Beyond a pale blue dot

Yasushi Suto
Department of Physics and Research Center for the Early Universe, the University of Tokyo

November 12, 2015: The 2015 Kyoto Prize Workshop in Basic Sciences
“Formation mechanisms of planetary systems and the quest for earth-twins”
Revolution of our world-view

"We didn’t know anything"

“Invincible”

Photo taken by Y. Suto (Nov. 4, 2004) post-Nishinomiya-Yukawa symposium, Kyoto University
Nightfall: We didn’t know anything

A short novel by Issac Asimov

- No “night” except the total eclipse due to an inner planet every 2049 years on the planet “Lagash”
- People realized the true world for the first time
History of exoplanet discovery

In 1995, Mayor and Queloz made us realize that “we didn’t know anything”

As of November 11, 2015

1977 planets
1257 planetary systems
490 multiple planet systems

As of November 11, 2015 http://exoplanet.eu/
Are we alone?

a Pale Blue Dot?
or pale blue dots?
Sciences with exoplanets

- the **final** question: *Are we alone?*
- origin of the earth
- origin of the Solar System
- *habitable* planets ⇒ origin of life
- signature of extra-terrestrial life?
 ⇒ extra-terrestrial intelligence?

“Where are they?” E.Fermi (1950)
Solar planets imaged by Voyager 1 (February 4, 1990)

- Earth imaged at distance of 40 AU away
- A Pale Blue Dot coined by Carl Segan
A Pale Blue Dot

Voyager 1
Earth and Moon from Saturn (2013)

- Viewed from *Cassini* on July 20, 2013
 - about 20,000 happy Americans are waving their hand towards Cassini, but *how can we know that?*
Can we detect signatures of life on our Earth?
Search for signatures of life on “Earth” with Galileo mission! (1990)

- Launched in May, 1986
- Earth observed on December 8, 1990
- **Conclusion: it is likely that life exists on Earth!**
 - Abundant O₂
 - Red-edge of vegetation
 - CH₄ abundance out of thermal equilibrium
 - Artificial pulsed radio signal

Conventional bio-signatures

- O_2
- A-band@0.76µm
- B-band@0.69µm

- H_2O
- 0.72, 0.82, 0.94µm

- O_3
- Chappuis band @(0.5-0.7)µm
- Hartley band @(0.2-0.3)µm

Kasting et al. arXiv:0911.2936
“Exoplanet characterization and the search for life”
Strong O₂ absorption @ A-band (0.76 μm)

FIG. 1 a, Galileo long-wavelength-visible and near-infrared spectra of the Earth over a relatively cloud-free region of the Pacific Ocean, north of Borneo. The incidence and emission angles are 77° and 57° respectively. The (b'Σ→X'Σ) 0→0 band of O₂ at 0.76 μm is evident, along with a number of H₂O features. Using several cloud-free regions of varying airmass, we estimate an O₂ vertical column density of 1.5 km-amagat ± 25%. b and c, Infrared spectra of the Earth in the 2.4–5.2 μm region. The strong v₃ CO₂ band is seen at the 4.3 μm, and water vapour bands are found, but not indicated, in the 3.0 μm region. The v₃ band of nitrous oxide, N₂O, is apparent at the edge of the CO₂ band near 4.5 μm, and N₂O combination bands are also seen near 4.0 μm. The methane (0010) vibrational transition is evident at 3.31 μm. A crude estimate of the CH₄ and N₂O column abundances is, for both species, of the order of 1 cm-amagat (≡1 cm path at STP).
Red edge of (exo)plants: a possible biosignature in exoplanets

- Red-edge
 - Significant increase of reflectivity of leaves on Earth (terrestrial planets) for $\lambda > 7000\text{Å}$
 - Widely used in the remote-sensing of our Earth

Seager, Ford & Turner astro-ph/0210277
Vesto Melvin Slipher (1875-1969)

- Discovered redshifts of galaxies and thus cosmic expansion via the Doppler method

“Observations of Mars in 1924 made at the Lowell Observatory: II spectrum observations of Mars’”

PASP 36(1924)261

Reflection spectrum. The Martian spectra of the dark regions so far do not give any certain evidence of the typical reflection spectrum of chlorophyll. The amount and types of vegetation required to make the effect noticeable is being investigated by suitable terrestrial exposures. **Astrobiology indeed in 1924!**
Sagan et al. (1993): colors of the earth

Red-edge of the vegetation on the earth detected by the Galileo mission

Peru/Colombia

Chile

Argentina

<table>
<thead>
<tr>
<th>Reflectivity</th>
<th>Wavelength [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.60</td>
</tr>
<tr>
<td>0.10</td>
<td>0.70</td>
</tr>
<tr>
<td>0.15</td>
<td>0.80</td>
</tr>
<tr>
<td>0.20</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Graph:

- Area A
- Area B
- Area C
Sagan et al. (1993): radio observation

Detection of pulsed radio signals unlikely of natural/astronomical origin

FIG. 4 A frequency–time spectrogram of the radio signals detected by the Galileo plasma wave instrument. The intensities are coded in the sequence blue–green–yellow–red, with blue lowest and red highest. Several natural sources of radio emission are shown in a, including auroral kilometric radiation (AKR). Modulated emission at $f>4$ MHz is shown with an expanded time scale in b. Modulated patterns of this type are characteristic of the transmission of information, and would be highly unusual for a naturally occurring radio source. (UT, universal time; R is distance of Galileo from Earth in units of Earth’s radius, R_E; LT, local time.)
Arecibo message (1974)

- Frank Drake sent a radio message from Arecibo radio observatory on November 16, 1974 towards globular cluster M13 (25,000 light-year away)
- The message, if decoded properly, should look like this.

1 to 10 in binary
Atomic numbers of H, C, N, O, P that form DNA in binary
Formulas for the sugars and bases in the nucleotides of DNA
Double helix of DNA
Human and the human population on earth
The solar system
Arecibo radio telescope
Simulated Earth observed at 10pc away
Habitable zone around host stars

Occurrence of earth-size habitable planets around Sun-like stars

- Planets with (1-2) Earth radius around GK stars
 - Kepler Transit planets corrected for selection effect
 - $11\pm4\%$ (1-4 times the Solar flux on the earth)
 - $5.7+2.2-1.7\%$ (orbital period of 200-400 days)

Table 1. Occurrence of small planets in the habitable zone

<table>
<thead>
<tr>
<th>HZ definition</th>
<th>a_{inner}</th>
<th>a_{outer}</th>
<th>$F_{P,\text{inner}}$</th>
<th>$F_{P,\text{outer}}$</th>
<th>f_{HZ} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>0.5</td>
<td>2</td>
<td>4</td>
<td>0.25</td>
<td>22</td>
</tr>
<tr>
<td>Kasting (1993)</td>
<td>0.95</td>
<td>1.37</td>
<td>1.11</td>
<td>0.53</td>
<td>5.8</td>
</tr>
<tr>
<td>Kopparapu et al. (2013)</td>
<td>0.99</td>
<td>1.70</td>
<td>1.02</td>
<td>0.35</td>
<td>8.6</td>
</tr>
<tr>
<td>Zsom et al. (2013)</td>
<td>0.38</td>
<td>6.92</td>
<td>0.01</td>
<td></td>
<td>26*</td>
</tr>
<tr>
<td>Pierrehumbert and Gaidos (2011)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>~50†</td>
</tr>
</tbody>
</table>

Petigura, Howard & Marcy: arXiv:1311.6806
Starshade project: direct imaging of a second earth

Space telescope + occulting satellite at 50,000km away!
(Princeton Univ. + JPL/Caltech)
Expected daily change of the reflected light of the earth

Assume that the earth’s reflected light is completely separated from the Sun’s flux!

Periodic change of 10% level due to different reflectivity of land, ocean, forest

Cloud is the most uncertain factor: weather forecast!
Colors of a Second Earth: estimating the fractional areas of ocean, land and vegetation of Earth-like exoplanets
Colors of a Second Earth. II: Effects of Clouds on Photometric Characterization of Earth-like Exoplanets

- Yuka Fujii, H.Kawahara, A.Taruya, Y.Suto (Dept. of Phys., Univ. of Tokyo), S.Fukuda, T.Nakajima (Univ. of Tokyo, Center of climate system research), Edwin Turner (Princeton Univ.)

Colors of a second earth

- Beyond a pale blue dot
 - Impossible to spatially resolve the surface of a second earth
 - Color should change due to the rotation
 - A second earth = a color-changing dot
Colors of our earth

- snow
- vegetation
- ocean
- soil (A)
- soil (B)
- cloud
- snow

March 18th-19th

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>17</th>
<th>19</th>
<th>21</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocean</td>
</tr>
</tbody>
</table>
A pale blue dot? Not really

Simulated photometric light-curves of Earth

- Adopted Earth data in March
- Spin inclination = 0 (vernal equinox)
- cloudless

Fujii et al. (2010)
Estimating fractional areas of surface components from colors of a second earth

- 2 week observation of a cloudless Earth at 10 pc away
- Reasonably well reproduced
- Possible to identify vegetation!

Fujii et al. (2010)
Surface latitude map estimated from real satellite data with cloud model.
“The color of plants on other worlds”
N. Kiang, Scientific American (2008)
Summary: A pale blue dot? Not really!

- Future direct imaging of daily change of colors of another earth is challenging, but would reveal the presence of ocean, land, cloud, and/or even vegetation on their surface.

- Detection of a second Earth may not be a mere fairy tale nor a science fiction any more.

- Detection of oxygen, water vapor, and even the red-edge may be a promising path towards astrobiology.