Non-sphericity of collisionless gravitating systems in the universe

dark matter halos from N-body simulations (Jing & Suto 2000)

Yasushi Suto Department of Physics and RESCEU (Research Center for the early Universe) The University of Tokyo

"Collisionless Boltzmann (Vlasov) Equation and Modeling of Self-Gravitating Systems and Plasmas" October 30 - November 3, 2017 Centre International de Rencontres Mathématiques, Marseille, France

Shape and profile of dark matter halos (= collisionless self-gravitating systems in the universe)

- Theoretical question: what is the final state of cosmological self-gravitating system (if any) ?
 - Forget initial conditions and exhibit universality ?
 - Or initial memory is imprinted somewhere ?
- Practical importance: testing cosmology and nature of dark matter against observations
 - Gravitational weak/strong lensing
 - Optical/X-ray/radio observations of clusters of galaxies
 - Signature of dark matter decay/annihilation

Validity and limitation of spherical dust collapse model of dark matter halos

Universality of *spherically-averaged* density profiles: insensitive to initial conditions

NFW profile

 Sphericallyaveraged density profiles of collisionless dark matter halos

 $\rho(r) = \frac{\delta_c \rho_{crit}}{(r/r_s)(1 + r/r_s)^2}$

Navarro, Frenk & White (1997); see also Fukushige & Makino (1997) Ogiya's Talk on Friday !

Spherical dust collapse (SDC)

An analytic solution to a spherical dynamics

- A simple but widely-used approximation
- e.g., dark matter halo abundance vs. cluster mass and temperature functions to determine cosmological parameters

Attempts for improvement

- shell crossing (e.g., Bertschinger 1985)
- non-sphericity (e.g., Jing + YS 2002)
- velocity dispersions (Suto, Kitayama, Osato, Sasaki + YS 2016a, PASJ 68, 14)

Comparison of the SDC model predictions against N-body simulation

- Dark matter only simulations with GADGET-2
 - ACDM with WMAP9 cosmological parameters
 - N=1024³ in (360h⁻¹ Mpc)³
 - \blacksquare m=3.4 \times 10⁹ M_{\odot}

Self-gravitating systems identified at z=0

- compute the spherical mass M and radius R of spherical overdensity of $\Delta = \rho/\rho_m = 355.4$
- Identifies the center-of-mass of the z=0 halo particles at z, and compute the radius R(z) enclosing the mass M at 0<z<z_{initial} = 99

The most massive halo with M=1.66 \times 10¹⁵ M_{\odot}

Red: FOF particles at z=0 Black: non-FOF particles

Evolution in real and phase spaces

Effect of velocity dispersions

Jeans equation for spherical collisionless system

- radial velocity dispersion σ_r^2
- tangential velocity dispersion σ_t^2

$$\frac{Dv_r}{Dt} = -\frac{1}{\rho} \frac{\partial(\rho \sigma_r^2)}{\partial r} + \frac{\sigma_t^2 - 2\sigma_r^2}{2} - \frac{GM}{r^2}$$

- SDC assumes an initially top-hat (homogeneous) sphere
 - neglects small-scale inhomogeneities, shell-crossing before turn-around, and thus no σ_r^2 or σ_t^2

Larger t_{turn-around} and R_{virial} than predicted by SDC

Spherical collapse with velocity dispersion

Suto, Kitayama, Osato, Sasaki + YS 2016a, PASJ 68, 14

Bertschinger's self-similar solution

 Self-similar shell crossing of collisionless particles: spherical secondary infall Bertschinger 1985, ApJS, 58, 39 Beyond the spherical model: ellipsoidal collapse and phenomenological triaxial model

Dark matter halos are not spherical

galaxies ~ 5x10¹²M_{sun}

groups ~ 5x10¹³M_{sun}

clusters $\sim 3 \times 10^{14} M_{sur}$

Beyond spherical modelling: phenomenological triaxial fit

$$\rho(R) = \frac{\delta_c \rho_{crit}}{(R/R_s)^{\alpha} (1 + R/R_s)^{3-\alpha}}$$
$$R^2(\rho) = \frac{x^2}{a^2(\rho)} + \frac{y^2}{b^2(\rho)} + \frac{z^2}{c^2(\rho)}$$

Jing & Suto ApJ 574 (2002) 538

While it is widely applied for many cosmological problems, it is very simplified

 Concentric & self-similar (axis ratio is independent of radius)

Probability density function of axis ratios

Scaled axis ratio $\tilde{r}_{ac} = \left(\frac{a}{c}\right)_{scaled} = \left(\frac{a}{c}\right) \left(\frac{M_{vir}}{M_{nonlinear}(z)}\right)^{0.07\Omega(z)^{0.7}}$

PDF of the scaled axis ratio

$$p(\tilde{r}_{ac}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\tilde{r}_{ac} - 0.54)^2}{2\sigma^2}\right)$$

$$\sigma = 0.113$$

Higher z for a given mass, less spherical
More massive at a given z, very slightly less spherical

Triaxial fitting parameters for halo shape

• $a \simeq b \gg c$: Oblate object (disk-shaped) \rightarrow pancake

 b ≃ c ≪ a: Prolate object (cigar-shaped) → filament

0<p<e

0>р>-е

$\begin{aligned} \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} &= 1 \quad (a > b > c) \\ c &= R(1 - \lambda_1) \\ b &= R(1 - \lambda_2) \\ a &= R(1 - \lambda_3) \\ \lambda_1 &> \lambda_2 > \lambda_3 \qquad \delta = \lambda_1 + \lambda_2 \end{aligned}$

Ellipticity

$$e = \frac{\lambda_1 - \lambda_3}{2\delta}$$

Prolateness

$$p = \frac{\lambda_1 + \lambda_3 - 2\lambda_2}{2\delta}$$

G.Rossi (2011)

Ellipsoidal collapse modelBasic equations

Axis length

$$\frac{d^2 A_k(t)}{dt^2} = \Omega_{\Lambda,0} H_0^2 A_k(t)$$
$$-4\pi G \bar{\rho}(t) A_k(t) \left[\frac{1+\delta(t)}{3} + \frac{b'_k \delta(t)}{2} + \lambda'_{\text{ext},k}(t)\right]$$

Tidal force within the homogeneous ellipsoid

$$b'_{k}(t) = \prod_{j} A_{j}(t) \int_{0}^{\infty} \frac{d\tau}{[A_{k}^{2}(t) + \tau] \prod_{j} \sqrt{A_{j}^{2}(t) + \tau}} - \frac{2}{3}$$

External tidal force assuming linear growth

$$\lambda'_{\mathrm{ext},k}(t) = rac{D(t)}{D(t_{\mathrm{ini}})} \left[\lambda_k(t_{\mathrm{ini}}) - rac{\delta(t_{\mathrm{ini}})}{3} \right]$$

Initial condition at t_{ini}

$$A_k(t_{\rm ini}) = a(t_{\rm ini})[1 - \lambda_k(t_{\rm ini})]$$

$$\frac{dA_k(t_{\rm ini})}{dt} = H(t_{\rm ini}) \left[A_k(t_{\rm ini}) - a(t_{\rm ini})\lambda_k(t_{\rm ini}) \left. \frac{d\ln D}{d\ln a} \right|_{t=t_{\rm ini}} \right]$$

Evolution of non-sphericity: ellipsoidal collapse vs. N-body

Individual halo evolution is in reasonable, even if not good, agreement with ellipsoidal collapse *before virialization* Suto et al. (2016b) PASJ, 68, 97

Does ellipsoidal collapse model improve the spherical collapse model ?

Unfortunately no (not so much)

- Ellipsoidal collapse model (Rossi, Sheth & Tormen 2011; dashed) predicts that more massive halos are more spherical
- N-body simulations (Jing & Suto 2002; solid) indicate that nonsphericity is fairly insensitive to mass (more massive halos are slightly less spherical)

Axis ratio evolution of N-body halos

Mass dependence

 very slightly less spherical for larger mass, which is opposite to ellipsoidal collapse prediction

Time dependence

 Become less spherical until turnaround, and then more spherical

PDF of projected axis ratios

insensitive to redshift Slightly less spherical towards inner region Very different from the selfsimilar projected model (Oguri, Lee & Suto 2003) **Empirically fitted** to β-distribution

Tentative comparison with observed axis ratio distribution from weak lensing

- Subaru Suprime-Cam weaklensing map for 18 massive clusters (Oguri et al. 2010, MNRAS 405, 2215)
- Our result fits the observed data better than the OLS03 prediction
- Can be tested against future data from Subaru Hyper Supreme-Cam lensing survey

Summary

 Dark matter halos (collisionless self-gravitating systems) exhibit a certain universality

- Seem to forget its initial condition during virialization (collisionless relaxation)
- Including velocity dispersion improves the spherical collapse model
- Ellipsoidal collapse model does not reproduce Nbody results so well

 Phenomenological triaxial model to N-body results is useful for comparison with observations, e.g., constraining self-interacting dark matter

Supplemental materials

Generic trends from 100 simulated halos

- Very good quantitative agreement until the turn-around epoch
 - may be reasonable but not trivial at all, given the small-scale clumping, subhalo mergers inside, and/or the filamentary structure across the entire region
- Systematic difference relative to SDC predictions after the turn-around epoch
 - Delay of the turn-around epoch
 - Larger turn-around radius
 - Larger "virialized" radius

Suto et al. (2016a)

Brief history of spherical profile modelling

- 1970: Peebles; N-body simulation (N=300)
- 1977: Gott; secondary infall model $\rho \propto r^{-9/4}$
- 1985: Hoffman & Shaham; predicted that density profile around density peaks is $\rho \propto r^{-3(n+3)/(n+4)}$
- 1986: Quinn, Salmon & Zurek; N-body simulations (N~10000), confirmed $\rho^{\infty}r^{-3(n+3)/(n+4)}$
- 1988: Frenk, White, Davis & Efstathiou; N-body simulations (N=32³) in CDM model reproduce a flat rotation curve out to 100kpc
- 1990: Hernquist; proposed an analytic model with a central cusp for elliptical galaxies $\rho \propto r^{-1}(r+r_s)^{-3}$
- 1996: Navarro, Frenk & White; universal density profile for dark matter halos (NFW profile)

Scaled evolution of constant mass shells: $r_M(z)$ with $M(\langle r_M \rangle)=const.$ in the halo

usual assumption (r_{vir}=r_{ta}/2) is not accurate
 Mixing of different mass shells is not complete

Motion of constant mass shells for 4 different halos

"Virialized" mass shells change: not constant but oscillating

Each mass shell continues to oscillate within the halo; halos are not static but dynamical

"Virialized" mass shells change: not constant but oscillating

Each mass shell continues to oscillate within the halo; halos are not static but dynamical

"virialized" densities within different mass shells

Not constant Large coherent modulation

Horizon simulations

Cosmological hydro-dynamical simulation (Dubois et al. 2014)

- \blacksquare N=1024³ dark matter particles in a cube of (100h⁻¹Mpc)³ ; m = 8.27 \times 10⁷ M_{\odot}
- Adaptive mesh refinement for gas with initial cell size of 136kpc (refine down to 1.06kpc)
 - Gas cooling, heating due to UV background, star formation, and feedback from stellar winds and type I and II SNe are included

H_{AGN} includes feedback from AGN as well by implementing the growth of central BHs

Baryonic effect inside galaxy clusters

Both gas cooling and star+AGN feedback need to be properly included in simulation so as to reproduce the (sphericallyaveraged) properties of galaxy clusters

Shape of clusters probed by gas, stars, and dark matter

with AGN feedback

without AGN feedback

Effect of baryons on the shape of dark matter distribution

spherical profile unchanged for r>0.1r_{vir} significant impact even up to 0.5r_{vir} !

Axis ratios of 40 simulated clusters with/without baryon physics

Radial and mass dependence of axis ratio

no significant mass dependence of axis ratio

 $q_{XSB} > q_{DM} > q_{star}$

Comparison with X-ray observation

axis ratios of 70 X-ray clusters fitted by Kawahara (2010)

simulated clusters with AGN feedback reasonably agree with the observed data

Summary

- Galaxies and galaxy clusters are highly non-spherical, but their non-sphericity is not easy to model/interpret theoretically
- Reliable simulations with various baryon physics are required for observational confrontation
- Current simulations reasonably reproduce the observed axis ratios from weak lensing and X-ray data
- Interesting and complementary probes of cosmology with future data