Reliability of galaxy clusters as cosmological probes

Department of Physics University of Tokyo Yasushi Suto

Japan-Germany workshop on galaxies and clusters of galaxies October 31, 2002@ Laforet Shuzenji, Japan

SZ map of RX J1347-1145 Upper: submm (350GHz) with SCUBA at JCMT Lower: mm (150GHz)with NOBA at Nobeyama (Komatsu et al. 1999, 2001)

<u>Precision</u> cosmology with clusters

- Power spectrum from cluster distribution (c.f., talk by Schuecker)
- 8 0 relation from cluster abundance
 Consistent with CMB, SN and galaxy surveys (c.f., talk by Boehringer).
- Certainly useful and complementary, but can it be precise enough to be competitive with the other probes, especially in the next generation ?
- Or, have we understood what are the clusters ?

What is *the* definition of galaxy clusters ?

Definitely they are closely related, but the exact one-to-one correspondence is unlikely....

Relation between dark halos and clusters

Globally similar distribution, but their precise relation is unclear because definitions of clusters (especially at high z) are very ambiguous.

SPH simulations in LCDM: N=128³ boxsize: 75 h⁻¹Mpc (Yoshikawa, Taruya, Jing & Suto 2001)

An example; substructure of RXJ1347-1145 (z=0.45) detected via SZ map at 150 GHz

150GHz with NOBA (Nobeyama Bolometer Array) at Nobeyama 45m telescope in March, April, 1999 and February 2000 FWHM=13"

Globally similar morphology to the X-ray image

Substructure in the South-East direction

mJy/bean

Komatsu et al. PASJ 53(2001)57

Confirmed by Chandra and BIMA observations

RXJ1347-1145

BIMA@30GHz 63"x80" beam (10.3mJy point source removed)

Carlstrom et al. (2001)

Keck spectroscopy: Cohen & Kneib (2002)
Chandra: Allen, Schmidt & Fabian (2002)
non-spherical modeling is crucial, perhaps at high z in particular.

Clusters are not so simple as we have pretended to believe (c.f., talk by Briel)

Submm map (350GHz) of RX J1347-1145

The first SZ map of a cluster in the submm band with SCUBA, JCMT. (contours: Chandra X-ray map)

The highest angular resolution SZ map of a cluster in the mm band with NOBA, Nobeyama

Komatsu et al. ApJ 516(1998)L1 PASJ 53(2001)57

8 from cluster abundances and lensing

N.Bahcall: Physica Scripta T85(2000)32 **Refregier et al.** ApJ 572(2002)131

More recent estimate of

8

Bahcall et al.(SDSS) astro-ph/0205490 Brown et al. astro-ph/0210213 COMBO-17 survey

Systematic uncertainties

Kitayama & Suto ApJ 490(1997)557

Theoretical modeling of X-ray clusters

Shimizu, Kitayama, Sasaki & Suto (2003)

Mass – temperature relation to X-ray luminosity

Convert the observed MT relation (M₅₀₀ and M₂₅₀₀ to M_{vir} in our adopted dark matter halo profile) :

• Finoguenov et al. (2001)

$$T_{gas} = (1.92 \pm 0.06) \text{keV} \left(\frac{M_{vir}}{10^{14} h_{70}^{-1} M_{Sun}} \right)^{0.54 \pm 0.02} (\alpha = 1)$$

• Allen et al. (2001)

$$T_{gas} = (1.53 \pm 0.56) \text{keV} \left(\frac{M_{vir}}{10^{14} h_{70}^{-1} M_{Sun}}\right)^{0.57 \pm 0.12} (\alpha = 1)$$

Gas mass fraction (Mohr et al. 1999)

$$f_{gas} = \min\left[0.92h_{70}^{-3/2}\left(\frac{T_{gas}}{6\text{keV}}\right)^{0.34}, 1\right]$$

Compute the X-ray luminosity

$$L_{X} = 4\pi \int_{0}^{r_{vir}} \Lambda(T_{gas}, Z) \left(\frac{\rho_{gas}(r)}{\mu m_{proton}}\right)^{2} r^{2} dr$$

From the observed mass-temperature relation to the luminosity-temperature relation

L-T relation is sensitive to M-T relation

Limits on a parameterized M-T relation from the observed L-T relation

14/18

Limit on gas mass fraction from the observed L-T relation

$$f_{gas}(T_{gas}) = f_{gas,0} \left(\frac{T_{gas}}{1 \text{ keV}}\right)^{p_{gas}}$$

c.f., Mohr et al. (1999)
$$f_{gas} = 0.92 h_{70}^{-3/2} \left(\frac{T_{gas}}{6 \text{ keV}}\right)^{0.34}$$

Shimizu, Kitayama, Sasaki & Suto (2003)

Limits on a parameterized M-T relation from the observed L-T relation and XTF

Shimizu, Kitayama, Sasaki & Suto (2003)

16/18

₈ from the observed Xray temperature function

17/18

Conclusions

One can perform statistical analysis of X-ray clusters, provided a good physical model for halo-cluster connection beyond the unrealistic one-to-one correspondence.

- From dark halos to visible objects:
 - halo mass -- cluster gas temperature relation
 - non-gravitational effects inside dark halos (cooling, star/galaxy formation, preheating, supernova feedback, etc.)

The goal of the next generation cluster surveys <u>is not</u> precision cosmology, <u>but is to understand</u> ``what are the clusters of galaxies".