
Detection of Far Infrared Emission from SDSS Galaxies in the SFD Galactic Extinction Map

Yasushi Suto Department of Physics, The University of Tokyo & Global scholar, Dept. of Astrophysical Sci., Princeton University

11:20-11:50 November 1, 2012: The 5th KIAS Workshop on *COSMOLOGY AND STRUCTURE FORMATION*

This talk is based on

 Detection of Far Infrared Emission from Galaxies and Quasars in the Galactic Extinction Map by Stacking Analysis

T.Kashiwagi, K.Yahata & YS
 Publ.Astron.Soc.Japan (2012), submitted
 The effect of FIR emission from SDSS

galaxies on the SFD Galactic extinction map

K.Yahata, A.Yonehara, YS, E.L.Turner,
 T.Broadhurst, & D.P. Finkbeiner

Publ.Astron.Soc.Japan 59(2007)205

Korea House (October 22, 2006)

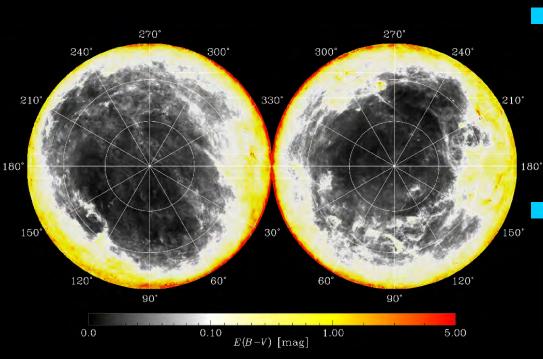
Kansas: Dust in the wind (1977)

- Don't hang on
- Nothing lasts forever, but the earth and sky
- It slips away.
- And all your money won't another minute buy
- Dust in the wind
- All we are is dust in the wind
- Dust in the wind
- Everything is dust in the wind

平家物語(1240?)

祇園精舎の鐘の聲 諸行無常の響き有り 沙羅雙樹の花の色 盛者必衰の理を顯す <u>
驕れる者も久しからず</u> 唯春の夜の夢の如し 猛き者も遂には滅びぬ 偏に風の前の塵に同じ

The Tale of the Heike (from Wikipedia)


The sound of the Gion Shōja bells echoes the impermanence of all things; the color of the sāla flowers reveals the truth that the prosperous must decline.

The proud do not endure, they are like a dream on a spring night; the mighty fall at last, they are as dust before the wind.

(Chapter 1.1, translated by Helen Craig McCullough)

From Dust in the wind to Dust in the world

SFD Galactic extinction map

Galactic extinction E(B-V) map (Schlegel, Finkbeiner & Davis 1998; SFD)

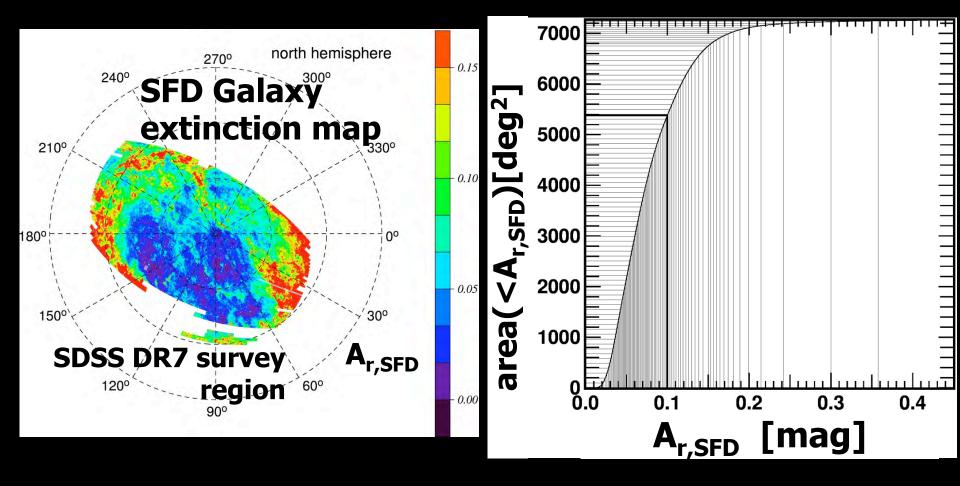
 The most fundamental dataset for any astronomical observation

 True large-scale structures revealed only after the extinction correction

 Its reliability is of vital importance in precision cosmology

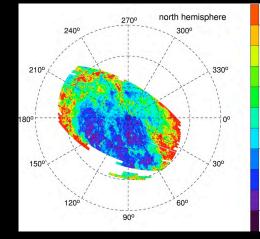
Most cited papers among all refereed astronomy journal articles published in 1800-2012 (ADS)

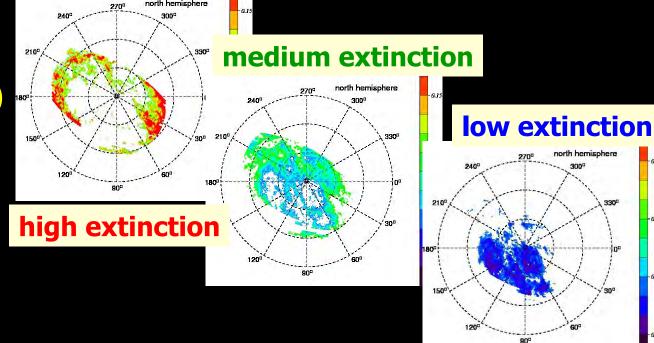
1	□ 1998ApJ500525S	7647.000 06/1998 <u>A</u>	EE	X		<u>R</u> <u>C</u>	<u>S</u>	<u>U</u> H
	Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc	Maps of Dust Infrared E Cosmic Microwave Back					Reddening	g and
2	2003ApJS148175S	6991.000 09/2003 <u>A</u>	EE	X	D	RC	<u>s</u> <u>N</u>	<u>U</u> Н
	Spergel, D. N.; Verde, L.; Peiris, H. V.; Komatsu, E.; Nolta, M. R.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; and 7 coauthors	First-Year Wilkinson Mic Determination of Cosmo				(WMAP) Observa	ations:

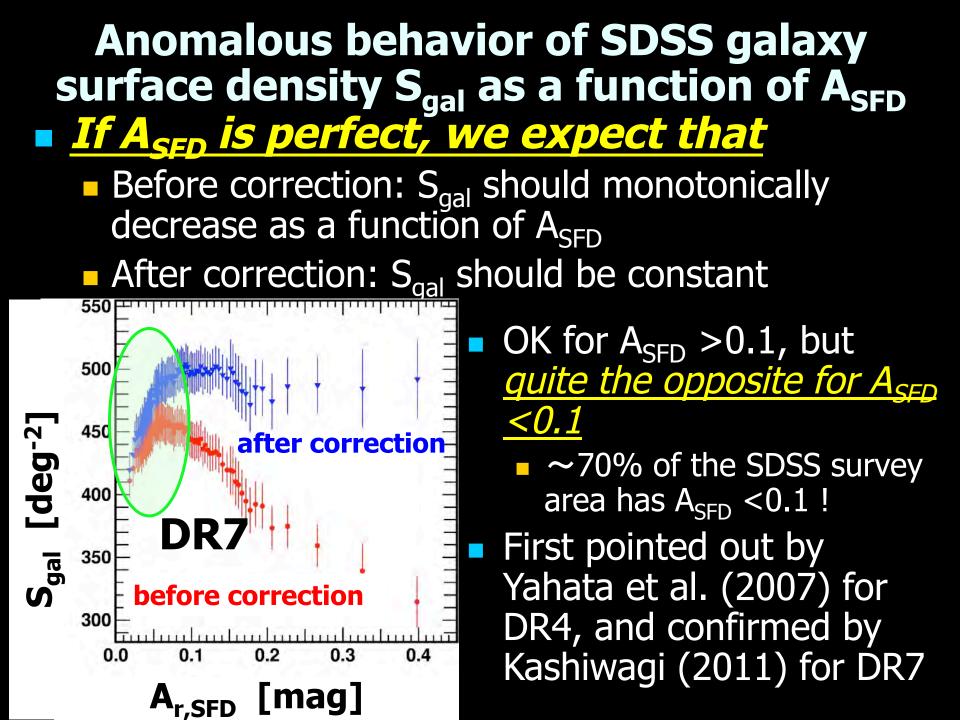

Top cited papers: 1st-5th

	authors	citation	title
1	Schlegel, Finkbeiner & Davis (1998)	7647	Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds
2	Spergel et al. (2003)	6991	First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters
3	Perdew & Zunger (1981)	6872	Self-interaction correction to density- functional approximations for many-electron systems
4	Perlmutter et al. (1999)	6671	Measurements of Omega and Lambda from 42 High-Redshift Supernovae
5	Riess et al. (1998)	6564	Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant

Top cited papers: 6th-10th


	paper	citation	title
6	Shakura & Sunyaev (1973)	5741	Black holes in binary systems. Observational appearance
7	Spergel et al. (2007)	5300	Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology
8	Anders & Grevesse (1989)	5265	Abundances of the elements - Meteoritic and solar
9	Randall & Sundrum (1999)	4764	Large Mass Hierarchy from a Small Extra Dimension
10	Cardelli, Clayton & Mathis (1989)	4630	The relationship between infrared, optical, and ultraviolet extinction


A_{SFD} map in SDSS DR7 survey region 3.6x10⁶ galaxies (17.5<r<19.4) in 7270 deg² from SDSS DR7 photometric catalog


Estimating Galactic extinction from SDSS galaxy surface density

- divide the SDSS DR7 survey area into many small regions according to A_{SFD}
- combine those un-contiguous regions into 84 bins with ~100 deg² each
- compare the galaxy number density S_{gal} for those bins

The SFD procedure to construct the Galactic extinction map

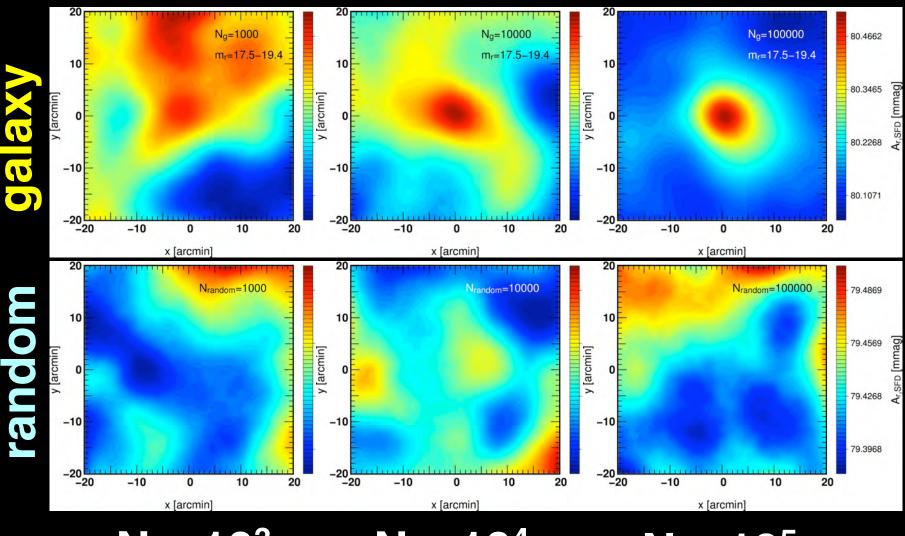
• COBE 100μ m+240 μ m maps (0.7deg.pixel)

- Remove zodiacal light and cosmic infrared background
- Dust temperature map \Rightarrow temperature-dependent emissivity corrected 100 μ m map
- Calibration of higher angular-resolution IRAS $100 \,\mu$ m map (5 arcmin. pixel)

Assume

E(B-V)=p×(IRAS 100 μ m flux)^T; p~0.0184, T~1 at each region and determine p and T from the data Convert E(B-V) to A_{band} adopting SED of ellipticals and R_V=A_V/E(B-V)=3.1

Origin of the anomaly

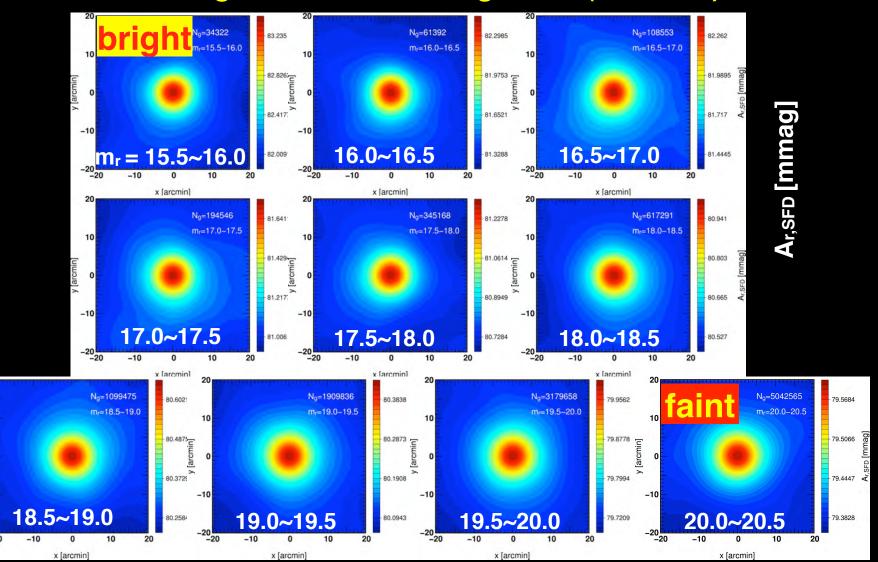

A_{SFD} is estimated assuming that the reddening is proportional to the FIR emission flux (100 µ m)

the anomaly indicates the positive correlation between galaxy surface density and the FIR flux at least where the real extinction is small

 $100 \,\mu$ m flux = Galactic dust + galaxies

 contamination by the FIR emission from galaxies proposed by Yahata et al. (2007)

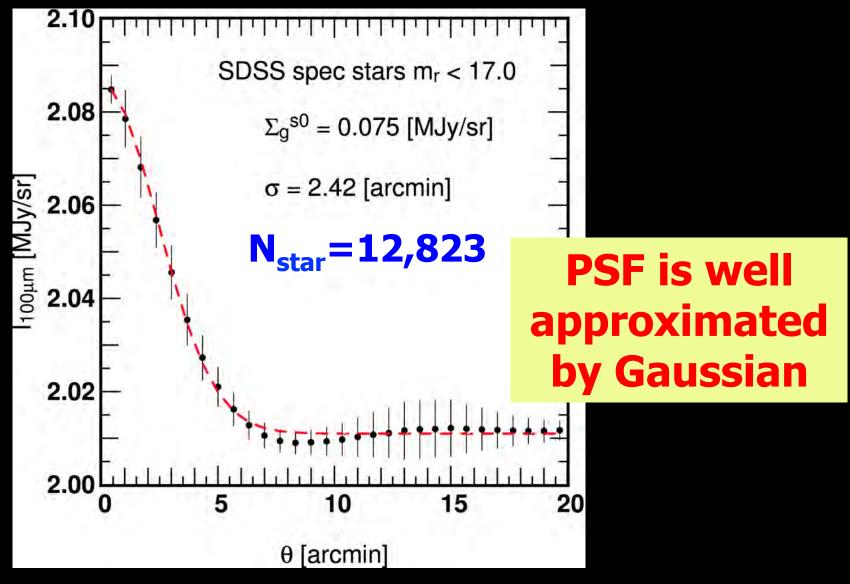
Stacking analysis of SDSS galaxies on the SFD map

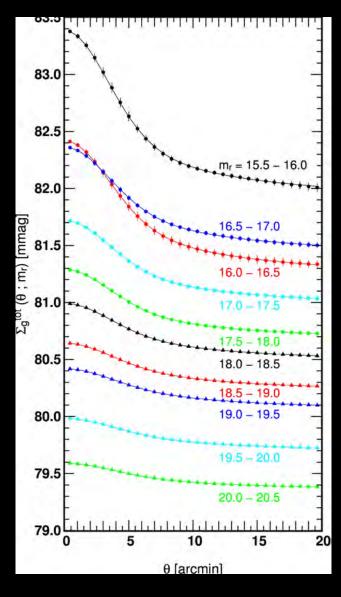

 $N = 10^{3}$

 $N = 10^4$

 $N = 10^{5}$

Magnitude dependence


Stacking SDSS galaxies (15.5 < m_r < 20.5) over SFD map according to their r-band magnitude ($\Delta m_r = 0.5$)

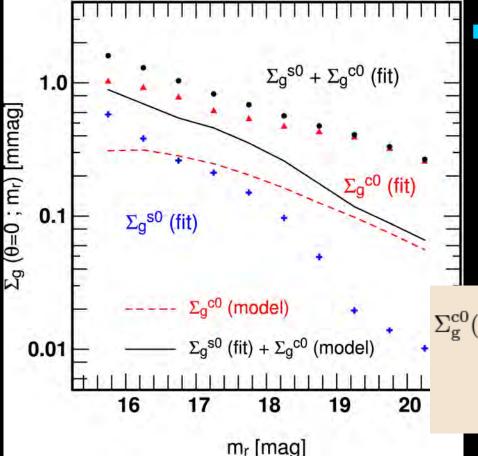

-10

-20

Point spread function of IRAS

Decompositions into single galaxy and clustering terms

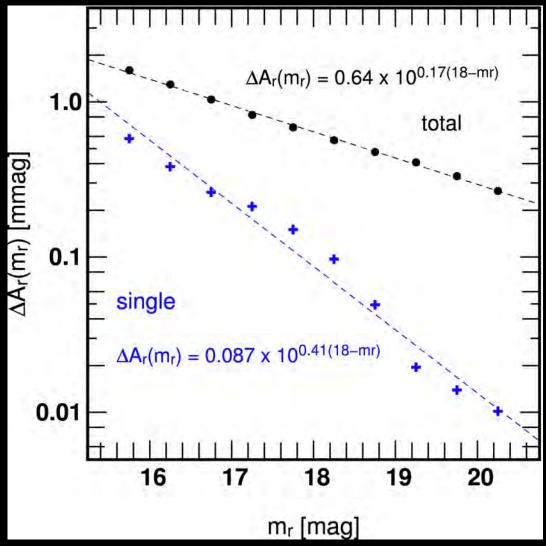
$$\Sigma_{\rm g}^{\rm tot}(\boldsymbol{\theta}; m_r) = \Sigma_{\rm g}^{\rm s}(\boldsymbol{\theta}; m_r) + \Sigma_{\rm g}^{\rm c}(\boldsymbol{\theta}; m_r) + C$$

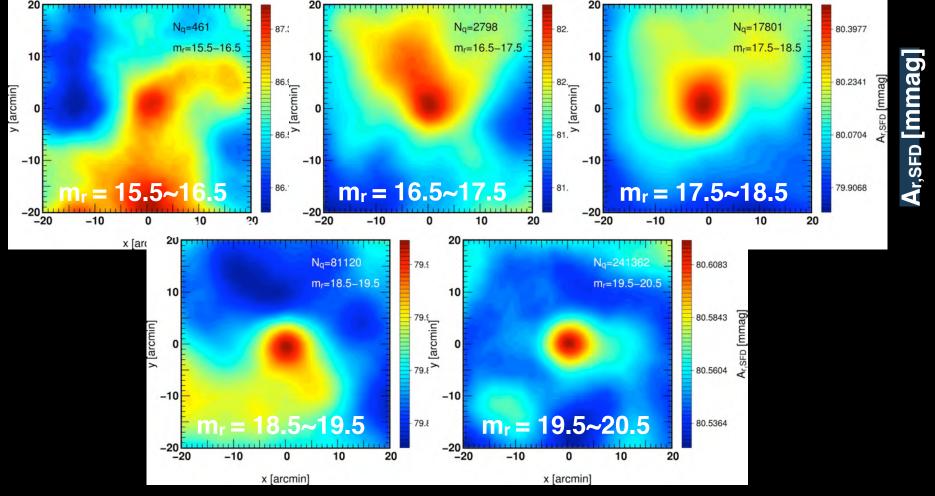

$$\Sigma_{\rm g}^{\rm s}(\boldsymbol{\theta}; m_r) = \Sigma_{\rm g}^{\rm s0}(m_r) \exp\left(-\frac{\theta^2}{2\sigma^2}\right)$$

$$\Sigma_{g}^{c}(\theta;m_{r}) = \iint dm' d\varphi \ \Sigma_{g}^{s}(\theta - \varphi;m')$$
$$\times w_{g}(\varphi;m',m_{r}) \frac{dN_{g}(m')}{dm'}$$

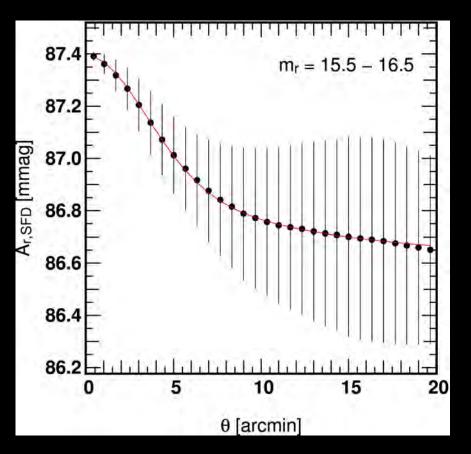
$$w_{\rm g}(\varphi;m',m_r) = K(m',m_r)(\varphi/\varphi_0)^{-\gamma}$$

$$\Sigma_{g}^{c}(\boldsymbol{\theta}; m_{r}) = \Sigma_{g}^{c0}(m_{r}) \exp\left(-\frac{\theta^{2}}{2\sigma^{2}}\right)$$
$$\times {}_{1}F_{1}\left(1 - \frac{\gamma}{2}; 1; \frac{\theta^{2}}{2\sigma^{2}}\right)$$

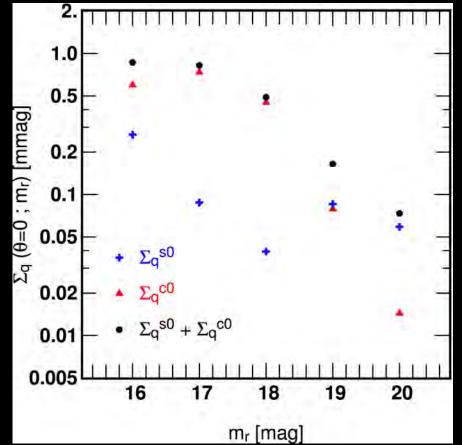

Extended dust emission around the halo hosting the central galaxy and/or contribution from unresolved galaxies ?


The fitted clustering term is a factor of 2-3 larger than that expected from the measured angular correlation functions of resolved SDSS galaxies

$$\begin{split} {}_{\rm g}^{\rm c0}(m_r) &= 2\pi\sigma^2 \left(\frac{\varphi_0}{\sqrt{2}\sigma}\right)^{\gamma} \Gamma\left(1-\frac{\gamma}{2}\right) \\ &\times \int dm' \Sigma_{\rm g}^{\rm s0}(m') K(m',m_r) \frac{dN_{\rm g}(m')}{dm'} \end{split}$$


Average contribution to A_r from FIR emission of (SDSS) galaxies

Stacking SDSS quasars Similar stacking analysis of SDSS photometric quasar catalogue (Richards et al., 2009) indicates the FIR signals as well.



Profiles of stacked quasar images

Stacked quasar profile and its best-fit

Best-fit decomposition into the single and clustering terms

Summary

 Detection of FIR emission from SDSS galaxies (and quasars) by stacking analysis over the SFD map (~ IRAS 100 µ m map)

- Correction to the SFD map and future Galactic extinction map with Planck
- A new probe of unresolved (dusty) galaxy correlations or dust profile of the hosting halo
- Everything is dust in the wind (Kansas)
- 風前一笑世皆<mark>塵</mark> (Korea House)
- The mighty fall at last, they are as dust before the wind (The Tale of The Heike)