Hierarchy in the cosmic structures

Hubble Ultra Deep Field
@ t=0.1Gyr

Cosmic Microwave Background @ t=0.4Myr.

Simulated halo

@ t=10Gyr

Solar system @ t=13.7Gyr

Yasushi Suto

Department of Physics, The University of Tokyo
Kyoto University GCOE symposium "Links among Hierarchies"
16:20-16:50 February 13, 2012

From our local universe (SDSS) to Cosmic Microwave Background (WMAP)

Hierarchical structures in the universe

Temperature map of Cosmic Microwave Background

Baryon Acoustic Oscillation imprinted in galaxy distribution

4,7000 Luminous Red Galaxies @ z~0.3 over 3800 deg² from Sloan Digital Sky Survey

Eisenstein et al. (2005)

Baryon Acoustic Oscillation in galaxy power spectrum: probe of dark energy

 Sub-percent level accuracy is achieved with improved perturbation theory of gravitational evolution of dark matter (Taruya et al. 2009,2010)

Formation of galaxies and clusters from dark matter halos

N-body simulations of dark matter halos in ∧ CDM

Apparent diversities of dark matter halos with different mass and environments

Universal density profile of dark matter halos: NFW profile

- Regularity behind diversity
- Dark halos exhibit an unexpected scaling law in the nonlinear gravitational evolution process

$$\rho(r) = \frac{\delta_c \rho_{crit}}{(r/r_s)(1+r/r_s)^2}$$

Navarro, Frenk & White (1997)

A pale blue dot? Not really

Simulated photometric light-curves of Earth

- Adopted Earth data in March
- Spin inclination = 0 (vernal equinox) Fujii et al. (2010)
- cloudless

Color-Changing Planets Could Hold Clues to Alien Life (May 13, 2010 in SPACE.com)

- A new way of comparing the color and intensity changes of light reflected off of Earth's surface to the flickers from exoplanets may help reveal the presence of oceans, continents and – possibly – life on alien worlds.
- By comparing the changes in observed hues of an alien planet as it rotates to this distinct Earthly color palette, "we can infer the surface composition of the [exo]planet," said Yuka Fujii, a doctoral student at the University of Tokyo and lead author of a paper published in the May 4 issue of the Astrophysical Journal.

http://www.space.com/scienceastronomy/color-changing-planets-alien-life-100513.html

Idealized cloudless earth

Fujii et al. (2010,2011)

Input data

- 5 light-curves using anisotropic scattering (BRDF) model
- 2 week observation of a cloudless Earth at 10 pc away

Inversion assumptions

- Ocean, soil, vegetation and snow only (with atmosphere)
- Isotropic scattering assumed

Results

- Estimated areas (symbols) vs Surface classification data (dashed line)
- Reasonably well reproduced.
- Can identify vegetation!
- Useful to identify a second earth?

From deterministic to stochastic

- Regularities and diversities in astrophysics
- Deterministic on larges scales and stochastic on small scales
 - **CMB**: perfect match with linear theory predictions
 - LSS: perturbation theory works well
 - Galaxy clusters: nonlinear gravitational evolution leads to a class of regularity in density profiles
 - Galaxies: huge varieties, roughly classified in the Hubble sequence
 - Planetary systems: until 1995, we did not even know if planets outside the Solar system exist at all
 - Another Earth: still unknown, our biological world on the earth is just accidental, or a generic outcome of the inflationary cosmology paradigm

"Central dogma" in cosmology or a reductionist's point of view

- Inflation will fix the initial condition of the universe
 - Quantum fluctuations generated during the inflation epoch are responsible for the origin of all the structures in the universe
- Maybe right in principle, but in reality, can we extract any initial memory of the early universe out the motion of planets in our solar system?
 - Competition between the initial condition and chance/stochasticity
 - Analogous to different perspectives between particle physicists and solid-state physicists

Measurement of Spin-Orbit alignment in an Extrasolar Planetary System

- Joshua N. Winn (MIT), R.W. Noyes, M.J. Holman, D.B. Charbonneau, Y. Ohta, A. Taruya, Y. Suto, N. Narita, E.L. Turner, J.A. Johnson, G.W. Marcy, R.P. Butler, & S.S. Vogt
 - ApJ 631(2005)1215 (astro-ph/0504555)

HD209458: the first transiting planet discovered in 1999

 Motivated by an analytical perturbation formula for the Rossier-McLaughlin effect by Ohta, Taruya & Suto: ApJ 622(2005)1118

Discovery of a retrograde/polar orbit of HAT-P-7 with Subaru via the RM effect

Origin of the retrograde/polar orbit is unknown

Formation of retrograde planets

Initial condition

- Central star with 1 solar mass
- Three planets all with 1 Jupiter mass
- Circular orbits (e=0)
- semi-major axis: 5AU, 7.25AU, 9.5AU
- Inclination: 0.5deg, 1.0deg, 1.5deg
- Random phases

(Nagasawa et al. 2008,2011)

Evolution

- Simple gravitational few body system
- Orbit-crossing and scale segregation (ejection of a planet)
- formation of a close-in planet (due to tidal dissipation)
- Perturbation from the outer planet significantly changes the dynamics of the inner planet via the Kozai mechanism

Segregation of small and large scales

- Initially similar scale orbits
 - semi-major axis: 5AU, 7.25AU, 9.5AU
- Chaotic evolution and energy exchange
 - Orbit-crossing and segregation of outer and inner planets
- Energy and angular-momentum dissipation
 - formation of a close-in planet (due to tidal dissipation)
- Interaction between different scales
 - Perturbation from the outer planet (via the Kozai mechanism) results in a retrograde orbit of the inner planet

Co-evolution and co-existence of hierarchical structures in the universe

- Primordial density fluctuations
 - seeded in the inflationary epoch
- Gravitational evolution
 - linear
 - dissipationless nonlinear
- Non-gravitational evolution
 - Radiative processes
 - Energy dissipation
 - Angular-momentum transfer
 - Segregation of scales
- Co-existence
 - Huge difference among their time-scales

$$t_{grav} \approx \frac{1}{\sqrt{G\rho}} \approx 10 \text{Gyr} \sqrt{\frac{10^{-29} \text{g/cc}}{\rho_{universe}}} \approx 0.1 \text{m sec} \sqrt{\frac{10^{14} \text{g/cc}}{\rho_{neutron star}}}$$