Anomaly in the SFD extinction map and discovery of FIR emission of galaxies by stacking analysis of the SDSS DR7 sample

Yasushi Suto Department of Physics, The University of Tokyo & Global scholar, Dept. of Astrophysical Sci., Princeton University 16:00-17:00 October 322, 2013 CAS seminar@#462, Bloomberg center, JHU

This talk is based on

Detection of Far Infrared Emission from Galaxies and Quasars in the Galactic Extinction Map by Stacking Analysis

T.Kashiwagi, K.Yahata & YS
Publ.Astron.Soc.Japan 65(2013)43

The effect of FIR emission from SDSS galaxies on the SFD Galactic extinction map

- K.Yahata, A.Yonehara, YS, E.L.Turner
 T.Broadhurst, & D.P. Finkbeiner
- Publ.Astron.Soc.Japan 59(2007)205

Testing a reliability of the SFD Galactic extinction map with SDSS galaxy number counts

- K.Yahata, A.Yonehara, YS, E.L.Turner, T.Broadhurst, & D.P. Finkbeiner
 Publ.Astron.Soc.Japan 59(2007)205
- T.Kashiwagi

Master thesis (2011) submitted to U.Tokyo

SFD Galactic extinction map

Galactic extinction E(B-V) map (Schlegel, Finkbeiner & Davis 1998; SFD)

The most fundamental dataset for all astronomical observations

True large-scale structures revealed only after the extinction correction

Its reliability is of vital importance in precision cosmology

SFD procedure to construct the Galactic extinction map

• COBE 100μ m+240 μ m maps (0.7deg.pixel)

- Remove zodiacal light and cosmic infrared background
- Dust temperature map \Rightarrow temperature-dependent emissivity corrected 100 μ m map
- Calibration of higher angular-resolution IRAS $100 \,\mu$ m map (5 arcmin. pixel)
- Assume dust temperature $E(B-V)=pI_{100 \,\mu \,m}X(T)$ correction factor

at each region and determine $p \sim 0.0184$ from the data

• Convert E(B-V) to A_{band} adopting $R_V = A_V / E(B-V) = 3.1$

A_{SFD} map in SDSS DR7 survey region 3.6x10⁶ galaxies (17.5<r<19.4) in 7270 deg² from SDSS DR7 photometric catalog

Kashiwagi (2011), Yahata et al.(2007)

Estimating Galactic extinction from SDSS galaxy surface density

- divide the SDSS DR7 survey area into many small regions according to A_{SFD}
- combine those non-contiguous regions into 84 bins for A_{SFD} with ${\sim}100~\text{deg}^2$ each
- compute the SDSS galaxy number density S_{gal} for those bins

Origin of the anomaly
 A_{SFD} is estimated assuming that the *extinction* is proportional to the FIR *emission* flux (100 μ m)

the anomaly indicates the positive correlation between galaxy surface density and the FIR flux at least where the real extinction is small

$100 \,\mu$ m flux = Galactic dust + galaxies

 contamination by the FIR emission from galaxies proposed by Yahata et al. (2007); indeed originally suggested by Ed Turner

Numerical and analytic models to explain the anomaly of SFD map from the FIR emission of galaxies

• T.Kashiwagi

Master thesis (2011) submitted to U.Tokyo

 T.Kashiwagi, YS, A.Taruya, I.Kayo, T.Nishimichi & K.Yahata

to be submitted to ApJ (2013)

Mock simulations to test the FIR emission hypothesis

Distribute random particles over the DR7 region

- the same number and the same r-band magnitude distributions as SDSS galaxies
- Assign 100 μ m flux to each particle sampled from the log-normal distribution of y=L_{100 μ m}/L_r
 Add the 100 μ m flux to the original SFD map and compute the extinction

 $A_{SFD} \Rightarrow A_{SFD} + \Delta A_{mock} \quad \text{at each pixel (5' x5')}$ **Compute particle surface density** as a function of $A_{SFD} + \Delta A_{mock}$ at each pixel

Correlation of L_{100 µm} and L_r for galaxies PSCz & SDSS overlapped (FIR luminous) sample (~3300gals)

Mock simulation result

the trend of the observed anomaly is reproduced, but weaker if the mean $L_{100\,\mu\,m}/L_r$ estimated for the entire SDSS galaxies is adopted

Analytic model for S_{gal} with contamination of FIR galaxy emission

- Poisson distributed galaxies (spatial clustering is ignored)
- Log-normal PDF for $y = L_{100 \mu m} / L_r$ of each galaxy (characterized by y_{avg} and y_{rms})
- Compute the PDF of the additional extinction (converted from the FIR emission of galaxies) for a pixel on the SFD map with N galaxies $P_N(\Delta A)$
- Compute N(A') and $\Omega(A') \Rightarrow S_{gal}(A')$ where $A'=A+\Delta A$

Fit to the observed anomaly using the analytic model

Observed trend is well reproduced by the model
 Best-fit y_{avg}=800 (clustering ignored)
 ⇒ y_{avg}=400 (corrected for clustering)

Can we directly detect the FIR emission of galaxies ? - Stacking image analysis of SDSS galaxies -

T.Kashiwagi, K.Yahata & YS
 Publ.Astron.Soc.Japan 65(2013)43

Direct detection of FIR emission of galaxies

FIR emission of a majority of SDSS photometric galaxies is weak and cannot be detected individually.

■ Can we detect their FIR emission statistically through stacking SDSS galaxies over the SFD map ? ⇒ Yes !

> Kashiwagi, Yahata & YS Publ.Astron.Soc.Japan 65 (2013)43

Stacking analysis of SDSS galaxies on the SFD map

 $N = 10^{3}$

 $N = 10^4$

Magnitude dependence Stacking SDSS galaxies ($15.5 < m_r < 20.5$) over SFD map according to their r-band magnitude ($\Delta m_r = 0.5$)

-10

-20

Point spread function of IRAS 100 μ m map

Angular resolution of SFD (IRAS) is low, \Rightarrow we need to its **PSF to understand** the stacked profile PSF is difficult to measure on SFD map since most of point sources are removed We use the original IRAS $100 \,\mu$ m diffuse map, and stack stars with r<17 mag.

Decompositions into single galaxy and clustering terms

$$\Sigma_{g}^{\text{tot}}(\theta; m_{r}) = \Sigma_{g}^{s}(\theta; m_{r}) + \Sigma_{g}^{c}(\theta; m_{r}) + C,$$

$$\Sigma_{g}^{s}(\theta; m_{r}) = \Sigma_{g}^{s0}(m_{r}) \exp\left(-\frac{\theta^{2}}{2\sigma^{2}}\right)$$

$$\Sigma_{g}^{c}(\theta; m_{r}) = \iint dm' d\varphi \ \Sigma_{g}^{s}(\theta - \varphi; m')$$

$$\times w_{g}(\varphi; m', m_{r}) \frac{dN_{g}(m')}{dm'}$$

$$w_{g}(\varphi; m', m_{r}) = K(m', m_{r})(\varphi/\varphi_{0})^{-\gamma}$$

$$\Sigma_{g}^{c}(\theta; m_{r}) = \Sigma_{g}^{c0}(m_{r}) \exp\left(-\frac{\theta^{2}}{2\sigma^{2}}\right)$$

simultaneous fit $\Rightarrow \sigma = 3.1'$

 $2\sigma^2$)

 $\times {}_1F_1\left(1-\frac{\gamma}{2};1;\frac{\theta^2}{2\sigma^2}\right)$

The reason why the fitted C is not constant

$$\Sigma_{\rm g}^{\rm tot}(\boldsymbol{\theta}; m_r) = \Sigma_{\rm g}^{\rm s}(\boldsymbol{\theta}; m_r) + \Sigma_{\rm g}^{\rm c}(\boldsymbol{\theta}; m_r) + C$$

This is largely due to the cfa Great Wall that is preferentially located in relatively high-extinction region of Galaxy.

The trend disappears when we remove the cfa Great Wall region.

Extended dust emission around the halo hosting the central galaxy and/or contribution from unresolved galaxies ?

The fitted clustering term is a factor of 2-3 larger than that expected from the measured angular correlation functions of resolved SDSS galaxies

$$egin{aligned} & \mathcal{G}^{0}(m_{r}) = 2\pi\sigma^{2}\left(rac{arphi_{0}}{\sqrt{2}\sigma}
ight)^{\gamma}\Gamma\left(1-rac{\gamma}{2}
ight) \ & imes\int dm'\Sigma^{\mathrm{s0}}_{\mathrm{g}}(m')K(m',m_{r})rac{dN_{\mathrm{g}}(m')}{dm'} \end{aligned}$$

Average contribution to A_r against m_r of the central galaxy (SDSS)

Could be used as an empirical correction for the SFD extinction of a galaxy with m_r

- but tiny and just statistical
- not clear if this correction works in reality
- c.f. Peek & Graves (2010)

The spatial extent of the dust:

- associated with individual galaxies or extended over their common halos ? -

T.Kashiwagi & YS: in preparation
 Very preliminary !

Intergalactic dust is universal?

Ménard, Scranton, Fukugita & Richards: MNRAS 405 (2010) 1025

- Measure the reddening of background quasars due to the dust of SDSS galaxies from $< \delta m_Q(\Phi) \delta_g(\Phi + \theta) >$
- Detected the presence of dust from 20kpc to several Mpc

Spatial distribution of intergalactic dust ?

$$\langle E(g-i)\rangle(\theta) = (1.5 \pm 0.4) \times 10^{-3}$$

Ménard et al. (2010)

- Extended much beyond each galaxy ?
- Sum of dust associated with galaxies ?
 - Very similar to the galaxy angular correlation function power-law...

 -0.86 ± 0.19

Stacking IRAS map to detect 100 μ m emission of SDSS galaxies MSFR measure the *absorption* of dust Combining with the measurement of the *emission* of dust of galaxies, we constrain the dust temperature, which would distinguish intragalaxy and intracluster dust. Repeat the same stacking procedure SDSS galaxies with 17<m_i<21 that MSFR use</p> decomposition into three terms $I_{\text{total}}(\theta, m_i) = I_{\text{single}}(\theta, m_i) + I_{\text{clustering}}(\theta, m_i) + C$

Emission and absorption of dust

Optical depth (extinction=scattering+absorption)

$$\tau(\theta, \lambda) = \kappa_{\text{ext}}(\lambda) \Sigma_{\text{d}}(\theta)$$

Color excess

$$E_{g-i}(\theta, z) = \frac{2.5}{\ln 10} \left[\tau \left(\theta, \lambda_g^{\text{rest}}(z) \right) - \tau \left(\theta, \lambda_i^{\text{rest}}(z) \right) \right]$$

Emission (optically thin approximation)

$$I(\lambda_{100\mu m}, \theta, z) = \frac{1}{(1+z)^4} B\left(\lambda_{100\mu m}^{\text{rest}}, T_d(z)\right) \tau(\lambda_{100\mu m}^{\text{rest}}(z))$$

Emission/absorption

$$\frac{I(\lambda_{100\mu m}, \theta, \bar{z})}{E_{g-i}(\theta, \bar{z})} = \frac{\ln 10}{2.5} \frac{1}{(1+\bar{z})^4} B(\lambda_{100\mu m}^{\text{rest}}(\bar{z}), T_{\rm d}(\bar{z})) \frac{\kappa_{\rm abs}(\lambda_{100\mu m}^{\rm rest}(\bar{z}))}{\kappa_{\rm ext}\left(\lambda_g^{\rm rest}(\bar{z})\right) - \kappa_{\rm ext}\left(\lambda_i^{\rm rest}(\bar{z})\right)}$$

constraining the dust temperature

 The ratio of emission and absorption compared with MW and SMC models (Weingartner & Draine 2001)

http://www.astro.princeton.edu/~draine/dust/dustmix.html

consistent with typical dust temperature of galaxies (~20K)

- MSFR and we observed the absorption and emission of the same component, respectively.
- Temperature of intergalactic dust ???

Contribution of SDSS galaxies to the 100 μ m emission I_{clustering}(θ ,m_i)

~50% is from SDSS galaxies

extended dust component over cluster scales ?

sums of optically faint infrared galaxies ?

Stacking SDSS quasars Similar stacking analysis of SDSS photometric quasar catalogue (Richards et al. 2009) indicates the FIR signals as well.

Profiles of stacked quasar images

Quasars stacking should deserve further study...

Summary of the first part

 Detection of FIR emission from SDSS galaxies by stacking image analysis over the SFD map (~ IRAS 100 µ m map)

- Largely explains the anomaly of SDSS galaxy number counts as a function of A_{SFD} discovered by Yahata et al.(2007)
- Possible correction to the SFD map and a future Galactic extinction map with Planck
- A new probe of unresolved (dusty) galaxy correlations and/or dust profile of the hosting halo

Preliminary Summary of the second part

Sum of dust associated with SDSS galaxies explains ~50% of the amount discovered via absorption by Ménard et al.(2010)

- Where is the remaining 50% ?
 - Associated with non-SDSS galaxies ?
 - Not directly associated with individual galaxies, but extended over cluster scales ?
- FIR emission from SDSS quasars detected, should be explored in future.

Fit to the observed anomaly using an analytic approximation model

Corrected map by Peek & Graves (2010)

the anomaly still exists but agrees better with our model prediction than the original SFD map