

RESCEU 研究会@鴨川 2003年8月31日 **Univ of Tokyo:** K. Yoshikawa **Y.Suto ISAS:** N. Yamasaki K. Mitsuda **Tokyo Metropolitan Univ.:** T. Ohashi Nagoya Univ.: Y. Tawara A. Furuzawa

Where are the baryons? cosmic baryon budget Fukugita, Hogan & Peebles: ApJ 503 (1998) 518 $\Omega_{star} + \Omega_{HI} + \Omega_{H_2} + \Omega_{hot X-ray} = 0.0068^{+0.0041}_{-0.0030}$ $\Omega_{_{RRN}} = 0.04 \quad (h = 0.7)$ VS Maximum Minimum Component Central Grade^a Observed at $z \approx 0$ 1. Stars in spheroids $0.0043 h_{70}^{-1}$ $0.0014 h_{70}^{-1}$ $0.0026 h_{70}^{-1}$ Α $0.00086 h_{70}^{-1}$ $0.00129 h_{70}^{-1}$ $0.00051 \ h_{70}^{-1}$ 2. Stars in disks A– B A 3. Stars in irregulars $0.000069 h_{70}^{-1}$ $0.000116 h_{70}^{-1}$ $0.000033 h_{70}^{-1}$ 4. Neutral atomic gas $0.00033 h_{70}^{-1}$ $0.00041 h_{70}^{-1}$ $0.00025 \ h_{70}^{-1}$ A – 5. Molecular gas $0.00030 h_{70}^{-1}$ $0.00037 h_{70}^{-1}$ $0.00023 h_{70}^{-1}$ A $0.0026 \ h_{70}^{-1.5}$ $0.0044 \ h_{70}^{-1.5}$ $0.0014 h_{70}^{-1.5}$ 6. Plasma in clusters В $0.0115 h_{70}^{-1.5}$ $0.0029 \ h_{70}^{-1.5}$ $0.0056 h_{70}^{-1.5}$ 7a. Warm plasma in groups $0.0007 h_{70}^{-1}$ $0.003 h_{70}^{-1}$ С

The observed baryons in the present universe amount merely to (10 ~ 30)% of the big-bang nucleosynthesis prediction and WMAP value

 $0.030 h_{70}^{-1}$

0.041

 $0.002 h_{70}^{-1}$

 $0.014 h_{70}^{-1}$

0.021

7b. Cool plasma

7'. Plasma in groups 8. Sum (at h = 70 and $z \simeq 0$).....

в

. . .

 $0.0072 h_{70}^{-1}$

0.007

Four phases of cosmic baryons Dave et al. ApJ 552(2001) 473 <u>Condensed:</u> >1000, T<10⁵K Stars + cold intergalactic gas ■ *<u>Diffuse:</u>* <1000, T<10⁵K Photo-ionized intergalactic medium Ly absorption line systems ■ *Hot:* T>10⁷K X-ray emitting hot intra-cluster gas ■ <u>Warm-hot</u>: 10⁵K<T<10⁷K Warm-hot intergalactic medium (WHIM) 3

Where are the baryons?

~ 40% of total baryons are Warm-Hot Intergalactic Medium (WHIM) with $10^{5}K < T < 10^{7}K$

Cen & Ostriker : ApJ 514 (1999) 1

Tracing the structure with Oxygen

Dark matter

Galaxies

Ovi

Ovii

Oviii

dark matter, hot gas and "galaxies"

SPH simulation: CDM, (75h⁻¹Mpc)³ box (Yoshikawa, Taruya, Jing & Suto 2001)

Large-scale structure in SPH simulation

(75h⁻¹Mpc)³ box CDM @ z=0 N=128³ :DM particles N=128³ :gas particles

(Yoshikawa et al. 2001)

Warm gas (10⁵K<T<10⁷K)

A cluster region in SPH simulation

A (30h⁻¹Mpc)³ box around a massive cluster at z=0 CDM SPH simulation (Yoshikawa et al. 2001)

Hot gas (T>10⁷K)

Warm gas (10⁵K<T<10⁷K)

WHIM as missing cosmic baryons

 ~ 40% of the total cosmic baryons may exist as Warm-Hot Intergalactic Medium (WHIM) with 10⁵K<T<10⁷K

 WHIM is supposed to distribute diffusely along filamentary structures connecting nearby clusters/ groups of galaxies

Direct detection of WHIM is difficult

 OVI absorption line systems in UV (1032Å, 1038Å doublets)

OVII (574.0 eV) and OVIII (653.6 eV) absorption line systems in X-ray spectra of background QSOs

Bumpy features in Soft X-ray background spectrum

Oxygen lines

Ονιι	1s ² – 1s2s (³ S ₁)	561eV	22.1
Ονιι	1s ² – 1s2p (³ P ₁)	568eV	21.8
Ονιι	1s ² – 1s2p (¹ P ₁)	574eV	21.6
Ονιιι	1s – 2p (Ly)	653eV	19.0
Ονιι	1s ² – 1s3p	665eV	18.6
Ονιιι	1s — 3p (Ly)	775eV	16.0
Neix	1s ² – 1s2s (³ S ₁)	905eV	13.7
Neix	1s ² – 1s2p (³ P ₁)	914eV	13.6
Neix	1s ² – 1s2p (¹ P ₁)	921eV	13.5

X-ray forests: shadow of WHIM Absoption line systems of OVI, OVII, and OVIII in the X-ray continuum spectra of background quasars

والمرجع المراجع المتحر المتحر والمحرور والمحرور المراجع المحمد والمراجع

0.004

Nicastro et al. (2002)

 $δ=60, T=10^{6} K,$ L_{size}~3Mpc, z~0

Fang et al. (2002) a small galaxy group and HI Ly-a clouds δ =50~350, T=10⁶K, L_{size}~8Mpc, z~0.06

Emission lines of Oxygen in WHIM

Ovii (561eV, 568eV, 574eV, 665eV), Oviii (653eV)

Why oxygen emission lines ?

- Most abundant other than H and He
- Good tracers of gas around T=10⁶ ~ 10⁷ K
- No other prominent lines in E=500-660eV
- Not restricted to regions towards background QSOs

<u>systematic WHIM survey</u>

Requirements for detection

Good energy resolution to identify the emission lines from WHIM at different redshifts

• $\Delta E < 5eV$ X-ray calorimeter using superconducting TES (Transition Edge Sensor)

Large field-of-view and effective area for survey

Seff = 100cm², Ω =1deg² 4-stage reflection telescope

 Angular resolution is not so important (but useful in removing point source contaminations)

$$\theta \approx 1^{\circ} \left(\frac{600 \, h^{-1} \mathrm{Mpc}}{D} \right) \left(\frac{L}{10 \, h^{-1} \mathrm{Mpc}} \right)$$

Comparison with other missions

	$S_{eff}\Omega \ [cm^2 deg^2]$	ΔΕ [eV]	f _{limit} [erg/s/cm ² /sr]
Chandra ACIS-S3	12	80	10-9
XMM-Newton EPIC-	pn 100	80	3x10 ⁻¹⁰
Astro-E II XRS	0.23	6	2x10 ⁻⁸
Astro-E II XIS	36	80	6x10 ⁻¹⁰
XEUS-I	16.7	2	2.5x10 ⁻¹⁰
our proposed detector	100	2	6x10⁻¹¹

Light-cone output from simulation

- Cosmological SPH simulation in Ω_m=0.3,
 Ω_Λ=0.7, σ₈=1.0, and h=0.7 CDM with N=128³ each for DM and gas (Yoshikawa, Taruya, Jing, & Suto 2001)
- Light-cone output from z=0.3 to z=0 by stacking 11 simulation cubes of (75h⁻¹Mpc)³ at different z
 5 ° × 5 ° FOV mock data in 64x64 grids on the sky
 128 bins along the redshift direction (∆z=0.3/128)

Surface brightness on the sky

Metallicity models **Oxygen enrichment scenario in IGM**

Metallicity of WHIM is quite uncertain **Adopted models for metallicity distribution**

Model I : uniform and constant $Z = 0.2 \overline{Z_{solar}}$ Model II : uniform and evolving $Z = 0.2 Z_{solar}(t/t_0)$ **Model III** : density-dependent (Aguirre et al. 2001) $Z = 0.005 Z_{solar} (\rho/\rho_{mean})^{0.33}$ (galactic wind driven)

Model IV : density-dependent (Aguirre et al. 2001) $Z = 0.02 Z_{solar} (\rho/\rho_{mean})^{0.3}$ (radiation pressure driven)

Creating Mock spectra from light-cone output

For a given exposure time,

- convolve the emissivity according to gas density and temperature in (5°/64)² pixels over the lightcone
- Add the Galactic line emission (McCammon et al. 2002)
- Add the cosmic X-ray background contribution (power-law+Poisson noise)

Then statistically subtract the Galactic emission and the CXB and obtain the residual spectra for $\Delta E = 2eV$ resolution.

Simulated spectra: region A

 $0.94 \circ \times 0.94 \circ = 0.88 \text{ deg}^2$ $T_{\text{exposure}} = 3 \times 10^5 \text{sec}$

Simulated spectra: region D

 $19'x19' = 0.098 \text{ deg}^2$ T_{exposure}=10⁶sec

20

Expected S/N for OVIII line

Assuming the detector of $S_{eff}\Omega = 100 \text{ cm}^2\text{deg}^2$ and $\Delta E = 2\text{eV}$

Physical properties of the probed baryons

Each symbol indicate the temperature and the over-density of gas at each simulation grid (4x4 smoothed pixels over the sky and $\Delta z = 0.3/128)$

 $S_{x} > 3x10^{-10} \text{ [erg/s/cm²/sr]}$ $S_{x} > 6x10^{-11} \text{ [erg/s/cm²/sr]}$ $S_{x} > 10^{-11} \text{ [erg/s/cm²/sr]}$

Dependence on the metallicity model

- We have adopted model I (constant 0.2 solar metallicity) so far
- Density-dependent metallicity models show stronger emission lines.
 - WHIM will be unambiguously detected with our proposed mission

Expected fraction of WHIM detectable via Oxygen emission lines (in principle)

Our proposed mission (flux limit = $6x10^{-11}$ [erg/s/cm²/str]) will be able to detect (20-30) percent of the total cosmic baryons via Oxygen emission lines in principle.

Detectability of Warm-Hot Intergalactic Medium via Oxygen emission lines

- Mock spectra from cosmological SPH simulation
- With our proposed mission (20-30) percent of the total cosmic baryons will be detected via Oxygen emission lines in principle.
 - $\Delta E = 2eV$, $S_{eff} \Omega = 100 [cm^2 deg^2]$
 - flux limit = $6x10^{-11}$ [erg/s/cm²/str]

Things remain to be checked

- Validity of the collisional ionization equilibrium ?
- How to properly identify the oxygen lines from the background/noises in reality ?

A competing proposal

PI: Wilt Sanders (UW-Madison SSEC)
 X-Ray Calorimeter Telescope Development
 UW-Madison, NASA/GSFC, Lockheed-Martin
 Spacecraft: Spectrum Astro SA-200S Bus
 Time schedule: the concept study start is in November
 2003, and launch is scheduled for August 2007.
 Cost: \$118.96M in FY2003 USD

UW-Madison Space Science and Engineering Center Missing Baryon Explorer

Surveys of the Low Energy X-Ray Diffuse Background to Complete Our Picture of the Universe http://www.ssec.wisc.edu/baryons/index.html

Our plan

- A dedicated satellite with cost < 30M USD to fill the gap between Astro-E2 (2005) and NeXT (2010?).
- Launch at Japan in 2008 (?).
- Details to be determined at a meeting on September 10, 2003 at ISAS.
- Need to organize a serious working group to explore all possible aspects of the expected scientific outcome.
- Everyone interested in this project is very welcome to join us.

Hellsten et al. ApJ 509(1998)56 50h⁻¹Mpc 28

SPH simulation: zoom-up

75h⁻¹Mpc

5h⁻¹Mpc

SPM simulation in CDM (Yoshikawa, Taruya, Jing & Suto 2001)