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1   three-body dynamics: 
old and new problem



Celestial mechanics and three-body problems
＝ “superstring theory” before the 20th century

n Great mathematicians had seriously worked on the topic
n Joseph-Louis Lagrange (1736-1813)
n Pierre-Simon Laplace (1749-1827)
n Johann Carl Friedrich Gauß (1777-1855)
n Carl Gustav Jacob Jacobi (1804-1851)
n William Rowan Hamilton (1805-1865)
n Jules-Henri Poincaré (1854-1912)

n If quantum theory and relativity had not been discovered, three-body 
problem could have been the frontier in mathematical physics that 
the best scientists would choose
n what can “we” do then? ⇒ amazing three-body systems + accurate 

numerical simulations, which great people never expected in their epochs



Ubiquity of hierarchical triples
n Stellar systems

n more than 70% of OBA-type stars and 50% of FGK-type stars a 
belong to binary/multiple systems (e.g., Alpha Centauri)

n (Exo)Planetary systems
n planets around binary stars, multi-planets, satellites,,,

n Compact objects
n Possible pathway towards binary BHs detected by GW
n Binaries (stars, BHs) around a supermassive BH in galaxies
n Triples of compact objects, e.g., pulsar-WD binary + tertiary WD 

(Ransom et al. 2014)



Diversities triggered by triple dynamics
Alpha Centauri was a triple system, two suns tightly orbiting one 

another, and a third, more remote, circling them both. 
What would it be like to live on a world with three suns in the sky?

― Carl Sagan "Contact”



2  Hierarchical three-body systems



Hierarchical three-body systems
n Gravitational three-body systems are unstable in general

n stable three-body systems are mostly hierarchical: tight binary 
+ distant tertiary orbiting the center-of-mass of the inner binary

n observed three-body systems are likely to be hierarchical
n Stable systems are inevitably associated with 

(undemocratic) hierarchies
n quite universal in biological, astronomical and social systems

n quarks and leptons – atoms – molecules – DNAs – cells – organs –
animals – villages – cities – nations – planets – stars – star clusters –
galaxies – galaxy clusters – universe(s) – multiverse(s)

n non-intuitive (counter-intuitive) dynamical behavior of 
hierarchical triples triggers unexpectedly broad diversities 
in astronomical phenomena (e.g., ZKL effect)
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Ransom et al. 
Nature 505(2014)520
NS-WD binary + WD

PSR J0337+1715 parameters
inner orbital period
(pulsar+WD)

1.629401788(5) day

outer orbital period
(WD) 

327.257541(7) day 

pulsar spin period 2.73258863244(9) msec
mutual orbital inclination 0.0120(17) deg. 

Pulsar mass 1.4378(13)

Inner WD mass 0.19751(15) 

Outer WD mass 0.4101(3) 
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Hierarchical triple-star candidates 
in Gaia DR3 (403 in total)

Czavakinga et al. 
arXiv:2212.02903
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3  Three-body problem 
and von Zeipel-Lidov-Kozai effect



Secular approximation to triple dynamics
n Very different timescales involved: 𝑃!" ≪ 𝑃#$%

n time-consuming numerical integration
n perturbative expansion in terms of 𝑎!"/ 𝑎#$%≪1

n long-time numerical integration by approximating the particle-
particle interaction with the ring-ring interaction over appropriate 
time-averaging of particles on their orbits
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Kepler orbital elements

𝑎 :	semimajor	axis
e :	eccentricity
𝑖 ∶ orbital inclination
𝛺 ∶ longitude of   

ascending node
ω : argument of periapsis

＋
𝜈 : true anomaly



Legendre expansion of Hamiltonian
Kepler motion for inner orbit

Kepler motion for outer orbit

interaction between inner and outer orbits

⇒ approximation by double-averaging of the 
Hamiltonian over the inner and outer orbits

coupling constant



double-averaged quadrupole and octupole Hamiltonians

n octupole term vanishes if m1=m2 (equal-mass 
inner binary) or e2=0 (circular outer orbit) 

n both 𝑎$% and 𝑎&'( are conserved in the secular 
approximation ⇒ no energy exchange between 
inner and outer orbits (angular momentum 
exchange alone)



von Zeipel-Lidov-Kozai effect
n Takashi Ito and Katsuhito Ohtsuka (2019) “The Lidov–Kozai Oscillation 

and Hugo von Zeipel”  Monogr. Environ. Earth Planets, 7, 1–113
n von Zeipel, H. (1910) “Sur l'application des séries de M. Lindstedt à

l'étude du mouvement des comètes périodiques”, Astronomische
Nachrichten, 183, 345–418

n M.L. Lidov (1961) “Evolution of the orbits of artificial satellites of planets 
as affected by gravitational perturbation from external bodies”  Artificial 
Earth Satellite, 8, 5–45

n Kozai, Yoshihide (1962) “Secular perturbations of asteroids with high 
inclination and eccentricity” The Astronomical Journal, 67, 591–598

n Naoz, S. (2016) “The eccentric Kozai–Lidov effect and its applications”, 
Annual Reviews of Astronomy and Astrophysics, 54, 441–489



standard and eccentric ZKL effects
n standard ZKL

n test particle limit (m2=0) and circular outer orbit (eout=0)
n angular momentum of the inner orbit along the total 

(outer) orbital axis is conserved

n inner eccentricity and inclination periodically change with

n eccentric ZKL
n eout〜1⇒ more drastic effect due to the octupole term 

if



examples of ZKL effects in secular approximation

test particle + quadrupole

full quadrupole

orbital flip
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z-component of the inner angular momentum

mutual inclination

inner eccentricity



4  Lyapunov vs. Lagrange instabilities 
of triple systems 



Triples are unstable in general ⇔ diversity

n Stability criterion
(Mardling & Aarseth 2001)

n Well-known and widely used, but its 
implication is often misinterpreted…

n What does it mean?
n Lyapunov (chaoticity of local trajectory) 

vs. Lagrange (escape of a body from the 
system) stability

n What is the disruption timescale?

stable

unstable
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(very unstable usually)



Normal and chaotic evolution of triple systems

Mardling & Aarseth (1999)

“A system was deemed stable if two orbits, 
initially differing by 1 part in 105 in the 
eccentricity, remained close after 100 orbits.” 
(Mardling & Aarseth 1999)

“We deem a triple system stable if it remains 
bound for 100 outer orbits and if the 
semimajor axes of both inner and outer 
orbits do not change by more than 10 
percent of the initial value.”
(Vynatheya et al. 2022 MNRAS 516, 4146 )



Lyapunov vs. Lagrange instability
n Lyapunov instability

n Local divergence of trajectories of 
bodies (~chaoticity)

n Lagrange instability
n global escape of a body from the triple 

system (boundedness of an orbit)
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n cannot be studied under secular 
approximation (energies of inner 
and outer orbits are conserved 
separately).

n Relation between Lyapunov and 
Lagrange instabilities is not clear



Longer-term N-body simulations in 
Newtonian dynamics neglecting GR effects

𝑒*+ = 1034(circular)
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𝑞78 ≡ 𝑚7/𝑚8 ≤ 1
𝑞79 ≡ 𝑚7/𝑚9
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N-body code 
TSUNAMI

(Trani and Spera)
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Hayashi, Trani & YS,
arXiv:2207.12672 ApJ 939(2022)81
arXiv:2209.08487 ApJ in press



Examples of orbital evolution of triples

coplanar - prograde coplanar - retrogradeinitially orthogonal

Green:
Lagrange stable 
up to t=108 Pin

Magenta:
Lagrange unstable   

around t=106 Pin

Hayashi, Trani & YS
arXiv:2207.12672 
ApJ 939 (2022)81
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Disruption timescales on aout(1-eout)/ain – eout plane 

𝑇'/𝑃() 10=10>10?10@10410A109107

Coplanar - prograde Coplanar - retrograde

strongly 
stabilized

Dynamical stability boundary by Mardling & Aarseth (2001)m1=m2=5m3

Orthogonal

Td>109Pin

Td>109Pin

Td>109Pin



60<imut (deg)<150  
destabilized by the Kozai-Lidov oscillations

imut (deg)>160
significantly stabilized due to inefficient 

energy transfer between inner and outer orbits

Inclination dependence
Td/Pout on aout(1-eout)/ain – eout plane 

Very different from the stability boundary by Mardling & Aarseth (2001)

Td>107Pout
Td>107Pout Td>107Pout



Chaotic nature of disruption timescale distribution

Performed on 3 different CPUs

n Tiny difference in the input 
value of Pin leads to one or 
two order-of-magnitude 
difference of disruption 
timescales

n Initial phase difference of the 
three bodies also leads to 
one or two order-of-
magnitude difference  of 
disruption timescales

n We do not know why one or 
two order-of-magnitude …

Hayashi, Trani & YS
arXiv:2207.12672 
ApJ 939(2022)81



Td/Pout (rp,out/ain; imut, eout) 
with random initial phases

n Lyapunov stability boundaries 
(Vynatheya et al. 2022) are plotted 
in dashed lines for reference



6  Summary 



Dynamical stability of triple systems
n Lagrange vs. Lyapunov stability for triple systems

n Conventional criteria correspond to Lyapunov stability
n Lagrange stability is more relevant in considering the fate of 

astronomical triples, i.e., disruption timescale
n We derive triple disruption timescales as a function of 

orbital parameters (within intrinsic variation of one or two 
order-of-magnitudes due to the chaotic dynamics of triples)

n Strong dependence on the mutual inclination
n Strongly misaligned systems (60°<imut<150°) are destabilized 

due to the Kozai-Lidov oscillations over longer timescales
n Coplanar retrograde triples are significantly stabilized


