

Clustering of dark matter halos on the light-cone

Department of Physics, University of Tokyo Yasushi Suto (須藤 靖)

Collaborators: T.Hamana@NAOJ (浜名崇@国立天文台、日本) N.Yoshida@MPIA (吉田直紀@MPIA) A.Evrard@Univ. of Michigan

June 13, 2001@第八回台北天文物理検討会

Clustering on the light-cone

Evolution of ``object(s)''

(the <mark>Ei</mark>i

- redshif

 $z=4.73 \times 10^{-10}$

 $z=4.60 \times 10^{-10}$

 $z=4.38 \times 10^{-10}$ $z=3.68 \times 10^{-10}$

evolution is rapid !
evolution is strongly object-dependent.
evolution cannot be neglected.

Cosmological light-cone effects

- Linear and nonlinear gravitational evolution
- redshift-space distortion due to peculiar velocity
 - linear distortion (the Kaiser effect)
 - nonlinear distortion (finger-of-god effect)
- evolution of objects on the light-cone
 - number density (magnitude-limit, luminosity function, etc.)
 - object-dependent biasing relative to mass distribution
- <u>observational selection function</u>
 - magnitude-limit and luminosity function
 - shape of the survey boundary

Matsubara, Suto & Szapudi (1997); Mataresse et al. (1997) Yamamoto & Suto (1998); Suto, Magira, Jing, Matsubara & Yamamoto (1999)

Predicting the clustering on the light-cone

Hamana, Colombi & Suto (2001)

Correlation functions of <u>*dark matter*</u> **on the light-cone**

6/23

Hubble volume CDM simulation

P³M N-body simulation
 N=10⁹ particles in a (3000h⁻¹Mpc)³ box
 CDM: 0=0.3, 0=0.7, h=0.7, 8=0.9
 m_{particle}=2.2 × 10¹²h⁻¹M_{sun}
 grav=100h⁻¹kpc

The Virgo Consortium http://www.physics.isa.umich. edu/hubble-volume//

The Hubble Volume Simulation

 $Ω=0,3, \Lambda=0,7, h=0,7, \sigma_8=0.9$ (ACDM) 3000 x 3000 x 30 h^3 Mpc³ P³M: $z_i=35$, $s=100 h^{-1}$ kpc 1000³ particles, 1024³ mesh T3E(Garching) - 512cpus Mparticle = 2.2 x 10¹² h^{-1} Msol

1500 Mpc/h

Hamana, Yoshida, Suto & Evrard (2001)

Mass function of dark halos

The Press-Schechter mass function underpredicts, while an empirical correction by Sheth & Tormen (1999) overpredicts, the Hubble volume simulation data at high mass (Jenkins et al. 2001).

Hamana, Yoshida, Suto & Evrard (2001)

Phenomenological model
for scale- and mass-dependent halo biasing
$$\frac{mass-dependence (Jing1998;Sheth & Tormen 1999) +}{scale-dependence (Taruya & Suto 2000) in halo biasing}$$
$$b_{halo}(M,R,z) = b_{ST}(M,z)[1+b_{ST}(M,z)\sigma_{mass}(R,z)]^{0.15}$$
$$\xi_{halo}(M,R,z) = b_{halo}^2(M,R,z) \xi_{mass}(R,z)$$
$$\frac{dV_c}{dz}$$
$$\frac{dV_c}{dz}$$

Hamana, Yoshida, Suto & Evrard (2001) 10/23

Calibrating our halo biasing model with the Hubble volume simulation at z=0

Our empirical model works quite well at R>20h⁻¹Mpc.

The suppression of biasing in simulation at R<5h⁻¹Mpc is ascribed to the exclusion effect of their finite size.

For massive halos, our model underestimates the measured biaisng by <10%at $5h^{-1}Mpc < R < 20h^{-1}Mpc$, which would be less than other possible systematic errors.

Hamana, Yoshida, Suto & Evrard (2001)

Correlation functions of halos on the light-cone

12/23

In the last century, I would have concluded...

- We have developed an accurate empirical model which successfully describes the clustering of halos in the Hubble volume CDM simulation on the light-cone up to z=3.
- Since those dark halos are trivially related to the observed galaxy clusters, our model can be easily applied to the clustering of X-ray/SZ-selected clusters. *Precision Cosmology !*

Relation between dark halos and clusters

Hot gas

Dark matter

Globally similar distribution, but their precise relation is unclear because definitions of clusters (especially at high z) are very ambiguous.

SPH simulations in LCDM: 75x75x15 h⁻³Mpc³ (Yoshikawa, Taruya, Jing & Suto 2001)

Zooming in the simulated structure

75h⁻¹Mpc

5h⁻¹Mpc

20h⁻¹Mpc

SPH simulations in LCDM (Yoshikawa, Taruya, Jing & Suto 2001)

An example: multi-band observation of the most luminous X-ray cluster RXJ1347-1145

- What do clusters look like in different wavelengths ?
- Systematic observational campaign for RXJ1347-1145: the most luminous X-ray cluster at z= 0.45
 - optical (ESO, NTT)
 - X-ray (ROSAT, ASCA)
 - submm SZ (SCUBA at J.C. Maxwell telescope, Hawaii)
 - mm SZ (NOBA at Nobeyama radio observatory, Japan)
- Collaborators: <u>E.Komatsu (小松英一郎)</u>, T.Kitayama, M.Hattori, H.Matsuo, R.Kawabe, H.Matsuo, K.Yoshikawa, K.Kohno, N.Kuno, S.Schindler

Optical and X-ray images of RXJ1347-1145

Optical: ESO NTT 3.5m I-band X-ray: ROSAT/HRI the most luminous high-z X-ray cluster
strong cooling flow

$$z = 0.45$$

$$L_X h_{50}^2 = 2 \times 10^{46} \text{ erg s}^{-1}$$

$$M (< 2h_{50}^{-1} \text{Mpc}) = 10^{15} h_{50}^{-1} M_{\text{sun}}$$

$$T = 9.3 \text{ keV}$$

$$\theta_c = 8''.4 (57 h_{50}^{-1} \text{ kpc})$$

$$n_{e0} h_{50}^{-1/2} = 0.094 \text{ cm}^{-3}$$

$$\beta = 0.57 \text{ Schindler et al.(1997)}$$

 $T = 15.9^{+6.5}_{-2.7} \,\mathrm{keV}$ Ettori et al. (2001)

Radial profile via submm SZ effect

first detection of the radial profile of a cluster in the submm SZ effect at 350GHz (temperature increment)

350GHz with SCUBA at J.C.Maxwell telescope on May 30, 31, 1998

central point source with ~ 3.5mJy + extended SZ profile

Komatsu et al. ApJ 516(1998)L1

SZ map of RXJ1347-1145 at 150 GHz

150GHz with NOBA (Nobeyama Bolometer Array) at Nobeyama 45m telescope in March, April, 1999 and February 2000 FWHM=13"

Globally similar morphology to the X-ray image

Substructure in the South-East direction

mJy/beam

Komatsu et al. PASJ 53(2001)57

Substructure in the 150GHz SZ image

σ**=2.0mJy**

RXJ1347@ 150GHz Komatsu et al. (2001)

divided in 4 regions

- mean observed flux: -6.4 ± 1.0 mJy
- predicted flux: -5.1mJy(9.3keV), -8.8mJy(16.2keV)
- large asymmetry/substructure

Confirmed by Chandra and BIMA observations

RXJ1347-1145

BIMA@30GHz 63"x80" beam (10.3mJy point source removed)

Carlstrom et al. (2001)

BIMA@30GHz 40"x50" beam (10.3mJy point source removed)

22/23

Conclusions

We have developed an accurate model for clustering of dark matter halos on the light-cone.

- gravitational nonlinear evolution
- redshift-space distortion
- mass-, time-, and scale-dependent bias of halos
- selection function

The model can be applied to predicting the clustering of X-ray/SZ-selected clusters, provided a good physical model for halo-cluster connection beyond the unrealistic one-to-one correspondence in the last century.

The goal of the next generation cluster surveys <u>is not</u> precision cosmology (independent check/confirmation of the values of cosmological parameters is just boring), <u>but</u> is to understand ``what are the clusters of galaxies''.