cosmic baryons
 - $\Delta E = 2eV$, $S_{eff} \Omega = 100 [cm^2 deg^2]$, $T_{exp} = 10^5 s$, S/N = 10
 - flux limit = $6x10^{-11}$ [erg/s/cm²/str]

Things remain to be checked

Validity of the collisional ionization equilibrium ?

Strategy to quantify the fraction of WHIM; targeted observations vs. blank survey

Sciences with DIOS other than WHIM search WHIM and DIOS

Hydrogen column density and X-ray maps

S(0.5-2keV)

Oxygen emission in supergalactic coordinates

Oviii

Expected S/N for OVIII line

For a detector of $S_{eff} \Omega = 100 \text{ cm}^2 \text{deg}^2$ and $\Delta E = 2 \text{eV}$

Oxygen column densities in supergalactic coordinates

Redshift-space map of oxygen emission

Tracing the structure with Oxygen

Dark matter

Galaxies

Ovi

Ovii

Oviii

Oxygen lines

Ονιι	1s ² – 1s2s (³ S ₁)	561eV	22.1
Ονιι	1s ² – 1s2p (³ P ₁)	568eV	21.8
Ονιι	1s ² – 1s2p (¹ P ₁)	574eV	21.6
Ονιιι	1s – 2p (Ly)	653eV	19.0
Ονιι	1s ² – 1s3p	665eV	18.6
Ονιιι	1s — 3p (Ly)	775eV	16.0
Neix	$1s^2 - 1s2s (^3S_1)$	905eV	13.7
Neix	1s ² – 1s2p (³ P ₁)	914eV	13.6
Neix	1s ² – 1s2p (¹ P ₁)	921eV	13.5

Requirements for detection

Good energy resolution to identify the emission lines from WHIM at different redshifts X-ray calorimeter using superconducting $\Box \Delta E < 5eV$ TES (Transition Edge Sensor) Large field-of-view and effective area for survey \Box S_{eff} = 100cm², Ω =1deg² 4-stage reflection telescope Angular resolution is not so important (but useful in removing point source contaminations)

$$\theta \approx 1^{\circ} \left(\frac{600 \, h^{-1} \mathrm{Mpc}}{D} \right) \left(\frac{L}{10 \, h^{-1} \mathrm{Mpc}} \right)$$

DIOS: instrument summary

Area	> 100 cm ²
Field of View	50' diameter
S Ω	~100 cm ² deg ²
Angular Resol.	3' (16 ² pixels)
Energy Resol.	2 eV (FWHM)
Energy Range	0.1 - 1 keV
Life	> 5 yr

Mechanical coolers + ADR: < 100 mK Initial cooling ~ 3 months

DIOS: spacecraft

Weight	Total Payload	~ 400 kg ~ 280 kg	Altitude: ~ 550 km Inclination: 30 °
Size	Launch	1.2 × 1.45 × 1.4 m	Rotation period: 95 min
	In orbit	5.85 × 1.45 × 1.4 m	
Attitude	Control	3-axis bias momentum wheel, Sun pointing in 1 axis	5.9 m 1.5 m
	Accuracy	10 arcsec	
Power	Total	450 W	
	Payload	250 W	35

DIOS: comparison with other missions

Very high sensitivity (SΩ and ΔE) in detecting oxygen emission lines
 Intensity ratios of the lines reveal the temperature and whimignization condition of WHIM

Comparison with other missions

	$S_{eff}\Omega \ [cm^2 deg^2]$	ΔΕ [eV]	f _{limit} [erg/s/cm ² /sr
Chandra ACIS-S3	12	80	10-9
XMM-Newton EPIC	-pn 100	80	3x10 ⁻¹⁰
Astro-E II XRS	0.23	6	2x10 ⁻⁸
Astro-E II XIS	36	80	6x10 ⁻¹⁰
XEUS-I	16.7	2	2.5x10 ⁻¹⁰
DIOS	100	2	6x10⁻¹¹

Physical properties of the probed baryons

Each symbol indicate the temperature and the over-density of gas at each simulation grid (4x4 smoothed pixels over the sky and $\Delta z = 0.3/128)$

S_x > 3x10⁻¹⁰ [erg/s/cm²/sr]
 S_x > 6x10⁻¹¹ [erg/s/cm²/sr]
 S_x > 10⁻¹¹ [erg/s/cm²/sr]

Dependence on the metallicity model

 We have adopted model I (constant 0.2 solar metallicity) so far

 Density-dependent metallicity models show stronger emission lines.

WHIM will be unambiguously detected with our proposed mission

Expected fraction of WHIM detectable via Oxygen emission lines (in principle)

Our proposed mission (flux limit = $6x10^{-11}$ [erg/s/cm²/str]) will be able to detect (20-30) percent of the total cosmic baryons via **Oxygen emission lines** in principle.