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Ubiquity of hierarchical triples
n Stellar systems

n more than 70% of OBA-type stars and 50% of FGK-type stars a 
belong to binary/multiple systems (e.g., Alpha Centauri)

n Planetary systems
n Sun-earth-moon, planet around binary stars, multi-planets

n Black-hole systems
n Possible pathway towards binary BHs
n Binaries (stars, BHs) around a supermassive BH in galaxies
n Triples of compact objects, e.g., pulsar-WD binary + tertiary WD 

(Ransom et al. 2014)



Triples are unstable in general ⇔ diversity
n Stability criterion (Mardling & 

Aarseth 2001)

n Well-known and widely used, but 
its implication is often 
misinterpreted…

n What does it mean?
n Liapunov (chaoticity of local 

trajectory) vs. Lagrange (escape of 
a body from the system) stability
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Liapunov vs. Lagrange (in)stability
n Liapunov instability

n Local divergence of trajectories of 
bodies (chaoticity)

n Lagrange instability
n global escape of a body from the triple 

system (boundedness of an orbit)
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Longer-term 3-body simulations in 
Newtonian dynamics (neglecting GR effects) 

𝑒$% = 10*+(circular)
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𝑞./ ≡ 𝑚./𝑚/ ≤ 1
𝑞.0 ≡ 𝑚./𝑚0

𝒊𝐦𝐮𝐭: 𝟎∘, 𝟗𝟎∘, 𝟏𝟖𝟎∘

N-body code 
TSUNAMI

(Trani and Spera)
Disruption time
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Coplanar: prograde, retrograde

Mass ratio (inner binary)
Mass ratio (tertiary)

Integration time 
up to 10*𝑃%&

(roughly 106-7 Pout)

Orthogonal
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Examples of orbital evolution of triples

coplanar - prograde

coplanar - retrograde
initially orthogonal

Green:
Lagrange stable 
up to t=108 Pin

Magenta:
Lagrange unstable   

around t=106 Pin



Disruption timescales on aout(1-eout)/ain – eout plane 

𝑇$/𝑃%& 10410510610710+10810010.

Coplanar - prograde Coplanar - retrograde

strongly 
stabilized

Stability boundary by Mardling & Aarseth (2001)m1=m2=5m3

Orthogonal

Td>109Pin

Td>109Pin

Td>109Pin



60<imut<150  
destabilized by the Kozai-Lidov oscillations

Imut>160
significantly stabilized due to inefficient 

energy transfer between inner and outer orbits

Inclination dependence
Td/Pout on aout(1-eout)/ain – eout plane 

Very different from the stability boundary by Mardling & Aarseth (2001)

Td>107Pout Td>107Pout Td>107Pout

Td>107Pout
Td>107Pout Td>107Pout



Chaotic nature of disruption timescale distribution

Performed on 3 different CPUs n Tiny difference in the 
input value of Pin leads to 
one or two order-of-
magnitude difference  of 
disruption timescales

n Initial phase difference 
of the three bodies also 
leads to one or two 
order-of-magnitude 
difference  of disruption 
timescales



Td/Pout (rp,out/ain; imut, eout) 
with random initial phases

n Liapunov stability boundaries 
(Vynatheya+2022) are plotted in dashed 
lines for reference



Conclusions
n Lagrange vs. Liapunov stability for triple systems

n Conventional criteria correspond to Liapunov stability
n Lagrange stability is more relevant in considering the fate of 

astronomical triples, i.e., disruption timescale
n We derive triple disruption timescales as a function of 

orbital parameters (intrinsic variation by one or two order-
of-magnitudes due to the chaotic dynamics of triples)

n Strong dependence on the mutual inclination
n Strongly misaligned systems (60<imut<150) are destabilized due 

to the Kozai-Lidov oscillations over longer timescales
n Coplanar retrograde triples are significantly stabilized


