Anomaly in the SFD Galaxy extinction map and FIR emission from SDSS galaxies

Yasushi Suto Department of Physics, The University of Tokyo & Global scholar, Dept. of Astrophysical Sci., Princeton University October 24, 2011: TodaiForum and DENET-IAP conference on the accelerating universe

Collaborators

- The present talk is based on our on-going collaboration with Toshiya Kashiwagi, A.Taruya, I.Kayo & K.Yahara
- See also "The effect of FIR emission from SDSS galaxies on the SFD Galactic extinction map"
 - K.Yahata, A.Yonehara, Y.Suto, E.L.Turner, T.Broadhurst, & D.P. Finkbeiner
 - Publ.Astron.Soc.Japan 59(2007)205astro-ph/0607098

SFD Galactic extinction map and galaxy surveys

Galactic extinction E(B-V) map (Schlegel, Finkbeiner & Davis 1998; SFD)

 The most fundamental dataset for any astronomical observation

 True large-scale structures revealed only after the extinction correction

Its reliability is of vital importance in precision cosmology

SFD procedure to construct the Galactic extinction map

• COBE 100μ m+240 μ m maps (0.7deg.pixel)

- Remove zodiacal light and cosmic infrared background
- Dust temperature map \Rightarrow temperature-dependent emissivity corrected 100 μ m map
- Calibration of higher angular-resolution IRAS
 100 μ m map (5 arcmin. pixel)

Assume

 $E(B-V) = p \times (IRAS \ 100 \ \mu \text{ m flux})^{T}$; T~1

at each region and determine p and T from the data

Convert E(B-V) to A_{band} adopting SED of ellipticals and R_V=A_V/E(B-V)=3.1

A_{SFD} map in SDSS DR7 survey region 3.6x10⁶ galaxies (17.5<r<19.4) in 7270 deg² from SDSS DR7 photometric catalog

Estimating Galactic extinction from SDSS galaxy surface density

- divide the SDSS DR7 survey area into many small regions according to A_{SFD}
- combine those un-contiguous regions into 84 bins with ~100 deg² each
- compare the galaxy number density S_{gal} for those bins

Origin of the anomaly

- A_{SFD} is estimated assuming that the reddening is proportional to the FIR emission flux (100 µ m)
 - the anomaly indicates the positive correlation between galaxy surface density and the FIR flux at least where the real extinction is small

100 μ m flux = Galactic dust + galaxies

contamination by the FIR emission from galaxies proposed by Yahata et al. (2007)

Mock simulations to test the hypothesis

Distribute random particles over the DR7 region

- the same number and the same r-band magnitude distributions as SDSS galaxies
- Assign 100 μ m flux to each particle sampled from the log-normal distribution of $L_{100 \mu m}/L_r$
- Add those 100 µ m flux to the original SFD map and compute the extinction

$$A_{SFD} \Rightarrow A_{SFD} + \Delta A_{mock}$$
 at each pixel (5'x5')

• Compute particle surface density as a function of $A_{SFD} + \Delta A_{mock}$ at each pixel

Observed correlation between $L_{100 \mu m}$ and L_r

- Distribution function of galaxy luminosities in IRAS 100 µ m vs. SDSS r-band for overlapped (bright) galaxies (~3700)
- Not necessarily true for all SDSS galaxies

Mock simulation result

the observed anomaly is reproduced qualitatively, but too strong if the mean and standard deviation of the ratio L_{100 µ m}/L_r of IRAS/SDSS are assumed

An analytic model for surface density

 $P_1(\Delta A)$ PDF of extra extinction ΔA due to FIR flux of one galaxy

$$P_N(\Delta A) = \int_0^{\Delta A} dx \ P_1(x) P_{N-1}(\Delta A - x)$$

Conditional PDF that a pixel with N galaxies has the total extra extinction ΔA

 $P(N \mid N)$ PDF of N galaxies per pixel given its expectation value N

Fit to the observed anomaly using an analytic approximation model

Basic trend is well reproduced with the model
 1/5 of the mean ratio L_{100 µ m}/L_r of IRAS/SDSS overlapped sample, maybe reasonable

Conclusions

- An anomaly in the SFD Galactic extinction map is confirmed with SDSS DR7 analysis
- The anomaly would be due to FIR emission from galaxies
 - Implications on precision cosmology remain to be studied

More accurate Galactic extinction map with higher angular resolution AKARI IR map and/or Planck IR/temperature map