

東京大学大学院理学系研究科 須藤 靖 2007年9月1日 RESCEU夏の学校@強羅静雲荘

SDSSのまとめ

- First light: 1998年5月
- SDSS-I: 2000年4月~2005年6月
 - ■8000平方度、2億個の天体の撮像
 - 星18.5万、銀河67.5万、クエーサー9万の分光
- SDSS-II: 2005年6月~2008年6月
 - The Sloan Legacy Survey:銀河86万、クエーサー 10.5万
 - SEGUE (Sloan Extension for Galactic Understanding and Exploration): 星24万
 - The Sloan Supernova Survey: 南天300平方度の 複数スキャン

Japan Participation Group

■ 1991年ワーキンググループ結成

 1992年 MOUの時点では、池内了、市川伸一、 市川隆、岡村定矩、須藤靖、関口真木、土居守、 濱部勝、福来正孝

その後、嶋作一大、安田直樹、渡辺大、佐藤勝 彦、松原隆彦が参加して、現在に至る

 1995年にRESCEUが発足して以来、JPGの多く がRESCEUのメンバー(岡村、須藤、土居、嶋作、 佐藤)となった。また資金的にも多くの貢献をした。

JPGの科学的貢献

- JPGは基礎的かつ重要な科学的貢献をした
 モザイクカメラの製作(関ロ)
 - ■フィルターの製作(嶋作、土居、福来ほか)
 - ■標準星の決定と較正(市川、嶋作、福来ほか)
 - 測光パイプラインの開発(安田ほか)
 - 重カレンズサーベイ(稲田、大栗ほか)
 - ■KL変換を用いた構造の定量化(松原)

RESCEU資金の主要な活用先 Drilled plug plates (1枚712ドル)×1285枚 ≒1億円(この半分程度がRESCEUより) SDSSはRESCEU(が買わなかった穴)を通して 空を見ている!

SDSS papers have had huge impact

- 1345 refereed papers to date
- These papers have been cited over 39,000 times
- 30 of the 200 most cited papers in astronomy since 2000 used SDSS data.
- Impact in many areas we didn't anticipate:
 - White dwarfs
 - Brown dwarfs
 - Ultra-low metallicity stars
 - Galaxy-galaxy lensing
 - Supernovae
 - Epoch of reionization
 - etc.

(Dec. 19, 2006@NAOJ, Michael Strauss)

ADS High-Impact Papers 2006

Facility	Number of Citations	Fraction of the Total
SDSS	1843	17.4%
ESO	1365	12.9%
HST	1124	10.6%
WMAP	1121	10.6%
Keck	642	6.0%
Kamiokande	372	3.5%
Chandra	365	3.4%
ACBAR	207	2.0%
NOAO (KPNO/CTIO)	202	1.9%
Las Campanas	176	1.7%

(Dec. 19, 2006@NAOJ, Michael Strauss)

SDSS DR6

 The sixth data release of the Sloan Digital Sky Survey Adelman-MaCarthy et al. astroph 0707.3413

- 287 million objects over 9583 deg²
- 790,860 galaxy spectra
- 103,647 quasar spectra
- 287,071 star spectra

Recent work related to SDSS at University of Tokyo: 鶏口牛後

- genus statistics and phase correlation of SDSS galaxies (Hikage et al. 2003, 2004,2005; Hikage, Matsubara, and Suto 2004; Park et al. 2005)
- 3pt correlation functions of SDSS galaxies (Kayo, Suto, Nichol et al. 2004)
- 2pt correlation functions of SDSS quasars and cosmological constant (Yahata et al. 2005)
- constraints on the deviation from Newton's law of gravity from SDSS galaxy power spectrum (Shirata, Shiromizu et al. 2005,2007; Yamamoto et al. 2006)
- testing the Galactic dust map against SDSS galaxy number counts (Yahata et al. 2006)
- Bispectrum and nonlinear biasing (Nishimichi et al. 2007)

Galactic extinction map vs. galaxy number counts

Galactic extinction map by Schlegel, Finkbeiner & Davis (1998: SFD) dust extinction estimated from <u>IR emission</u>

 can be used for <u>absorption</u> <u>correction</u> ???

 independent consistency check is needed

galaxy surface density Sgal vs. SFD extinction ASFD

If A_{SFD} is perfect

smaller S_{gal} at larger A_{SFD} before correction constant S_{gal} after correction

confirmed for $A_{SFD} > 0.1$, but *quite the opposite for* <u>A_{SFD} <0.1</u> 68% of the SDSS survey area has $|A_{SFD}| < 0.1$ What's wrong ?

Yahata, Yonehara, Suto, Turner, Broadhurst & Finkbeiner (2006)

Origin of the anomaly ?

A_{SFD} is estimated assuming that the reddening is proportional to the Farinfrared emission flux (100 µ m)

• the anomaly indicates the positive correlation between galaxy surface density and the FIR flux at least where the real extinction is small

100 µ m flux = Galactic dust + galaxies

contamination by the FIR emission from galaxies ???

simulations to test the hypothesis

- Poisson distributed galaxies in each pixel over the entire survey area
 - <u>assume that</u> A_{SFD} = true Galactic extinction, and <u>add</u> galaxy FIR contribution according to

Tiny but systematic error in A_{SFD}
 a typical amplitude of the systematic error in A_{SFD} is ~0.01mag

- c.f., mean flux of the background IR which was removed in making the SFD map is ~ 0.04 mag
- this is tiny, but systematic
 - $S_{gal} \uparrow \Rightarrow A_{dust} \uparrow \Rightarrow S_{gal} \uparrow \uparrow$ becomes even larger after correction for A_{dust}
 - systematically overestimates the contrast of real structure
- maybe important for precision measurements

modified gravity vs. cosmological constant: from SDSS to WFMOS Yamamoto, Bassett, Nichol, Suto & Yahata PRD 74(2006)063525

modified Friedmann equation (spatially flat)

$$H^{2} - \frac{H^{2/n}}{r_{c}^{2-2/n}} = \frac{8\pi G}{3}\rho$$

■ n=2: DGP model, n=∞ : cosmological constant

r_c: key parameter ~1/H₀
 r<r_c: 4D space-time, r>r_c: 5D space-time
 if spatially flat (H₀r_c)^{2/n-2} = 1-Ω_m

Predicted apparent shifts of BAO peaks

purely linear theory, observation in Λ CDM assumed Yamamoto et al. (2006) 17

Current constraints from the SDSS LRG sample

fit to linear theory for k<0.2hMpc⁻¹ observation in ∧ CDM assumed

Yamamoto et al. (2006)

Expected constraints from future WFMOS z=1 sample

Yamamoto et al. (2006)

Empirical constraints on deviations from Newton's law of gravity via SDSS galaxy P(k)

ad-hoc and empirical approach (Shirata et al. 2005,2007)

adopt the standard Friedmann model (i.e, ACDM)
 but with <u>an additional Yukawa term</u> to gravity
 adopt the standard interpretation of CMB
 anisotropy as the initial condition for the primordial fluctuations

assume <u>scale-independent bias of SDSS</u> <u>galaxies</u>

Yukawa-type additional gravitational potential

$$V(r) = -G \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \left[1 + \mathcal{O}\left(1 - e^{-\frac{|\mathbf{r} - \mathbf{r}'|}{2}}\right) \right]$$

small-scale: Newtonian gravity $r \ll \lambda$: $V(r) \rightarrow -G \int d^3 r' \frac{\rho(r')}{|r-r'|}$ large-scale: $G \Rightarrow G(1+\alpha)$ $r \gg \lambda$: $V(r) \rightarrow -G(1+\alpha) \int d^3 r' \frac{\rho(r')}{|r-r'|}$

stronger (weaker) gravity on large scales if $\alpha > 0$ ($\alpha < 0$), while cosmic expansion is dictated by "correct" G₂₁

Method (Shirata et al. 2005) 1) directly solve the linear perturbation eq. under the modified Newtonian potential:

assu

$$\ddot{\delta}_{k} + 2H\dot{\delta}_{k} - 4\pi G\overline{\rho}\delta_{k} \left[1 + \alpha \frac{(a/k\lambda)^{2}}{1 + (a/k\lambda)^{2}}\right] = 0$$

The initial conditions of
$$\delta_{k}(a_{ini}) = \delta_{k,\Lambda CDM}(a_{ini}), \quad \frac{d\delta_{k}}{da}\Big|_{a=a_{ini}} = \frac{d\delta_{k,\Lambda CDM}}{da}\Big|_{a=a_{ini}}$$

 $a=a_{ini}$

2) apply the nonlinear correction using the **Peacock-Dodds formula** 3) Compare the model predictions with SDSS galaxy P(k) ($0.01 < k[h^{-1}Mpc] < 0.3$) assuming linear bias 22

Nonlinear correction for power spectrum applying the Peacock-Dodds fit

Shirata, Shiromizu, Yoshida & Suto: Phys.Rev.D 71(2005) 064030

Comparison with SDSS galaxy P(k)

Constraints on model parameters $V(r) = -G \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \left[1 + \alpha \left(1 - e^{-\frac{|\mathbf{r} - \mathbf{r}'|}{\lambda}} \right) \right]$

Shirata, Shiromizu, Yoshida & Suto: Phys.Rev.D 71(2005) 064030

λ = 5h⁻¹Mpc ⇒ -0.5 < α < 0.6 (3 σ limits)
 λ = 10h⁻¹Mpc ⇒ -0.8 < α < 0.9 (3 σ limits)

SDSSの今後

AS2 (After SDSS-II)

- BOSS (Baryon Oscillation Spectroscopic Survey): a precision measurement of the scale of the Universe at z = 0.5 and at z = 2.5
- Galactic structure and stellar properties related to the evolution of the Milky Way
- a large-scale, systematic survey for planets based on radial-velocity reflex motion of the parent star
- 2008年夏から開始?組織、資金、共同研究形態など まだ決まっていないことが多い。日本がどのようにか かわっていくかも未定。
- 請う、若手研究者の意見。